Features
* High Performance, Low Power AVR® 8-Bit Microcontroller
¢ Advanced RISC Architecture
— 135 Powerful Instructions — Most Single Clock Cycle Execution
— 32 x 8 General Purpose Working Registers
— Fully Static Operation _®

— Up to 16 MIPS Throughput at 16 MHz
— On-Chip 2-cycle Multiplier

* Non-volatile Program and Data Memories . ®
— 16/32K Bytes of In-System Self-Programmable Flash (ATmega16U4/ATmega32U4) 8'b|t AVR
— 1.25/2.5K Bytes Internal SRAM (ATmega16U4/ATmega32U4) =
— 512Bytes/1K Bytes Internal EEPROM (ATmegai6U4/ATmega32U4) M ICI‘OCOHthl Ier
— Write/Erase Cycles: 10,000 Flash/100,000 EEPROM With
— Data retention: 20 years at 85°C/ 100 years at 25°C(")
— Optional Boot Code Section with Independent Lock Bits 1 6 /32 K Bytes of
In-System Programming by On-chip Boot Program
True Read-While-Write Operation ISP Flash
All supplied parts are preprogramed with a default USB bootloader
— Programming Lock for Software Security and US B
¢ JTAG (IEEE std. 1149.1 compliant) Interface
— Boundary-scan Capabilities According to the JTAG Standard ContrOI Ier

— Extensive On-chip Debug Support
— Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface

* USB 2.0 Full-speed/Low Speed Device Module with Interrupt on Transfer Completion ATmega" 6U4
— Compilies fully with Universal Serial Bus Specification Rev 2.0
- Supports data transfer rates up to 12 Mbit/s and 1.5 Mbit/s ATmega32U4

— Endpoint 0 for Control Transfers: up to 64-bytes

— 6 Programmable Endpoints with IN or Out Directions and with Bulk, Interrupt or
Isochronous Transfers

— Configurable Endpoints size up to 256 bytes in double bank mode

— Fully independent 832 bytes USB DPRAM for endpoint memory allocation = =

— Suspend/Resume Interrupts Prel imi nary

— CPU Reset possible on USB Bus Reset detection

— 48 MHz from PLL for Full-speed Bus Operation

— USB Bus Connection/Disconnection on Microcontroller Request

— Crystal-less operation for Low Speed mode

* Peripheral Features

— On-chip PLL for USB and High Speed Timer: 32 up to 96 MHz operation

— One 8-bit Timer/Counter with Separate Prescaler and Compare Mode

— Two 16-bit Timer/Counter with Separate Prescaler, Compare- and Capture Mode

— One 10-bit High-Speed Timer/Counter with PLL (64 MHz) and Compare Mode

— Four 8-bit PWM Channels

— Four PWM Channels with Programmable Resolution from 2 to 16 Bits

— Six PWM Channels for High Speed Operation, with Programmable Resolution from
2 to 11 Bits

— Output Compare Modulator

— 12-channels, 10-bit ADC (features Differential Channels with Programmable Gain)

— Programmable Serial USART with Hardware Flow Control

— Master/Slave SPI Serial Interface 7766F—AVR-11/10

ATMEL

EEEes————————————————————— A TMmega16/32U4

— Byte Oriented 2-wire Serial Interface
— Programmable Watchdog Timer with Separate On-chip Oscillator
— On-chip Analog Comparator
— Interrupt and Wake-up on Pin Change
— On-chip Temperature Sensor
¢ Special Microcontroller Features
— Power-on Reset and Programmable Brown-out Detection
— Internal 8 MHz Calibrated Oscillator
— Internal clock prescaler & On-the-fly Clock Switching (Int RC / Ext Osc)
— External and Internal Interrupt Sources
— Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby
¢ |/O and Packages
— All /O combine CMOS outputs and LVTTL inputs
— 26 Programmabile 1/O Lines
— 44-lead TQFP Package, 10x10mm
— 44-lead QFN Package, 7x7mm
¢ Operating Voltages
- 2.7-5.5V
* Operating temperature
— Industrial (-40°C to +85°C)
¢ Maximum Frequency
— 8 MHz at 2.7V - Industrial range
— 16 MHz at 4.5V - Industrial range

Note: 1. See “Data Retention” on page 8 for details.

ATMEL z

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

1. Pin Configurations
Figure 1-1. Pinout ATmega16U4/ATmega32U4
£28s
~ ~ 5 £ B E
Q b ~ Lo © N~
O O O O O O
o o O o a A
Q 4w 2 £ << 2 o
SzEC e ek zo
< O < oo o o aaa G >
(INT.6/AINO) PE6 PE2 (HWB)
UVce PC7 (ICP3/CLKO/OC4A)
INDEX CORNER
D- PC6 (OC3A/OC4A)
D+ PB6 (PCINT6/OC1B/OC4B/ADC13)
UGnd PBS5 (PCINT5/0C1A/OC4B/ADC12)
UCap [6] ATmega32U4 PB4 (PCINT4/ADC11)
ATmega16U4 PD7 (TO/OC4D/ADC10
VBus [7 ()
* 44-pin QFN/TQFP 27 —
(SS/PCINTO) PBO PD6 (T1/OC4D/ADC9)
(PCINT1/SCLK) PB1 [9] PD4 (ICP1/ADC8)
(PDI/PCINT2/MOSI) PB2 AvVCC
(PDO/PCINT3/MISO) PB3 GND
Nl Q@ 2 99 5 o 5 a o ow
S4SGEELS2EERE
@ X s L 8@
‘E z £ z z ‘('3
3 32 = ¢
9] g a2 & 8 0O
Q a ke
< o =
S 8
Q =
N~
—
<
O
e

2. Overview

The ATmega16U4/ATmega32U4 is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the
ATmega16U4/ATmega32U4 achieves throughputs approaching 1 MIPS per MHz allowing the
system designer to optimize power consumption versus processing speed.

ATMEL ;

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

21 Block Diagram

Figure 2-1. Block Diagram

- -
h 9| |&
PF7 - PF4 PF1 PFO PC7 PC6 = = 2
A A A A A] < o«
,,,,,,,,,,,,, R g e g P N PP IR PP PUPRPENN SERED
|
|
1 A, y i
TVCCl PORTF DRIVERS PORTC DRIVERS |
]
[PALEEE T P TN
'
= DATA REGISTER DATA DIR. DATA REGISTER DATA DIR.
REG. PORTF PORTC REG. PORTC

'
! PORTF
!

! ! soroamaus] f

»/ >
:] POR - BOD

RESET INTERNAL CALIB.OSC
OSCILLATOR .
i OSCILLATOR

v v
PROGRAM STACK
$| JTAGTAP | *| COUNTER |‘7 | POINTER |‘—'
j PROGRAM 1 MCU CONTROL
*|ON—CHIP DEBUG': *| FLASH | SRAM REGISTER

=

WATCHDOG
TIMER

TIMING AND
CONTROL l

+

T PURPOSE

REGISTERS INTERRUPT | |
X UNIT I UVee

i
TIMERS/ ||: i

BOUN%*\‘HY' INSTRUCTION GENERAL COUNTERS - |

SC REGISTER i

i

[£1 ¥

PROGRAMMING * 1
INSTRUCTION Y
+| LOGIC | DECODER | <_:,—| ON-CHIP '
- EEPROM USB PAD 3V :
REGULATOR uc
TEMPERATURE ¢ < i °
r SENSOR CONTROL i J_
LINES 1 1uF
i
Avee ‘ - HIGH SPEED |4 || PLL | —;E
- 1 < -
+ > ADC TIMER/PWM .
AGND ' > [STATUS vy
AREF j REGISTER [————vBUs
1 ? DP

|
] USB 2.0 A 4 L bm
1 ANALOG TWO-WIRE SERIAL |

1 ::I COMPARATOR USARTI 1 SPI INTERFACE

|

|

i
|
|

T) T T f |

! < v v v > !
i

' 7 Y 'y Y i

! |
|

| v } f i |

: ! AR v Y v 1

| DATA REGISTER DATA DIR. DATA REGISTER DATA DIR. DATA REGISTER DATA DIR. |

| PORTE REG. PORTE PORTB REG. PORTB PORTD REG. PORTD !

i

! |
i

| bovbbebe JEINT LI ‘

: | PORTE DRIVERS | | PORTB DRIVERS | | PORTD DRIVERS | :

: A A :

w A A A !

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, P P s Py g g Bt s e AN U I N

v v YYYVYVYVYVYY vVVYVYy
PE6 PE2 PB7 - PBO PD7 - PDO

The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.

The ATmega16U4/ATmega32U4 provides the following features: 16/32K bytes of In-System
Programmable Flash with Read-While-Write capabilities, 512Bytes/1K bytes EEPROM,
1.25/2.5K bytes SRAM, 26 general purpose I/O lines (CMOS outputs and LVTTL inputs), 32
general purpose working registers, four flexible Timer/Counters with compare modes and PWM,
one more high-speed Timer/Counter with compare modes and PLL adjustable source, one
USART (including CTS/RTS flow control signals), a byte oriented 2-wire Serial Interface, a 12-

ATMEL ;

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

channels 10-bit ADC with optional differential input stage with programmable gain, an on-chip
calibrated temperature sensor, a programmable Watchdog Timer with Internal Oscillator, an SPI
serial port, IEEE std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip
Debug system and programming and six software selectable power saving modes. The Idle
mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system
to continue functioning. The Power-down mode saves the register contents but freezes the
Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. The ADC
Noise Reduction mode stops the CPU and all I/O modules except ADC, to minimize switching
noise during ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running
while the rest of the device is sleeping. This allows very fast start-up combined with low power
consumption.

The device is manufactured using ATMEL’s high-density nonvolatile memory technology. The
On-chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI
serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot pro-
gram running on the AVR core. The boot program can use any interface to download the
application program in the application Flash memory. Software in the Boot Flash section will
continue to run while the Application Flash section is updated, providing true Read-While-Write
operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a
monolithic chip, the ATMEL ATmega16U4/ATmega32U4 is a powerful microcontroller that pro-
vides a highly flexible and cost effective solution to many embedded control applications.

The ATmega16U4/ATmega32U4 AVR is supported with a full suite of program and system
development tools including: C compilers, macro assemblers, program debugger/simulators, in-
circuit emulators, and evaluation kits.

2.2 Pin Descriptions

2.21 VCC

222 GND

Digital supply voltage.

Ground.

223 PortB (PB7..PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port B has better driving capabilities than the other ports.

Port B also serves the functions of various special features of the ATmega16U4/ATmega32U4
as listed on page 72.

224 Port C (PC7,PC6)

7766F-AVR-11/10

Port C is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

ATMEL ;

EEEes————————————————————— A TMmega16/32U4

Only bits 6 and 7 are present on the product pinout.

Port C also serves the functions of special features of the ATmega16U4/ATmega32U4 as listed
on page 75.

2.25 PortD (PD7..PDO)

Port D is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port D also serves the functions of various special features of the ATmega16U4/ATmega32U4
as listed on page 77.

2.2.6 PortE (PE6,PE2)

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Only bits 2 and 6 are present on the product pinout.

Port E also serves the functions of various special features of the ATmega16U4/ATmega32U4
as listed on page 80.

2.2.7 Port F (PF7..PF4, PF1,PF0)

2.2.8 D-

2.29 D+

2.2.10 UGND

7766F-AVR-11/10

Port F serves as analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional 1/O port, if the A/D Converter channels are not used.
Port pins can provide internal pull-up resistors (selected for each bit). The Port F output buffers
have symmetrical drive characteristics with both high sink and source capability. As inputs, Port
F pins that are externally pulled low will source current if the pull-up resistors are activated. The
Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Bits 2 and 3 are not present on the product pinout.

Port F also serves the functions of the JTAG interface. If the JTAG interface is enabled, the pull-
up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs.

USB Full speed / Low Speed Negative Data Upstream Port. Should be connected to the USB D-
connector pin with a serial 22 Ohms resistor.

USB Full speed / Low Speed Positive Data Upstream Port. Should be connected to the USB D+
connector pin with a serial 22 Ohms resistor.

USB Pads Ground.

ATMEL ;

EEEes————————————————————— A TMmega16/32U4

2.2.11 uvcc
2.2.12 UCAP
2.2.13 VBUS
2.2.14 RESET
2.2.15 XTALA1
2.2.16 XTAL2
22217 AvCC
2.2.18 AREF

7766F-AVR-11/10

USB Pads Internal Regulator Input supply voltage.

USB Pads Internal Regulator Output supply voltage. Should be connected to an external capac-
itor (1uF).

USB VBUS monitor input.

Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 8-1 on page
50. Shorter pulses are not guaranteed to generate a reset.

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
Output from the inverting Oscillator amplifier.

AVCC is the supply voltage pin (input) for all the A/D Converter channels. If the ADC is not used,
it should be externally connected to V. If the ADC is used, it should be connected to V¢
through a low-pass filter.

This is the analog reference pin (input) for the A/D Converter.

ATMEL 7

EEEes————————————————————— A TMmega16/32U4

3. About

3.1 Disclaimer

3.2 Resources

Typical values contained in this datasheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values
will be available after the device is characterized.

A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.

3.3 Code Examples

This documentation contains simple code examples that briefly show how to use various parts of
the device. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-
tation for more details.

These code examples assume that the part specific header file is included before compilation.
For 1/O registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI"
instructions must be replaced with instructions that allow access to extended 1/O. Typically
"LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".

3.4 Data Retention

7766F-AVR-11/10

Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.

ATMEL |

EEEes————————————————————— A TMmega16/32U4

4. AVR CPU Core

4.1 Introduction

This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.

4.2 Architectural Overview

7766F-AVR-11/10

Figure 4-1. Block Diagram of the AVR Architecture

‘ Data Bus 8-bit

A 4
Program Status
PFIash Counter N and Control [~
rogram
Memory <
Interrupt
y > 32x8 < Unit
Instruction General P
Register Purpose SPI
< Registrers <> Unit
A
Instruction Watchdog
Decoder A 4 < Timer
o 2 N
£ 7]
[} [}
l 8 L ALU PN Analog
Control Lines 3 2 Comparator
= 3
O (9}
(9] =
= il PN
Q £ <> /0 Module1
_ Data «le /O Module 2
SRAM
<> |/O Module n
EEPROM <
I/O Lines <

v

In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the program memory. This concept enables instructions to be executed
in every clock cycle. The program memory is In-System Reprogrammable Flash memory.

ATMEL ;

EEEes————————————————————— A TMmega16/32U4

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-
ical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File —in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing — enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word for-
mat. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the
Application Program section. Both sections have dedicated Lock bits for write and read/write
protection. The SPM instruction that writes into the Application Flash memory section must
reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack
Pointer (SP) is read/write accessible in the 1/0 space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the 1/O space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-
tion. The lower the Interrupt Vector address, the higher the priority.

The 1/0 memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, SPI, and other 1/O functions. The I/O Memory can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 - Ox5F. In addition, the
ATmega16U4/ATmega32U4 has Extended I/O space from 0x60 - OxOFF in SRAM where only
the ST/STS/STD and LD/LDS/LDD instructions can be used.

4.3 ALU - Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories — arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See the “Instruction Set” section for a detailed description.

ATMEL 1

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

4.4 Status Register
The Status Register contains information about the result of the most recently executed arithme-
tic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as
specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.

The AVR Status Register — SREG - is defined as:

Bit 7 6 5 4 3 2 1 0
I | T | H | s | v N z c | sRreG

Read/Write RIW R/W RW RW RW R/W RW RW

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-
rupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by
the application with the SEI and CLI instructions, as described in the instruction set reference.

e Bit 6 — T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.

e Bit 5 — H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.

e Bit4-S:SignBit,S=N®V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

e Bit 3 - V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s arithmetic complements. See the
“Instruction Set Description” for detailed information.

¢ Bit 2 — N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

e Bit1-2Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

ATMEL Y

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

* Bit 0 - C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

4.5 General Purpose Register File

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:

¢ One 8-bit output operand and one 8-bit result input

¢ Two 8-bit output operands and one 8-bit result input

¢ Two 8-bit output operands and one 16-bit result input

¢ One 16-bit output operand and one 16-bit result input
Figure 4-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 4-2. AVR CPU General Purpose Working Registers

7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D

General R14 0x0E

Purpose R15 OxOF

Working R16 0x10

Registers R17 0x11
R26 Ox1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 Ox1F Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 4-2, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

4.5.1 The X-register, Y-register, and Z-register

7766F-AVR-11/10

The registers R26..R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 4-3.

ATMEL 1

EEEes————————————————————— A TMmega16/32U4

4.6

Stack Pointer

7766F-AVR-11/10

Figure 4-3. The X-, Y-, and Z-registers

15 XH XL
X-register I 7 0 I 7 0 I
R27 (0x1B) R26 (0x1A)
15 YH YL
Y-register I 7 0 I 7 0 I
R29 (0x1D) R28 (0x1C)
15 ZH ZL 0
Z-register |7 0 |7 0 |
R31 (0x1F) R30 (0x1E)

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).

The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above 0x0100. The initial value of the stack pointer is the last address of the internal
SRAM. The Stack Pointer is decremented by one when data is pushed onto the Stack with the
PUSH instruction, and it is decremented by three when the return address is pushed onto the
Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is
popped from the Stack with the POP instruction, and it is incremented by three when data is
popped from the Stack with return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the 1/0 space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.

Bit 15 14 13 12 11 10 9 8
SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 1 0 0 0 0 0

ATMEL 1

EEEes————————————————————— A TMmega16/32U4

4.6.1 Extended Z-pointer Register for ELPM/SPM - RAMPZ

Bit 7 6 5 4 3 2 1 0

| rAMPZ7 | RAMPZ6 | RAMPZ5 | RAMPZ4 | RAMPZ3 | RAMPZ2 | RAMPZ1 RAMPZ0 | RAMPZ
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

For ELPM/SPM instructions, the Z-pointer is a concatenation of RAMPZ, ZH, and ZL, as shown
in Figure 4-4. Note that LPM is not affected by the RAMPZ setting.

Figure 4-4. The Z-pointer used by ELPM and SPM

Bit (Individually) 7 0 7 0 7 0
| rAMPZ | zH | zo |
Bit (Z-pointer) 23 16 15 8 7 0

The actual number of bits is implementation dependent. Unused bits in an implementation will
always read as zero. For compatibility with future devices, be sure to write these bits to zero.

4.7 Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkgp, directly generated from the selected clock source for the
chip. No internal clock division is used.

Figure 4-5 shows the parallel instruction fetches and instruction executions enabled by the Har-
vard architecture and the fast-access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.

Figure 4-5. The Parallel Instruction Fetches and Instruction Executions
T T2 T3 T4

ok —1 A N

CPU

1st Instruction Fetch

1

i

1st Instruction Execute :
2nd Instruction Fetch :

1

1

1

2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch X X i '

Figure 4-6 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destina-
tion register.

ATMEL 1

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 4-6. Single Cycle ALU Operation
T1 T2 T3 T4

ok — 4 N/ /N

CPU
Total Execution Time

1 1 1

1 1 1 1

1 1 1 1

] L/]]

1 1 1 1

Register Operands Fetch : : i i
1 1 1 1

ALU Operation Execute : : : :
1 1 1 1

Result Write Back : . > : :

1 L 1 1

4.8 Reset and Interrupt Handling

The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt. Depending on the Program
Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12
are programmed. This feature improves software security. See the section “Memory Program-
ming” on page 346 for details.

The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 61. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is INTO — the External Interrupt Request
0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL
bit in the MCU Control Register (MCUCR). Refer to “Interrupts” on page 61 for more information.
The Reset Vector can also be moved to the start of the Boot Flash section by programming the
BOOTRST Fuse, see “Memory Programming” on page 346.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-
abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled
interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a
Return from Interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the
Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vec-
tor in order to execute the interrupt handling routine, and hardware clears the corresponding
Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s)
to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is
cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is
cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt
Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the
Global Interrupt Enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.

ATMEL 1

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

Note that the Status Register is not automatically stored when entering an interrupt routine, nor

restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the
CLI instruction. The following example shows how this can be used to avoid interrupts during the

timed EEPROM write sequence.

Assembly Code Example

in rl6, SREG ; Sstore SREG value

cli ; disable interrupts during timed sequence
sbi EECR, EEMPE ; Sstart EEPROM write

sbi EECR, EEPE

out SREG, rlé6 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */
_ disable_interrupt () ;

EECR |: (1<<EEMPE) ; /* start EEPROM write */
EECR |= (1<<EEPE);

SREG = cSREG; /* restore SREG value (I-bit) */

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-

cuted before any pending interrupts, as shown in this example.

ATMEL

16

EEEes————————————————————— A TMmega16/32U4

Assembly Code Example

sei ; set Global Interrupt Enable
sleep,; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; ilnterrupt(s)

C Code Example

__enable_interrupt(); /* set Global Interrupt Enable */
__sleep(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */

4.8.1 Interrupt Response Time

The interrupt execution response for all the enabled AVR interrupts is five clock cycles minimum.
After five clock cycles the program vector address for the actual interrupt handling routine is exe-
cuted. During these five clock cycle period, the Program Counter is pushed onto the Stack. The
vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If an
interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before
the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt exe-
cution response time is increased by five clock cycles. This increase comes in addition to the
start-up time from the selected sleep mode.

A return from an interrupt handling routine takes five clock cycles. During these five clock cycles,
the Program Counter (three bytes) is popped back from the Stack, the Stack Pointer is incre-
mented by three, and the I-bit in SREG is set.

ATMEL L

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

5. AVR ATmega16U4/ATmega32U4 Memories

This section describes the different memories in the ATmega16U4/ATmega32U4. The AVR
architecture has two main memory spaces, the Data Memory and the Program Memory space.
In addition, the ATmega16U4/ATmega32U4 features an EEPROM Memory for data storage. All
three memory spaces are linear and regular.

5.1

Table 5-1. Memory Mapping.
Memory Mnemonic ATmega32U4 ATmegai6U4
Size Flash size 32K bytes 16K bytes
Start Address]
Flash 0x0000
End Add Flash end Ox7FFFY Ox3FFFY
ne nedress OX3FFF®@ Ox1FFF@
Size - 32 bytes 32 bytes
32 Start Address i 0x0000 0x0000
Registers
End Address - 0x001F 0x001F
Size - 64 bytes 64 bytes
Vo . Start Address - 0x0020 0x0020
Registers
End Address - 0x005F 0x005F
Size - 160 bytes 160 bytes
Ext |
xt /O Start Address - 0x0060 0x0060
Registers
End Address - Ox00FF Ox00FF
Size ISRAM size 2,5K bytes 1.25K bytes
Internal
SRAM Start Address ISRAM start 0x100 0x100
End Address ISRAM end Ox0AFF 0x05FF
External
Not Present.
Memory
Size E2 size 1K bytes 512 bytes
EEPROM
End Address E2 end O0x03FF Ox01FF
Notes: 1. Byte address.

2. Word (16-bit) address.

In-System Reprogrammable Flash Program Memory

The ATmega16U4/ATmega32U4 contains 16/32K bytes On-chip In-System Reprogrammable
Flash memory for program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash
is organized as 16K x 16. For software security, the Flash Program memory space is divided into
two sections, Boot Program section and Application Program section.

The Flash memory has an endurance of at least 100,000 write/erase cycles. The
ATmega16U4/ATmega32U4 Program Counter (PC) is 16 bits wide, thus addressing the 32K
program memory locations. The operation of Boot Program section and associated Boot Lock
bits for software protection are described in detail in “Memory Programming” on page 346.

7766F-AVR-11/10

ATMEL

18

EEEes————————————————————— A TMmega16/32U4

5.2

7766F-AVR-11/10

“Memory Programming” on page 346 contains a detailed description on Flash data serial down-
loading using the SPI pins or the JTAG interface.

Constant tables can be allocated within the entire program memory address space (see the LPM
— Load Program Memory instruction description and ELPM - Extended Load Program Memory
instruction description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Tim-
ing” on page 14.

Figure 5-1. Program Memory Map

Program Memory

0x00000

Application Flash Section

L

Boot Flash Section

OX7FFF (32KBytes)

SRAM Data Memory

Figure 5-2 shows how the ATmega16U4/ATmega32U4 SRAM Memory is organized.

The ATmega16U4/ATmega32U4 is a complex microcontroller with more peripheral units than
can be supported within the 64 location reserved in the Opcode for the IN and OUT instructions.
For the Extended I/O space from $060 - $0FF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.

The first 2,816 Data Memory locations address both the Register File, the 1/O Memory,
Extended I/0O Memory, and the internal data SRAM. The first 32 locations address the Register
file, the next 64 location the standard I/O Memory, then 160 locations of Extended I/O memory
and the next 2,560 locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displace-
ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register file,
registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

ATMEL 1

EEEes————————————————————— A TMmega16/32U4

The Indirect with Displacement mode reaches 63 address locations from the base address given
by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-
ment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 1/0O registers, and the 1.25/2.5Kbytes of internal
data SRAM in the ATmega16U4/ATmega32U4 are all accessible through all these addressing
modes. The Register File is described in “General Purpose Register File” on page 12.

Figure 5-2. Data Memory Map
Data Memory

32 Registers $0000 - $001F
64 1/0 Registers $0020 - $005F
160 E xt /O Reg. $0060 - $OOFF
ISRAM start : $0100

Internal S RAM

ISRAM end : $05FF / $OAFF

5.2.1 Data Memory Access Times
This section describes the general access timing concepts for internal memory access. The
internal data SRAM access is performed in two clkgp cycles as described in Figure 5-3.

Figure 5-3. On-chip Data SRAM Access Cycles
T1 T2 T3

ok —1 — 4 N

CPU I I

1
Address ! Compute Address , X Address valid |
1 1 1
Data ; ~ s =
1 1 1 ‘E
1 1 1
WR 1 v/ 1\ =
I 1 1 —
1 1 / it —_
Data t — D e
1 1 1 8
1 1 1
o
RD ! 1/ "\
1 1 1 -
Memory Access Instruction Next Instruction

ATMEL 2

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

5.3 EEPROM Data Memory

The ATmega16U4/ATmega32U4 contains 512Bytes/1K bytes of data EEPROM memory. It is
organized as a separate data space, in which single bytes can be read and written. The
EEPROM has an endurance of at least 100,000 write/erase cycles. The access between the
EEPROM and the CPU is described in the following, specifying the EEPROM Address Regis-
ters, the EEPROM Data Register, and the EEPROM Control Register.

For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM, see
page 360, page 365, and page 349 respectively.

5.3.1 EEPROM Read/Write Access
The EEPROM Access Registers are accessible in the /0O space.

The write access time for the EEPROM is given in Table 5-3. A self-timing function, however,
lets the user software detect when the next byte can be written. If the user code contains instruc-
tions that write the EEPROM, some precautions must be taken. In heavily filtered power
supplies, V¢ is likely to rise or fall slowly on power-up/down. This causes the device for some
period of time to run at a voltage lower than specified as minimum for the clock frequency used.
See “Preventing EEPROM Corruption” on page 25. for details on how to avoid problems in these
situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

5.3.2 The EEPROM Address Register —- EEARH and EEARL

Bit 15 14 13 12 11 10 9 8
- - - - EEAR11 | EEAR10 | EEAR9 | EEAR8 | EEARH
EEAR7 | EEAR6 | EEARS EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL

7 6 5 4 3 2 1 0
Read/Write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 X X X X

X X X X X X X X

¢ Bits 15..12 — Res: Reserved Bits
These bits are reserved bits in the ATmega16U4/ATmega32U4 and will always read as zero.

e Bits 11..0 - EEARS..0: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL specify the EEPROM address in the
512Bytes/1K bytes EEPROM space. The EEPROM data bytes are addressed linearly between
0 and E2_END. The initial value of EEAR is undefined. A proper value must be written before
the EEPROM may be accessed.

5.3.3 The EEPROM Data Register - EEDR

Bit 7 6 5 4 3 2 1 0
| wse | | LsB | EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

ATMEL 2

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

* Bits 7..0 - EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

5.3.4 The EEPROM Control Register — EECR

Bit 7 6 5 4 3 2 1 0

| - | - | EEPM1 | EEPMO | EERIE | EEMPE | EEPE EERE | EECR
Read/Write R R R/W R/W R/W R/W R/W R/W
Initial Value 0 0 X X 0 0 X 0

¢ Bits 7..6 — Res: Reserved Bits
These bits are reserved bits in the ATmega16U4/ATmega32U4 and will always read as zero.

* Bits 5, 4 - EEPM1 and EEPM0: EEPROM Programming Mode Bits

The EEPROM Programming mode bit setting defines which programming action that will be trig-
gered when writing EEPE. It is possible to program data in one atomic operation (erase the old
value and program the new value) or to split the Erase and Write operations in two different
operations. The Programming times for the different modes are shown in Table 5-2. While EEPE
is set, any write to EEPMn will be ignored. During reset, the EEPMn bits will be reset to 0b00
unless the EEPROM is busy programming.

Table 5-2. EEPROM Mode Bits

Programming
EEPM1 | EEPMO Time Operation
0 0 3.4 ms Erase and Write in one operation (Atomic Operation)
0 1 1.8 ms Erase Only
1 0 1.8 ms Write Only
1 1 - Reserved for future use

* Bit 3 - EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the | bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant inter-
rupt when EEPE is cleared.

e Bit 2 - EEMPE: EEPROM Master Programming Enable
The EEMPE bit determines whether setting EEPE to one causes the EEPROM to be written.
When EEMPE is set, setting EEPE within four clock cycles will write data to the EEPROM at the
selected address If EEMPE is zero, setting EEPE will have no effect. When EEMPE has been
written to one by software, hardware clears the bit to zero after four clock cycles. See the
description of the EEPE bit for an EEPROM write procedure.

e Bit 1 — EEPE: EEPROM Programming Enable

The EEPROM Write Enable Signal EEPE is the write strobe to the EEPROM. When address
and data are correctly set up, the EEPE bit must be written to one to write the value into the
EEPROM. The EEMPE bit must be written to one before a logical one is written to EEPE, other-

ATMEL 2

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

wise no EEPROM write takes place. The following procedure should be followed when writing
the EEPROM (the order of steps 3 and 4 is not essential):

Wait until EEPE becomes zero.

Wait until SELFPRGEN in SPMCSR becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMPE bit while writing a zero to EEPE in EECR.
6. Within four clock cycles after setting EEMPE, write a logical one to EEPE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software
must check that the Flash programming is completed before initiating a new EEPROM write.
Step 2 is only relevant if the software contains a Boot Loader allowing the CPU to program the
Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See “Memory Pro-
gramming” on page 346 for details about Boot programming.

ok~ wn =

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is
interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the
interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared
during all the steps to avoid these problems.

When the write access time has elapsed, the EEPE bit is cleared by hardware. The user soft-
ware can poll this bit and wait for a zero before writing the next byte. When EEPE has been set,
the CPU is halted for two cycles before the next instruction is executed.

e Bit 0 — EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct
address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the
EEPROM read. The EEPROM read access takes one instruction, and the requested data is
available immediately. When the EEPROM is read, the CPU is halted for four cycles before the
next instruction is executed.

The user should poll the EEPE bit before starting the read operation. If a write operation is in
progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 5-3 lists the typical pro-
gramming time for EEPROM access from the CPU.

Table 5-3. EEPROM Programming Time

Symbol Number of Calibrated RC Oscillator Cycles | Typ Programming Time
EEPROM write
(from CPU) 26,368 3.3ms

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (e.g. by disabling interrupts glob-
ally) so that no interrupts will occur during execution of these functions. The examples also
assume that no Flash Boot Loader is present in the software. If such code is present, the
EEPROM write function must also wait for any ongoing SPM command to finish.

ATMEL 2

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

Assembly Code Example("

EEPROM_write:
; Wait for completion of previous write

sbic EECR, EEPE

rjmp EEPROM_write

; Set up address (rl8:rl17) in address register

out EEARH, rl8

out EEARL, rl7

; Write data (rl6é) to Data Register

out EEDR,rl6

; Write logical one to EEMPE

sbi EECR, EEMPE

; Start eeprom write by setting EEPE

sbi EECR, EEPE

ret

C Code Example"

void EEPROM write (unsigned int uiAddress, unsigned char ucData)
{
/* Wait for completion of previous write */
while (EECR & (1<<EEPE))
/* Set up address and Data Registers */
EEAR = uiAddress;
EEDR = ucData;
/* Write logical one to EEMPE */
EECR |= (1<<EEMPE);
/* Start eeprom write by setting EEPE */
EECR |= (1<<EEPE);

Note: 1. See “Code Examples” on page 8.

The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of

these functions.

ATMEL

24

EEEes————————————————————— A TMmega16/32U4

Assembly Code Example("

EEPROM_read:
; Wait for completion of previous write
sbic EECR, EEPE
rjmp EEPROM_read
; Set up address (rl8:rl17) in address register
out EEARH, rl8
out EEARL, rl7
; Start eeprom read by writing EERE
sbi EECR, EERE
; Read data from Data Register
in 1rl6,EEDR

ret

C Code Example"

unsigned char EEPROM_read (unsigned int uiAddress)
{

/* Wait for completion of previous write */

while (EECR & (1<<EEPE))

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from Data Register */

return EEDR;

Note: 1. See “Code Examples” on page 8.

5.3.5 Preventing EEPROM Corruption
During periods of low V¢ the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal
BOD does not match the needed detection level, an external low V. reset Protection circuit can
be used. If a reset occurs while a write operation is in progress, the write operation will be com-
pleted provided that the power supply voltage is sufficient.

ATMEL 2

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

5.4 1/O Memory

The I/O space definition of the ATmega16U4/ATmega32U4 is shown in “Register Summary” on
page 408.

All ATmega16U4/ATmega32U4 1/Os and peripherals are placed in the 1/O space. All I/O loca-
tions may be accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data
between the 32 general purpose working registers and the 1/0O space. I/0 Registers within the
address range 0x00 - Ox1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
Refer to the instruction set section for more details. When using the I/O specific commands IN
and OUT, the 1/0 addresses 0x00 - Ox3F must be used. When addressing I/O Registers as data
space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega16U4/ATmega32U4 is a complex microcontroller with more peripheral units than can be
supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the
Extended I/O space from 0x60 - OxFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instruc-
tions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/0 memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most
other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore
be used on registers containing such Status Flags. The CBI and SBI instructions work with reg-
isters 0x00 to Ox1F only.

The 1/0 and peripherals control registers are explained in later sections.

5.4.1 General Purpose I/0 Registers

The ATmega16U4/ATmega32U4 contains three General Purpose I/O Registers. These registers
can be used for storing any information, and they are particularly useful for storing global vari-
ables and Status Flags. General Purpose 1/0 Registers within the address range 0x00 - Ox1F
are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

5.4.2 General Purpose I/0 Register 2 — GPIOR2

Bit 7 6 5 4 3 2 1 0
| vsB | | LsB | GPIOR2
Read/Write RW RW RW RW R/W RW RW RW
Initial Value 0 0 0 0 0 0 0 0
5.4.3 General Purpose I/O Register 1 — GPIOR1
Bit 7 6 5 4 3 2 1 0
[wse | | LSB | GPIOR1
Read/Write RW R/W RW RW RW R/W RW RW
Initial Value 0 0 0 0 0 0 0 0
544 General Purpose I/0 Register 0 — GPIORO
Bit 7 6 5 4 3 2 1 0
| wse | | LSB | GPIORo
Read/Write RW RW RW RW RW R/W RW RW
Initial Value 0 0 0 0 0 0 0 0

7766F-AVR-11/10

ATMEL

26

EEEes————————————————————— A TMmega16/32U4

6. System Clock and Clock Options

6.1

6.1.1

6.1.2

6.1.3

Clock Systems and their Distribution

Figure 6-1 presents the principal clock systems in the AVR and their distribution. All of the clocks
need not be active at a given time. In order to reduce power consumption, the clocks to modules
not being used can be halted by using different sleep modes, as described in “Power Manage-
ment and Sleep Modes” on page 43. The clock systems are detailed below.

Figure 6-1. Clock Distribution
High Speed General I/0 Flash and
use Timer Modules ADC CPU Core RAM EEPROM
A A A A A A A A A A
5 «
3 & clkyne
5 ©
N

) @ clk o AVR Clock ClKgpy

Control Unit
PLL Postcaler ey po
] A
clkpe
Reset Logic Watchdog Timer
PLL
Source clock f [3
clk,
Pliin (8MHz)
System Clock Watchdog
PLL Input Prescaler clock
Multiplexer A
3 A | PLcick clkeiprese
Prescaler I
Clock
Multiplexer
Clock Switch
1
Crystal Watchdog Calibrated RC

Oscillator

External Clock

Oscillator

Oscillator

The CPU clock is routed to parts of the system concerned with operation of the AVR core.
Examples of such modules are the General Purpose Register File, the Status Register and the
data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing
general operations and calculations.

The I/0 clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and USART.
The I/O clock is also used by the External Interrupt module, but note that some external inter-
rupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O
clock is halted. Also, TWI address recognition is handled in all sleep modes.

F|aSh C|Ock - CIkFLASH
The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-
taneously with the CPU clock.

7766F-AVR-11/10

ATMEL

27

EEEes————————————————————— A TMmega16/32U4

6.1.4 ADC Clock - clkype

The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks
in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion
results.

6.1.5 PLL Prescaler Clock — clKp;psesc

The PLL requires a 8 MHz input. A prescaler allows user to use either a 8MHz or a 16MHz
source (from a crystal or an external source), using a divider (by 2) if necessary. The output of
the prescaler goes into the PLL Input multiplexer, that allows the user to select either the pres-
caler output of the System Clock Multiplexer, or the Internal 8MHz Calibrated Oscillator.

6.1.6 PLL Output Clock - clkp,

When enabled, the PLL outputs one frequency among numerous choices between 32MHz and
96 MHz. The output frequency is determined by the PLL clock register. The frequency is inde-
pendent of the power supply voltage. The PLL Output is connected to a postcaler that allows
user to generate two different frequencies (clkygg and clkqyg) from the common PLL signal,
each on them resulting of a selected division ratio (/1, /1.5, /2).

6.1.7 High-Speed Timer Clock— clkyyg

When enabled, the PLL outputs one frequency among numerous choices between 32MHz and
96 MHz, that goes into the PLL Postcaler. The High Speed Timer frequency input is generated
from the PLL Postcaler, that proposes /1, /1.5 and /2 ratios. That can be determined from the
PLL clock register. The High Speed Timer maximum frequency input depends on the power sup-
ply voltage and reaches its maximum of 64 MHz at 5V.

The USB hardware module needs for a 48 MHz clock. This clock is generated from the on-chip
PLL. The output of the PLL passes through the PLL Postcaler where the frequency can be either
divided by 2 or directly connected to the clk,gg signal.

6.2 Clock Sources

7766F-AVR-11/10

The device has the following clock source options, selectable by Flash Fuse bits as shown
below. The clock from the selected source is input to the AVR clock generator, and routed to the
appropriate modules.

Table 6-1. Device Clocking Options Select(")

Device Clocking Option CKSEL][3:0]
(or EXCKSEL[3:0])
Low Power Crystal Oscillator 1111 - 1000
Reserved 0111 -0110
Low Frequency Crystal Oscillator 0101 - 0100
Reserved 0011
Calibrated Internal RC Oscillator 0010
External Clock 0000
Reserved 0001

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

ATMEL 2

EEEes————————————————————— A TMmega16/32U4

6.2.1 Default Clock Source ATmega16U4 and ATmega32U4
The device is shipped with Low Power Crystal Oscillator (8.0MHz-16MHz) enabled and with the
fuse CKDIV8 programmed, resulting in 1.0MHz system clock with an 8 MHz crystal. See Table
28-5 on page 348 for an overview of the default Clock Selection Fuse setting.

6.2.2 Default Clock Source ATmega16U4RC and ATmega32U4RC
The device is shipped with Calibrated Internal RC oscillator (8.0MHz) enabled and with the fuse
CKDIV8 programmed, resulting in 1.0MHz system clock. See Table 28-5 on page 348 for an
overview of the default Clock Selection Fuse setting.

6.2.3 Clock Startup Sequence
Any clock source needs a sufficient V. to start oscillating and a minimum number of oscillating
cycles before it can be considered stable.

To ensure sufficient V¢, the device issues an internal reset with a time-out delay (troy7) after
the device reset is released by all other reset sources. “On-chip Debug System” on page 48
describes the start conditions for the internal reset. The delay (t1oy7) is timed from the Watchdog
Oscillator and the number of cycles in the delay is set by the SUTx and CKSELXx fuse bits. The
selectable delays are shown in Table 6-2. The frequency of the Watchdog Oscillator is voltage
dependent as shown in Table 6-2.

Table 6-2. Number of Watchdog Oscillator Cycles

Typ Time-out (V¢ = 5.0V) Typ Time-out (V¢ = 3.0V) Number of Cycles
0ms 0ms 0
41ms 4.3ms 512
65 ms 69 ms 8K (8,192)

Main purpose of the delay is to keep the AVR in reset until it is supplied with minimum Vcc. The
delay will not monitor the actual voltage and it will be required to select a delay longer than the
Vcc rise time. If this is not possible, an internal or external Brown-Out Detection circuit should be
used. A BOD circuit will ensure sufficient Vcc before it releases the reset, and the time-out delay
can be disabled. Disabling the time-out delay without utilizing a Brown-Out Detection circuit is
not recommended.

The oscillator is required to oscillate for a minimum number of cycles before the clock is consid-
ered stable. An internal ripple counter monitors the oscillator output clock, and keeps the internal
reset active for a given number of clock cycles. The reset is then released and the device will
start to execute. The recommended oscillator start-up time is dependent on the clock type, and
varies from 6 cycles for an externally applied clock to 32K cycles for a low frequency crystal.

The start-up sequence for the clock includes both the time-out delay and the start-up time when
the device starts up from reset. When starting up from Power-save or Power-down mode, Vcc is
assumed to be at a sufficient level and only the start-up time is included.

6.3 Low Power Crystal Oscillator
Pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be
configured for use as an On-chip Oscillator, as shown in Figure 6-2. Either a quartz crystal or a
ceramic resonator may be used.

This Crystal Oscillator is a low power oscillator, with reduced voltage swing on the XTAL2 out-
put. It gives the lowest power consumption, but is not capable of driving other clock inputs.

ATMEL 2

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the
electromagnetic noise of the environment. Some initial guidelines for choosing capacitors for
use with crystals are given in Table 6-3. For ceramic resonators, the capacitor values given by
the manufacturer should be used.

Figure 6-2. Crystal Oscillator Connections

Cc2

—F—9—— XTAL2
0
S XxTALY

GND

The Low Power Oscillator can operate in three different modes, each optimized for a specific fre-
quency range. The operating mode is selected by the fuses CKSEL[3..1] as shown in Table 6-3.

Table 6-3. Low Power Crystal Oscillator Operating Modes®®

Recommended Range for Capacitors
Frequency Range!" (MHz) CKSEL3..1 C1 and C2 (pF)
0.4-0.9 100® -
0.9-3.0 101 12-22
3.0-8.0 110 12-22
8.0-16.0 111 12-22

Notes: 1. The frequency ranges are preliminary values. Actual values are TBD.
2. This option should not be used with crystals, only with ceramic resonators.

3. If 8 MHz frequency exceeds the specification of the device (depends on V), the CKDIV8
Fuse can be programmed in order to divide the internal frequency by 8. It must be ensured
that the resulting divided clock meets the frequency specification of the device.

The CKSELO Fuse together with the SUT1..0 Fuses select the start-up times as shown in Table
6-4.

Table 6-4. Start-up Times for the Low Power Crystal Oscillator Clock Selection

Start-up Time from Additional Delay

Oscillator Source / Power-down and from Reset
Power Conditions Power-save (Ve =5.0V) CKSELO | SUT1..0
Ceramic resonator, fast 258 CK 14CK + 4.1 ms) 0 00
rising power
Ceramic resonator, 258 CK 14CK + 65 ms(0 01
slowly rising power
Ceramic resonator,

) @)
BOD enabled 1K CK 14CK 0 10
Ceramic resonator, fast 1K CK 14CK + 4.1 ms® 0 11
rising power

ATMEL s

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 6-4. Start-up Times for the Low Power Crystal Oscillator Clock Selection (Continued)

Start-up Time from Additional Delay
Oscillator Source / Power-down and from Reset
Power Conditions Power-save (Ve =5.0V) CKSELO | SUT1..0
Ceramic resonator, 1K CK 14CK + 65 ms® 1 00
slowly rising power
Crystal Oscillator, BOD 16K CK 14CK 1 01
enabled
Crystal Oscillator, fast 16K CK 14CK + 4.1 ms 1 10
rising power
Crystal Oscillator, 16K CK 14CK + 65 ms 1 11
slowly rising power

Notes: 1. These options should only be used when not operating close to the maximum frequency of the
device, and only if frequency stability at start-up is not important for the application. These
options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability
at start-up. They can also be used with crystals when not operating close to the maximum fre-
quency of the device, and if frequency stability at start-up is not important for the application.

Table 6-5. Start-up times for the internal calibrated RC Oscillator clock selection
Start-up Time from Power- | Additional Delay from
Power Conditions down and Power-save Reset (V¢ = 5.0V) SUT1..0
BOD enabled 6 CK 14CK 00
Fast rising power 6 CK 14CK + 4.1 ms 01
Slowly rising power 6 CK 14CK + 65 ms(") 10
Reserved 1

Note: 1. The device is shipped with this option selected.

6.4 Low Frequency Crystal Oscillator
The device can utilize a 32.768 kHz watch crystal as clock source by a dedicated Low Fre-
quency Crystal Oscillator. The crystal should be connected as shown in Figure 6-2. When this
Oscillator is selected, start-up times are determined by the SUT Fuses and CKSELOQ as shown in

Table 6-6.
Table 6-6. Start-up Times for the Low Frequency Crystal Oscillator Clock Selection
Start-up Time from Additional Delay
Power-down and from Reset
Power Conditions Power-save (Ve =5.0V) CKSELO | SUT1..0
BOD enabled 1K CK 14CK™ 0 00
Fast rising power 1K CK 14CK + 4.1 ms(" 0 01
Slowly rising power 1K CK 14CK + 65 ms'" 0 10
Reserved 0 11
BOD enabled 32K CK 14CK 1 00
Fast rising power 32K CK 14CK + 4.1 ms 1 01
Slowly rising power 32K CK 14CK + 65 ms 1 10
Reserved 1 11

ATMEL s

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

6.5

6.5.1

7766F-AVR-11/10

Note: 1. These options should only be used if frequency stability at start-up is not important for the
application.

Calibrated Internal RC Oscillator

The calibrated internal RC Oscillator by default provides a 8.0 MHz clock. This frequency is
nominal value at 3V and 25°C. The device is shipped with the CKDIV8 Fuse programmed. See
“System Clock Prescaler” on page 37 for more details. This clock may be selected as the system
clock by programming the CKSEL Fuses as shown in Table 6-7. If selected, it will operate with
no external components. During reset, hardware loads the calibration byte into the OSCCAL
Register and thereby automatically calibrates the RC Oscillator. At 3V and 25°C, this calibration
gives a frequency of 8 MHz + 1%. The oscillator can be calibrated to any frequency in the range
7.3 - 8.1 MHz within +1% accuracy, by changing the OSCCAL register. When this Oscillator is
used as the chip clock, the Watchdog Oscillator will still be used for the Watchdog Timer and for
the Reset Time-out. For more information on the pre-programmed calibration value, see the sec-
tion “Calibration Byte” on page 349

Table 6-7. Internal Calibrated RC Oscillator Operating Modes!"®

Frequency Range® (MHz) CKSEL[3:0]
7.3-8.1 0010

Notes: 1. The device is shipped with this option selected.
2. The frequency ranges are preliminary values. Actual values are TBD.

3. If 8 MHz frequency exceeds the specification of the device (depends on V), the CKDIV8
Fuse can be programmed in order to divide the internal frequency by 8.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in
Table 6-5 on page 31.

Table 6-8. Start-up times for the internal calibrated RC Oscillator clock selection
Start-up Time from Power- | Additional Delay from
Power Conditions down and Power-save Reset (V¢ = 5.0V) SUT1..0
BOD enabled 6 CK 14CK 00
Fast rising power 6 CK 14CK + 4.1 ms 01
Slowly rising power 6 CK 14CK + 65 ms 10
Reserved 1

Oscillator Calibration Register - OSCCAL

Bit 7 6 5 4 3 2 1 0
|cAz | cAe | CALs | CAL4 | CAL3 | CAL2 | CAL1 CALO]| osccAL

Read/Write R/W R/W R/W R/W R/W RIW R/W R/W

Initial Value Device Specific Calibration Value

e Bits 7..0 — CAL7..0: Oscillator Calibration Value

The Oscillator Calibration Register is used to trim the Calibrated Internal RC Oscillator to
remove process variations from the oscillator frequency. The factory-calibrated value is automat-
ically written to this register during chip reset, giving an oscillator frequency of 8.0 MHz at 25°C.
The application software can write this register to change the oscillator frequency. The calibra-
tion range is +/- 40% and linear (calibration step ~0.4%). With typical process at 25°C the code
should be 127 for 8 MHz. Input value of 0x00 gives the lowest frequency, and OxFF the highest.

ATMEL 5

EEEes————————————————————— A TMmega16/32U4

The temperature sensitivity is quite linear but as said previously depends on the process. To
determine its slope, the frequency must be measured at two temperatures. The temperature
sensor of the ATmega16U4/ATmega32U4 allows such an operation, that is detailed on Section
24.6.1 "Sensor Calibration” on page 300. It is then possible to calibrate the oscillator frequency
in function of the temperature measured.

Note that this oscillator is used to time EEPROM and Flash write accesses, and these write
times will be affected accordingly. If the EEPROM or Flash are written, do not calibrate to more
than 8.8 MHz. Otherwise, the EEPROM or Flash write may fail.

6.5.2 Oscillator Control Register - RCCTRL

Bit 7 6 5 4 3 2 1 0
|- | - | - - - - - RCFREQ | RCCTRL

ReadWrite R R R R R R R RW

Initial Value 0 0 0 0 0 0 0 0

Bits 7..1 — Reserved
Do not set these bits. Bits should be read as ‘0’.
Bit 0—- RCFREQ: RC Oscillator Frequency Select

When this bit is cleared (default value), the RC Oscillator output frequency is set to 8 MHz.
When the bit is set, the RC output frequency is 1 MHz. Note that the OSCCAL value has the
same effect on both 8 MHz and 1 MHz output modes (~0.4% / step).

6.6 External Clock

The device can utilize a external clock source as shown in Figure 6-3. To run the device on an
external clock, the CKSEL Fuses must be programmed as shown in Table 6-1.

Figure 6-3. External Clock Drive Configuration

NC —— XTAL2
EXTERNAL
CLOCK ——— XTALA1
SIGNAL
GND

—

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in
Table 6-9.

ATMEL s

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 6-9. Start-up Times for the External Clock Selection

Start-up Time from Power- | Additional Delay from
Power Conditions down and Power-save Reset (V¢ = 5.0V) SUT1..0
BOD enabled 6 CK 14CK 00
Fast rising power 6 CK 14CK + 4.1 ms 01
Slowly rising power 6 CK 14CK + 65 ms 10
Reserved 11

When applying an external clock, it is required to avoid sudden changes in the applied clock fre-
quency to ensure stable operation of the MCU. A variation in frequency of more than 2% from
one clock cycle to the next can lead to unpredictable behavior. If changes of more than 2% is
required, ensure that the MCU is kept in Reset during the changes.

Note that the System Clock Prescaler can be used to implement run-time changes of the internal
clock frequency while still ensuring stable operation. Refer to “System Clock Prescaler’ on page
37 for details.

6.7 Clock Switch

The ATmega16U4/ATmega32U4 product includes a Clock Switch controller, that allows user to
switch from one clock source to another one by software, in order to control application power
and execution time with more accuracy.

6.7.1 Example of use

The modification may be needed when the device enters in USB Suspend mode. It then
switches from External Clock to Calibrated RC Oscillator in order to reduce consumption and
wake-up delay. In such a configuration, the External Clock is disabled. The firmware can then
use the watchdog timer to be woken-up from power-down in order to check if there is an event
on the application. If an event occurs on the application or if the USB controller signals a non-
idle state on the USB line (Resume for example), the firmware switches the Clock Multiplexer
from the Calibrated RC Oscillator to the External Clock. in order to restart USB operation.

This feature can only be used to switch between Calibrated 8 MHz RC Oscillator, External Clock
and Low Power Crystal Oscillator. The Low Frequency Crystal Oscillator must not be used with
this feature.

ATMEL s

7766F-AVR-11/10

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 6-4. Example of clock switching with wake-up from USB Host

resume
@ Resume from Host
1 1 1 1
USB non-Tdle Y Tdle (Suspend) / Xnon-Idle
CPU Clock | Ext _y‘ RC & / >‘<—Ext —

External

\
Oscillator (V_

RC oscillator 1l I ‘ ‘ ‘ ‘ ‘ g

1<g=3MS _ Ly '
- > \ watchdog wake-up
from power-down

Figure 6-5. Example of clock switching with wake-up from Device

upstream-resume

© Upstream Resume from device \
1

I
USB non-Tdle Y Tdle (Suspend) non-Tdle
| | | (@ |
CPU Clock | ‘ E xt —— RC V‘q—EXt—
External
1<q—3MS _pps Ly

\ watchdog wake-up
from power-down

6.8 Clock switch Algorithm

\
Oscillator
RC oscillator ll l ‘ ‘ ‘ ‘ ‘
)

6.8.1 Switch from external clock to RC clock

if (Usb_suspend_detected()) // if (UDINT.SUSPI == 1

{
Usb_ack_suspend() ; // UDINT.SUSPI = 0;
Usb_freeze_clock() ; // USBCON.FRZCLK = 1;
Disable_pll(); // PLLCSR.PLLE = 0;
Enable_RC_clock() ; // CLKSELO.RCE = 1;
while (!RC_clock_ready()); // while (CLKSTA.RCON != 1);
Select_RC_clock() ; // CLKSELO.CLKS = 0;
Disable_external_clock() ; // CLKSELO.EXTE = 0;

ATMEL s

EEEes————————————————————— A TMmega16/32U4

6.8.2 Switch from RC clock to external clock

if (Usb_wake_up_detected()) // if (UDINT.WAKEUPI == 1)

{
Usb_ack_wake_up () ; // UDINT.WAKEUPI = 0;
Enable_external_clock() ; // CKSELQO.EXTE = 1;
while (!External_clock_ ready()); // while (CLKSTA.EXTON != 1);
Select_external_clock() ; // CLKSELO.CLKS = 1;
Enable_pll(); // PLLCSR.PLLE = 1;
Disable_RC_clock() // CLKSELO.RCE = 0;

while (!Pll_ready()); // while (PLLCSR.PLOCK != 1);
Usb_unfreeze_clock() ; // USBCON.FRZCLK = 0;

}

6.8.3 CLKSELO - Clock Selection Register 0

Bit 7 6 5 4 3 2 1 0

| RCSUT1 | RCSUTO | EXSUT1 | EXSUTO | RCE EXTE - CLKS | CLKSELO
Read/Write R/W R/W R/W R/W R/W R/W R R/W
Initial Value 0 0 0 0 See Bit Description

e Bit 7-6 — RCSUT[1:0]: SUT for RC oscillator

These 2 bits are the SUT value for the RC Oscillator. If the RC oscillator is selected by fuse bits,
the SUT fuse are copied into these bits. A firmware change will not have any effect because this
additional start-up time is only used after a reset and not after a clock switch.

e Bit 5-4 — EXSUT[1:0]: SUT for External Clock/ Low Power Crystal Oscillator

These 2 bits are the SUT value for the External Clock / Low Power Crystal Oscillator. If the
External Clock / Low Power Crystal Oscillator is selected by fuse bits, the SUT fuses are copied
into these bits. The firmware can modify these bits by writing a new value. This value will be
used at the next start of the External Clock / Low Power Crystal Oscillator.

¢ Bit 3 - RCE: Enable RC Oscillator

The RCE bit must be written to logic one to enable the RC Oscillator. The RCE bit must be writ-
ten to logic zero to disable the RC Oscillator.

¢ Bit 2 - EXTE: Enable External Clock / Low Power Crystal Oscillator

The OSCE bit must be written to logic one to enable External Clock / Low Power Crystal Oscilla-
tor. The OSCE bit must be written to logic zero to disable the External Clock / Low Power Crystal
Oscillator.

¢ Bit 0 — CLKS: Clock Selector

The CLKS bit must be written to logic one to select the External Clock / Low Power Crystal Oscil-
lator as CPU clock. The CLKS bit must be written to logic zero to select the RC Oscillator as
CPU clock. After a reset, the CLKS bit is set by hardware if the External Clock / Low Power Crys-
tal Oscillator is selected by the fuse bits configuration.

The firmware has to check if the clock is correctly started before selected it.

6.8.4 CLKSEL1 - Clock Selection Register 1

Bit 7 6 5 4 3 2 1 0
RCCKS | RCCKS | RCCKS | RCCKS | EXCKS | EXCKS | EXCKS | EXCKS | CLKSEL1
EL3 EL2 EL1 ELO EL3 EL2 EL1 ELO

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 1 0 0 0 0 0

ATMEL s

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

6.8.5

6.9

6.9.1

7766F-AVR-11/10

e Bit 7-4 —- RCCKSEL[3:0]: CKSEL for RC oscillator

Clock configuration for the RC Oscillator. After a reset, this part of the register is loaded with the
0010b value that corresponds to the RC oscillator. Modifying this value by firmware before
switching to RC oscillator is prohibited because the RC clock will not start.

¢ Bit 3-0 - EXCKSEL[3:0]: CKSEL for External Clock / Low Power Crystal Oscillator

Clock configuration for the External Clock / Low Power Crystal Oscillator. After a reset, if the
External Clock / Low Power Crystal Oscillator is selected by fuse bits, this part of the register is
loaded with the fuse configuration. Firmware can modify it to change the start-up time after the
clock switch.

See “Device Clocking Options Select(1)” on page 28 for EXCKSEL[3:0] configuration. Only Low
Power Crystal Oscillator, Calibrated Internal RC Oscillator, and External Clock modes are
allowed.

CLKSTA - Clock Status Register

Bit 7 6 5 4 3 2 1 0
I- | - - - - - RCON | EXTON | CLKSTA

ReadWrite R R R R R R R R

Initial Value 0 0 0 0 0

¢ Bit 7-2 - Reserved bits

These bits are reserved and will always read as zero.
* Bit 1 — RCON: RC Oscillator On

This bit is set by hardware to one if the RC Oscillator is running.
This bit is set by hardware to zero if the RC Oscillator is stopped.

e Bit 0 — EXTON: External Clock / Low Power Crystal Oscillator On
This bit is set by hardware to one if the External Clock / Low Power Crystal Oscillator is running.

This bit is set by hardware to zero if the External Clock / Low Power Crystal Oscillator is
stopped.

Clock Output Buffer

The device can output the system clock on the CLKO pin. To enable the output, the CKOUT
Fuse has to be programmed. This mode is suitable when the chip clock is used to drive other cir-
cuits on the system. The clock also will be output during reset, and the normal operation of 1/0
pin will be overridden when the fuse is programmed. Any clock source, including the internal RC
Oscillator, can be selected when the clock is output on CLKO. If the System Clock Prescaler is
used, it is the divided system clock that is output.

System Clock Prescaler

The AVR USB has a system clock prescaler, and the system clock can be divided by setting the
“CLKPR — Clock Prescaler Register” on page 38. This feature can be used to decrease the sys-
tem clock frequency and the power consumption when the requirement for processing power is
low. This can be used with all clock source options, and it will affect the clock frequency of the
CPU and all synchronous peripherals. clk;q, ClKapc, Clkgpy, @and clkg agy are divided by a factor
as shown in Table 6-10.

When switching between prescaler settings, the System Clock Prescaler ensures that no
glitches occurs in the clock system. It also ensures that no intermediate frequency is higher than
neither the clock frequency corresponding to the previous setting, nor the clock frequency corre-
sponding to the new setting.

ATMEL s

EEEes————————————————————— A TMmega16/32U4

The ripple counter that implements the prescaler runs at the frequency of the undivided clock,
which may be faster than the CPU's clock frequency. Hence, it is not possible to determine the
state of the prescaler - even if it were readable, and the exact time it takes to switch from one
clock division to the other cannot be exactly predicted. From the time the CLKPS values are writ-
ten, it takes between T1 + T2 and T1 + 2 * T2 before the new clock frequency is active. In this
interval, 2 active clock edges are produced. Here, T1 is the previous clock period, and T2 is the
period corresponding to the new prescaler setting.

To avoid unintentional changes of clock frequency, a special write procedure must be followed
to change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits in
CLKPR to zero.
2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is
not interrupted.

6.9.2 CLKPR - Clock Prescaler Register

Bit 7 6 5 4 3 2 1 0

| CLKPCE | - - - CLKPS3 | CLKPS2 | CLKPS1 | CLKPSO | CLKPR
Read/Write R/W R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 See Bit Description

e Bit 7 - CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE
bit is only updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is
cleared by hardware four cycles after it is written or when CLKPS bits are written. Rewriting the
CLKPCE bit within this time-out period does neither extend the time-out period, nor clear the
CLKPCE bit.

¢ Bits 3..0 - CLKPS[3..0]: Clock Prescaler Select Bits 3 -0

These bits define the division factor between the selected clock source and the internal system
clock. These bits can be written run-time to vary the clock frequency to suit the application
requirements. As the divider divides the master clock input to the MCU, the speed of all synchro-
nous peripherals is reduced when a division factor is used. The division factors are given in
Table 6-10.

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed,
the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits are reset to
“0011”, giving a division factor of 8 at start up. This feature should be used if the selected clock
source has a higher frequency than the maximum frequency of the device at the present operat-
ing conditions. Note that any value can be written to the CLKPS bits regardless of the CKDIV8
Fuse setting. The Application software must ensure that a sufficient division factor is chosen if

ATMEL s

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

the selected clock source has a higher frequency than the maximum frequency of the device at
the present operating conditions. The device is shipped with the CKDIV8 Fuse programmed.

Table 6-10. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPSO Clock Division Factor
0 0 0 0 1
0 0 0 1 2
0 0 1 0 4
0 0 1 1 8
0 1 0 0 16
0 1 0 1 32
0 1 1 0 64
0 1 1 1 128
1 0 0 0 256
1 0 0 1 Reserved
1 0 1 0 Reserved
1 0 1 1 Reserved
1 1 0 0 Reserved
1 1 0 1 Reserved
1 1 1 0 Reserved
1 1 1 1 Reserved

6.10 PLL
The PLL is used to generate internal high frequency (up to 96MHz) clock for USB interface
and/or High Speed Timer module, the PLL input is supplied from an external low-frequency
clock (the crystal oscillator or external clock input pin from XTAL1).

6.10.1 Internal PLL
The internal PLL in ATmega16U4/ATmega32U4 generates a clock frequency between 32MHz
and 96 MHz from nominally 8MHz input.

The source of the 8MHz PLL input clock is the output of the internal PLL clock prescaler that
generates the 8MHz from the clock source multiplexer output (See Section 6.10.2 for PLL inter-
face). The PLL prescaler allows a direct connection (8MHz oscillator) or a divide-by-2 stage for a
16MHz clock input.

The PLL output signal enters the PLL Postcaler stage before being distributed to the USB and
High Speed Timer modules. Each of these modules can choose an independent division ratio.

ATMEL s

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 6-6. PLL Clocking System

1
1
CKSELS3:0 : PINDIV PINMUX PLOCK PLLE PLLTM1:0

: \L
1
1 —| 1.5 10
1
: Lock
\ Detector » 01 > C|kTMR

XTAL1 XTAL 1 ?

XTAL2 —»| OSCILLATOR [| X
! ih!
| PLL clock 0
! Prescaler PLL

RC OSCILLATOR > X ok 217~
8 MHz ! 1 8MHz 1

1
1, To System T Ly clkysp
1~ Clock Prescaler 0
1
1

PDIV3..0 ’T/

PLLUSB

6.10.2 PLL Control and Status Register - PLLCSR

Bit 7 6 5 4 3 2 1 0
$29 ($29) | | | PINDIV PLLE PLOCK | PLLCSR
Read/Write R R R R/W R R R/W R
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7..5 — Res: Reserved Bits
These bits are reserved bits in the ATmega16U4/ATmega32U4 and always read as zero.

e Bit 4 — PINDIV PLL Input Prescaler (1:1, 1:2)
These bits allow to configure the PLL input prescaler to generate the 8MHz input clock for the
PLL from either a 8 or 16 MHz input.

When using a 8 MHz clock source, this bit must be set to 0 before enabling PLL (1:1).
When using a 16 MHz clock source, this bit must be set to 1 before enabling PLL (1:2).

* Bit 3..2 — Res: Reserved Bits
These bits are reserved bits in the ATmega16U4/ATmega32U4 and always read as zero.

e Bit1 - PLLE: PLL Enable

When the PLLE is set, the PLL is started. Note that the Calibrated 8 MHz Internal RC oscillator is
automatically enabled when the PLLE bit is set and with PINMUX (see PLLFRQ register) is set.
The PLL must be disabled before entering Power down mode in order to stop Internal RC Oscil-
lator and avoid extra-consumption.

¢ Bit 0 — PLOCK: PLL Lock Detector
When the PLOCK bit is set, the PLL is locked to the reference clock. After the PLL is enabled, it
takes about several ms for the PLL to lock. To clear PLOCK, clear PLLE.

6.10.3 PLL Frequency Control Register - PLLFRQ

Bit 7 6 5 4 3 2 1 0
$32 | PiNMUX | PLLUSB | PLLTM1 | PLLTMO | PDIV3 PDIV2 PDIV1 PDIVO | PLLFRQ
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 1 0 0

ATMEL .

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

e Bit 7- PINMUX: PLL Input Multiplexer
This bit selects the clock input of the PLL:

— PINMUX = 0: the PLL input is connected to the PLL Prescaler, that has the Primary
System Clock as source

— PINMUX = 1: the PLL input is directly connected to the Internal Calibrated 8MHz RC
Oscillator. This mode allows to work in USB Low Speed mode with no crystal or
using a crystal with a value different of 8/16MHz.

e Bit 6— PLLUSB: PLL Postcaler for USB Peripheral
This bit select the division factor between the PLL output frequency and the USB module input
frequency:

— PLLUSB = 0: no division, direct connection (if PLL Output = 48 MHz)

— PLLUSB = 1: PLL Output frequency is divided by 2 and sent to USB module (if PLL
Output = 96MHz)

e Bit5..4 — PLLTM1:0: PLL Postcaler for High Speed Timer
These bits codes for the division factor between the PLL Output Frequency and the High Speed
Timer input frequency.

Note that the division factor 1.5 will introduce some jitter in the clock, but keeping the error null
since the average duty cycle is 50%. See Figure 6-7 for more details.

PLLTMA1 PLLTMO PLL Postcaler Factor for High-Speed Timer
0 0 0 (Disconnected)
0 1 1
1 0 1.5
1 1 2

Figure 6-7. PLL Postcaler operation with division factor = 1.5

Fi Mmm

L 2
Fix—=
|x3

e Bit 3..0 - PDIV3:0 PLL Lock Frequency
These bits configure the PLL internal VCO clock reference according to the required output fre-
quency value.

PDIV3 PDIV2 PDIV1 PDIVO PLL Output Frequency
0 0 0 0 Not allowed
0 0 0 1 Not allowed
0 0 1 0 Not allowed
0 0 1 1 40 MHz
0 1 0 0 48 MHz

ATMEL o

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

PDIV3 | PDIV2 | PDIV1 PDIVO PLL Output Frequency
0 1 0 1 56 MHz
0 1 1 0 Not allowed
0 1 1 1 72 MHz
1 0 0 0 80 MHz
1 0 0 1 88 MHz
1 0 1 0 96 MHz
1 0 1 1 Not allowed
1 1 0 0 Not allowed
1 1 0 1 Not allowed
1 1 1 0 Not allowed
1 1 1 1 Not allowed

The optimal PLL configuration at 5V is: PLL output frequency = 96 MHz, divided by 1.5 to gener-
ate the 64 MHz High Speed Timer clock, and divided by 2 to generate the 48 MHz USB clock.

ATMEL 1

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

7. Power Management and Sleep Modes

7.0.1

7766F-AVR-11/10

Sleep modes enable the application to shut down unused modules in the MCU, thereby saving
power. The AVR provides various sleep modes allowing the user to tailor the power consump-
tion to the application’s requirements.

To enter any of the five sleep modes, the SE bit in SMCR must be written to logic one and a
SLEEP instruction must be executed. The SM2, SM1, and SMO bits in the SMCR Register select
which sleep mode (Idle, ADC Noise Reduction, Power-down, Power-save, or Standby) will be
activated by the SLEEP instruction. See Table 7-1 for a summary. If an enabled interrupt occurs
while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for four cycles in
addition to the start-up time, executes the interrupt routine, and resumes execution from the
instruction following SLEEP. The contents of the Register File and SRAM are unaltered when
the device wakes up from sleep. If a reset occurs during sleep mode, the MCU wakes up and
executes from the Reset Vector.

Figure 6-1 on page 27 presents the different clock systems in the ATmega16U4/ATmega32U4,
and their distribution. The figure is helpful in selecting an appropriate sleep mode.

Sleep Mode Control Register - SMCR

The Sleep Mode Control Register contains control bits for power management.

Bit 7 6 5 4 3 2 1 0
I- | - | - | - | smM2 [smi [swmo | SE | smcr

Read/Write R R R R RIW RW RW RIW

Initial Value 0 0 0 0 0 0 0 0

e Bits 3, 2, 1 — SM2..0: Sleep Mode Select Bits 2, 1, and 0
These bits select between the six available sleep modes as shown in Table 7-1.

Table 7-1. Sleep Mode Select

SM2 SM1 SMO Sleep Mode
0 0 0 Idle
0 0 1 ADC Noise Reduction
0 1 0 Power-down
0 1 1 Power-save
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standby ("
1 1 1 Extended Standby")

Note: 1. Standby modes are only recommended for use with external crystals or resonators.

e Bit 1 — SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s
purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of
the SLEEP instruction and to clear it immediately after waking up.

ATMEL i

EEEes————————————————————— A TMmega16/32U4

71

7.2

7.3

7.4

Idle Mode

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle
mode, stopping the CPU but allowing the USB, SPI, USART, Analog Comparator, ADC, 2-wire
Serial Interface, Timer/Counters, Watchdog, and the interrupt system to continue operating. This
sleep mode basically halts clkgpy and clkg asy, While allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the
Analog Comparator interrupt is not required, the Analog Comparator can be powered down by
setting the ACD bit in the Analog Comparator Control and Status Register — ACSR. This will
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered.

ADC Noise Reduction Mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, 2-wire
Serial Interface address match and the Watchdog to continue operating (if enabled). This sleep
mode basically halts clkl/O, clkCPU, and clkFLASH, while allowing the other clocks to run
(including clkUSB).

This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart form the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog System Reset, a
Watchdog interrupt, a Brown-out Reset, a 2-wire serial interface interrupt, an SPM/EEPROM
ready interrupt, an external level interrupt on INT6, an external interrupt on INT3:0 or a pin
change interrupt can wake up the MCU from ADC Noise Reduction mode.

Power-down Mode

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the external Oscillator is stopped, while the external interrupts, the 2-
wire Serial Interface, and the Watchdog continue operating (if enabled). Only an External Reset,
a Watchdog Reset, a Brown-out Reset, 2-wire Serial Interface address match, an external level
interrupt on INT6, an external interrupt on INT3:0, a pin change interrupt or an asynchronous
USB interrupt sources (VBUSTI, WAKEUPI), can wake up the MCU. This sleep mode basically
halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to “External Interrupts” on page 85
for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the
Reset Time-out period, as described in “Clock Sources” on page 28.

Power-save Mode

7766F-AVR-11/10

When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-
save mode. For compatibility reasons with AT90USB64/128 this mode is still present but since
Timer 2 Asynchronous operation is not present here, this mode is identical to Power-down.

ATMEL "

EEEes————————————————————— A TMmega16/32U4

7.5 Standby Mode
When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down
with the exception that the Oscillator is kept running. From Standby mode, the device wakes up
in six clock cycles.

7.6 Extended Standby Mode
When the SM2..0 bits are 111 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Extended Standby mode. For compatibility reasons
with AT90USB64/128 this mode is still present but since Timer 2 Asynchronous operation is not
present here, this mode is identical to Standby-mode.

Table 7-2. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Active Clock Domains Oscillators Wake-up Sources
(7]
g 3
2 z - g |5
ool 8 g g S | E_
o - o p] (o} - -
I 9 oge 22/ 3| _Q El T &% <28
S z ! < £5% ¢ =L Sa [3) = S lm5 mg
X X X X T o C £| =8| 2w Q o Slogl 0L
Sleep Mode o]]] © Souw| Za| FS| o w < = O/ oE&|>kE
Idle X X X X X X X X X
ADCNRM X X X@ | X X X X X X
Power-down X@ | X X X
Power-save X@ X X X
Standby!" X X@ | X X X
Extended @)
Standby X X X X X

Notes: 1. Only recommended with external crystal or resonator selected as clock source.
2. For INTS, only level interrupt.
3. Asynchronous USB interrupts are VBUSTI and WAKEUPI.

7.7 Power Reduction Register
The Power Reduction Register, PRR, provides a method to stop the clock to individual peripher-
als to reduce power consumption. The current state of the peripheral is frozen and the 1/0
registers can not be read or written. Resources used by the peripheral when stopping the clock
will remain occupied, hence the peripheral should in most cases be disabled before stopping the
clock. Waking up a module, which is done by clearing the bit in PRR, puts the module in the
same state as before shutdown.

Module shutdown can be used in Idle mode and Active mode to significantly reduce the overall
power consumption. In all other sleep modes, the clock is already stopped.

ATMEL X

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

7.71 Power Reduction Register 0 - PRRO

Bit 7 6 5 4 3 2 1 0

| PRTWI | PRTIM2 | PRTIMO | - | PRTIM1 | PRSPI - PRADC | PRRo
Read/Write ~ R/W R/W R/W R R/W R/W R R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 - PRTWI: Power Reduction TWI

Writing a logic one to this bit shuts down the TWI by stopping the clock to the module. When
waking up the TWI again, the TWI should be re initialized to ensure proper operation.

¢ Bit 6 - Res: Reserved bit
This bits is reserved and will always read as zero.

¢ Bit 5 - PRTIMO: Power Reduction Timer/Counter0

Writing a logic one to this bit shuts down the Timer/Counter0 module. When the Timer/CounterO
is enabled, operation will continue like before the shutdown.

¢ Bit 4 - Res: Reserved bit
This bit is reserved and will always read as zero.

¢ Bit 3 - PRTIM1: Power Reduction Timer/Counter1

Writing a logic one to this bit shuts down the Timer/Counter1 module. When the Timer/Counter1
is enabled, operation will continue like before the shutdown.

¢ Bit 2 - PRSPI: Power Reduction Serial Peripheral Interface

Writing a logic one to this bit shuts down the Serial Peripheral Interface by stopping the clock to
the module. When waking up the SPI again, the SPI should be re initialized to ensure proper
operation.

¢ Bit 1 - Res: Reserved bit
These bits are reserved and will always read as zero.

¢ Bit 0 - PRADC: Power Reduction ADC

Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut down.
The analog comparator cannot use the ADC input MUX when the ADC is shut down.

7.7.2 Power Reduction Register 1 - PRR1

7766F-AVR-11/10

Bit 7 6 5 4 3 2 1 0

| PRUSB | - | - PRTIM4 | PRTIM3 - - PRUSART1 | PRR1
Read/Write R/W R R R R/W R R R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 - PRUSB: Power Reduction USB

Writing a logic one to this bit shuts down the USB by stopping the clock to the module. When
waking up the USB again, the USB should be re initialized to ensure proper operation.

* Bit 6..5 - Res: Reserved bits
These bits are reserved and will always read as zero.

ATMEL 1

EEEes————————————————————— A TMmega16/32U4

* Bit 4- PRTIM4: Power Reduction Timer/Counter4
Writing a logic one to this bit shuts down the Timer/Counter4 module. When the Timer/Counter4
is enabled, operation will continue like before the shutdown.

e Bit 3 - PRTIM3: Power Reduction Timer/Counter3
Writing a logic one to this bit shuts down the Timer/Counter3 module. When the Timer/Counter3
is enabled, operation will continue like before the shutdown.

¢ Bit 2..1 - Res: Reserved bits
These bits are reserved and will always read as zero.

e Bit 0 - PRUSART1: Power Reduction USART1

Writing a logic one to this bit shuts down the USART1 by stopping the clock to the module.
When waking up the USART1 again, the USART1 should be re initialized to ensure proper
operation.

7.8 Minimizing Power Consumption
There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep
mode should be selected so that as few as possible of the device’s functions are operating. All
functions not needed should be disabled. In particular, the following modules may need special
consideration when trying to achieve the lowest possible power consumption.

7.8.1 Analog to Digital Converter
If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. Refer to “Analog to Digital Converter - ADC” on page
292 for details on ADC operation.

7.8.2 Analog Comparator

When entering Idle mode, the Analog Comparator should be disabled if not used. When entering
ADC Noise Reduction mode, the Analog Comparator should be disabled. In other sleep modes,
the Analog Comparator is automatically disabled. However, if the Analog Comparator is set up
to use the Internal Voltage Reference as input, the Analog Comparator should be disabled in all
sleep modes. Otherwise, the Internal Voltage Reference will be enabled, independent of sleep
mode. Refer to “Analog Comparator” on page 289 for details on how to configure the Analog
Comparator.

7.8.3 Brown-out Detector
If the Brown-out Detector is not needed by the application, this module should be turned off. If
the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep
modes, and hence, always consume power. In the deeper sleep modes, this will contribute sig-
nificantly to the total current consumption. Refer to “Brown-out Detection” on page 52 for details
on how to configure the Brown-out Detector.

7.8.4 Internal Voltage Reference
The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the
Analog Comparator or the ADC. If these modules are disabled as described in the sections
above, the internal voltage reference will be disabled and it will not be consuming power. When

ATMEL i

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

turned on again, the user must allow the reference to start up before the output is used. If the
reference is kept on in sleep mode, the output can be used immediately. Refer to “Internal Volt-
age Reference” on page 54 for details on the start-up time.

7.8.5 Watchdog Timer
If the Watchdog Timer is not needed in the application, the module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to “Interrupts” on page 61 for details on how to configure the Watchdog Timer.

7.8.6 Port Pins

When entering a sleep mode, all port pins should be configured to use minimum power. The
most important is then to ensure that no pins drive resistive loads. In sleep modes where both
the 1/0O clock (clk;q) and the ADC clock (clkapc) are stopped, the input buffers of the device will
be disabled. This ensures that no power is consumed by the input logic when not needed. In
some cases, the input logic is needed for detecting wake-up conditions, and it will then be
enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 69 for details on
which pins are enabled. If the input buffer is enabled and the input signal is left floating or have
an analog signal level close to V/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal
level close to V/2 on an input pin can cause significant current even in active mode. Digital
input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR1 and
DIDRO). Refer to “Digital Input Disable Register 1 — DIDR1” on page 291 and “Digital Input Dis-
able Register 1 — DIDR1” on page 291 for details.

7.8.7 On-chip Debug System
If the On-chip debug system is enabled by the OCDEN Fuse and the chip enters sleep mode,
the main clock source is enabled, and hence, always consumes power. In the deeper sleep
modes, this will contribute significantly to the total current consumption.

There are three alternative ways to disable the OCD system:

¢ Disable the OCDEN Fuse.
¢ Disable the JTAGEN Fuse.
¢ Write one to the JTD bit in MCUCR.

ATMEL 1

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

8. System Control and Reset

8.0.1 Resetting the AVR

8.0.2 Reset Sources

7766F-AVR-11/10

During reset, all I/O Registers are set to their initial values, and the program starts execution
from the Reset Vector. The instruction placed at the Reset Vector must be a JMP — Absolute
Jump — instruction to the reset handling routine. If the program never enables an interrupt
source, the Interrupt Vectors are not used, and regular program code can be placed at these
locations. This is also the case if the Reset Vector is in the Application section while the Interrupt
Vectors are in the Boot section or vice versa. The circuit diagram in Figure 8-1 shows the reset
logic. Table 8-1 defines the electrical parameters of the reset circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source goes
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the power to reach a stable level before normal operation starts. The time-out
period of the delay counter is defined by the user through the SUT and CKSEL Fuses. The dif-
ferent selections for the delay period are presented in “Clock Sources” on page 28.

The ATmega16U4/ATmega32U4 has five sources of reset:

* Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset
threshold (Vpgr)-

» External Reset. The MCU is reset when a low level is present on the RESET pin for longer
than the minimum pulse length.

¢ Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the
Watchdog is enabled.

* Brown-out Reset. The MCU is reset when the supply voltage V¢ is below the Brown-out
Reset threshold (Vggt) and the Brown-out Detector is enabled.

* JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register, one
of the scan chains of the JTAG system. Refer to the section “IEEE 1149.1 (JTAG) Boundary-
scan” on page 320 for details.

¢ USB End of Reset. The MCU is reset (excluding the USB controller that remains enabled and
attached) on the detection of a USB End of Reset condition on the bus, if this feature is
enabled by the user.

ATMEL 1

EEEes————————————————————— A TMmega16/32U4

Figure 8-1. Reset Logic

DATA BUS

MCU Status
Register (MCUSR)
[T
o
o
M

[THETH
o
=
=

PORF
EXTRF
WDR

USBRF

vee Power-_on Beset
Circuit

Brown-out
Reset Circuit

[P Pull-up Resistor
RESET SPIKE Reset Circuit _\1 \

FILTER

BODLEVEL [2..0]

|
ri
a on
0
INTERNAL RESET

I
JTAG Reset USB Reset
Register Detection
=
7
Watchdog &
Timer %
T =
2
o
Watchdog ©
Oscillator
Y
Clock CK Delay Counters —
Generator 4 TIMEOUT
CKSEL[3:0] —4
suT[t0 —— |
Table 8-1. Reset Characteristics
Symbol | Parameter Condition | Min | Typ | Max | Units
v Power-on Reset Threshold Voltage (rising) 1.4 2.3 \
FoT Power-on Reset Threshold Voltage (faIIing)“) 1.3 2.3 \Y
Veor Vee Sta_rt Voltage to ensure internal Power-on 01 +0.1 Vv
Reset signal
VCC Rise Rate to ensure internal Power_on
Vecrr Reset signal 0.3 V/ms
=== o 0.2 0.85
VRst RESET Pin Threshold Voltage Ve Ve \
trsT Minimum pulse width on RESET Pin 5V, 25°C 400 ns

Notes: 1. The Power-on Reset will not work unless the supply voltage has been below Vpqr (falling)

8.0.3 Power-on Reset
A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level
is defined in Table 8-1. The POR is activated whenever V. is below the detection level. The

POR circuit can be used to trigger the start-up Reset, as well as to detect a failure in supply
voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the
Power-on Reset threshold voltage invokes the delay counter, which determines how long the

ATMEL s

7766F-AVR-11/10

ATmega16/32U4

device is kept in RESET after V rise. The RESET signal is activated again, without any delay,
when V; decreases below the detection level.

Figure 8-2. MCU Start-up, RESET Tied to V¢

1
Voor -H-V
POR POT
Vee el

LNV}
RESET J RST

TIME-OUT

_

.
I
o
C
e

INTERNAL
RESET 4 |
Figure 8-3. MCU Start-up, RESET Extended Externally

1
Veor -2~ Veor
Vee ==,

RESET

TIME-OUT

INTERNAL
RESET

8.0.4 External Reset
An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the
minimum pulse width (see Table 8-1) will generate a reset, even if the clock is not running.
Shorter pulses are not guaranteed to generate a reset. When the applied signal reaches the
Reset Threshold Voltage — Vgt — 0n its positive edge, the delay counter starts the MCU after
the Time-out period — tyo 1 —has expired.

Figure 8-4. External Reset During Operation

Vee
RESET 1 1
J
1 1
1 1
1 1
1 1
| i trour —>
TIME-OUT : !
1
1
1
|
INTERNAL
RESET

ATMEL 2

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

8.0.5 Brown-out Detection

7766F-AVR-11/10

ATmega16U4/ATmega32U4 has an On-chip Brown-out Detection (BOD) circuit for monitoring
the V¢ level during operation by comparing it to a fixed trigger level. The trigger level for the
BOD can be selected by the BODLEVEL Fuses. The trigger level has a hysteresis to ensure
spike free Brown-out Detection. The hysteresis on the detection level should be interpreted as
Veor: = Veor + Vuyst/2 and Vgor. = Vgor - Viyst/2.

Table 8-2. BODLEVEL Fuse Coding

BODLEVEL 2..0 Fuses Min Vgor Typ Vgor Max Vgor Units
111 BOD Disabled
110 1.8 2.0 2.2
101 2.0 2.2 24
100 22 2.4 2.6
011 24 2.6 2.8 \
010 3.2 34 3.6
001 3.3 3.5 3.7
000 4.0 4.3 4.5
Table 8-3. Brown-out Characteristics
Symbol Parameter Min Typ Max Units
Vihyst Brown-out Detector Hysteresis 50 mV
tzop Min Pulse Width on Brown-out Reset ns

When the BOD is enabled, and V; decreases to a value below the trigger level (Vgqr. in Figure
8-5), the Brown-out Reset is immediately activated. When V. increases above the trigger level
(Vgort, in Figure 8-5), the delay counter starts the MCU after the Time-out period t;qy has
expired.

The BOD circuit will only detect a drop in V. if the voltage stays below the trigger level for lon-
ger than tzgp given in Table 8-1.

Figure 8-5. Brown-out Reset During Operation

Vee S i Veor+
VBor—~ h=—— - s

1 1
1 1
1 1
RESET : :
1 1
1 1
1 1
1 1
1 1

TIME-OUT ! < trout
| |
1 1
1 1
INTERNAL ' |
RESET i |

ATMEL 52

EEEes————————————————————— A TMmega16/32U4

8.0.6 Watchdog Reset
When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On
the falling edge of this pulse, the delay timer starts counting the Time-out period t;o7. Refer to
page 55 for details on operation of the Watchdog Timer.

Figure 8-6. Watchdog Reset During Operation

Vee

RESET

—>, «— 1 CKCycle
WDT
TIME-OUT H

RESET
TIME-OUT

INTERNAL
RESET

8.0.7 USB Reset
When the USB controller is enabled and configured with the USB Reset CPU feature enabled
and if a valid USB Reset signalling is detected on the bus, the CPU core is reset but the USB
controller remains enabled and attached. This feature may be used to enhance device reliability.

Figure 8-7. USB Reset During Operation
Vee

RESET

! t ! End of Reset
| «—"USBRSTMIN —! /
1 1

DP .
:/ USB Traffic
T
1
1
1
1
1
1
1

USB Traffic

"

DM

(USB Lines)

RESET
TIME-OUT

INTERNAL
RESET

<«— trour —

8.0.8 MCU Status Register - MCUSR
The MCU Status Register provides information on which reset source caused an MCU reset.

Bit 7 6 5 4 3 2 1 0
| - | - | USBRF | JTRF | WDRF | BORF | EXTRF | PORF | MCUSR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

¢ Bit 7..6 - Reserved
These bits are reserved and should be read as 0. Do not set these bits.

ATMEL s

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

* Bit 5- USBRF: USB Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic
zero to the flag.

e Bit 4 — JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic
zero to the flag.

e Bit 3 — WDRF: Watchdog Reset Flag
This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

e Bit 2 - BORF: Brown-out Reset Flag
This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

¢ Bit 1 — EXTRF: External Reset Flag
This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

e Bit 0 — PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and then
Reset the MCUSR as early as possible in the program. If the register is cleared before another
reset occurs, the source of the reset can be found by examining the Reset Flags.

8.1 Internal Voltage Reference

ATmega16U4/ATmega32U4 features an internal bandgap reference. This reference is used for
Brown-out Detection, and it can be used as an input to the Analog Comparator or the ADC.

8.1.1 Voltage Reference Enable Signals and Start-up Time

7766F-AVR-11/10

The voltage reference has a start-up time that may influence the way it should be used. The
start-up time is given in Table 8-4. To save power, the reference is not always turned on. The
reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2..0] Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting the
ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user
must always allow the reference to start up before the output from the Analog Comparator or

ATMEL s

EEEes————————————————————— A TMmega16/32U4

8.2

7766F-AVR-11/10

ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three
conditions above to ensure that the reference is turned off before entering Power-down mode.

Table 8-4. Internal Voltage Reference Characteristics'"

Symbol | Parameter Condition | Min | Typ | Max | Units
Vig Bandgap reference voltage TBD TBD | 1.1 | TBD Vv
tea Bandgap reference start-up time TBD 40 70 ps
leg Sg::l?;;;tirg;erence current TBD 10 | TBD uA

Note: 1. Values are guidelines only. Actual values are TBD.

Watchdog Timer
ATmega16U4/ATmega32U4 has an Enhanced Watchdog Timer (WDT). The main features are:

* Clocked from separate On-chip Oscillator
¢ 3 Operating modes
— Interrupt
— System Reset
— Interrupt and System Reset
¢ Selectable Time-out period from 16ms to 8s
* Possible Hardware fuse Watchdog always on (WDTON) for fail-safe mode

Figure 8-8. Watchdog Timer

> WATCHDOG
128kHz » PRESCALER

AlS|0|O|AN|S|O|O|N|

222588585

O|0|0|8|2|B 2|33

388128183

YYVYYVYVYYYY
«—— WDPO
WDPH1
WATCHDOG WDP2
RESET & WDP3
WDE MCU RESET

WDIF AD
WOIE INTERRUPT

The Watchdog Timer (WDT) is a timer counting cycles of a separate on-chip 128 kHz oscillator.
The WDT gives an interrupt or a system reset when the counter reaches a given time-out value.
In normal operation mode, it is required that the system uses the WDR - Watchdog Timer Reset
- instruction to restart the counter before the time-out value is reached. If the system doesn't
restart the counter, an interrupt or system reset will be issued.

In Interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can be used
to wake the device from sleep-modes, and also as a general system timer. One example is to
limit the maximum time allowed for certain operations, giving an interrupt when the operation
has run longer than expected. In System Reset mode, the WDT gives a reset when the timer

ATMEL s

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

expires. This is typically used to prevent system hang-up in case of runaway code. The third
mode, Interrupt and System Reset mode, combines the other two modes by first giving an inter-
rupt and then switch to System Reset mode. This mode will for instance allow a safe shutdown
by saving critical parameters before a system reset.

The Watchdog always on (WDTON) fuse, if programmed, will force the Watchdog Timer to Sys-
tem Reset mode. With the fuse programmed the System Reset mode bit (WDE) and Interrupt
mode bit (WDIE) are locked to 1 and O respectively. To further ensure program security, altera-
tions to the Watchdog set-up must follow timed sequences. The sequence for clearing WDE and
changing time-out configuration is as follows:

1. In the same operation, write a logic one to the Watchdog change enable bit (WDCE)
and WDE. A logic one must be written to WDE regardless of the previous value of the
WDE bit.
2. Within the next four clock cycles, write the WDE and Watchdog prescaler bits (WDP) as
desired, but with the WDCE bit cleared. This must be done in one operation.
The following code example shows one assembly and one C function for turning off the Watch-
dog Timer. The example assumes that interrupts are controlled (e.g. by disabling interrupts
globally) so that no interrupts will occur during the execution of these functions.

ATMEL s

EEEes————————————————————— A TMmega16/32U4

Assembly Code Example("

WDT_off:
; Turn off global interrupt
cli
; Reset Watchdog Timer
wdr
; Clear WDRF in MCUSR
in rl6, MCUSR
andi rl6, (Oxff & (0O<<WDRF))
out MCUSR, rlé6
; Write logical one to WDCE and WDE
; Keep o0ld prescaler setting to prevent unintentional time-out
in rl6, WDTCSR
ori rl6, (1<<WDCE) | (1l<<WDE)
out WDTCSR, rlé6
; Turn off WDT
14i rl6, (0<<WDE)
out WDTCSR, rlé
; Turn on global interrupt
sei

ret

C Code Example"

void WDT_off (void)
{

_ disable_interrupt() ;

_ _watchdog_reset () ;

/* Clear WDRF in MCUSR */

MCUSR &= ~ (1<<WDRF) ;

/* Write logical one to WDCE and WDE */

/* Keep old prescaler setting to prevent unintentional time-out
*/

WDTCSR |= (1<<WDCE) | (1<<WDE);

/* Turn off WDT */

WDTCSR = 0x00;

__enable_interrupt () ;

Note: 1. The example code assumes that the part specific header file is included.

Note: If the Watchdog is accidentally enabled, for example by a runaway pointer or brown-out
condition, the device will be reset and the Watchdog Timer will stay enabled. If the code is not
set up to handle the Watchdog, this might lead to an eternal loop of time-out resets. To avoid this
situation, the application software should always clear the Watchdog System Reset Flag
(WDRF) and the WDE control bit in the initialization routine, even if the Watchdog is not in use.

ATMEL 5

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

The following code example shows one assembly and one C function for changing the time-out
value of the Watchdog Timer.

Assembly Code Example("

WDT_Prescaler_Change:
; Turn off global interrupt

cli

; Reset Watchdog Timer

wdr

; Start timed sequence

in rl6, WDTCSR

ori rl6, (1<<WDCE) | (1l<<WDE)

out WDTCSR, rlé6

-- Got four cycles to set the new values from here -

; Set new prescaler (time-out) value = 64K cycles (~0.5 s)

1di rl6, (1l<<WDE) | (1l<<wDP2) | (1l<<WDPO)

out WDTCSR, rlé6

-- Finished setting new values, used 2 cycles -

; Turn on global interrupt

sei

ret

C Code Example"

void WDT_Prescaler_Change (void)
{
_ disable_interrupt () ;
__watchdog_reset () ;

/* Start timed sequence */

WDTCSR |= (1<<WDCE) | (1<<WDE);
/* Set new prescaler (time-out) value = 64K cycles (~0.5 s) */
WDTCSR = (1<<WDE) | (1<<WDP2) | (1<<WDPO) ;

__enable_interrupt();

Note: 1. The example code assumes that the part specific header file is included.

Note: The Watchdog Timer should be reset before any change of the WDP bits, since a change
in the WDP bits can result in a time-out when switching to a shorter time-out period.

8.2.1 Watchdog Timer Control Register - WDTCSR

Bit 7 6 5 4 3 2 1 0
| woIF | wpiE | wDP3 | WDCE | WDE WDP2 | WDP1 WDP0 | WDTCSR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 X 0 0 0

¢ Bit 7 - WDIF: Watchdog Interrupt Flag
This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is config-
ured for interrupt. WDIF is cleared by hardware when executing the corresponding interrupt

ATMEL s

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

handling vector. Alternatively, WDIF is cleared by writing a logic one to the flag. When the I-bit in
SREG and WDIE are set, the Watchdog Time-out Interrupt is executed.

¢ Bit 6 - WDIE: Watchdog Interrupt Enable

When this bit is written to one and the I-bit in the Status Register is set, the Watchdog Interrupt is
enabled. If WDE is cleared in combination with this setting, the Watchdog Timer is in Interrupt
Mode, and the corresponding interrupt is executed if time-out in the Watchdog Timer occurs.

If WDE is set, the Watchdog Timer is in Interrupt and System Reset Mode. The first time-out in
the Watchdog Timer will set WDIF. Executing the corresponding interrupt vector will clear WDIE
and WDIF automatically by hardware (the Watchdog goes to System Reset Mode). This is use-
ful for keeping the Watchdog Timer security while using the interrupt. To stay in Interrupt and
System Reset Mode, WDIE must be set after each interrupt. This should however not be done
within the interrupt service routine itself, as this might compromise the safety-function of the
Watchdog System Reset mode. If the interrupt is not executed before the next time-out, a Sys-
tem Reset will be applied.

Table 8-5. Watchdog Timer Configuration

WDTON WDE WDIE Mode Action on Time-out
0 0 0 Stopped None
0 0 1 Interrupt Mode Interrupt
0 1 0 System Reset Mode Reset

0

1

Interrupt and System
Reset Mode

Interrupt, then go to
System Reset Mode

1

X

System Reset Mode

Reset

e Bit 4 - WDCE: Watchdog Change Enable
This bit is used in timed sequences for changing WDE and prescaler bits. To clear the WDE bit,
and/or change the prescaler bits, WDCE must be set.

Once written to one, hardware will clear WDCE after four clock cycles.

* Bit 3 - WDE: Watchdog System Reset Enable

WDE is overridden by WDRF in MCUSR. This means that WDE is always set when WDRF is
set. To clear WDE, WDRF must be cleared first. This feature ensures multiple resets during con-
ditions causing failure, and a safe start-up after the failure.

e Bit5, 2..0 - WDP3..0: Watchdog Timer Prescaler 3,2, 1 and 0

The WDP3..0 bits determine the Watchdog Timer prescaling when the Watchdog Timer is run-
ning. The different prescaling values and their corresponding time-out periods are shown in
Table 8-6 on page 60.

ATMEL s

EEEes————————————————————— A TMmega16/32U4

Table 8-6. Watchdog Timer Prescale Select
Number of WDT Oscillator Typical Time-out at
WDP3 | WDP2 | WDP1 | WDPO Cycles Vee = 5.0V

0 0 0 0 2K (2048) cycles 16 ms

0 0 0 1 4K (4096) cycles 32 ms

0 0 1 0 8K (8192) cycles 64 ms

0 0 1 1 16K (16384) cycles 0.125s
0 1 0 0 32K (32768) cycles 0.25s

0 1 0 1 64K (65536) cycles 05s

0 1 1 0 128K (131072) cycles 1.0s

0 1 1 1 256K (262144) cycles 20s

1 0 0 0 512K (524288) cycles 40s

1 0 0 1 1024K (1048576) cycles 8.0s

1 0 1 0

1 0 1 1

1 1 0 0

Reserved

1 1 0 1

1 1 1 0

1 1 1 1

7766F-AVR-11/10

ATMEL

60

EEEes————————————————————— A TMmega16/32U4

9.

9.1

Interrupts

This section describes the specifics of the interrupt handling as performed in
ATmega16U4/ATmega32U4. For a general explanation of the AVR interrupt handling, refer to
“Reset and Interrupt Handling” on page 15.

Interrupt Vectors in ATmega16U4/ATmega32U4

7766F-AVR-11/10

Table 9-1. Reset and Interrupt Vectors
Vector | Program
No. | Address® | Source Interrupt Definition
1| soo00® | RESET Watohdog Reset and JTAG AVR Reset
2 $0002 INTO External Interrupt Request 0
3 $0004 INTH External Interrupt Request 1
4 $0006 INT2 External Interrupt Request 2
5 $0008 INT3 External Interrupt Request 3
6 $000A Reserved Reserved
7 $000C Reserved Reserved
8 $000E INT6 External Interrupt Request 6
9 $0010 Reserved Reserved
10 $0012 PCINTO Pin Change Interrupt Request 0
11 $0014 USB General USB General Interrupt request
12 $0016 USB Endpoint USB Endpoint Interrupt request
13 $0018 WDT Watchdog Time-out Interrupt
14 $001A Reserved Reserved
15 $001C Reserved Reserved
16 $001E Reserved Reserved
17 $0020 TIMER1 CAPT Timer/Counter1 Capture Event
18 $0022 TIMER1 COMPA | Timer/Counter1 Compare Match A
19 $0024 TIMER1 COMPB | Timer/Counter1 Compare Match B
20 $0026 TIMER1 COMPC | Timer/Counter1 Compare Match C
21 $0028 TIMER1 OVF Timer/Counter1 Overflow
22 $002A TIMERO COMPA | Timer/Counter0 Compare Match A
23 $002C TIMERO COMPB | Timer/Counter0 Compare match B
24 $002E TIMERO OVF Timer/Counter0 Overflow
25 $0030 SPI (STC) SPI Serial Transfer Complete
26 $0032 USART1 RX USART1 Rx Complete
27 $0034 USART1 UDRE USART1 Data Register Empty
28 $0036 USART1TX USART1 Tx Complete
29 $0038 ANALOG COMP | Analog Comparator

ATMEL

61

EEEes————————————————————— A TMmega16/32U4

Table 9-1. Reset and Interrupt Vectors (Continued)
Vector | Program

No. | Address® | Source Interrupt Definition
30 $003A ADC ADC Conversion Complete
31 $003C EE READY EEPROM Ready
32 $003E TIMER3 CAPT Timer/Counter3 Capture Event
33 $0040 TIMER3 COMPA | Timer/Counter3 Compare Match A
34 $0042 TIMER3 COMPB | Timer/Counter3 Compare Match B
35 $0044 TIMER3 COMPC | Timer/Counter3 Compare Match C
36 $0046 TIMERS3 OVF Timer/Counter3 Overflow
37 $0048 TWI 2-wire Serial Interface
38 $004A SPM READY Store Program Memory Ready
39 $004C TIMER4 COMPA | Timer/Counter4 Compare Match A
40 $004E TIMER4 COMPB | Timer/Counter4 Compare Match B
41 $0050 TIMER4 COMPD | Timer/Counter4 Compare Match D
42 $0052 TIMER4 OVF Timer/Counter4 Overflow
43 $0054 TIMER4 FPF Timer/Counter4 Fault Protection Interrupt

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at
reset, see “Memory Programming” on page 346.

2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot
Flash Section. The address of each Interrupt Vector will then be the address in this table
added to the start address of the Boot Flash Section.
Table 9-2 shows reset and Interrupt Vectors placement for the various combinations of
BOOTRST and IVSEL settings. If the program never enables an interrupt source, the Interrupt
Vectors are not used, and regular program code can be placed at these locations. This is also
the case if the Reset Vector is in the Application section while the Interrupt Vectors are in the
Boot section or vice versa.

Table 9-2. Reset and Interrupt Vectors Placement(")
BOOTRST IVSEL | Reset Address Interrupt Vectors Start Address
1 0 0x0000 0x0002
1 1 0x0000 Boot Reset Address + 0x0002
0 0 Boot Reset Address 0x0002
0 1 Boot Reset Address Boot Reset Address + 0x0002

Note: 1. The Boot Reset Address is shown in Table 27-8 on page 344. For the BOOTRST Fuse “1”
means unprogrammed while “0” means programmed.

9.1.1 Moving Interrupts Between Application and Boot Space
The General Interrupt Control Register controls the placement of the Interrupt Vector table.

ATMEL o

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

9.1.2 MCU Control Register - MCUCR

7766F-AVR-11/10

Bit 7 6 5 4 3 2 1 0

| y10 | - - PUD - - IVSEL IVCE | MCUCR
Read/Write R/W R R R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 1 - IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash
memory. When this bit is set (one), the Interrupt Vectors are moved to the beginning of the Boot
Loader section of the Flash. The actual address of the start of the Boot Flash Section is deter-
mined by the BOOTSZ Fuses. Refer to the section “Memory Programming” on page 346 for
details. To avoid unintentional changes of Interrupt Vector tables, a special write procedure must
be followed to change the IVSEL bit:

a. Write the Interrupt Vector Change Enable (IVCE) bit to one.
b. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled
in the cycle IVCE is set, and they remain disabled until after the instruction following the write to
IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status
Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is programmed,
interrupts are disabled while executing from the Application section. If Interrupt Vectors are placed
in the Application section and Boot Lock bit BLB12 is programed, interrupts are disabled while
executing from the Boot Loader section. Refer to the section “Memory Programming” on page 346
for details on Boot Lock bits.

e Bit 0 — IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by
hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable
interrupts, as explained in the IVSEL description above. See Code Example below.

ATMEL e

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

Assembly Code Example

Move_interrupts:
; Enable change of Interrupt Vectors

1di rl6, (1<<IVCE)

out MCUCR, rlé6

; Move interrupts to Boot Flash section
1di rle6, (1<<IVSEL)
out MCUCR, rlé6

ret

C Code Example

void Move_interrupts (void)

{

/* Enable change of Interrupt Vectors */

MCUCR = (1<<IVCE) ;
/* Move interrupts to Boot Flash section */

MCUCR = (1<<IVSEL) ;

ATMEL

64

EEEes————————————————————— A TMmega16/32U4

10. I/0-Ports

10.1

Introduction

7766F-AVR-11/10

All AVR ports have true Read-Modify-Write functionality when used as general digital 1/0 ports.
This means that the direction of one port pin can be changed without unintentionally changing
the direction of any other pin with the SBI and CBI instructions. The same applies when chang-
ing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as
input). Each output buffer has symmetrical drive characteristics with both high sink and source
capability. The pin driver is strong enough to drive LED displays directly. All port pins have indi-
vidually selectable pull-up resistors with a supply-voltage invariant resistance. All /0 pins have
protection diodes to both Vi and Ground as indicated in Figure 10-1. Refer to “Electrical Char-
acteristics” on page 378 for a complete list of parameters.

Figure 10-1. 1/O Pin Equivalent Schematic

pu

. Logic

See Figure
"General Digital I/0" for
Details

All registers and bit references in this section are written in general form. A lower case “x” repre-
sents the numbering letter for the port, and a lower case “n” represents the bit number. However,
when using the register or bit defines in a program, the precise form must be used. For example,
PORTBS for bit no. 3 in Port B, here documented generally as PORTxn. The physical I/O Regis-
ters and bit locations are listed in “Register Description for I/O-Ports” on page 82.

Three 1/0 memory address locations are allocated for each port, one each for the Data Register
— PORTYX, Data Direction Register — DDRXx, and the Port Input Pins — PINx. The Port Input Pins
I/0 location is read only, while the Data Register and the Data Direction Register are read/write.
However, writing a logic one to a bit in the PINx Register, will result in a toggle in the correspond-
ing bit in the Data Register. In addition, the Pull-up Disable — PUD bit in MCUCR disables the
pull-up function for all pins in all ports when set.

Using the I/O port as General Digital I/O is described in “Ports as General Digital I/0” on page
66. Most port pins are multiplexed with alternate functions for the peripheral features on the
device. How each alternate function interferes with the port pin is described in “Alternate Port
Functions” on page 70. Refer to the individual module sections for a full description of the alter-
nate functions.

ATMEL o

EEEes————————————————————— A TMmega16/32U4

Note that enabling the alternate function of some of the port pins does not affect the use of the
other pins in the port as general digital 1/O.

10.2 Ports as General Digital I/0
The ports are bi-directional I/O ports with optional internal pull-ups. Figure 10-2 shows a func-
tional description of one 1/O-port pin, here generically called Pxn.

Figure 10-2. General Digital /0"

kb PUD
<II /7
Q D :
DDxn
e
I WDXx
RESET
ﬁ RDx
<>
pS 1>
N~ n
L =)
N1 [a1]
P Q D
- ~ PORTxn 1 |<_:
3.9 <
T ()
RESET ‘ -
WRx WPx
 SLEEP I\L_ RRx
l/
SYNCHRONIZER
| —_—————— ﬁ RPx
> D QD a |
II/ | PINxn | L
_| | r L T |'> a |
|_ _____ I clkyo
- WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WRx: WRITE PORTx
oIk, /0 CLOCK RRx: READ PORTx REGISTER
RPx READ PORTX PIN
WPx: WRITE PINx REGISTER

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk,q,
SLEEP, and PUD are common to all ports.

10.2.1 Configuring the Pin
Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in “Register
Description for 1/0-Ports” on page 82, the DDxn bits are accessed at the DDRx I/O address, the
PORTXxn bits at the PORTXx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,
Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input
pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is

activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to
be configured as an output pin. The port pins are tri-stated when reset condition becomes active,

even if no clocks are running.

ATMEL .

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port
pin is driven low (zero).

10.2.2 Toggling the Pin

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn.
Note that the SBI instruction can be used to toggle one single bit in a port.

10.2.3 Switching Between Input and Output

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}
= 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output
low ({DDxn, PORTxn} = 0b10) occurs. Normally, the pull-up enabled state is fully acceptable, as
a high-impedance environment will not notice the difference between a strong high driver and a
pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all pull-
ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user
must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}
= 0b11) as an intermediate step.

Table 10-1 summarizes the control signals for the pin value.

Table 10-1. Port Pin Configurations

DDxn | PORTxn | (in I\|I:I’gl[J)CR) /0 Pull-up | Comment
0 0 X Input No Tri-state (Hi-2)
0 1 0 Input Yes E)\;:\ will source current if ext. pulled
0 1 1 Input No Tri-state (Hi-2)
1 0 X Output No Output Low (Sink)
1 1 X Output No Output High (Source)

10.2.4 Reading the Pin Value

7766F-AVR-11/10

Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register bit. As shown in Figure 10-2, the PINxn Register bit and the preceding latch con-
stitute a synchronizer. This is needed to avoid metastability if the physical pin changes value
near the edge of the internal clock, but it also introduces a delay. Figure 10-3 shows a timing dia-
gram of the synchronization when reading an externally applied pin value. The maximum and
minimum propagation delays are denoted t,y max @and tog min respectively.

ATMEL o

EEEes————————————————————— A TMmega16/32U4

Figure 10-3. Synchronization when Reading an Externally Applied Pin value

systTeMok _ [L LI L_
INSTRUCTIONS X x X xx X nreme X

SYNC LATCH v
PINXn : :
r17 0xooé X OxFF
: tpd, max . =
: tpd, min
o

Consider the clock period starting shortly after the first falling edge of the system clock. The latch
is closed when the clock is low, and goes transparent when the clock is high, as indicated by the
shaded region of the “SYNC LATCH?” signal. The signal value is latched when the system clock
goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indi-
cated by the two arrows tpd max and tpd min, a single signal transition on the pin will be delayed
between %2 and 12 system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indi-
cated in Figure 10-4. The out instruction sets the “SYNC LATCH?” signal at the positive edge of
the clock. In this case, the delay tpd through the synchronizer is 1 system clock period.

Figure 10-4. Synchronization when Reading a Software Assigned Pin Value

SYSTEM CLK |' |'

r16 5 OXFF_:
INSTRUCTIONS — X out PORTx, r16 X nop X inr17, PN X
SYNC LATCH | E
PINxn : .
r117 0x00 X oxFF

pd

y'\
I AR

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define
the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin
values are read back again, but as previously discussed, a nop instruction is included to be able
to read back the value recently assigned to some of the pins.

ATMEL L

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

10.2.5

7766F-AVR-11/10

Assembly Code Example("

; Define pull-ups and set outputs high

; Define directions for port pins

1di 1rl16, (1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PBO0)

1di 117, (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO0)
out PORTB,rlé6

out DDRB,rl7

; Insert nop for synchronization

nop

; Read port pins

in rl6,PINB

C Code Example

unsigned char i;

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7) | (1<<PB6) | (1<<PB1l) | (1<<PB0) ;
DDRB = (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO) ;
/* Insert nop for synchronization*/

_ _no_operation() ;

/* Read port pins */

i = PINB;

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3
as low and redefining bits 0 and 1 as strong high drivers.

Digital Input Enable and Sleep Modes

As shown in Figure 10-2, the digital input signal can be clamped to ground at the input of the
Schmidt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in
Power-down mode, Power-save mode, and Standby mode to avoid high power consumption if
some input signals are left floating, or have an analog signal level close to V/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt
request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various
other alternate functions as described in “Alternate Port Functions” on page 70.

If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as
“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt
is not enabled, the corresponding External Interrupt Flag will be set when resuming from the
above mentioned Sleep mode, as the clamping in these sleep mode produces the requested
logic change.

ATMEL L

EEEes————————————————————— A TMmega16/32U4

10.2.6 Unconnected Pins

If some pins are unused, it is recommended to ensure that these pins have a defined level. Even
though most of the digital inputs are disabled in the deep sleep modes as described above, float-
ing inputs should be avoided to reduce current consumption in all other modes where the digital
inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up.
In this case, the pull-up will be disabled during reset. If low power consumption during reset is
important, it is recommended to use an external pull-up or pull-down. Connecting unused pins
directly to V¢ or GND is not recommended, since this may cause excessive currents if the pin is
accidentally configured as an output.

10.3 Alternate Port Functions

7766F-AVR-11/10

Most port pins have alternate functions in addition to being general digital I/Os. Figure 10-5
shows how the port pin control signals from the simplified Figure 10-2 can be overridden by
alternate functions. The overriding signals may not be present in all port pins, but the figure
serves as a generic description applicable to all port pins in the AVR microcontroller family.

Figure 10-5. Alternate Port Functions'"

PUOExn A

PUOVxn
PUD
DDOExn
L DDOVxn
3 1
h Q D |
DDxn b
Q.
PVOExn
PVOVxn
j U)
1 -]
Pxn m
<
&
DIEOExn a
_I—o<}— DIEOVxn
1
Of——— SLEEP
RPx
=
clk o
= » Dixn
@ AlOXn
PUOExn: Pxn PULL-UP OVERRIDE ENABLE PUD: PULLUP DISABLE
PUOVxn: Pxn PULL-UP OVERRIDE VALUE WDx: WRITE DDRx
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE RDx: READ DDRx
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE RRx: READ PORTx REGISTER
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE WRx: WRITE PORTx
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE RPx: READ PORTx PIN
DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE WPx: WRITE PINx
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE clkyo: 1/0 CLOCK
SLEEP: SLEEP CONTROL Dixn: DIGITAL INPUT PIN n ON PORTXx
PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE AlOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

ATMEL 1

EEEes————————————————————— A TMmega16/32U4

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk,q,
SLEEP, and PUD are common to all ports. All other signals are unique for each pin.

Table 10-2 summarizes the function of the overriding signals. The pin and port indexes from Fig-
ure 10-5 are not shown in the succeeding tables. The overriding signals are generated internally
in the modules having the alternate function.

Table 10-2. Generic Description of Overriding Signals for Alternate Functions

Signal Name | Full Name Description

If this signal is set, the pull-up enable is controlled by the

Pull-up Override PUQV signal. If this signal is cleared, the pull-up is

PUOE

Enable enabled when {DDxn, PORTxn, PUD} = 0b010.
Pull-up Override If PUOE is set, the pull-up is enabled/disabled when
PUOV P PUOV is set/cleared, regardless of the setting of the

Value DDxn, PORTxn, and PUD Register bits.

Data Direction If this signal is set, the Output Driver Enable is controlled
DDOE Override Enable by the DDOV signal. If this signal is cleared, the Output
driver is enabled by the DDxn Register bit.

Data Direction If DDOE is set, the Output Driver is enabled/disabled
DDOV - when DDOQV is set/cleared, regardless of the setting of
Override Value : :
the DDxn Register bit.

If this signal is set and the Output Driver is enabled, the
Port Value port value is controlled by the PVOV signal. If PVOE is

PVOE Override Enable cleared, and the Output Driver is enabled, the port Value
is controlled by the PORTxn Register bit.
PVOV Port Value If PVOE is set, the port value is set to PVOV, regardless
Override Value of the setting of the PORTxn Register bit.
PTOE Port Toggle If PTOE is set, the PORTxn Register bit is inverted.
Override Enable
Diaital Input If this bit is set, the Digital Input Enable is controlled by
9 put the DIEOV signal. If this signal is cleared, the Digital Input
DIEOE Enable Override : .
Enable is determined by MCU state (Normal mode, sleep
Enable
mode).
Digital Input If DIEOE is set, the Digital Input is enabled/disabled when
DIEOV Enable Override DIEQV is set/cleared, regardless of the MCU state
Value (Normal mode, sleep mode).

This is the Digital Input to alternate functions. In the
figure, the signal is connected to the output of the schmitt
DI Digital Input trigger but before the synchronizer. Unless the Digital
Input is used as a clock source, the module with the
alternate function will use its own synchronizer.

This is the Analog Input/output to/from alternate
functions. The signal is connected directly to the pad, and
can be used bi-directionally.

Analog

AlO Input/Output

The following subsections shortly describe the alternate functions for each port, and relate the
overriding signals to the alternate function. Refer to the alternate function description for further
details.

ATMEL g

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

10.3.1 MCU Control Register - MCUCR

Bit 7 6 5 4 3 2 1 0

e | - - PUD - - IVSEL | IVCE | MCUCR
Read/Write R/W R R R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 4 — PUD: Pull-up Disable

When this bit is written to one, the pull-ups in the 1/O ports are disabled even if the DDxn and
PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See “Con-
figuring the Pin” on page 66 for more details about this feature.

10.3.2 Alternate Functions of Port B
The Port B pins with alternate functions are shown in Table 10-3.

Table 10-3. Port B Pins Alternate Functions

Port Pin | Alternate Functions

OCOA/OC1C/PCINT7/RTS (Output Compare and PWM Output A for
PB7 Timer/CounterQ, Output Compare and PWM Output C for Timer/Counter1 or Pin
Change Interrupt 7 or UART flow control RTS signal)

OC1B/PCINT6/0C.4B/ADC13 (Output Compare and PWM Output B for
PB6 Timer/Counter1 or Pin Change Interrupt 6 or Timer 4 Output Compare B/ PWM
output or Analog to Digital Converter channel 13)

OC1A/PCINT5/0C.4B/ADC12 (Output Compare and PWM Output A for
PB5 Timer/Counter1 or Pin Change Interrupt 5 or Timer 4 Complementary Output
Compare B / PWM output or Analog to Digital Converter channel 12)

PB4 PCINT4/ADC11 (Pin Change Interrupt 4 or Analog to Digital Converter channel 11)

PDO/MISO/PCINT3 (Programming Data Output or SPI Bus Master Input/Slave
Output or Pin Change Interrupt 3)

PDI/MOSI/PCINT2 (Programming Data Input or SPI1 Bus Master Output/Slave Input
or Pin Change Interrupt 2)

PB3

PB2

PB1 SCK/PCINT1 (SPI Bus Serial Clock or Pin Change Interrupt 1)
PBO SS/PCINTO (SPI Slave Select input or Pin Change Interrupt 0)

The alternate pin configuration is as follows:

* OCOA/OC1C/PCINT7/RTS, Bit 7

OCOA, Output Compare Match A output: The PB7 pin can serve as an external output for the
Timer/Counter0 Output Compare. The pin has to be configured as an output (DDB7 set “one”) to
serve this function. The OCOA pin is also the output pin for the PWM mode timer function.

OC1C, Output Compare Match C output: The PB7 pin can serve as an external output for the
Timer/Counter1 Output Compare C. The pin has to be configured as an output (DDB7 set “one”)
to serve this function. The OC1C pin is also the output pin for the PWM mode timer function.

PCINT7, Pin Change Interrupt source 7: The PB7 pin can serve as an external interrupt source.

RTS: RTS flow control signal used by enhanced UART.

ATMEL 7

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

* OC1B/PCINT6/0C.4B/ADC12, Bit 6

OC1B, Output Compare Match B output: The PB6 pin can serve as an external output for the
Timer/Counter1 Output Compare B. The pin has to be configured as an output (DDB6 set “one”)
to serve this function. The OC1B pin is also the output pin for the PWM mode timer function.

PCINT®, Pin Change Interrupt source 6: The PB7 pin can serve as an external interrupt source.

OC.4B: Timer 4 Output Compare B. This pin can be used to generate a high-speed PWM signal
from Timer 4 module. The pin has to be configured as an output (DDB6 set “one”) to serve this
function.

ADC13: Analog to Digital Converter, channel 13.

e OC1A/PCINT5/0C.4B/ADC12, Bit 5

OC1A, Output Compare Match A output: The PB5 pin can serve as an external output for the
Timer/Counter1 Output Compare A. The pin has to be configured as an output (DDB5 set (one))
to serve this function. The OC1A pin is also the output pin for the PWM mode timer function.

PCINT5, Pin Change Interrupt source 5: The PB7 pin can serve as an external interrupt source.

OC.4B: Timer 4 Output Compare B. This pin can be used to generate a high-speed PWM signal
from Timer 4 module, complementary to OC.4B (PB5) signal. The pin has to be configured as an
output (DDBS5 set (one)) to serve this function.

ADC12: Analog to Digital Converter, channel 12.

* PCINT4/ADC11, Bit 4
PCINT4, Pin Change Interrupt source 4: The PB7 pin can serve as an external interrupt source.

ADC11, Analog to Digital Converter channel 11.

* PDO/MISO/PCINT3 - Port B, Bit 3
PDO, SPI Serial Programming Data Output. During Serial Program Downloading, this pin is
used as data output line for the ATmegai16U4/ATmega32U4.

MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as a
master, this pin is configured as an input regardless of the setting of DDB3. When the SPI is
enabled as a slave, the data direction of this pin is controlled by DDB3. When the pin is forced to
be an input, the pull-up can still be controlled by the PORTBS3 bit.

PCINTS3, Pin Change Interrupt source 3: The PB7 pin can serve as an external interrupt source.
e PDI/MOSI/PCINT2 — Port B, Bit 2

PDI, SPI Serial Programming Data Input. During Serial Program Downloading, this pin is used
as data input line for the ATmega16U4/ATmega32U4.

MOSI: SPI Master Data output, Slave Data input for SPI channel. When the SPI is enabled as a
slave, this pin is configured as an input regardless of the setting of DDB2. When the SPI is
enabled as a master, the data direction of this pin is controlled by DDB2. When the pin is forced
to be an input, the pull-up can still be controlled by the PORTB2 bit.

PCINT2, Pin Change Interrupt source 2: The PB7 pin can serve as an external interrupt source.

ATMEL 7

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

e SCK/PCINT1 - Port B, Bit 1

SCK: Master Clock output, Slave Clock input pin for SPI channel. When the SPI is enabled as a
slave, this pin is configured as an input regardless of the setting of DDB1. When the SPIO is
enabled as a master, the data direction of this pin is controlled by DDB1. When the pin is forced
to be an input, the pull-up can still be controlled by the PORTB1 bit.

PCINT1, Pin Change Interrupt source 1: The PB7 pin can serve as an external interrupt source.

¢ SS/PCINTO - Port B, Bit 0

SS: Slave Port Select input. When the SPI is enabled as a slave, this pin is configured as an
input regardless of the setting of DDBO. As a slave, the SPI is activated when this pin is driven
low. When the SPI is enabled as a master, the data direction of this pin is controlled by DDBO.
When the pin is forced to be an input, the pull-up can still be controlled by the PORTBO bit.

Table 10-4 and Table 10-5 relate the alternate functions of Port B to the overriding signals
shown in Figure 10-5 on page 70. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the
MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE INPUT.

PCINTO, Pin Change Interrupt source 0: The PB7 pin can serve as an external interrupt source..

Table 10-4. Overriding Signals for Alternate Functions in PB7.PB4
Signal | PB7/PCINT7/OCOA/ | PB6/PCINT6/0OC1 | PB5/PCINT5/0C1 | PB4/PCINT4/A
Name OC1C/RTS B/OC.4B/ADC13 A/OC.4B/ADC12 DC11
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE | O 0 0 0
DDOV 0 0 0 0
PVOE SIEI:/Q/B?_IC; C OC1B ENABLE OC1A ENABLE 0
PVOV | OC0/OC1C OC1B OC1A 0
DIEOE | PCINT7 « PCIEO PCINT6 « PCIEO PCINT5 « PCIEO PCINT4 « PCIEO
DIEQV | 1 1 1 1
DI PCINT7 INPUT PCINT6 INPUT PCINT5 INPUT PCINT4 INPUT
AIO - - - -

ATMEL

74

EEEes————————————————————— A TMmega16/32U4

Table 10-5. Overriding Signals for Alternate Functions in PB3.PB0

Signal | PB3/PDO/PCINT3/ PB2/PDI/PCINT2/ PB1/PCINT1/ | PBO/PCINTO/

Name | MISO MOSI SCK Ss

PUOE | SPEe«MSTR SPE « MSTR SPE « MSTR SPE « MSTR

PUOV | PORTB3 s PUD PORTB2 « PUD PORTB1« PUD | PORTBO * PUD

DDOE | SPEsMSTR SPE « MSTR SPE « MSTR SPE « MSTR

DDOV | 0 0 0 0

PVOE | SPEe«MSTR SPE « MSTR SPE « MSTR 0

PVOV | SPISLAVE OUTPUT | SPIMSTR OUTPUT | SCKOUTPUT | 0

DIEOE | PCINT3 « PCIEO PCINT2 « PCIEO gg:gp ' ,F;g:’;go *

DIEOV | 1 1 1 1

D) SPIMSTR INPUT SPI SLAVE INPUT | SCK INPUT SPISS
PCINT3 INPUT PCINT2 INPUT PCINT1 INPUT | PCINTO INPUT

AIO - - - -

10.3.3

Alternate Functions of Port C

The Port C alternate function is as follows:

Table 10-6. Port C Pins Alternate Functions
Port Pin Alternate Function

ICP3/CLKO/OC4A(Input Capture Timer 3 or CLKO (Divided

PC7 System Clock) or Output Compare and direct PWM output A
for Timer 4)
OC.3A/OC4A (Output Compare and PWM output A for

PC6 Timer/Counter3 or Output Compare and complementary
PWM output A for Timer 4)

PC5

PC4

PC3
Not present on pin-out.

PC2

PC1

PCO

e ICP3/CLKO/OC.4A - Port C, Bit 7
ICP3: If Timer 3 is correctly configured, this pin can serve as Input Capture feature.

CLKO: When the corresponding fuse is enabled, this pin outputs the internal microcontroller
working frequency. If the clock prescaler is used, this will affect this output frequency.

OC.4A: Timer 4 Output Compare A. This pin can be used to generate a high-speed PWM signal
from Timer 4 module. The pin has to be configured as an output (DDC7 set “one”) to serve this

function.

7766F-AVR-11/10

ATMEL

75

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

e OC.3A/OC.4A - Port C, Bit 6
OC.3A: Timer 3 Output Compare A. This pin can be used to generate a PWM signal from Timer
3 module.

OC.4A: Timer 4 Output Compare A. This pin can be used to generate a high-speed PWM signal
from Timer 4 module, complementary to OC.4A (PC7) signal. The pin has to be configured as an
output (DDCB6 set “one”) to serve this function.

Table 10-7 relate the alternate functions of Port C to the overriding signals shown in Figure 10-5
on page 70.

Table 10-7. Overriding Signals for Alternate Functions in PC7.PC6

Signal PC7/ICP3/CLKO/OC.4

Name A PC6/0C.3A/OC.4A
SRE »

PUOE SRE ¢ (XMM<1) (XMM<2)|OC3A
enable

PUOV 0 0

DDOE SRE ¢ (XMM<1) SRE ¢ (XMM<2)

DDOV 1 1

PVOE SRE ¢ (XMM<1) SRE ¢ (XMM<2)
if (SRE.XMM<2)

PVOV A15 then A14
else OC3A

DIEOE 0 0

DIEQV 0 0

DI ICP3 input -

AlO - -

ATMEL 7

EEEes————————————————————— A TMmega16/32U4

10.3.4 Alternate Functions of Port D
The Port D pins with alternate functions are shown in Table 10-8.

Table 10-8. Port D Pins Alternate Functions

Port Pin Alternate Function

PD7 TO/OC.4D/ADC10 (Timer/Counter0 Clock Input or Timer 4 Output Compare D /
PWM output or Analog to Digital Converter channel 10)
T1/0OC.4D/ADC9 (Timer/Counter1 Clock Input or Timer 4 Output

PD6 Complementary Compare D / PWM output or Analog to Digital Converter
channel 9)

PD5 XCK1/CTS (USART1 External Clock Input/Output or UART flow control CTS
signal)
ICP1/ADCS8 (Timer/Counter1 Input Capture Trigger or Analog to Digital

PD4
Converter channel 8)

PD3 INT3/TXD1 (External Interrupt3 Input or USART1 Transmit Pin)

PD2 INT2/RXD1 (External Interrupt2 Input or USART1 Receive Pin)

PD1 INT1/SDA (External Interrupt1 Input or TWI Serial DAta)
INTO/SCL/OCOB (External InterruptO Input or TWI Serial CLock or Output

PDO .
Compare for Timer/Counter0)

The alternate pin configuration is as follows:

e T0/OC.4D/ADC10 - Port D, Bit 7
TO, Timer/Counter0O counter source.

OC.4D: Timer 4 Output Compare D. This pin can be used to generate a high-speed PWM signal
from Timer 4 module. The pin has to be configured as an output (DDD7 set “one”) to serve this
function.

ADC10: Analog to Digital Converter, Channel 10.

¢ T1/0C.4D/ADC9 - Port D, Bit 6
T1, Timer/Counter1 counter source.

OC.4D: Timer 4 Output Compare D. This pin can be used to generate a high-speed PWM signal
from Timer 4 module, complementary to OC.4D (PD7) signal. The pin has to be configured as
an output (DDD6 set “one”) to serve this function.

ADC9: Analog to Digital Converter, Channel 9.
e XCK1/CTS - Port D, Bit 5
XCK1, USART1 External clock. The Data Direction Register (DDD5) controls whether the clock

is output (DDD5 set) or input (DDD5 cleared). The XCK1 pin is active only when the USART1
operates in Synchronous mode.

CTS: Clear-To-Send flow control signal used by enhanced UART module.

e ICP1/ADCS8 - Port D, Bit 4
ICP1 — Input Capture Pin 1: The PD4 pin can act as an input capture pin for Timer/Counter1.

ADCS8: Analog to Digital Converter, Channel 8.

ATMEL L

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

e INT3/TXD1 - Port D, Bit 3
INT3, External Interrupt source 3: The PD3 pin can serve as an external interrupt source to the
MCU.

TXD1, Transmit Data (Data output pin for the USART1). When the USART1 Transmitter is
enabled, this pin is configured as an output regardless of the value of DDD3.

* INT2/RXD1 - Port D, Bit 2
INT2, External Interrupt source 2. The PD2 pin can serve as an External Interrupt source to the
MCU.

RXD1, Receive Data (Data input pin for the USART1). When the USART1 receiver is enabled
this pin is configured as an input regardless of the value of DDD2. When the USART forces this
pin to be an input, the pull-up can still be controlled by the PORTD2 bit.

¢ INT1/SDA - Port D, Bit 1
INT1, External Interrupt source 1. The PD1 pin can serve as an external interrupt source to the
MCU.

SDA, 2-wire Serial Interface Data: When the TWEN bit in TWCR is set (one) to enable the 2-wire
Serial Interface, pin PD1 is disconnected from the port and becomes the Serial Data 1/0 pin for
the 2-wire Serial Interface. In this mode, there is a spike filter on the pin to suppress spikes
shorter than 50 ns on the input signal, and the pin is driven by an open drain driver with slew-
rate limitation.

* INTO0/SCL/OCOB - Port D, Bit 0

INTO, External Interrupt source 0. The PDO pin can serve as an external interrupt source to the
MCU.

SCL, 2-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to enable the 2-
wire Serial Interface, pin PDO is disconnected from the port and becomes the Serial Clock 1/0
pin for the 2-wire Serial Interface. In this mode, there is a spike filter on the pin to suppress
spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver with
slew-rate limitation.

OC.0B: Timer 0 Output Compare B. This pin can be used to generate a PWM signal from the
Timer 0 module.

Table 10-9 and Table 10-10 relates the alternate functions of Port D to the overriding signals
shown in Figure 10-5 on page 70.

ATMEL 7

EEEes————————————————————— A TMmega16/32U4

Table 10-9. Overriding Signals for Alternate Functions PD7..PD4
PD7/T0/ PD6/T1/ PD4/ICP1/
Signal Name OC4D/ADC10 | OC4D/ADC9 PD5/XCK1/CTS ADCS8
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0)E(ﬁK:BI?EUTPUT 0
DDOV 0 0 1 0
PVOE 0 0 éﬁié&UTPUT 0
PVOV 0 0 XCK1 OUTPUT 0
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI TO INPUT T1 INPUT XCK1 INPUT ICP1 INPUT
AIO - - - -
Table 10-10. Overriding Signals for Alternate Functions in PD3.PD0(")
PDO/INTO/SCL/
Signal Name | PD3/INT3/TXD1 | PD2/INT2/RXD1 PD1/INT1/SDA ocoB
PUOE TXEN1 RXEN1 TWEN TWEN
PUOV 0 PORTD2 * PUD PORTD1 ¢ PUD | PORTDO « PUD
DDOE TXEN1 RXEN1 TWEN TWEN
DDOV 1 0 SDA_OUT SCL_OUT
PVOE TXEN1 0 TWEN ENABLE E\IQVEQLLOCOB
PVOV TXDA1 0 0 OCoB
DIEOE INT3 ENABLE INT2 ENABLE INT1 ENABLE INTO ENABLE
DIEQV 1 1 1 1
DI INT3 INPUT INT2 INPUT/RXD1 | INT1 INPUT INTO INPUT
AlIO - - SDA INPUT SCL INPUT
Note: 1. When enabled, the 2-wire Serial Interface enables Slew-Rate controls on the output pins PDO

and PD1. This is not shown in this table. In addition, spike filters are connected between the
AlO outputs shown in the port figure and the digital logic of the TWI module.

7766F-AVR-11/10

ATMEL

79

EEEes————————————————————— A TMmega16/32U4

10.3.5 Alternate Functions of Port E
The Port E pins with alternate functions are shown in Table 10-11.

Table 10-11. Port E Pins Alternate Functions

Port Pin

Alternate Function

PE7

Not present on pin-out.

PE6

INT6/AINO (External Interrupt 6 Input or Analog Comparator Positive Input)

PE5

PE4

PE3

Not present on pin-out.

PE2

HWB (Hardware bootloader activation)

PE1

PEO

Not present on pin-out.

¢ INT6/AINO — Port E, Bit 6
INT6, External Interrupt source 6: The PEG pin can serve as an external interrupt source.

AINO — Analog Comparator Negative input. This pin is directly connected to the negative input of
the Analog Comparator.

e HWB - Port E, Bit 2

HWB allows to execute the bootloader section after reset when tied to ground during external
reset pulse. The HWB mode of this pin is active only when the HWBE fuse is enable. During nor-
mal operation (excluded Reset), this pin acts as a general purpose 1/O.

Table 10-12. Overriding Signals for Alternate Functions PE6, PE2

Signal

Name PEG6/INT6/AINO PE2/HWB
PUOE | 0O 0
PUOV | 0O 0
DDOE | O 0
DDOV | 0 1
PVOE 0 0
PVOV 0 0
DIEOE | INT6 ENABLE 0
DIEOV | 1 0

DI INT6 INPUT HWB
AlO AINO INPUT -

10.3.6 Alternate Functions of Port F
The Port F has an alternate function as analog input for the ADC as shown in Table 10-13. If
some Port F pins are configured as outputs, it is essential that these do not switch when a con-
version is in progress. This might corrupt the result of the conversion. If the JTAG interface is

7766F-AVR-11/10

ATMEL 2

EEEes————————————————————— A TMmega16/32U4

enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even
if a Reset occurs.

Table 10-13. Port F Pins Alternate Functions

Port Pin Alternate Function

PF7 ADC7/TDI (ADC input channel 7 or JTAG Test Data Input)
PF6 ADCG6/TDO (ADC input channel 6 or JTAG Test Data Output)
PF5 ADC5/TMS (ADC input channel 5 or JTAG Test Mode Select)
PF4 ADC4/TCK (ADC input channel 4 or JTAG Test ClocK)

PF3

PED Not present on pin-out.

PF1 ADC1 (ADC input channel 1)

PFO ADCO (ADC input channel 0)

e TDI, ADC7 - Port F, Bit 7
ADC7, Analog to Digital Converter, Channel 7.

TDI, JTAG Test Data In: Serial input data to be shifted in to the Instruction Register or Data Reg-
ister (scan chains). When the JTAG interface is enabled, this pin can not be used as an I/O pin.
e TDO, ADC6 — Port F, Bit 6

ADCS®, Analog to Digital Converter, Channel 6.

TDO, JTAG Test Data Out: Serial output data from Instruction Register or Data Register. When
the JTAG interface is enabled, this pin can not be used as an 1/O pin.

The TDO pin is tri-stated unless TAP states that shift out data are entered.

e TMS, ADC5 — Port F, Bit 5

ADCS5, Analog to Digital Converter, Channel 5.

TMS, JTAG Test Mode Select: This pin is used for navigating through the TAP-controller state
machine. When the JTAG interface is enabled, this pin can not be used as an I/O pin.

e TCK, ADC4 - Port F, Bit 4

ADC4, Analog to Digital Converter, Channel 4.

TCK, JTAG Test Clock: JTAG operation is synchronous to TCK. When the JTAG interface is

enabled, this pin can not be used as an I/O pin.

e ADC3 - ADCO - Port F, Bit 1..0
Analog to Digital Converter, Channel 1.0

ATMEL o

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 10-14. Overriding Signals for Alternate Functions in PF7..PF4

ﬁflmnzl PF7/ADC7/TDI PF6/ADC6/TDO PF5/ADC5/TMS PF4/ADC4/TCK
PUOE JTAGEN JTAGEN JTAGEN JTAGEN
PUQV 1 0 1 1

DDOE JTAGEN JTAGEN JTAGEN JTAGEN
owov o e o :
PVOE 0 JTAGEN 0 0

PVOV 0 TDO 0 0

DIEOE | JTAGEN JTAGEN JTAGEN JTAGEN
DIEQV | 0 0 0 0

DI - - - -

AlO TDI/ADC7 INPUT | ADC6 INPUT ;I—NNILSS_'?DCS ;I'l\?PKl/J'_ArDC4

Table 10-15. Overriding Signals for Alternate Functions in PF1..PFO
Signal Name PF1/ADC1 PFO0/ADCO
PUOE
PUOV
DDOE
DDOV
PVOE
PVOV
DIEOE
DIEQV
DI - -

AlIO ADC1 INPUT ADCO INPUT

o)l ojlojojlo|lo|o|o
O|lo/loo|jo|o|o | o

10.4 Register Description for I/0-Ports

10.4.1 Port B Data Register — PORTB

Bit 7 6 5 4 3 2 1 0
PORTB PORTB PORTB PORTB PORTB PORTB PORTB PORTB PORTB
7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

ATMEL o

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

10.4.2 Port B Data Direction Register - DDRB

Bit 7 6 5 4 3 2 1 0

| poB7 | DDB6 | DDB5 DDB4 DDB3 DDB2 DDB1 DDB0O | DDRB
Read/Write ~ R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

10.4.3 Port B Input Pins Address — PINB

Bit 7 6 5 4 3 2 1 0

I PINB7 | PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO I PINB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

10.4.4 Port C Data Register — PORTC

Bit 7 6 5 4 3 2 1 0
PORTC PORTC - - - - - - PORTC
7 6

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

10.4.5 Port C Data Direction Register - DDRC

Bit 7 6 5 4 3 2 1 0

jooc7 | pbbce | - - - - - -] poRc
Read/Write ~ R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

10.4.6 Port C Input Pins Address — PINC

Bit 7 6 5 4 3 2 1 0

| piNnc7 | PINCS - - - - - -] Pinc
Read/Write ~ R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value ~ N/A N/A N/A N/A N/A N/A N/A N/A

10.4.7 Port D Data Register - PORTD

Bit 7 6 5 4 3 2 1 0
PORTD PORTD PORTD PORTD | PORTD PORTD PORTD PORTD | PORTD
7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

10.4.8 Port D Data Direction Register — DDRD

Bit 7 6 5 4 3 2 1 0

| poo7 | bpbbe | DDD5 DDD4 DDD3 DDD2 DDD1 DDDO | DDRD
Read/Write ~ R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

10.4.9 Port D Input Pins Address — PIND

Bit 7 6 5 4 3 2 1 0

I PIND7 | PIND6 PIND5S PIND4 PIND3 PIND2 PIND1 PINDO I PIND
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

ATMEL .

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

10.4.10

10.4.11

10.4.12

10.4.13

10.4.14

10.4.15

7766F-AVR-11/10

Port E Data Register - PORTE

Bit 7 6 5 4 3 2 1 0
- PORTE | - - - PORTE | - - PORTE
6 2
Read/Write ~ R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Port E Data Direction Register - DDRE
Bit 7 6 5 4 3 2 1 0
|- | DDE6 | - - - DDE2 - -] pore
Read/Write ~ R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Port E Input Pins Address — PINE
Bit 7 6 5 4 3 2 1 0
|- | PINE6 - - - PINE2 - -] PINE
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value ~ N/A N/A N/A N/A N/A N/A N/A N/A
Port F Data Register - PORTF
Bit 7 6 5 4 3 2 1 0
PORTF | PORTF | PORTF | PORTF | - - PORTF | PORTF | PORTF
7 6 5 4 1 0
Read/Write ~ R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Port F Data Direction Register — DDRF
Bit 7 6 5 4 3 2 1 0
| boF7 | DDF6 | DDF5 DDF4 - - DDF1 DDF0 | DDRF
Read/Write ~ R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Port F Input Pins Address — PINF
Bit 7 6 5 4 3 2 1 0
| PINF7 | PINF6 PINF5 PINF4 - - PINF1 PINFO | PINF
Read/Write ~ R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

ATMEL

84

EEEes————————————————————— A TMmega16/32U4

11. External Interrupts

The External Interrupts are triggered by the INT6, INT3:0 pin or any of the PCINT7..0 pins.
Observe that, if enabled, the interrupts will trigger even if the INT[6;3:0] or PCINT7..0 pins are
configured as outputs. This feature provides a way of generating a software interrupt.

The Pin change interrupt PCIO will trigger if any enabled PCINT7:0 pin toggles. PCMSKO Regis-
ter control which pins contribute to the pin change interrupts. Pin change interrupts on PCINT7
..0 are detected asynchronously. This implies that these interrupts can be used for waking the
part also from sleep modes other than Idle mode.

The External Interrupts can be triggered by a falling or rising edge or a low level. This is set up
as indicated in the specification for the External Interrupt Control Registers — EICRA (INT3:0)
and EICRB (INT6). When the external interrupt is enabled and is configured as level triggered,
the interrupt will trigger as long as the pin is held low. Note that recognition of falling or rising
edge interrupts on INT6 requires the presence of an /O clock, described in “System Clock and
Clock Options” on page 27. Low level interrupts and the edge interrupt on INT3:0 are detected
asynchronously. This implies that these interrupts can be used for waking the part also from
sleep modes other than Idle mode. The I/O clock is halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down, the required level
must be held long enough for the MCU to complete the wake-up to trigger the level interrupt. If
the level disappears before the end of the Start-up Time, the MCU will still wake up, but no inter-
rupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses as described
in “System Clock and Clock Options” on page 27.

11.0.1 External Interrupt Control Register A — EICRA
The External Interrupt Control Register A contains control bits for interrupt sense control.

Bit 7 6 5 4 3 2 1 0

Jiscat [1sc3o [1Isc21 |IsC20 | ISCi1 [ISC10 | ISCo1 | ISC00 | EICRA
Read/Write R/W RIW RIW RIW RIW RIW RW RIW
Initial Value 0 0 0 0 0 0 0 0

e Bits 7..0 - ISC31, ISC30 - ISC00, ISC00: External Interrupt 3 - 0 Sense Control Bits

The External Interrupts 3 - 0 are activated by the external pins INT3:0 if the SREG I-flag and the
corresponding interrupt mask in the EIMSK is set. The level and edges on the external pins that
activate the interrupts are defined in Table 11-1. Edges on INT3..INTO are registered asynchro-
nously. Pulses on INT3:0 pins wider than the minimum pulse width given in Table 11-2 will
generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level
interrupt is selected, the low level must be held until the completion of the currently executing
instruction to generate an interrupt. If enabled, a level triggered interrupt will generate an inter-
rupt request as long as the pin is held low. When changing the ISCn bit, an interrupt can occur.
Therefore, it is recommended to first disable INTn by clearing its Interrupt Enable bit in the
EIMSK Register. Then, the ISCn bit can be changed. Finally, the INTn interrupt flag should be
cleared by writing a logical one to its Interrupt Flag bit (INTFn) in the EIFR Register before the
interrupt is re-enabled.

ATMEL L

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 11-1. Interrupt Sense Control"
ISCn1 | ISCn0 | Description
0 0 The low level of INTn generates an interrupt request.
0 1 Any edge of INTn generates asynchronously an interrupt request.
1 0 The falling edge of INTn generates asynchronously an interrupt request.
1 1 The rising edge of INTn generates asynchronously an interrupt request.

Note: 1. n=3,2,10or0.
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its Interrupt
Enable bit in the EIMSK Register. Otherwise an interrupt can occur when the bits are changed.

Table 11-2. Asynchronous External Interrupt Characteristics

Symbol | Parameter Condition | Min | Typ | Max | Units
Minimum pulse width for
tNT . 50 ns
asynchronous external interrupt
11.0.2 External Interrupt Control Register B — EICRB
Bit 7 6 5 4 3 2 1 0
I- | - | Isc61 | IsC60 | - - - - | EIcRB
Read/Write R/W RW RW RW RIW RW R/W RW
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7..6 — Res: Reserved Bits
These bits are reserved bits in the ATmega16U4/ATmega32U4 and always read as zero.

e Bits 5,4 - ISC61, ISC60: External Interrupt 6 Sense Control Bits

The External Interrupt 6 is activated by the external pin INT6 if the SREG I-flag and the corre-
sponding interrupt mask in the EIMSK is set. The level and edges on the external pin that
activate the interrupt are defined in Table 11-3. The value on the INT6 pin are sampled before
detecting edges. If edge or toggle interrupt is selected, pulses that last longer than one clock
period will generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt.
Observe that CPU clock frequency can be lower than the XTAL frequency if the XTAL divider is
enabled. If low level interrupt is selected, the low level must be held until the completion of the
currently executing instruction to generate an interrupt. If enabled, a level triggered interrupt will
generate an interrupt request as long as the pin is held low.

Table 11-3. Interrupt Sense Control"
ISC61 | ISC60 | Description

0 0 The low level of INT6 generates an interrupt request.
0 1 Any logical change on INT6 generates an interrupt request
1 0 The falling edge between two samples of INT6 generates an interrupt

request.

The rising edge between two samples of INT6 generates an interrupt
request.

Note: 1. When changing the ISC61/ISC60 bits, the interrupt must be disabled by clearing its Interrupt
Enable bit in the EIMSK Register. Otherwise an interrupt can occur when the bits are changed.

ATMEL s

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

¢ Bit 3..0 — Res: Reserved Bits
These bits are reserved bits in the ATmega16U4/ATmega32U4 and always read as zero.

11.0.3 External Interrupt Mask Register — EIMSK

Bit 7 6 5 4 3 2 1 0

l- | INTE | - - INT3 INT2 INT1 IINTO | EIMSK
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bits 7..0 — INT6, INT3 — INTO: External Interrupt Request 6, 3 - 0 Enable

When an INT[6;3:0] bit is written to one and the I-bit in the Status Register (SREG) is set (one),
the corresponding external pin interrupt is enabled. The Interrupt Sense Control bits in the Exter-
nal Interrupt Control Registers — EICRA and EICRB — defines whether the external interrupt is
activated on rising or falling edge or level sensed. Activity on any of these pins will trigger an
interrupt request even if the pin is enabled as an output. This provides a way of generating a
software interrupt.

11.04 External Interrupt Flag Register — EIFR

Bit 7 6 5 4 3 2 1 0

I- | INTF6 | - - INTF3 INTF2 INTF1 IINTFO | EIFR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7..0 - INTF6, INTF3 - INTFO: External Interrupt Flags 6, 3 - 0

When an edge or logic change on the INT[6;3:0] pin triggers an interrupt request, INTF7:0
becomes set (one). If the I-bit in SREG and the corresponding interrupt enable bit, INT[6;3:0] in
EIMSK, are set (one), the MCU will jump to the interrupt vector. The flag is cleared when the
interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.
These flags are always cleared when INT[6;3:0] are configured as level interrupt. Note that when
entering sleep mode with the INT3:0 interrupts disabled, the input buffers on these pins will be
disabled. This may cause a logic change in internal signals which will set the INTF3:0 flags. See
“Digital Input Enable and Sleep Modes” on page 69 for more information.

11.0.5 Pin Change Interrupt Control Register - PCICR

Bit 7 6 5 4 3 2 1 0

| | | - | - - - - PCIE0 | PCICR
Read/Write R R R R R R R R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 0 — PCIEO: Pin Change Interrupt Enable 0

When the PCIEOQ bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt O is enabled. Any change on any enabled PCINT?7..0 pin will cause an interrupt.
The corresponding interrupt of Pin Change Interrupt Request is executed from the PCIO Interrupt
Vector. PCINT7..0 pins are enabled individually by the PCMSKO Register.

11.0.6 Pin Change Interrupt Flag Register — PCIFR

Bit 7 6 5 4 3 2 1 0

| | = = - - - PCIF0O | PCIFR
Read/Write R R R R R R R R/W
Initial Value 0 0 0 0 0 0 0 0

ATMEL o

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

e Bit 0 — PCIFO: Pin Change Interrupt Flag 0

When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIFO becomes set
(one). If the I-bit in SREG and the PCIEOQ bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

11.0.7 Pin Change Mask Register 0 — PCMSKO0

Bit 7 6 5 4 3 2 1 0

| PCINT7 | PCINTE | PCINT5 | PCINT4 | PCINT3 | PCINT2 | PCINT1 | PCINTO | PCMSKO
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7..0 - PCINT7..0: Pin Change Enable Mask 7..0

Each PCINT7..0 bit selects whether pin change interrupt is enabled on the corresponding 1/0
pin. If PCINT7..0 is set and the PCIEO bit in PCICR is set, pin change interrupt is enabled on the
corresponding I/O pin. If PCINT?7..0 is cleared, pin change interrupt on the corresponding 1/O pin
is disabled.

ATMEL s

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

12. Timer/Counter0, Timer/Counter1, and Timer/Counter3 Prescalers

Timer/Counter0, 1, and 3 share the same prescaler module, but the Timer/Counters can have
different prescaler settings. The description below applies to all Timer/Counters. Tn is used as a
general name, n=0, 1 or 3.

12.1 Internal Clock Source

The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This
provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system
clock frequency (fg « 1,0)- Alternatively, one of four taps from the prescaler can be used as a
clock source. The prescaled clock has a frequency of either fg « ,0/8, foik 110/64, foLk 110/256, or
foLk 110/1024.

12.2 Prescaler Reset

The prescaler is free running, i.e., operates independently of the Clock Select logic of the
Timer/Counter, and it is shared by the Timer/Counter Tn. Since the prescaler is not affected by
the Timer/Counter’s clock select, the state of the prescaler will have implications for situations
where a prescaled clock is used. One example of prescaling artifacts occurs when the timer is
enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number of system clock cycles from
when the timer is enabled to the first count occurs can be from 1 to N+1 system clock cycles,
where N equals the prescaler divisor (8, 64, 256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execu-
tion. However, care must be taken if the other Timer/Counter that shares the same prescaler
also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is
connected to.

12.3 External Clock Source

7766F-AVR-11/10

An external clock source applied to the Tn pin can be used as Timer/Counter clock (clk,). The
Tn pin is sampled once every system clock cycle by the pin synchronization logic. The synchro-
nized (sampled) signal is then passed through the edge detector. Figure 12-1 shows a functional
equivalent block diagram of the Tn synchronization and edge detector logic. The registers are
clocked at the positive edge of the internal system clock (clk,g). The latch is transparent in the
high period of the internal system clock.

The edge detector generates one clky, pulse for each positive (CSn2:0 = 7) or negative (CSn2:0
= 6) edge it detects.

Figure 12-1. Tn/TO Pin Sampling

N .
Tn D Q D Q D Q | (T':;é}g"cf(
Select Logic)
— |
clk

e}
Synchronization Edge Detector

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles
from an edge has been applied to the Tn pin to the counter is updated.

Enabling and disabling of the clock input must be done when Tn has been stable for at least one
system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.

ATMEL L

EEEes————————————————————— A TMmega16/32U4

Each half period of the external clock applied must be longer than one system clock cycle to
ensure correct sampling. The external clock must be guaranteed to have less than half the sys-
tem clock frequency (fe,ici < fok 110/2) given a 50/50% duty cycle. Since the edge detector uses
sampling, the maximum frequency of an external clock it can detect is half the sampling fre-
quency (Nyquist sampling theorem). However, due to variation of the system clock frequency
and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is
recommended that maximum frequency of an external clock source is less than f, |,0/2.5.

An external clock source can not be prescaled.

Figure 12-2. Prescaler for synchronous Timer/Counters

ClkI/O 10-BIT T/C PRESCALER
Clear
A % 3 ﬁ é
&) N4 > =
© fa) 2
PSR10 o
Tn 5TTTTTTTTTTTTTTR 14
1 Synchronization ‘—\

.
°
.
Tn PTTTTTTTTTTTTTT L e
1 Synchronization | | 0

l€— o

Y V VY VVVY Y V V V V VY

CSno ;\ CSno
CSn1 ;A CSn1
CSn2 r\ CSn2

TIMER/COUNTERn CLOCK SOURCE eoo TIMER/COUNTERn CLOCK SOURCE
clk clk
™n n

Note: T3 input is not available on the ATmega16U4/ATmega32U4 products. “Tn” only refers to
either TO or T1 inputs.

12.4 General Timer/Counter Control Register - GTCCR

Bit 7 6 5 4 3 2 1 0

| Tsm | - | - | - = = PSRASY PSRSYNC | GTCCR
Read/Write R/W R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — TSM: Timer/Counter Synchronization Mode

Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the
value that is written to the PSRASY and PSRSYNC bits is kept, hence keeping the correspond-
ing prescaler reset signals asserted. This ensures that the corresponding Timer/Counters are
halted and can be configured to the same value without the risk of one of them advancing during
configuration. When the TSM bit is written to zero, the PSRASY and PSRSYNC bits are cleared
by hardware, and the Timer/Counters start counting simultaneously.

e Bit 0 — PSRSYNC: Prescaler Reset for Synchronous Timer/Counters

When this bit is one, Timer/Counter0 and Timer/Counter1 and Timer/Counter3 prescaler will be
Reset. This bit is normally cleared immediately by hardware, except if the TSM bit is set. Note
that Timer/Counter0, Timer/Counter1 and Timer/Counter3 share the same prescaler and a reset
of this prescaler will affect all timers.

ATMEL s

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

13. 8-bit Timer/Counter0 with PWM

13.1

13.1.1

Overview

Registers

7766F-AVR-11/10

Timer/Counter0 is a general purpose 8-bit Timer/Counter module, with two independent Output
Compare Units, and with PWM support. It allows accurate program execution timing (event man-
agement) and wave generation. The main features are:

* Two Independent Output Compare Units

¢ Double Buffered Output Compare Registers

¢ Clear Timer on Compare Match (Auto Reload)

¢ Glitch Free, Phase Correct Pulse Width Modulator (PWM)

¢ Variable PWM Period

* Frequency Generator

* Three Independent Interrupt Sources (TOV0, OCFOA, and OCFO0B)

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 13-1. For the actual
placement of I/O pins, refer to “Pinout ATmega16U4/ATmega32U4” on page 3. CPU accessible
I/0 Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/0 Register
and bit locations are listed in the “8-bit Timer/Counter Register Description” on page 102.

Figure 13-1. 8-bit Timer/Counter Block Diagram
Count TOVn
—
Clear (Int.Req.)
Direction Gontrol Logle clkr, Clock Select
Edge
TOP | BOTTOM
' ¥ A (From Prescaler)
A Timer/Counter 3
4—.-' TCNTn
= =0
*) f ocna
+ (Int.Req.)
\i |
— 1] o | Waveform oCnA
— I Generation
> ocema fq----
Fixed
TOP rﬁg'ﬁiq)
[} # Value i
2 Waveform
Q = | Generation 0OcCnB
<
<<
&
[TCCRnA | TCCRnB
' '
< / / >
\ D o

The Timer/Counter (TCNTO) and Output Compare Registers (OCROA and OCROB) are 8-bit
registers. Interrupt request (abbreviated to Int.Req. in the figure) signals are all visible in the
Timer Interrupt Flag Register (TIFRO). All interrupts are individually masked with the Timer Inter-
rupt Mask Register (TIMSKO). TIFRO and TIMSKO are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the TO pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkg).

ATMEL o

EEEes————————————————————— A TMmega16/32U4

13.1.2 Definitions

The double buffered Output Compare Registers (OCROA and OCROB) are compared with the
Timer/Counter value at all times. The result of the compare can be used by the Waveform Gen-
erator to generate a PWM or variable frequency output on the Output Compare pins (OCOA and
OCO0B). See “Output Compare Unit” on page 93. for details. The Compare Match event will also
set the Compare Flag (OCFOA or OCFO0B) which can be used to generate an Output Compare
interrupt request.

Many register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 0. A lower case “x” replaces the Output Com-
pare Unit, in this case Compare Unit A or Compare Unit B. However, when using the register or
bit defines in a program, the precise form must be used, i.e., TCNTO for accessing
Timer/Counter0 counter value and so on.

The definitions in the table below are also used extensively throughout the document.
Table 13-1.
BOTTOM | The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes OxFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest
value in the count sequence. The TOP value can be assigned to be the
fixed value OxFF (MAX) or the value stored in the OCROA Register. The
assignment is dependent on the mode of operation.

13.2 Timer/Counter Clock Sources

13.3 Counter Unit

7766F-AVR-11/10

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS02:0) bits
located in the Timer/Counter Control Register (TCCROB). For details on clock sources and pres-
caler, see “Timer/Counter0, Timer/Counter1, and Timer/Counter3 Prescalers” on page 89.

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
13-2 shows a block diagram of the counter and its surroundings.

Figure 13-2. Counter Unit Block Diagram

TOVn

DATA BUS (Int.Req.)

- >
Clock Select

_ count Edge
-t Tn
clk Detector
clear h n
TCNTn l«—————{ Control Logic [«——{
direction
-

(From Prescaler)
bottom T Ttop

Signal description (internal signals):
count Increment or decrement TCNTO by 1.

direction Select between increment and decrement.

ATMEL o

EEEes————————————————————— A TMmega16/32U4

clear Clear TCNTO (set all bits to zero).

clky, Timer/Counter clock, referred to as clky, in the following.
top Signalize that TCNTO has reached maximum value.
bottom Signalize that TCNTO has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkyg). clkyg can be generated from an external or internal clock source,
selected by the Clock Select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the
timer is stopped. However, the TCNTO value can be accessed by the CPU, regardless of
whether clky is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGMO01 and WGMOO bits located in
the Timer/Counter Control Register (TCCROA) and the WGMO2 bit located in the Timer/Counter
Control Register B (TCCROB). There are close connections between how the counter behaves
(counts) and how waveforms are generated on the Output Compare outputs OCOA and OCOB.
For more details about advanced counting sequences and waveform generation, see “Modes of
Operation” on page 96.

The Timer/Counter Overflow Flag (TOVO) is set according to the mode of operation selected by
the WGMO02:0 bits. TOVO can be used for generating a CPU interrupt.

13.4 Output Compare Unit

7766F-AVR-11/10

The 8-bit comparator continuously compares TCNTO with the Output Compare Registers
(OCROA and OCROB). Whenever TCNTO equals OCROA or OCROB, the comparator signals a
match. A match will set the Output Compare Flag (OCFOA or OCFOB) at the next timer clock
cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output
Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is exe-
cuted. Alternatively, the flag can be cleared by software by writing a logical one to its I/O bit
location. The Waveform Generator uses the match signal to generate an output according to
operating mode set by the WGMO02:0 bits and Compare Output mode (COMOx1:0) bits. The max
and bottom signals are used by the Waveform Generator for handling the special cases of the
extreme values in some modes of operation (“Modes of Operation” on page 96).

Figure 13-3 shows a block diagram of the Output Compare unit.

ATMEL .

EEEes————————————————————— A TMmega16/32U4

Figure 13-3. Output Compare Unit, Block Diagram
DATA BUS

OCRnx TCNTn

iy iy

| = (8-bit Comparator) |

OCFnx (Int.Req.)

tp

bottom 4, Waveform Generator OCnx

1]

WGMn1:0 COMnX1:0

FOCn >

The OCROx Registers are double buffered when using any of the Pulse Width Modulation
(PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the dou-
ble buffering is disabled. The double buffering synchronizes the update of the OCROx Compare
Registers to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCROx Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCROx Buffer Register, and if double buffering is dis-
abled the CPU will access the OCROx directly.

13.4.1 Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOCOXx) bit. Forcing Compare Match will not set the
OCFOx Flag or reload/clear the timer, but the OCOx pin will be updated as if a real Compare
Match had occurred (the COMOx1:0 bits settings define whether the OCOx pin is set, cleared or
toggled).

13.4.2 Compare Match Blocking by TCNTO Write
All CPU write operations to the TCNTO Register will block any Compare Match that occur in the
next timer clock cycle, even when the timer is stopped. This feature allows OCROx to be initial-
ized to the same value as TCNTO without triggering an interrupt when the Timer/Counter clock is
enabled.

13.4.3 Using the Output Compare Unit
Since writing TCNTO in any mode of operation will block all Compare Matches for one timer
clock cycle, there are risks involved when changing TCNTO when using the Output Compare
Unit, independently of whether the Timer/Counter is running or not. If the value written to TCNTO
equals the OCROx value, the Compare Match will be missed, resulting in incorrect waveform

ATMEL o

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

generation. Similarly, do not write the TCNTO value equal to BOTTOM when the counter is
down-counting.

The setup of the OCOx should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OCOx value is to use the Force Output Com-
pare (FOCOx) strobe bits in Normal mode. The OCOx Registers keep their values even when
changing between Waveform Generation modes.

Be aware that the COMOx1:0 bits are not double buffered together with the compare value.
Changing the COMO0x1:0 bits will take effect immediately.

13.5 Compare Match Output Unit

The Compare Output mode (COMOx1:0) bits have two functions. The Waveform Generator uses
the COMOx1:0 bits for defining the Output Compare (OCOx) state at the next Compare Match.
Also, the COMOx1:0 bits control the OCOx pin output source. Figure 13-4 shows a simplified
schematic of the logic affected by the COMOx1:0 bit setting. The 1/0 Registers, 1/O bits, and 1/0
pins in the figure are shown in bold. Only the parts of the general 1/0 Port Control Registers
(DDR and PORT) that are affected by the COMO0x1:0 bits are shown. When referring to the
OCoO0x state, the reference is for the internal OCOx Register, not the OCOx pin. If a system reset
occur, the OCOx Register is reset to “0”.

Figure 13-4. Compare Match Output Unit, Schematic

—

COMnx1
COMnx0 Waveform
D Q
FOCn Generator
[OCnx|
OCnx Pin
A
»D Q
‘3 L
m PORT
<
ke
o »D Q
\ J DDR
clkyq

The general 1/O port function is overridden by the Output Compare (OCOx) from the Waveform
Generator if either of the COMOx1:0 bits are set. However, the OCOx pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OCOx pin (DDR_OCO0x) must be set as output before the OCOx value is visi-
ble on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OCOx state before the out-
put is enabled. Note that some COMOx1:0 bit settings are reserved for certain modes of
operation. See “8-bit Timer/Counter Register Description” on page 102.

ATMEL s

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

13.5.1

Compare Output Mode and Waveform Generation

The Waveform Generator uses the COMOXx1:0 bits differently in Normal, CTC, and PWM modes.
For all modes, setting the COMOx1:0 = 0 tells the Waveform Generator that no action on the
OCO0x Register is to be performed on the next Compare Match. For compare output actions in
the non-PWM modes refer to Table 13-2 on page 102. For fast PWM mode, refer to Table 13-3
on page 102, and for phase correct PWM refer to Table 13-4 on page 103.

A change of the COMOx1:0 bits state will have effect at the first Compare Match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOCOx strobe bits.

13.6 Modes of Operation

13.6.1

13.6.2

Normal Mode

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGMO02:0) and Compare Output
mode (COMOx1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COMOx1:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COMOx1:0 bits control whether the output should be set, cleared, or toggled at a Compare
Match (See “Compare Match Output Unit” on page 95.).

For detailed timing information see “Timer/Counter Timing Diagrams” on page 100.

The simplest mode of operation is the Normal mode (WGMO02:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOVO) will be set in the same
timer clock cycle as the TCNTO becomes zero. The TOVO Flag in this case behaves like a ninth
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOVO Flag, the timer resolution can be increased by software.
There are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare Unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

Clear Timer on Compare Match (CTC) Mode

7766F-AVR-11/10

In Clear Timer on Compare or CTC mode (WGMO02:0 = 2), the OCROA Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter
value (TCNTO) matches the OCROA. The OCROA defines the top value for the counter, hence
also its resolution. This mode allows greater control of the Compare Match output frequency. It
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 13-5. The counter value (TCNTO)
increases until a Compare Match occurs between TCNTO and OCROA, and then counter
(TCNTO) is cleared.

ATMEL L

ATmega16/32U4

Figure 13-5. CTC Mode, Timing Diagram

OCnx Interrupt Flag Set

Y

o V1V N

OCn —
(Toggle) 1 L

(COMnx1:0=1)

Period I 1 I 2 I 3 I 4 I

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCFOA Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing TOP to a value close to BOTTOM when the counter is run-
ning with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCROA is lower than the current
value of TCNTO, the counter will miss the Compare Match. The counter will then have to count to
its maximum value (OxFF) and wrap around starting at 0x00 before the Compare Match can
occur.

For generating a waveform output in CTC mode, the OCOA output can be set to toggle its logical
level on each Compare Match by setting the Compare Output mode bits to toggle mode
(COMOA1:0 = 1). The OCOA value will not be visible on the port pin unless the data direction for
the pin is set to output. The waveform generated will have a maximum frequency of fog, =
fak vo/2 when OCROA is set to zero (0x00). The waveform frequency is defined by the following
equation:

(o foi_1o
OCnx ™ 2N - (1 + OCRnX)

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVO Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

13.6.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMO02:0 = 3 or 7) provides a high fre-
quency PWM waveform generation option. The fast PWM differs from the other PWM option by
its single-slope operation. The counter counts from BOTTOM to TOP then restarts from BOT-
TOM. TOP is defined as OxFF when WGM2:0 = 3, and OCROA when WGM2:0 = 7. In non-
inverting Compare Output mode, the Output Compare (OCOx) is cleared on the Compare Match
between TCNTO and OCROx, and set at BOTTOM. In inverting Compare Output mode, the out-
put is set on Compare Match and cleared at BOTTOM. Due to the single-slope operation, the
operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the TOP value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast

ATMEL o

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

PWM mode is shown in Figure 13-6. The TCNTO value is in the timing diagram shown as a his-
togram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNTO slopes represent Com-
pare Matches between OCROx and TCNTO.

Figure 13-6. Fast PWM Mode, Timing Diagram

OCRnx Interrupt Flag Set

OCRnx Update and
TOVn Interrupt Flag Set

y y y

w VIV

OCnx (COMnNx1:0 = 2)

OCnx |_|_|_|_|—| |_| (COMnNx1:0 = 3)
Period |<—1 —»I-—z —>|<—3_.|._4 >I 5 ;I 6 ;I 7_,|

The Timer/Counter Overflow Flag (TOVO) is set each time the counter reaches TOP. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

\:
AN
-

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OCOx pins.
Setting the COMOx1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COMOx1:0 to three: Setting the COMOA1:0 bits to one allows
the OCOA pin to toggle on Compare Matches if the WGMO2 bit is set. This option is not available
for the OCOB pin (See Table 13-3 on page 102). The actual OCOx value will only be visible on
the port pin if the data direction for the port pin is set as output. The PWM waveform is gener-
ated by setting (or clearing) the OCOx Register at the Compare Match between OCROx and
TCNTO, and clearing (or setting) the OCOx Register at the timer clock cycle the counter is
cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

¢ _ fex o
OCnxPWM N - 256

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

The extreme values for the OCROA Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCROA is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCROA equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COMO0A1:0
bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OCOx to toggle its logical level on each Compare Match (COMO0x1:0 = 1). The waveform
generated will have a maximum frequency of foco = fo ,0/2 when OCROA is set to zero. This

ATMEL L

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

feature is similar to the OCOA toggle in CTC mode, except the double buffer feature of the Out-
put Compare unit is enabled in the fast PWM mode.

13.6.4 Phase Correct PWM Mode
The phase correct PWM mode (WGMO02:0 = 1 or 5) provides a high resolution phase correct
PWM waveform generation option. The phase correct PWM mode is based on a dual-slope
operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to BOT-
TOM. TOP is defined as OxFF when WGM2:0 = 1, and OCROA when WGM2:0 = 5. In non-
inverting Compare Output mode, the Output Compare (OCOx) is cleared on the Compare Match
between TCNTO and OCROx while up counting, and set on the Compare Match while down-
counting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation
has lower maximum operation frequency than single slope operation. However, due to the sym-
metric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP.
When the counter reaches TOP, it changes the count direction. The TCNTO value will be equal
to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown
on Figure 13-7. The TCNTO value is in the timing diagram shown as a histogram for illustrating
the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The
small horizontal line marks on the TCNTO slopes represent Compare Matches between OCROx
and TCNTO.

Figure 13-7. Phase Correct PWM Mode, Timing Diagram

OCnx Interrupt Flag Set

OCRnx Update

TOVn Interrupt Flag Set

-t
¢
-t
¢
-t
¢

e/ IN NN

OCnx |_| |_ (COMNx1:0 = 2)
OCnx |—| |—| |— (COMNx1:0 = 3)
Period I 1 I 2 I 3 I

The Timer/Counter Overflow Flag (TOVO0) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OCO0x pins. Setting the COMO0x1:0 bits to two will produce a non-inverted PWM. An inverted
PWM output can be generated by setting the COMO0x1:0 to three: Setting the COMOAO bits to

ATMEL s

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

one allows the OCOA pin to toggle on Compare Matches if the WGMO2 bit is set. This option is
not available for the OCOB pin (See Table 13-4 on page 103). The actual OCOx value will only
be visible on the port pin if the data direction for the port pin is set as output. The PWM wave-
form is generated by clearing (or setting) the OCOx Register at the Compare Match between
OCROx and TCNTO when the counter increments, and setting (or clearing) the OCOx Register at
Compare Match between OCROx and TCNTO when the counter decrements. The PWM fre-
quency for the output when using phase correct PWM can be calculated by the following
equation:

fok 1o

focnxpcpwm = N. 6_310

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

The extreme values for the OCROA Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCROA is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 13-7 OCnx has a transition from high to low even though
there is no Compare Match. The point of this transition is to guarantee symmetry around BOT-
TOM. There are two cases that give a transition without Compare Match.

* OCROA changes its value from MAX, like in Figure 13-7. When the OCROA value is MAX the
OCn pin value is the same as the result of a down-counting Compare Match. To ensure
symmetry around BOTTOM the OCn value at MAX must correspond to the result of an up-
counting Compare Match.

* The timer starts counting from a value higher than the one in OCROA, and for that reason
misses the Compare Match and hence the OCn change that would have happened on the
way up.

13.7 Timer/Counter Timing Diagrams

7766F-AVR-11/10

The Timer/Counter is a synchronous design and the timer clock (clky) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set. Figure 13-8 contains timing data for basic Timer/Counter operation. The figure
shows the count sequence close to the MAX value in all modes other than phase correct PWM
mode.

Figure 13-8. Timer/Counter Timing Diagram, no Prescaling

. LT

clk,
(clk,o/1)

TCNTn X MAX -1 MAX BOTTOM X BOTTOM + 1

TOVn

Figure 13-9 shows the same timing data, but with the prescaler enabled.

AImEl@ 100

Figure 13-9. Timer/Counter Timing Diagram, with Prescaler (f, ,,0/8)

clk,q

clk,
(clk,o/8)

TCNTn

TOVn

-

-

uuuuIIuiuuuuu oy

-

LUTTUUUL
.

ATmega16/32U4

LUTUUUL

MAX -1

MAX

BOTTOM

BOTTOM + 1

Figure 13-10 shows the setting of OCFOB in all modes and OCFOA in all modes except CTC
mode and PWM mode, where OCROA is TOP.

Figure 13-10. Timer/Counter Timing Diagram, Setting of OCFOx, with Prescaler (f, ,0/8)

clk,o

clk,
(clk,/8)

TCNTn

OCRnx

OCFnx

-

UL

-

-

UUUUUUUL
.

LUUIDIL

OCRnx - 1

OCRnx

OCRnx + 1

OCRnx + 2

OCRnx

Value

Figure 13-11 shows the setting of OCFOA and the clearing of TCNTO in CTC mode and fast
PWM mode where OCROA is TOP.

Figure 13-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (fox_10/8)

clk,o

clk,,
(clk,/8)

TCNTn
(CTC)

OCRnx

OCFnx

7766F-AVR-11/10

Ii
.

UNBBEE]
:

UBNBEER
:

LUUuuuuL
.

LUUTUUL

TOP - 1

TOP

BOTTOM

BOTTOM + 1

TOP

ATMEL

101

EEEes————————————————————— A TMmega16/32U4

13.8 8-bit Timer/Counter Register Description

13.8.1 Timer/Counter Control Register A - TCCROA
Bit 7 6 5 4 3 2 1 0
COMOA COMOA COMoB CcOomMoB - - WGMO WGMO0
1 0 1 0 1 0
Read/Write R/W R/W R/W R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bits 7:6 — COMO01A:0: Compare Match Output A Mode

TCCROA

These bits control the Output Compare pin (OCOA) behavior. If one or both of the COMO0A1:0
bits are set, the OCOA output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OCOA pin
must be set in order to enable the output driver.

When OCOA is connected to the pin, the function of the COMOA1:0 bits depends on the
WGMO02:0 bit setting. Table 13-2 shows the COMOA1:0 bit functionality when the WGMO02:0 bits
are set to a normal or CTC mode (non-PWM).

Table 13-2. Compare Output Mode, non-PWM Mode
COMOA1 COMOAO | Description
0 0 Normal port operation, OCOA disconnected.
0 1 Toggle OCOA on Compare Match
1 0 Clear OCOA on Compare Match
1 1 Set OCOA on Compare Match

Table 13-3 shows the COMOA1:0 bit functionality when the WGMO01:0 bits are set to fast PWM

mode.
Table 13-3. Compare Output Mode, Fast PWM Mode("
COMOA1 COMOAO | Description
0 0 Normal port operation, OCOA disconnected.
0 1 WGMO2 = 0: Normal Port Operation, OCOA Disconnected.
WGMO02 = 1: Toggle OCOA on Compare Match.

1 0 Clear OCOA on Compare Match, set OCOA at TOP
1 1 Set OCOA on Compare Match, clear OCOA at TOP

Note: 1. A special case occurs when OCROA equals TOP and COMOAT1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See “Fast PWM Mode” on page 97

for more details.

7766F-AVR-11/10

ATMEL

102

EEEes————————————————————— A TMmega16/32U4

Table 13-4 shows the COMOAT1:0 bit functionality when the WGMO02:0 bits are set to phase cor-
rect PWM mode.

Table 13-4. Compare Output Mode, Phase Correct PWM Mode("
COMOA1 COMOAO | Description
0 0 Normal port operation, OCOA disconnected.
0 1 WGMO02 = 0: Normal Port Operation, OCOA Disconnected.
WGMO02 = 1: Toggle OCOA on Compare Match.
Clear OCOA on Compare Match when up-counting. Set OCOA on
1 0)
Compare Match when down-counting.
1 1 Set OCOA on Compare Match when up-counting. Clear OCOA on
Compare Match when down-counting.
Note: 1. A special case occurs when OCROA equals TOP and COMOAT1 is set. In this case, the Com-

pare Match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM Mode” on
page 99 for more details.

e Bits 5:4 — COM0B1:0: Compare Match Output B Mode

These bits control the Output Compare pin (OCOB) behavior. If one or both of the COMO0B1:0
bits are set, the OCOB output overrides the normal port functionality of the 1/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OCOB pin
must be set in order to enable the output driver.

When OCOB is connected to the pin, the function of the COMOB1:0 bits depends on the
WGMO02:0 bit setting. Table 13-2 shows the COMOA1:0 bit functionality when the WGMO02:0 bits
are set to a normal or CTC mode (non-PWM).

Table 13-5. Compare Output Mode, non-PWM Mode
COMo1 COMOo0 Description
0 0 Normal port operation, OCOB disconnected.
0 1 Toggle OCOB on Compare Match
1 0 Clear OCOB on Compare Match
1 1 Set OCOB on Compare Match

Table 13-3 shows the COMO0B1:0 bit functionality when the WGMO02:0 bits are set to fast PWM

7766F-AVR-11/10

mode.
Table 13-6. Compare Output Mode, Fast PWM Mode("
CcOomMo1 COMO00 Description
0 0 Normal port operation, OCOB disconnected.
0 1 Reserved
1 0 Clear OCOB on Compare Match, set OCOB at TOP
1 1 Set OCOB on Compare Match, clear OCOB at TOP
Note: 1. A special case occurs when OCROB equals TOP and COMOBH1 is set. In this case, the Com-

pare Match is ignored, but the set or clear is done at TOP. See “Fast PWM Mode” on page 97
for more details.

103

ATMEL

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

Table 13-4 shows the COMOB1:0 bit functionality when the WGMO02:0 bits are set to phase cor-
rect PWM mode.

Table 13-7. Compare Output Mode, Phase Correct PWM Mode("
COMOA1 COMOAO | Description
0 0 Normal port operation, OCOB disconnected.
0 1 Reserved
Clear OCOB on Compare Match when up-counting. Set OC0B on
1 0 .
Compare Match when down-counting.
1 1 Set OCOB on Compare Match when up-counting. Clear OCOB on
Compare Match when down-counting.
Note: 1. A special case occurs when OCROB equals TOP and COMOB1 is set. In this case, the Com-

pare Match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM Mode” on
page 99 for more details.

¢ Bits 3, 2 — Res: Reserved Bits
These bits are reserved bits in the ATmega16U4/ATmega32U4 and will always read as zero.

e Bits 1:0 — WGMO01:0: Waveform Generation Mode

Combined with the WGMO2 bit found in the TCCROB Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-
form generation to be used, see Table 13-8. Modes of operation supported by the Timer/Counter
unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode, and two types of
Pulse Width Modulation (PWM) modes (see “Modes of Operation” on page 96).

Table 13-8. Waveform Generation Mode Bit Description
Timer/Counter
Mode of Update of TOV Fla
Mode | WGM2 | WGM1 | WGMO | Operation TOP | OCRxat | SetonV®
0 0 0 0 Normal OxFF Immediate MAX
1 0 0 1 PWM, Phase OXFF TOP BOTTOM
Correct
2 0 1 0 CTC OCRA | Immediate MAX
3 0 1 1 Fast PWM OxFF TOP MAX
4 1 0 0 Reserved - - -
5 1 0 1 PWM, Phase OCRA TOP BOTTOM
Correct
6 1 1 0 Reserved - - -
7 1 1 1 Fast PWM OCRA TOP TOP
Notes: 1. MAX = OxFF

2. BOTTOM = 0x00

ATMEL

104

EEEes————————————————————— A TMmega16/32U4

13.8.2 Timer/Counter Control Register B - TCCROB

Bit 7 6 5 4 3 2 1 0
| Focoa | FocoB | - | - WGMo2 | cso2 | cso1 | csoo | TccroB

ReadWrite W W R R RIW RIW R/W RIW

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - FOCOA: Force Output Compare A
The FOCOA bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCROB is written when operating in PWM mode. When writing a logical one to the FOCOA bit,
an immediate Compare Match is forced on the Waveform Generation unit. The OCOA output is
changed according to its COMOA1:0 bits setting. Note that the FOCOA bit is implemented as a
strobe. Therefore it is the value present in the COMOA1:0 bits that determines the effect of the
forced compare.

A FOCOA strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCROA as TOP.

The FOCOA bit is always read as zero.

e Bit 6 — FOCO0B: Force Output Compare B
The FOCOB bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCROB is written when operating in PWM mode. When writing a logical one to the FOCOB bit,
an immediate Compare Match is forced on the Waveform Generation unit. The OCOB output is
changed according to its COMOB1:0 bits setting. Note that the FOCOB bit is implemented as a
strobe. Therefore it is the value present in the COMOB1:0 bits that determines the effect of the
forced compare.

A FOCOB strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCROB as TOP.

The FOCOB bit is always read as zero.

* Bits 5:4 — Res: Reserved Bits
These bits are reserved bits and will always read as zero.

¢ Bit 3 - WGMO02: Waveform Generation Mode
See the description in the “Timer/Counter Control Register A — TCCROA” on page 102.

* Bits 2:0 — CS02:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter.

Table 13-9. Clock Select Bit Description

CS02 | CS01 | CS00 | Description
0 0 0 No clock source (Timer/Counter stopped)
0 0 1 clk,,o/(No prescaling)
0 1 0 clk,,o/8 (From prescaler)
0 1 1 clky,o/64 (From prescaler)
| AImEl 105
I)

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 13-9. Clock Select Bit Description (Continued)

CS02 | CS01 | CS00 | Description
1 0 0 clk;,0/256 (From prescaler)
1 0 1 clkyo/1024 (From prescaler)
1 1 0 External clock source on TO pin. Clock on falling edge.
1 1 1 External clock source on TO pin. Clock on rising edge.

If external pin modes are used for the Timer/Counter0, transitions on the TO pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

13.8.3 Timer/Counter Register — TCNTO

Bit 7 6 5 4 3 2 1 0

| TonNTo[7:0]] TenTo
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNTO Register blocks (removes) the Compare
Match on the following timer clock. Modifying the counter (TCNTO) while the counter is running,
introduces a risk of missing a Compare Match between TCNTO and the OCROx Registers.

13.8.4 Output Compare Register A — OCROA

Bit 7 6 5 4 3 2 1 0

| OCROA[7:0] | ocroa
Read/Write ~ R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNTO). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OCOA pin.

13.8.5 Output Compare Register B— OCR0B

Bit 7 6 5 4 3 2 1 0
| OCROB[7:0] | ocroB

ReadWrite R/W RW RW RW RW RW R/W RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register B contains an 8-bit value that is continuously compared with the
counter value (TCNTO). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OCOB pin.

13.8.6 Timer/Counter Interrupt Mask Register — TIMSKO

Bit 7 6 5 4 3 2 1 0

|- | - | - | - - OCIEOB | OCIEOA | TOIEO | TIMSKO
Read/Write R R R R R R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7..3, 0 — Res: Reserved Bits
These bits are reserved bits and will always read as zero.

AImEl@ 106

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

¢ Bit 2 — OCIEOB: Timer/Counter Output Compare Match B Interrupt Enable

When the OCIEOB bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter Compare Match B interrupt is enabled. The corresponding interrupt is executed if
a Compare Match in Timer/Counter occurs, i.e., when the OCFOB bit is set in the Timer/Counter
Interrupt Flag Register — TIFRO.

e Bit 1 — OCIEOA: Timer/Counter0 Output Compare Match A Interrupt Enable

When the OCIEOA bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter0 Compare Match A interrupt is enabled. The corresponding interrupt is executed
if a Compare Match in Timer/CounterQ occurs, i.e., when the OCFOA bit is set in the
Timer/Counter O Interrupt Flag Register — TIFRO.

¢ Bit 0 — TOIEO: Timer/Counter0 Overflow Interrupt Enable

When the TOIEO bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter0 occurs, i.e., when the TOVO bit is set in the Timer/Counter 0 Inter-
rupt Flag Register — TIFRO.

13.8.7 Timer/Counter 0 Interrupt Flag Register — TIFRO

Bit 7 6 5 4 3 2 1 0

| - | - | - | - - OCF0B | OCFOA | Tovo | TIFRo
Read/MWrite R R R R R R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7..3, 0 — Res: Reserved Bits
These bits are reserved bits in the ATmega16U4/ATmega32U4 and will always read as zero.

e Bit 2 - OCFOB: Timer/Counter 0 Output Compare B Match Flag

The OCFOB bit is set when a Compare Match occurs between the Timer/Counter and the data in
OCROB - Output Compare Register0 B. OCFOB is cleared by hardware when executing the cor-
responding interrupt handling vector. Alternatively, OCFOB is cleared by writing a logic one to
the flag. When the I-bit in SREG, OCIEOB (Timer/Counter Compare B Match Interrupt Enable),
and OCFOB are set, the Timer/Counter Compare Match Interrupt is executed.

e Bit 1 — OCFOA: Timer/Counter 0 Output Compare A Match Flag

The OCFOA bit is set when a Compare Match occurs between the Timer/Counter0 and the data
in OCROA — Output Compare Register0. OCFOA is cleared by hardware when executing the cor-
responding interrupt handling vector. Alternatively, OCFOA is cleared by writing a logic one to
the flag. When the I-bit in SREG, OCIEOA (Timer/Counter0 Compare Match Interrupt Enable),
and OCFOA are set, the Timer/Counter0 Compare Match Interrupt is executed.

e Bit 0 — TOVO: Timer/Counter0 Overflow Flag

The bit TOVO is set when an overflow occurs in Timer/Counter0. TOVO is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, TOVO is cleared by
writing a logic one to the flag. When the SREG I-bit, TOIEO (Timer/Counter0 Overflow Interrupt
Enable), and TOVO are set, the Timer/Counter0 Overflow interrupt is executed.

The setting of this flag is dependent of the WGMO02:0 bit setting. Refer to Table 13-8, “Waveform
Generation Mode Bit Description” on page 104.

AImEl@ 107

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

14. 16-bit Timers/Counters (Timer/Counter1 and Timer/Counter3)

The 16-bit Timer/Counter unit allows accurate program execution timing (event management),
wave generation, and signal timing measurement. The main features are:

* True 16-bit Design (i.e., Allows 16-bit PWM)

* Three independent Output Compare Units

¢ Double Buffered Output Compare Registers

¢ One Input Capture Unit

¢ Input Capture Noise Canceler

* Clear Timer on Compare Match (Auto Reload)

¢ Glitch-free, Phase Correct Pulse Width Modulator (PWM)

* Variable PWM Period

* Frequency Generator

¢ External Event Counter

* Ten independent interrupt sources (TOV1, OCF1A, OCF1B, OCF1C, ICF1, TOV3, OCF3A, OCF3B,
OCF3C and ICF3)

14.1 Overview

Most register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, and a) lower case “x” replaces the Output Compare unit
channel. However, when using the register or bit defines in a program, the precise form must be
used, i.e., TCNT1 for accessing Timer/Counter1 counter value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 14-1. For the actual
placement of I/O pins, see “Pinout ATmega16U4/ATmega32U4” on page 3. CPU accessible 1/0
Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register
and bit locations are listed in the “16-bit Timers/Counters (Timer/Counter1 and Timer/Counter3)”
on page 108.

The Power Reduction Timer/Counter1 bit, PRTIM1, in “Power Reduction Register 0 - PRR0O” on
page 46 must be written to zero to enable Timer/Counter1 module.

The Power Reduction Timer/Counter3 bit, PRTIM3, in “Power Reduction Register 1 - PRR1” on
page 46 must be written to zero to enable Timer/Counter3 module.

AImEl@ 108

7766F-AVR-11/10

ATmega16/32U4

Figure 14-1. 16-bit Timer/Counter Block Diagram‘"

Count TOVn
Clear c L (Int.Req.)
ontrol Logic
Direction 9 TCLK Clock Select)
-t Tn

Edge
A Detector
TOP | BOTTOM
Yyvy 0 (From Prescaler)
Timer/Counter
| TCNTn =0 |
| ‘ ‘ = ‘ =0

‘ OCFnA
(Int.Req.)
-
n
L]
0{ OCRnA \ ﬁ

Waveform
Generation

A
A

OCnA

n
n [Fixed OCFnB
= TOP (Int.Req.)
. m | Values
- - o | Waveform » OCnB
n "| Generation o
n
[Vp] []
Sha| OCRnB | .
[aa] | [
li: = OCFnC
n
g - (Int.Req.)
— - o | Waveform > OCnC
- - "| Generation o
n
| OCRnC | .
: (From Analog
- Comparator Ouput)
- ICFn (Int.Req.)
' n
- - Edge) Noise
‘ ICfn . Detector [Canceler
- . ICPn
EEEEEEEEEEEEN
‘ TCCRnA | | TCCRnB | | TCCRnC

\j

Note: 1. Refer to “Pinout ATmega16U4/ATmega32U4” on page 3, Table 10-3 on page 72, and Table
10-6 on page 75 for Timer/Counter1 and 3 and 3 pin placement and description.

2. Tnonly refers to T1 since T3 input is not available on the ATmega16U4/ATmega32U4
product.

14141 Registers

The Timer/Counter (TCNTn), Output Compare Registers (OCRnA/B/C), and Input Capture Reg-
ister (ICRn) are all 16-bit registers. Special procedures must be followed when accessing the 16-
bit registers. These procedures are described in the section “Accessing 16-bit Registers” on
page 110. The Timer/Counter Control Registers (TCCRnA/B/C) are 8-bit registers and have no
CPU access restrictions. Interrupt requests (shorten as Int.Req.) signals are all visible in the
Timer Interrupt Flag Register (TIFRn). All interrupts are individually masked with the Timer Inter-
rupt Mask Register (TIMSKn). TIFRn and TIMSKn are not shown in the figure since these
registers are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the Tn pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the clock select logic is referred to as the timer clock (clky,).

AImEl@ 109

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

The double buffered Output Compare Registers (OCRnA/B/C) are compared with the
Timer/Counter value at all time. The result of the compare can be used by the Waveform Gener-
ator to generate a PWM or variable frequency output on the Output Compare pin (OCnA/B/C).
See “Output Compare Units” on page 117.. The compare match event will also set the Compare
Match Flag (OCFnA/B/C) which can be used to generate an Output Compare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external (edge trig-
gered) event on either the Input Capture pin (ICPn) or on the Analog Comparator pins (See
“Analog Comparator” on page 289.) The Input Capture unit includes a digital filtering unit (Noise
Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined
by either the OCRNA Register, the ICRn Register, or by a set of fixed values. When using
OCRnNA as TOP value in a PWM mode, the OCRnA Register can not be used for generating a
PWM output. However, the TOP value will in this case be double buffered allowing the TOP
value to be changed in run time. If a fixed TOP value is required, the ICRn Register can be used
as an alternative, freeing the OCRnA to be used as PWM output.

141.2 Definitions
The following definitions are used extensively throughout the document:
Table 14-1.

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65535).

The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be one of the fixed values:
0x00FF, 0xO01FF, or OxO3FF, or to the value stored in the OCRnA or ICRn
Register. The assignment is dependent of the mode of operation.

TOP

14.2 Accessing 16-bit Registers

The TCNTn, OCRnA/B/C, and ICRn are 16-bit registers that can be accessed by the AVR CPU
via the 8-bit data bus. The 16-bit register must be byte accessed using two read or write opera-
tions. Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-
bit access. The same Temporary Register is shared between all 16-bit registers within each 16-
bit timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of
a 16-bit register is written by the CPU, the high byte stored in the Temporary Register, and the
low byte written are both copied into the 16-bit register in the same clock cycle. When the low
byte of a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the
Temporary Register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the Temporary Register for the high byte. Reading the OCRnA/B/C
16-bit registers does not involve using the Temporary Register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low
byte must be read before the high byte.

The following code examples show how to access the 16-bit timer registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for accessing
the OCRNnA/B/C and ICRn Registers. Note that when using “C”, the compiler handles the 16-bit
access.

AImEl@ 110

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

Assembly Code Examples"

; Set TCNTn to O0xO1lFF
1dirl7,0x01

1di rl6, OxXFF

out TCNTnH, r17

out TCNTnL,rl6

; Read TCNTn into rl7:rlé6
in rl6, TCNTnL

in rl7,TCNTnH

C Code Examples'"

unsigned int i;

/* Set TCNTn to 0xOlFF */
TCNTn = O0x1FF;

/* Read TCNTn into i */

i = TCNTn;

Note:

1. See “Code Examples” on page 8.
The assembly code example returns the TCNTn value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 16-bit register, and the interrupt code
updates the temporary register by accessing the same or any other of the 16-bit Timer Regis-
ters, then the result of the access outside the interrupt will be corrupted. Therefore, when both
the main code and the interrupt code update the temporary register, the main code must disable
the interrupts during the 16-bit access.

The following code examples show how to do an atomic read of the TCNTn Register contents.

Reading any of the OCRNnA/B/C or ICRn Registers can be done by using the same principle.

ATMEL

111

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

Assembly Code Example("

TIM16_ReadTCNTn:
; Save global interrupt flag
in r18, SREG
; Disable interrupts
cli
; Read TCNTn into rl7:rlé6
in rlé6, TCNTnL
in rl17,TCNTnH
; Restore global interrupt flag
out SREG, rlS8

ret

C Code Example"

unsigned int TIM16_ReadTCNTn(void)
{
unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_ disable_interrupt () ;
/* Read TCNTn into i */
i = TCNTn;
/* Restore global interrupt flag */
SREG = sreg;

return 1i;

Note: 1. See “Code Examples” on page 8.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

ATMEL

112

EEEes————————————————————— A TMmega16/32U4

The following code examples show how to do an atomic write of the TCNTn Register contents.
Writing any of the OCRnA/B/C or ICRn Registers can be done by using the same principle.

Assembly Code Example("

TIM16_WriteTCNTn:
; Save global interrupt flag

in r18, SREG

; Disable interrupts

cli

; Set TCNTn to rl7:rlé6

out TCNTnH, r17

out TCNTnL, rl6

; Restore global interrupt flag

out SREG, rl8

ret

C Code Example("

void TIM16_WriteTCNTn(unsigned int i)
{
unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_ disable_interrupt() ;
/* Set TCNTn to i */
TCNTn = 1i;
/* Restore global interrupt flag */
SREG = sreg;

Note: 1. See “Code Examples” on page 8.
The assembly code example requires that the r17:r16 register pair contains the value to be writ-
ten to TCNTn.

14.2.1 Reusing the Temporary High Byte Register
If writing to more than one 16-bit register where the high byte is the same for all registers written,
then the high byte only needs to be written once. However, note that the same rule of atomic

operation described previously also applies in this case.

14.3 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CSn2:0) bits
located in the Timer/Counter control Register B (TCCRnB). For details on clock sources and
prescaler, see “Timer/CounterQ, Timer/Counter1, and Timer/Counter3 Prescalers” on page 89.

AImEl@ 113

7766F-AVR-11/10

ATmega16/32U4

14.4 Counter Unit

The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.
Figure 14-2 shows a block diagram of the counter and its surroundings.

Figure 14-2. Counter Unit Block Diagram

- DATA BUS (s-bit) > N
n
(Int.Req.)
Clock Select
Count Edge P ™
[TCNTnH(8bit) | TCNTNL (8-bit) Clear | ok, Detector
R — Control Logic [
TCNTn (16-bit Counter) - Direction
(From Prescaler)
TTOP TBOTTOM
Signal description (internal signals):
Count Increment or decrement TCNTn by 1.
Direction Select between increment and decrement.
Clear Clear TCNTn (set all bits to zero).
clky, Timer/Counter clock.
TOP Signalize that TCNTn has reached maximum value.
BOTTOM Signalize that TCNTn has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNTnH) con-
taining the upper eight bits of the counter, and Counter Low (TCNTnL) containing the lower eight
bits. The TCNTnH Register can only be indirectly accessed by the CPU. When the CPU does an
access to the TCNTnH I/O location, the CPU accesses the high byte temporary register (TEMP).
The temporary register is updated with the TCNTnH value when the TCNTnL is read, and
TCNTnNH is updated with the temporary register value when TCNTnL is written. This allows the
CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus.
It is important to notice that there are special cases of writing to the TCNTn Register when the
counter is counting that will give unpredictable results. The special cases are described in the
sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clky,). The clky, can be generated from an external or internal clock source,
selected by the Clock Select bits (CSn2:0). When no clock source is selected (CSn2:0 = 0) the
timer is stopped. However, the TCNTn value can be accessed by the CPU, independent of
whether clky,, is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits
(WGMn3:0) located in the Timer/Counter Control Registers A and B (TCCRnA and TCCRnB).
There are close connections between how the counter behaves (counts) and how waveforms
are generated on the Output Compare outputs OCnx. For more details about advanced counting
sequences and waveform generation, see “Modes of Operation” on page 120.

AImEl@ 114

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

The Timer/Counter Overflow Flag (TOVn) is set according to the mode of operation selected by
the WGMn3:0 bits. TOVn can be used for generating a CPU interrupt.

14.5 Input Capture Unit
The Timer/Counter incorporates an input capture unit that can capture external events and give
them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-
tiple events, can be applied via the ICPn pin or alternatively, for the Timer/Counter1 only, via the
Analog Comparator unit. The time-stamps can then be used to calculate frequency, duty-cycle,
and other features of the signal applied. Alternatively the time-stamps can be used for creating a
log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 14-3. The elements of
the block diagram that are not directly a part of the input capture unit are gray shaded. The small

[T}

n” in register and bit names indicates the Timer/Counter number.

Figure 14-3. Input Capture Unit Block Diagram

DATA BUS (8-bit
- t T (8-bit) >
| TEMP@Bb |
| ICRnH(8bit) | ICRnL (8-bit) | | TONTnH@Bbit) | TCNTAL (8-bit) |
» WRITE ICRn (16-bit Register) TCNTn (16-bit Counter)
M ACO* Acic* ICNC ICES
_ Analog ¢ #
Comparator o i
Noise Edge _
Canceler ™1 Detector - ICFn (Int.Req.)
ICPn >

Note: The Analog Comparator Output (ACO) can only trigger the Timer/Counter1 ICP — not
Timer/Counter3, 4 or 5.

When a change of the logic level (an event) occurs on the Input Capture Pin (ICPn), alternatively
on the analog Comparator output (ACO), and this change confirms to the setting of the edge
detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter
(TCNTN) is written to the Input Capture Register (ICRn). The Input Capture Flag (ICFn) is set at
the same system clock as the TCNTn value is copied into ICRn Register. If enabled (TICIEn =
1), the input capture flag generates an input capture interrupt. The ICFn flag is automatically
cleared when the interrupt is executed. Alternatively the ICFn flag can be cleared by software by
writing a logical one to its 1/O bit location.

AImEl@ 115

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Reading the 16-bit value in the Input Capture Register (ICRn) is done by first reading the low
byte (ICRnL) and then the high byte (ICRnH). When the low byte is read the high byte is copied
into the high byte Temporary Register (TEMP). When the CPU reads the ICRnH I/O location it
will access the TEMP Register.

The ICRn Register can only be written when using a Waveform Generation mode that utilizes
the ICRn Register for defining the counter's TOP value. In these cases the Waveform Genera-
tion mode (WGMn3:0) bits must be set before the TOP value can be written to the ICRn
Register. When writing the ICRn Register the high byte must be written to the ICRnH 1/O location
before the low byte is written to ICRnL.

For more information on how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 110.

14.5.1 Input Capture Trigger Source
The main trigger source for the input capture unit is the Input Capture Pin (ICPn).
Timer/Counter1 can alternatively use the analog comparator output as trigger source for the
input capture unit. The Analog Comparator is selected as trigger source by setting the analog
Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register
(ACSR). Be aware that changing trigger source can trigger a capture. The input capture flag
must therefore be cleared after the change.

Both the Input Capture Pin (ICPn) and the Analog Comparator output (ACO) inputs are sampled
using the same technique as for the Tn pin (Figure 12-1 on page 89). The edge detector is also
identical. However, when the noise canceler is enabled, additional logic is inserted before the
edge detector, which increases the delay by four system clock cycles. Note that the input of the
noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Wave-
form Generation mode that uses ICRn to define TOP.

An input capture can be triggered by software by controlling the port of the ICPn pin.

14.5.2 Noise Canceler
The noise canceler improves noise immunity by using a simple digital filtering scheme. The
noise canceler input is monitored over four samples, and all four must be equal for changing the
output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNCn) bit in
Timer/Counter Control Register B (TCCRnB). When enabled the noise canceler introduces addi-
tional four system clock cycles of delay from a change applied to the input, to the update of the
ICRn Register. The noise canceler uses the system clock and is therefore not affected by the
prescaler.

1453 Using the Input Capture Unit
The main challenge when using the Input Capture unit is to assign enough processor capacity
for handling the incoming events. The time between two events is critical. If the processor has
not read the captured value in the ICRn Register before the next event occurs, the ICRn will be
overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture interrupt, the ICRn Register should be read as early in the inter-
rupt handler routine as possible. Even though the Input Capture interrupt has relatively high
priority, the maximum interrupt response time is dependent on the maximum number of clock
cycles it takes to handle any of the other interrupt requests.

AImEl@ 116

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is
actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after
each capture. Changing the edge sensing must be done as early as possible after the ICRn
Register has been read. After a change of the edge, the Input Capture Flag (ICFn) must be
cleared by software (writing a logical one to the I/O bit location). For measuring frequency only,
the clearing of the ICFn Flag is not required (if an interrupt handler is used).

14.6 Output Compare Units

7766F-AVR-11/10

The 16-bit comparator continuously compares TCNTn with the Output Compare Register
(OCRnx). If TCNT equals OCRnx the comparator signals a match. A match will set the Output
Compare Flag (OCFnx) at the next timer clock cycle. If enabled (OCIEnx = 1), the Output Com-
pare Flag generates an Output Compare interrupt. The OCFnx Flag is automatically cleared
when the interrupt is executed. Alternatively the OCFnx Flag can be cleared by software by writ-
ing a logical one to its 1/0 bit location. The Waveform Generator uses the match signal to
generate an output according to operating mode set by the Waveform Generation mode
(WGMn3:0) bits and Compare Output mode (COMnx1:0) bits. The TOP and BOTTOM signals
are used by the Waveform Generator for handling the special cases of the extreme values in
some modes of operation (See “Modes of Operation” on page 120.)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (i.e.,
counter resolution). In addition to the counter resolution, the TOP value defines the period time
for waveforms generated by the Waveform Generator.

Figure 14-4 shows a block diagram of the Output Compare unit. The small “n” in the register and
bit names indicates the device number (n = n for Timer/Counter n), and the “x” indicates Output
Compare unit (A/B/C). The elements of the block diagram that are not directly a part of the Out-
put Compare unit are gray shaded.

Figure 14-4. Output Compare Unit, Block Diagram

DATA BUS (s-bit
11 1 = >
TEMP (8-bit)
— ¥ ¥
[ocRnxH But. (8-bit) | OCRnxL But. (8-bit) | [ToNTnH @bty | TCNTNL (8-bit
OCRnx Buffer (16-bit Register) TCNTn (16-bit Counter)
|
—¥ ‘
OCRnxH (8-bi) | OCRnxL (8-bit) |
OCRnNXx (16-bit Register)
| = (16-bit Comparator)
—— OCFnx (Int.Req.)
TOP ——»
Waveform Generator OCnx
BOTTOM ——p]

7

WGMn3:0 COMnx1:0

AImEl@ 117

EEEes————————————————————— A TMmega16/32U4

The OCRnx Register is double buffered when using any of the twelve Pulse Width Modulation
(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the
double buffering is disabled. The double buffering synchronizes the update of the OCRnx Com-
pare Register to either TOP or BOTTOM of the counting sequence. The synchronization
prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the out-
put glitch-free.

The OCRnx Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCRnx Buffer Register, and if double buffering is dis-
abled the CPU will access the OCRnx directly. The content of the OCR1x (Buffer or Compare)
Register is only changed by a write operation (the Timer/Counter does not update this register
automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the high byte
temporary register (TEMP). However, it is a good practice to read the low byte first as when
accessing other 16-bit registers. Writing the OCRnx Registers must be done via the TEMP Reg-
ister since the compare of all 16 bits is done continuously. The high byte (OCRnxH) has to be
written first. When the high byte 1/O location is written by the CPU, the TEMP Register will be
updated by the value written. Then when the low byte (OCRnxL) is written to the lower eight bits,
the high byte will be copied into the upper 8-bits of either the OCRnx buffer or OCRnx Compare
Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 110.

14.6.1 Force Output Compare
In non-PWM Waveform Generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOCnXx) bit. Forcing compare match will not set the
OCFnx Flag or reload/clear the timer, but the OCnx pin will be updated as if a real compare
match had occurred (the COMnN1:0 bits settings define whether the OCnx pin is set, cleared or
toggled).

14.6.2 Compare Match Blocking by TCNTn Write
All CPU writes to the TCNTn Register will block any compare match that occurs in the next timer
clock cycle, even when the timer is stopped. This feature allows OCRnx to be initialized to the
same value as TCNTn without triggering an interrupt when the Timer/Counter clock is enabled.

14.6.3 Using the Output Compare Unit

Since writing TCNTn in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNTn when using any of the Output Compare
channels, independent of whether the Timer/Counter is running or not. If the value written to
TCNTn equals the OCRnx value, the compare match will be missed, resulting in incorrect wave-
form generation. Do not write the TCNTn equal to TOP in PWM modes with variable TOP
values. The compare match for the TOP will be ignored and the counter will continue to OxFFFF.
Similarly, do not write the TCNTn value equal to BOTTOM when the counter is downcounting.

The setup of the OCnx should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OCnx value is to use the Force Output Com-
pare (FOCnx) strobe bits in Normal mode. The OCnx Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COMnx1:0 bits are not double buffered together with the compare value.
Changing the COMnx1:0 bits will take effect immediately.

AImEl@ 118

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

14.7 Compare Match Output Unit

The Compare Output mode (COMnx1:0) bits have two functions. The Waveform Generator uses
the COMnx1:0 bits for defining the Output Compare (OCnx) state at the next compare match.
Secondly the COMnx1:0 bits control the OCnx pin output source. Figure 14-5 shows a simplified
schematic of the logic affected by the COMnx1:0 bit setting. The 1/0 Registers, I/O bits, and 1/0
pins in the figure are shown in bold. Only the parts of the general /0 Port Control Registers
(DDR and PORT) that are affected by the COMnx1:0 bits are shown. When referring to the
OCnx state, the reference is for the internal OCnx Register, not the OCnx pin. If a system reset
occur, the OCnx Register is reset to “0”.

Figure 14-5. Compare Match Output Unit, Schematic

—D

COMnx1
COMnNx0 Waveform
D Q
FOChx Generator
b
| OCnx
A OCnx 0 I/ Pin
=D Q
8
m PORT
<
ke
a »D Q
 / DDR
clk,q

The general I/O port function is overridden by the Output Compare (OCnx) from the Waveform
Generator if either of the COMnx1:0 bits are set. However, the OCnx pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OCnx pin (DDR_OCnx) must be set as output before the OCnx value is visi-
ble on the pin. The port override function is generally independent of the Waveform Generation
mode, but there are some exceptions. Refer to Table 14-2, Table 14-3 and Table 14-4 for
details.

The design of the Output Compare pin logic allows initialization of the OCnx state before the out-
put is enabled. Note that some COMnx1:0 bit settings are reserved for certain modes of
operation. See “16-bit Timers/Counters (Timer/Counter1 and Timer/Counter3)” on page 108.

The COMnx1:0 bits have no effect on the Input Capture unit.
14.7.1 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COMnx1:0 bits differently in normal, CTC, and PWM modes.

For all modes, setting the COMnx1:0 = 0 tells the Waveform Generator that no action on the
OCnx Register is to be performed on the next compare match. For compare output actions in the

AImEl@ 119

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

non-PWM modes refer to Table 14-2 on page 130. For fast PWM mode refer to Table 14-3 on
page 130, and for phase correct and phase and frequency correct PWM refer to Table 14-4 on
page 131.

A change of the COMnx1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOCnx strobe bits.

14.8 Modes of Operation

14.8.1

14.8.2

Normal Mode

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGMn3:0) and Compare Output
mode (COMnx1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COMnx1:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COMnx1:0 bits control whether the output should be set, cleared or toggle at a compare
match (See “Compare Match Output Unit” on page 119.)

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 127.

The simplest mode of operation is the Normal mode (WGMn3:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 16-bit value (MAX = OxFFFF) and then restarts from the
BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOVn) will be set in
the same timer clock cycle as the TCNTn becomes zero. The TOVn Flag in this case behaves
like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOVn Flag, the timer resolution can be increased by soft-
ware. There are no special cases to consider in the Normal mode, a new counter value can be
written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum
interval between the external events must not exceed the resolution of the counter. If the interval
between events are too long, the timer overflow interrupt or the prescaler must be used to
extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

Clear Timer on Compare Match (CTC) Mode

7766F-AVR-11/10

In Clear Timer on Compare or CTC mode (WGMn3:0 = 4 or 12), the OCRNnA or ICRn Register
are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNTn) matches either the OCRnA (WGMn3:0 = 4) or the ICRn (WGMn3:0 =
12). The OCRnNA or ICRn define the top value for the counter, hence also its resolution. This
mode allows greater control of the compare match output frequency. It also simplifies the opera-
tion of counting external events.

The timing diagram for the CTC mode is shown in Figure 14-6. The counter value (TCNTn)
increases until a compare match occurs with either OCRnA or ICRn, and then counter (TCNTn)
is cleared.

AImEl@ 120

ATmega16/32U4

Figure 14-6. CTC Mode, Timing Diagram

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

-

- A e

OCnhA —
(Toggle) L1 L

(COMnA1:0 = 1)

Period I 1 ~I 2 ~I 3 ~I 4 ~I

An interrupt can be generated at each time the counter value reaches the TOP value by either
using the OCFnA or ICFn Flag according to the register used to define the TOP value. If the
interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. How-
ever, changing the TOP to a value close to BOTTOM when the counter is running with none or a
low prescaler value must be done with care since the CTC mode does not have the double buff-
ering feature. If the new value written to OCRnA or ICRn is lower than the current value of
TCNTn, the counter will miss the compare match. The counter will then have to count to its max-
imum value (OxFFFF) and wrap around starting at 0x0000 before the compare match can occur.
In many cases this feature is not desirable. An alternative will then be to use the fast PWM mode
using OCRNA for defining TOP (WGMn3:0 = 15) since the OCRnA then will be double buffered.

For generating a waveform output in CTC mode, the OCnA output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COMNA1:0 = 1). The OCnA value will not be visible on the port pin unless the data direction for
the pin is set to output (DDR_OCnA = 1). The waveform generated will have a maximum fre-
quency of foc,a = ok 110o/2 when OCRNA is set to zero (0x0000). The waveform frequency is
defined by the following equation:

¢ foi_1o
OCPA ™ 2.N-(1+0CRnA)

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVn Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x0000.

14.8.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMn3:0 = 5, 6, 7, 14, or 15) provides a
high frequency PWM waveform generation option. The fast PWM differs from the other PWM
options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts
from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is set on
the compare match between TCNTn and OCRnx, and cleared at TOP. In inverting Compare
Output mode output is cleared on compare match and set at TOP. Due to the single-slope oper-
ation, the operating frequency of the fast PWM mode can be twice as high as the phase correct
and phase and frequency correct PWM modes that use dual-slope operation. This high fre-
quency makes the fast PWM mode well suited for power regulation, rectification, and DAC
applications. High frequency allows physically small sized external components (coils, capaci-
tors), hence reduces total system cost.

AImEl@ 121

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICRn or
OCRnNA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and the max-
imum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM resolution in bits can be
calculated by using the following equation:

. _ log(TOP + 1)
FPWM |Og(2)

In fast PWM mode the counter is incremented until the counter value matches either one of the
fixed values OxO0FF, OxO1FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 =
14), or the value in OCRnA (WGMn3:0 = 15). The counter is then cleared at the following timer
clock cycle. The timing diagram for the fast PWM mode is shown in Figure 14-7. The figure
shows fast PWM mode when OCRnNA or ICRn is used to define TOP. The TCNTn value is in the
timing diagram shown as a histogram for illustrating the single-slope operation. The diagram
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn
slopes represent compare matches between OCRnx and TCNTn. The OCnx Interrupt Flag will
be set when a compare match occurs.

Figure 14-7. Fast PWM Mode, Timing Diagram

OCRnx / TOP Update
and TOVn Interrupt Flag
Set and OCnA Interrupt

:V Flag Set or ICFn
Interrupt Flag Set
(Interrupt on TOP)
TCNTn ;
y
OCnx (COMNX1:0 = 2)
OCnx m u (COMnx1:0 = 3)

ot~ st oo s —|

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches TOP. In addition
the OCnA or ICFn Flag is set at the same timer clock cycle as TOVn is set when either OCRnA
or ICRn is used for defining the TOP value. If one of the interrupts are enabled, the interrupt han-
dler routine can be used for updating the TOP and compare values.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.
Note that when using fixed TOP values the unused bits are masked to zero when any of the
OCRnNx Registers are written.

The procedure for updating ICRn differs from updating OCRnA when used for defining the TOP
value. The ICRn Register is not double buffered. This means that if ICRn is changed to a low
value when the counter is running with none or a low prescaler value, there is a risk that the new
ICRn value written is lower than the current value of TCNTn. The result will then be that the
counter will miss the compare match at the TOP value. The counter will then have to count to the
MAX value (OxFFFF) and wrap around starting at 0x0000 before the compare match can occur.
The OCRnNA Register however, is double buffered. This feature allows the OCRnA /O location

AImEl@ 122

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

to be written anytime. When the OCRnNA 1/O location is written the value written will be put into
the OCRnA Buffer Register. The OCRnA Compare Register will then be updated with the value
in the Buffer Register at the next timer clock cycle the TCNTn matches TOP. The update is done
at the same timer clock cycle as the TCNTn is cleared and the TOVn Flag is set.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By using
ICRn, the OCRNA Register is free to be used for generating a PWM output on OCnA. However,
if the base PWM frequency is actively changed (by changing the TOP value), using the OCRnA
as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins.
Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COMnx1:0 to three (see Table on page 130). The actual OCnx
value will only be visible on the port pin if the data direction for the port pin is set as output
(DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx Register at
the compare match between OCRnx and TCNTn, and clearing (or setting) the OCnx Register at
the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

¢ __ fakwo
OCnxPWM N - (1 + TOP)

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCRnx is set equal to BOTTOM (0x0000) the out-
put will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCRnx equal to TOP
will result in a constant high or low output (depending on the polarity of the output set by the
COMnx1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OCnA to toggle its logical level on each compare match (COMnA1:0 = 1). This applies only
if OCR1A is used to define the TOP value (WGM13:0 = 15). The waveform generated will have
a maximum frequency of foc,a = fo ,0/2 When OCRNA is set to zero (0x0000). This feature is
similar to the OCnA toggle in CTC mode, except the double buffer feature of the Output Com-
pare unit is enabled in the fast PWM mode.

14.8.4 Phase Correct PWM Mode

The phase correct Pulse Width Modulation or phase correct PWM mode (WGMn3:0 = 1, 2, 3,
10, or 11) provides a high resolution phase correct PWM waveform generation option. The
phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-
slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from
TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is
cleared on the compare match between TCNTn and OCRnx while upcounting, and set on the
compare match while downcounting. In inverting Output Compare mode, the operation is
inverted. The dual-slope operation has lower maximum operation frequency than single slope
operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes
are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined
by either ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to

AImEl@ 123

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

0x0003), and the maximum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM resolu-
tion in bits can be calculated by using the following equation:

R _ log(TOP + 1)
PCPWM = T o2y

In phase correct PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0x00FF, 0x01FF, or 0xO3FF (WGMn3:0 = 1, 2, or 3), the value in ICRn
(WGMn3:0 = 10), or the value in OCRnA (WGMn3:0 = 11). The counter has then reached the
TOP and changes the count direction. The TCNTn value will be equal to TOP for one timer clock
cycle. The timing diagram for the phase correct PWM mode is shown on Figure 14-8. The figure
shows phase correct PWM mode when OCRnA or ICRn is used to define TOP. The TCNTn
value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The
diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on
the TCNTNn slopes represent compare matches between OCRnx and TCNTn. The OCnx Inter-
rupt Flag will be set when a compare match occurs.

Figure 14-8. Phase Correct PWM Mode, Timing Diagram

OCRnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

TOVn Interrupt Flag Set
(Interrupt on Bottom)

P 7
TCNTn \/\\/

OCnx (COMNx1:0 = 2)
OCnx (COMnx1:0 = 3)
Period I 1) 2 J 3 J 4)

I I |

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches BOTTOM. When
either OCRNA or ICRn is used for defining the TOP value, the OCnA or ICFn Flag is set accord-
ingly at the same timer clock cycle as the OCRnx Registers are updated with the double buffer
value (at TOP). The Interrupt Flags can be used to generate an interrupt each time the counter
reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.
Note that when using fixed TOP values, the unused bits are masked to zero when any of the
OCRnNx Registers are written. As the third period shown in Figure 14-8 illustrates, changing the
TOP actively while the Timer/Counter is running in the phase correct mode can result in an
unsymmetrical output. The reason for this can be found in the time of update of the OCRnx Reg-

AImEl@ 124

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

ister. Since the OCRnx update occurs at TOP, the PWM period starts and ends at TOP. This
implies that the length of the falling slope is determined by the previous TOP value, while the
length of the rising slope is determined by the new TOP value. When these two values differ the
two slopes of the period will differ in length. The difference in length gives the unsymmetrical
result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct
mode when changing the TOP value while the Timer/Counter is running. When using a static
TOP value there are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the
OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted
PWM output can be generated by setting the COMnx1:0 to three (See Table 14-4 on page 131).
The actual OCnx value will only be visible on the port pin if the data direction for the port pin is
set as output (DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx
Register at the compare match between OCRnx and TCNTn when the counter increments, and
clearing (or setting) the OCnx Register at compare match between OCRnx and TCNTn when
the counter decrements. The PWM frequency for the output when using phase correct PWM can
be calculated by the following equation:

¢ _fao
OCnxPCPWM 2.N-TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. If
OCR1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 = 1, the OC1A output
will toggle with a 50% duty cycle.

14.8.5 Phase and Frequency Correct PWM Mode

The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM
mode (WGMn3:0 = 8 or 9) provides a high resolution phase and frequency correct PWM wave-
form generation option. The phase and frequency correct PWM mode is, like the phase correct
PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the
Output Compare (OCnx) is cleared on the compare match between TCNTn and OCRnx while
upcounting, and set on the compare match while downcounting. In inverting Compare Output
mode, the operation is inverted. The dual-slope operation gives a lower maximum operation fre-
quency compared to the single-slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM
mode is the time the OCRnx Register is updated by the OCRnx Buffer Register, (see Figure 14-
8 and Figure 14-9).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either
ICRn or OCRNnA. The minimum resolution allowed is 2-bit (ICRn or OCRNnA set to 0x0003), and

AImEl@ 125

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

the maximum resolution is 16-bit (ICRn or OCRNA set to MAX). The PWM resolution in bits can
be calculated using the following equation:

R _ log(TOP +1)
PFCPWM = "oq(2)

In phase and frequency correct PWM mode the counter is incremented until the counter value
matches either the value in ICRn (WGMn3:0 = 8), or the value in OCRnA (WGMn3:0 = 9). The
counter has then reached the TOP and changes the count direction. The TCNTn value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency
correct PWM mode is shown on Figure 14-9. The figure shows phase and frequency correct
PWM mode when OCRnNA or ICRn is used to define TOP. The TCNTn value is in the timing dia-
gram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-
inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn slopes repre-
sent compare matches between OCRnx and TCNTn. The OCnx Interrupt Flag will be set when a
compare match occurs.

Figure 14-9. Phase and Frequency Correct PWM Mode, Timing Diagram

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

OCRnx/TOP Updateand
¥ TOVn Interrupt Flag Set
(Interrupt on Bottom)

TCNTn

OCnx (COMNx1:0 = 2)
OCnx (COMNx1:0 = 3)
Period I 1 ~I 2) 3 J 4 J

The Timer/Counter Overflow Flag (TOVn) is set at the same timer clock cycle as the OCRnx
Registers are updated with the double buffer value (at BOTTOM). When either OCRnA or ICRn
is used for defining the TOP value, the OCnA or ICFn Flag set when TCNTn has reached TOP.
The Interrupt Flags can then be used to generate an interrupt each time the counter reaches the
TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.

As Figure 14-9 shows the output generated is, in contrast to the phase correct mode, symmetri-
cal in all periods. Since the OCRnx Registers are updated at BOTTOM, the length of the rising
and the falling slopes will always be equal. This gives symmetrical output pulses and is therefore
frequency correct.

AImEl@ 126

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Using the ICRn Register for defining TOP works well when using fixed TOP values. By using
ICRn, the OCRNA Register is free to be used for generating a PWM output on OCnA. However,
if the base PWM frequency is actively changed by changing the TOP value, using the OCRnA as
TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM wave-
forms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and
an inverted PWM output can be generated by setting the COMnx1:0 to three (See Table 14-4 on
page 131). The actual OCnx value will only be visible on the port pin if the data direction for the
port pin is set as output (DDR_OCnx). The PWM waveform is generated by setting (or clearing)
the OCnx Register at the compare match between OCRnx and TCNTn when the counter incre-
ments, and clearing (or setting) the OCnx Register at compare match between OCRnx and
TCNTn when the counter decrements. The PWM frequency for the output when using phase
and frequency correct PWM can be calculated by the following equation:

¢ __fao
OCnxPFCPWM 2.N-TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be set to high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values. If OCR1A
is used to define the TOP value (WGM13:0 = 9) and COM1A1:0 = 1, the OC1A output will toggle
with a 50% duty cycle.

14.9 Timer/Counter Timing Diagrams

7766F-AVR-11/10

The Timer/Counter is a synchronous design and the timer clock (clky,) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set, and when the OCRnx Register is updated with the OCRnx buffer value (only for
modes utilizing double buffering). Figure 14-10 shows a timing diagram for the setting of OCFnx.

Figure 14-10. Timer/Counter Timing Diagram, Setting of OCFnx, no Prescaling

cIkVo

clk;,

(clk,o/1)

TCNTn X OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

——

OCRnx OCRnx Value

OCFnx

Figure 14-11 shows the same timing data, but with the prescaler enabled.

AImEl@ 127

ATmega16/32U4

Figure 14-11. Timer/Counter Timing Diagram, Setting of OCFnx, with Prescaler (f ,0/8)

o e A
o F F F F

TCNTn X OCRnx - 1 X OCRnNx OCRnx + 1 X OCRnx + 2
OCRnNx OCRnNx Value
OCFnx

Figure 14-12 shows the count sequence close to TOP in various modes. When using phase and
frequency correct PWM mode the OCRnx Register is updated at BOTTOM. The timing diagrams
will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on.
The same renaming applies for modes that set the TOVn Flag at BOTTOM.

Figure 14-12. Timer/Counter Timing Diagram, no Prescaling

clk,q

clkq,
(clk,o/1)

(CTCT:E]ZI-II:-QWM) X TOP -1 TOP BOTTOM BOTTOM + 1

TCNTn T
(PG and PFC PWM) >< TOP - 1 TOP TOP - 1 TOP - 2

TOVn (FPWM)

and ICFn (if used
as TOP)

OCRnNx
(Update at TOP)

Old OCRnx Value New OCRnx Value
! !

Figure 14-13 shows the same timing data, but with the prescaler enabled.

AImEl@ 128

7766F-AVR-11/10

ATmegal6/32U4

Figure 14-13. Timer/Counter Timing Diagram, with Prescaler (f ,0/8)

A RN
(cCI:s@%) F F F F

(CT-I(;(;EIJI?PWM) >< TOP - 1 TOP BOTTOM BOTTOM + 1

TCNTn |] i]
(PCandPFCPWM)_X TOP - 1 TOP TOP - 1 TOP -2

TOVN(FPWM)

and ICFn(if used
as TOP)

OCRnx
(Update at TOP)

Old OCRnx Value New OCRnx Value

14.10 16-bit Timer/Counter Register Description

14.10.1 Timer/Counter1 Control Register A - TCCR1A

Bit 7 6 5 4 3 2 1 0

I COM1A1 | COM1A0 | COM1B1 | COMiBO | COM1C1 | COMiCO | WGM11 WGM10 I TCCR1A
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

14.10.2 Timer/Counter3 Control Register A — TCCR3A

Bit 7 6 5 4 3 2 1 0

I COM3A1 | COM3A0 | COM3B1 | COM3B0O | COM3C1 | COM3CO | WGM31 WGM30 I TCCR3A
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7:6 — COMnA1:0: Compare Output Mode for Channel A
¢ Bit 5:4 - COMnB1:0: Compare Output Mode for Channel B
¢ Bit 3:2 - COMnC1:0: Compare Output Mode for Channel C

The COMnA1:0, COMnB1:0, and COMNC1:0 control the output compare pins (OCnA, OCnB,
and OCnC respectively) behavior. If one or both of the COMnA1:0 bits are written to one, the
OCnA output overrides the normal port functionality of the I/O pin it is connected to. If one or
both of the COMnB1:0 bits are written to one, the OCnB output overrides the normal port func-
tionality of the 1/O pin it is connected to. If one or both of the COMNnC1:0 bits are written to one,
the OCnC output overrides the normal port functionality of the 1/0 pin it is connected to. How-
ever, note that the Data Direction Register (DDR) bit corresponding to the OCnA, OCnB or
OCnC pin must be set in order to enable the output driver.

AImEl@ 129

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

When the OCnA, OCnB or OCnC is connected to the pin, the function of the COMnx1:0 bits is
dependent of the WGMn3:0 bits setting. Table 14-2 shows the COMnx1:0 bit functionality when
the WGMn3:0 bits are set to a normal or a CTC mode (non-PWM).

Table 14-2. Compare Output Mode, non-PWM

COMnA1/COMnB1/ COMnAO0/COMnBO/
COMNC1 COMNCO Description

0 0 Normal port operation, OCnA/OCnB/OCnC
disconnected.

0 1 Toggle OCnA/OCnB/OCnC on compare
match.
Clear OCnA/OCnB/OCnC on compare

1 0
match (set output to low level).
Set OCnA/OCnB/OCnC on compare match

1 1 .
(set output to high level).

Table 14-3 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the fast
PWM mode.

Table 14-3. Compare Output Mode, Fast PWM

COMnA1/COMnNB1/ COMNnAO/COMNBO/
COMNCO COMNnCO Description

Normal port operation, OCnA/OCnB/OCnC
disconnected.

WGM13:0 = 14 or 15: Toggle OC1A on
Compare Match, OC1B and OC1C

0 1 disconnected (normal port operation). For all
other WGM1 settings, normal port operation,
OC1A/OC1B/OC1C disconnected.

Clear OCnA/OCnB/OCnC on compare
match, set OCnA/OCnB/OCnC at TOP

Set OCnA/OCnB/OCnC on compare match,
clear OCnA/OCnB/OCnC at TOP

0 0

Note: A special case occurs when OCRnA/OCRnB/OCRNC equals TOP and
COMNA1/COMNnB1/COMNCH1 is set. In this case the compare match is ignored, but the set or clear
is done at TOP. See “Fast PWM Mode” on page 97. for more details.

Table 14-4 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the phase

correct and frequency correct PWM mode.

AImEl@ 130

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 14-4.

Compare Output Mode, Phase Correct and Phase and Frequency Correct PWM

COMnA1/COMNnB/
COMNC1

COMNnA0/COMNnBO/
COMNCO

Description

0

0

Normal port operation, OCnA/OCnB/OCnC

disconnected.

WGM13:0 =8, 9 10 or 11: Toggle OC1A on
Compare Match, OC1B and OC1C
disconnected (normal port operation). For all
other WGM1 settings, normal port operation,
OC1A/OC1B/OC1C disconnected.

Clear OCnA/OCnB/OCnC on compare
match when up-counting. Set
OCnA/OCnB/OCnC on compare match
when downcounting.

Set OCnA/OCnB/OCnC on compare match
when up-counting. Clear
OCnA/OCnB/OCnC on compare match
when downcounting.

A special case occurs when OCRnA/OCRnB/OCRNC equals TOP and
COMnA1/COMnB1//COMNCH1 is set. See “Phase Correct PWM Mode” on page 99. for more
details.

Note:

e Bit 1:0 - WGMn1:0: Waveform Generation Mode

Combined with the WGMn3:2 bits found in the TCCRnB Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-
form generation to be used, see Table 14-5. Modes of operation supported by the Timer/Counter
unit are: Normal mode (counter), Clear Timer on Compare match (CTC) mode, and three types
of Pulse Width Modulation (PWM) modes. (See “Modes of Operation” on page 96.).

Table 14-5. Waveform Generation Mode Bit Description (')
WGMn2 | WGMn1 WGMnO Update of | TOVnFlag
Mode | WGMn3 | (CTCn) | (PWMn1) | (PWMnO) | Timer/Counter Mode of Operation | TOP OCRnx at | Set on

0 0 0 0 0 Normal OxFFFF | Immediate | MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit Ox00FF | TOP BOTTOM

2 0 0 1 0 PWM, Phase Correct, 9-bit O0x01FF | TOP BOTTOM

3 0 0 1 1 PWM, Phase Correct, 10-bit O0x03FF | TOP BOTTOM

4 0 1 0 0 CTC OCRnA | Immediate | MAX

5 0 1 0 1 Fast PWM, 8-bit O0x00FF | TOP TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF | TOP TOP

7 0 1 1 1 Fast PWM, 10-bit O0x03FF | TOP TOP

8 1 0 0 0 PWM, Phase and Frequency Correct | ICRn BOTTOM BOTTOM

9 1 0 0 1 PWM, Phase and Frequency Correct | OCRnA | BOTTOM BOTTOM

10 1 0 1 0 PWM, Phase Correct ICRn TOP BOTTOM

11 1 0 1 1 PWM, Phase Correct OCRnA | TOP BOTTOM

12 1 1 0 0 CTC ICRn Immediate | MAX
ATMEL 131
I)

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 14-5. Waveform Generation Mode Bit Description (Continued)("
WGMn2 | WGMn1 WGNMnNO Update of | TOVnFlag
Mode | WGMn3 | (CTCn) | (PWMn1) | (PWMnO) | Timer/Counter Mode of Operation | TOP OCRnx at | Seton
13 1 1 0 1 (Reserved) - - -
14 1 1 1 0 Fast PWM ICRn TOP TOP
15 1 1 1 1 Fast PWM OCRnA | TOP TOP
Note: 1. The CTCn and PWMn1:0 bit definition names are obsolete. Use the WGMn2:0 definitions. However, the functionality and

location of these bits are compatible with previous versions of the timer.

14.10.3 Timer/Counter1 Control Register B— TCCR1B

Bit 7 6 5 4 3 2 1 0
ienct Jicest | - | WGM13 | WGM12 | Ccs12 | CSii Cs10 | TCCR1B
Read/Write R/W RIW RIW RW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
14.10.4 Timer/Counter3 Control Register B — TCCR3B
Bit 7 6 5 4 3 2 1 0
| icNes | icess | - | WGM33 | WGM32 | CS32 | CS31 CS30 | TCCR3B
Read/Write ~ R/W RIW R R/W RIW R/W R/W RIW
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — ICNCn: Input Capture Noise Canceler

Setting this bit (to one) activates the Input Capture Noise Canceler. When the Noise Canceler is
activated, the input from the Input Capture Pin (ICPn) is filtered. The filter function requires four
successive equal valued samples of the ICPn pin for changing its output. The input capture is
therefore delayed by four Oscillator cycles when the noise canceler is enabled.

e Bit 6 — ICESn: Input Capture Edge Select

This bit selects which edge on the Input Capture Pin (ICPn) that is used to trigger a capture
event. When the ICESn bit is written to zero, a falling (negative) edge is used as trigger, and
when the ICESn bit is written to one, a rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICESn setting, the counter value is copied into the
Input Capture Register (ICRn). The event will also set the Input Capture Flag (ICFn), and this
can be used to cause an Input Capture Interrupt, if this interrupt is enabled.

When the ICRn is used as TOP value (see description of the WGMn3:0 bits located in the
TCCRnA and the TCCRnB Register), the ICPn is disconnected and consequently the input cap-
ture function is disabled.

e Bit 5 — Reserved Bit
This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be
written to zero when TCCRnB is written.

* Bit 4:3 - WGMn3:2: Waveform Generation Mode
See TCCRnNA Register description.

* Bit 2:0 - CSn2:0: Clock Select
The three clock select bits select the clock source to be used by the Timer/Counter, see Figure

13-8 and Figure 13-9.
Y 5

132
7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 14-6. Clock Select Bit Description
CSn2 CSn1i CSn0 | Description

0 0 0 No clock source. (Timer/Counter stopped)
0 0 1 clk,o/1 (No prescaling

0 1 0 clk,o/8 (From prescaler)

0 1 1 clk,o/64 (From prescaler)

1 0 0 clk,o/256 (From prescaler)

1 0 1 clk,o/1024 (From prescaler)

1 1 0 External clock source on Tn pin. Clock on falling edge
1 1 1 External clock source on Tn pin. Clock on rising edge

If external pin modes are used for the Timer/Countern, transitions on the Tn pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

14.10.5 Timer/Counteri Control Register C — TCCR1C

Bit 7 6 5 4 3 2 1 0
| Focia | FociB | Focic | - - - - -] Tceric
Read/Write W w w R R R R R
Initial Value 0 0 0 0 0 0 0 0
14.10.6 Timer/Counter3 Control Register C — TCCR3C
Bit 7 6 5 4 3 2 1 0
| Focsa | - | - | - - - - -] Tcerac
ReadWrite W R R R R R R R
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 - FOCnA: Force Output Compare for Channel A

The FOCnA/FOCNnB/FOCNC bits are only active when the WGMn3:0 bits specifies a non-PWM
mode. When writing a logical one to the FOCnA/FOCnB/FOCNC bit, an immediate compare
match is forced on the waveform generation unit. The OCnA/OCnB/OCnC output is changed
according to its COMnx1:0 bits setting. Note that the FOCnA/FOCnB/FOCNC bits are imple-
mented as strobes. Therefore it is the value present in the COMnx1:0 bits that determine the
effect of the forced compare.

A FOCnA/FOCnB/FOCNC strobe will not generate any interrupt nor will it clear the timer in Clear
Timer on Compare Match (CTC) mode using OCRnA as TOP.

The FOCnA/FOCnB/FOCNB bits are always read as zero.

* Bit 4:0 — Reserved Bits

These bits are reserved for future use. For ensuring compatibility with future devices, these bits
must be written to zero when TCCRnC is written.

AImEl@ 133

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

14.10.7 Timer/Counter1 — TCNT1H and TCNT1L

Bit 7 6 5 4 3 2 1 0
TCNT1[15:8] TCNT1H
TCNT1[7:0] TCNTIL
Read/Write R/W RW RW R/W R/W RW RW RW
Initial Value 0 0 0 0 0 0 0 0

14.10.8 Timer/Counter3 — TCNT3H and TCNT3L

Bit 7 6 5 4 3 2 1 0
TCNT3[15:8] TCNT3H
TCNT3[7:0] TCNT3L
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The two Timer/Counter 1/0 locations (TCNTnH and TCNTnL, combined TCNTn) give direct
access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To
ensure that both the high and low bytes are read and written simultaneously when the CPU
accesses these registers, the access is performed using an 8-bit temporary High Byte Register
(TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit
Registers” on page 110.

Modifying the counter (TCNTn) while the counter is running introduces a risk of missing a com-
pare match between TCNTn and one of the OCRnx Registers.

Writing to the TCNTn Register blocks (removes) the compare match on the following timer clock
for all compare units.

14.10.9 Output Compare Register 1 A— OCR1AH and OCR1AL

Bit 7 6 5 4 3 2 1 0
OCR1A[15:8] OCR1AH
OCR1A[7:0] OCR1AL
Read/Write R/W RW RW R/W R/W RW RW RW
Initial Value 0 0 0 0 0 0 0 0

14.10.10 Output Compare Register 1 B— OCR1BH and OCR1BL

Bit 7 6 5 4 3 2 1 0
OCR1B[15:8] OCR1BH
OCR1BI[7:0] OCR1BL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

14.10.11 Output Compare Register 1 C — OCR1CH and OCR1CL

Bit 7 6 5 4 3 2 1 0
OCR1C[15:8] OCR1CH
OCR1C[7:0] OCR1ICL
Read/Write RW RIW RW RW RW RIW RIW RW
Initial Value 0 0 0 0 0 0 0 0

AImEl@ 134

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

14.10.12 Output Compare Register 3 A — OCR3AH and OCR3AL

Bit 7 6 5 4 3 2 1 0
OCR3A[15:8] OCR3AH
OCR3A[7:0] OCR3AL
Read/Write R/W RW RW R/W R/W RW RW RW
Initial Value 0 0 0 0 0 0 0 0

14.10.13 Output Compare Register 3 B — OCR3BH and OCR3BL

Bit 7 6 5 4 3 2 1 0
OCR3BI[15:8] OCR3BH
OCR3BJ[7:0] OCR3BL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

14.10.14 Output Compare Register 3 C — OCR3CH and OCR3CL

Bit 7 6 5 4 3 2 1 0
OCR3C[15:8] OCR3CH
OCR3CJ[7:0] OCR3CL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared with the
counter value (TCNTn). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OCnx pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are
written simultaneously when the CPU writes to these registers, the access is performed using an
8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the other
16-bit registers. See “Accessing 16-bit Registers” on page 110.

14.10.15 Input Capture Register 1 — ICR1H and ICR1L

Bit 7 6 5 4 3 2 1 0
ICR1[15:8] ICR1H
ICR1[7:0] ICRIL

Read/Write RW RIW RW RW RW RIW RIW RW

Initial Value 0 0 0 0 0 0 0 0

14.10.16 Input Capture Register 3 — ICR3H and ICR3L

Bit 7 6 5 4 3 2 1 0
ICR3[15:8] ICR3H
ICR3[7:0] ICR3L
Read/Write R/W RW RW R/W R/W RW RW RW
Initial Value 0 0 0 0 0 0 0 0

The Input Capture is updated with the counter (TCNTn) value each time an event occurs on the
ICPn pin (or optionally on the Analog Comparator output for Timer/Counter1). The Input Capture
can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit
registers. See “Accessing 16-bit Registers” on page 110.

AImEl@ 135

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

14.10.17 Timer/Counter1 Interrupt Mask Register — TIMSK1

Bit 7 6 5 4 3 2 1 0
| - | - | ICE1 |- OCIE1C | OCIE1B | OCIE1A | TOIE1 | TIMSK1
Read/Write R R RW R RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
14.10.18 Timer/Counter3 Interrupt Mask Register — TIMSK3
Bit 7 6 5 4 3 2 1 0
| - - ICIE3 - OCIE3C | OCIE3B | OCIE3A | TOIE3 | TIMSK3
Read/Write R R RW R RW R/W RW RW
Initial Value 0 0 0 0 0 0 0 0

e Bit 5 — ICIEn: Timer/Countern, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Countern Input Capture interrupt is enabled. The corresponding Interrupt
Vector (See “Interrupts” on page 61.) is executed when the ICFn Flag, located in TIFRn, is set.

¢ Bit 3 — OCIEnC: Timer/Countern, Output Compare C Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Countern Output Compare C Match interrupt is enabled. The corresponding
Interrupt Vector (See “Interrupts” on page 61.) is executed when the OCFnC Flag, located in
TIFRnN, is set.

¢ Bit 2 — OCIEnB: Timer/Countern, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Countern Output Compare B Match interrupt is enabled. The corresponding
Interrupt Vector (See “Interrupts” on page 61.) is executed when the OCFnB Flag, located in
TIFRnN, is set.

¢ Bit 1 — OCIEnA: Timer/Countern, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Countern Output Compare A Match interrupt is enabled. The corresponding
Interrupt Vector (See “Interrupts” on page 61.) is executed when the OCFnA Flag, located in
TIFRnN, is set.

¢ Bit 0 — TOIEn: Timer/Countern, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Countern Overflow interrupt is enabled. The corresponding Interrupt Vector
(See “Interrupts” on page 61.) is executed when the TOVn Flag, located in TIFRn, is set.

14.10.19 Timer/Counter1 Interrupt Flag Register — TIFR1

Bit 7 6 5 4 3 2 1 0

| - | - [ICF1 [- OCFI1C | OCF1B | OCF1A | TOVi | TIFR1
Read/Write R R R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

AImEl@ 136

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

14.10.20 Timer/Counter3 Interrupt Flag Register — TIFR3

Bit 7 6 5 4 3 2 1 0
| - | - | ICF3 | - OCF3C | OCF3B | OCF3A | TOV3 | TIFR3

ReadWrite R R RIW R RIW R/W R/W RIW

Initial Value 0 0 0 0 0 0 0 0

e Bit 5 — ICFn: Timer/Countern, Input Capture Flag

This flag is set when a capture event occurs on the ICPn pin. When the Input Capture Register
(ICRn) is set by the WGMn3:0 to be used as the TOP value, the ICFn Flag is set when the coun-
ter reaches the TOP value.

ICFn is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively,
ICFn can be cleared by writing a logic one to its bit location.

¢ Bit 3— OCFnC: Timer/Countern, Output Compare C Match Flag
This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Output
Compare Register C (OCRnC).

Note that a Forced Output Compare (FOCnC) strobe will not set the OCFnC Flag.

OCFnC is automatically cleared when the Output Compare Match C Interrupt Vector is exe-
cuted. Alternatively, OCFnC can be cleared by writing a logic one to its bit location.

e Bit 2 — OCFnB: Timer/Counter1, Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Output
Compare Register B (OCRnB).

Note that a Forced Output Compare (FOCnB) strobe will not set the OCFnB Flag.

OCFnB is automatically cleared when the Output Compare Match B Interrupt Vector is exe-
cuted. Alternatively, OCFnB can be cleared by writing a logic one to its bit location.

e Bit 1 — OCF1A: Timer/Counter1, Output Compare A Match Flag
This flag is set in the timer clock cycle after the counter (TCNTn value matches the Output Com-
pare Register A (OCRnA).

Note that a Forced Output Compare (FOCnA) strobe will not set the OCFnA Flag.

OCFnA is automatically cleared when the Output Compare Match A Interrupt Vector is exe-
cuted. Alternatively, OCFnA can be cleared by writing a logic one to its bit location.

e Bit 0 — TOVn: Timer/Countern, Overflow Flag

The setting of this flag is dependent of the WGMn3:0 bits setting. In Normal and CTC modes,
the TOVn Flag is set when the timer overflows. Refer to Table 14-5 on page 131 for the TOVn
Flag behavior when using another WGMn3:0 bit setting.

TOVn is automatically cleared when the Timer/Countern Overflow Interrupt Vector is executed.
Alternatively, TOVn can be cleared by writing a logic one to its bit location.

AImEl@ 137

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

15. 10-bit High Speed Timer/Counter4

15.1 Features

15.2 Overview

7766F-AVR-11/10

¢ Up to 10-Bit Accuracy

* Three Independent Output Compare Units

¢ Clear Timer on Compare Match (Auto Reload)

¢ Glitch Free, Phase and Frequency Correct Pulse Width Modulator (PWM)
* Enhanced PWM mode: one optional additional accuracy bit without effect on output frequency
¢ Variable PWM Period

* Independent Dead Time Generators for each PWM channels

¢ Synchronous update of PWM registers

* Five Independent Interrupt Sources (TOV4, OCF4A, OCF4B, OCF4D, FPF4)
¢ High Speed Asynchronous and Synchronous Clocking Modes

* Separate Prescaler Unit

Timer/Counter4 is a general purpose high speed Timer/Counter module, with three independent
Output Compare Units, and with enhanced PWM support.

The Timer/Counter4 features a high resolution and a high accuracy usage with the lower pres-
caling opportunities. It can also support three accurate and high speed Pulse Width Modulators
using clock speeds up to 64 MHz. In PWM mode Timer/Counter4 and the output compare regis-
ters serve as triple stand-alone PWMs with non-overlapping, non-inverted and inverted outputs.
The enhanced PWM mode allows to get one more accuracy bit while keeping the frequency
identical to normal mode (a PWM 8 bits accuracy in enhanced mode outputs the same fre-
quency that a PWM 7 bits accuracy in normal mode). Similarly, the high prescaling opportunities
make this unit useful for lower speed functions or exact timing functions with infrequent actions.
A lock feature allows user to update the PWM registers and

A simplified block diagram of the Timer/Counter4 is shown in Figure 15-1. For actual placement
of the I/O pins, refer to “Pinout ATmega16U4/ATmega32U4” on page 3. The device-specific 1/0
register and bit locations are listed in the “Register Description” on page 162.

AImEl@ 138

ATmega16/32U4

Figure 15-1. Timer/Counter4 Block Diagram

TOvV4 OCF4A OCF4B OCF4D OC4A OC4A 0c4B 0c4B 0C4D 0OC4D FAULT_PROTECTION

r t+ tr t t 1

|DEAD TIME GENERATOR | | DEAD TIME GENERATOR | | DEAD TIME GENERATOR |

OCW4A
0ocw4B
OCW4D
: >
E‘t 3l 9 g At§§§ g A At A “m:
= w Wy w al| o
S S| 8l 8 V=RIg8 8 \4 A \4 \ A
T/C INT. MASK T/C INT. FLAG T/C CONTROL /C CONTROL T/C CONTROL T/C CONTROL
REGISTER (TIMSK4) | | REGISTER (TIFR4) REGISTER A (TCCR4A) EGISTER B (TCCR4B) | |REGISTER C (TCCR4C) | |REGISTER C (TCCR4D)
y Tal-]= Tl <=l = 1.
< 321215 5181518 =lalslelelslel EE|EEI2[E|515] o F3|al3]|E 2
= 8|8|8|8|2|2|&|Z 2122|8388 88| 8|8(8|8|¢2|Z EREEEEEEHE
‘ YYYYYYY YYYVVYYVYY YYYYYYVYYY YYVYVVYVYY
< CLK
TIMER/COUNTER4 o COUNT
(TCNT4) : CLEAR TIMER/COUNTER4 CONTROL LOGIC
< DIRECTION
A T A A A A AAA
il e I A o
Q| 9| O] of o| O
3 3| 3 3 3 3
Y A A y 3| 8| 3| 8| 8| 8
. /C CONTROL
| 10-BIT COMPARATOR | 10-BIT COMPARATOR | | 10-BIT COMPARATOR | | 10-BIT COMPARATOR | FREG,STEHD(TCCR4E)|
10-BIT OUTPUT 10-BIT OUTPUT 10-BIT OUTPUT 10-BIT OUTPUT
COMPARE REGISTER A COMPARE REGISTER B COMPARE REGISTER C COMPARE REGISTER D
A A A A A A A A
8-BIT OUTPUT COMPARE 8-BIT OUTPUT COMPARE 8-BIT OUTPUT COMPARE 8-BIT OUTPUT COMPARE 2-BIT HIGH BYTE
REGISTER A (OCR4A) REGISTER B (OCR4B) REGISTER C (OCR4C) REGISTER D (OCR4D) REGISTER (TC4H)
A A A At A
\ 4 \ 4 8-BIT DATABUS A 4 \ \ 4

\ 4

15.2.1 Speed

The maximum speed of the Timer/Counter4 is 64 MHz. However, if a supply voltage below 4
volts is used, it is recommended to decrease the input frequency, because the Timer/Counter4
is not running fast enough on low voltage levels.

15.2.2 Accuracy

The Timer/Counter4 is a 10-bit Timer/Counter module that can alternatively be used as an 8-bit
Timer/Counter. The Timer/Counter4 registers are basically 8-bit registers, but on top of that
there is a 2-bit High Byte Register (TC4H) that can be used as a common temporary buffer to
access the two MSBs of the 10-bit Timer/Counter4 registers by the AVR CPU via the 8-bit data
bus, if the 10-bit accuracy is used. Whereas, if the two MSBs of the 10-bit registers are written to
zero the Timer/Counter4 is working as an 8-bit Timer/Counter. When reading the low byte of any
8-bit register the two MSBs are written to the TC4H register, and when writing the low byte of
any 8-bit register the two MSBs are written from the TC4H register. Special procedures must be
followed when accessing the 10-bit Timer/Counter4 values via the 8-bit data bus. These proce-
dures are described in the section “Accessing 10-Bit Registers” on page 159.

The Enhanced PWM mode allows to add a resolution bit to each Compare register A/B/D, while
the output frequency remains identical to a Normal PWM mode. That means that the TC4H reg-
ister contains one more bit that will be the MSB in a 11-bits enhanced PWM operation. See the
section “Enhanced Compare/PWM mode” on page 148 for details about this feature and how to
use it.

AImEl@ 139

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

15.2.3 Registers

The Timer/Counter (TCNT4) and Output Compare Registers (OCR4A, OCR4B, OCR4C and
OCR4D) are 8-bit registers that are used as a data source to be compared with the TCNT4 con-
tents. The OCR4A, OCR4B and OCR4D registers determine the action on the OC4A, OC4B and
OCA4D pins and they can also generate the compare match interrupts. The OCR4C holds the
Timer/Counter TOP value, i.e. the clear on compare match value. The Timer/Counter4 High
Byte Register (TC4H) is a 2-bit register that is used as a common temporary buffer to access the
MSB bits of the Timer/Counter4 registers, if the 10-bit accuracy is used.

Interrupt request (overflow TOV4, compare matches OCF4A, OCF4B, OCF4D and fault protec-
tion FPF4) signals are visible in the Timer Interrupt Flag Register (TIFR4) and Timer/Counter4
Control Register D (TCCR4D). The interrupts are individually masked with the Timer Interrupt
Mask Register (TIMSK4) and the FPIE4 bit in the Timer/Counter4 Control Register D (TCCR4D).

Control signals are found in the Timer/Counter Control Registers TCCR4A, TCCR4B, TCCR4C,
TCCR4D and TCCRA4E.

15.24 Synchronization

7766F-AVR-11/10

In asynchronous clocking mode the Timer/Counter4 and the prescaler allow running the CPU
from any clock source while the prescaler is operating on the fast peripheral clock (PCK) having
frequency up to 64 MHz. This is possible because there is a synchronization boundary between
the CPU clock domain and the fast peripheral clock domain. Figure 15-2 shows Timer/Counter 4
synchronization register block diagram and describes synchronization delays in between regis-
ters. Note that all clock gating details are not shown in the figure.

The Timer/Counter4 register values go through the internal synchronization registers, which
cause the input synchronization delay, before affecting the counter operation. The registers
TCCR4A, TCCR4B, TCCR4C, TCCR4D, OCR4A, OCR4B, OCR4C and OCR4D can be read
back right after writing the register. The read back values are delayed for the Timer/Counter4
(TCNT4) register, Timer/Counter4 High Byte Register (TC4H) and flags (OCF4A, OCF4B,
OCF4D and TOV4), because of the input and output synchronization.

The system clock frequency must be lower than half of the PCK frequency, because the syn-
chronization mechanism of the asynchronous Timer/Counter4 needs at least two edges of the
PCK when the system clock is high. If the frequency of the system clock is too high, it is a risk
that data or control values are lost.

AImEl@ 140

EEEes————————————————————— A TMmega16/32U4

Figure 15-2. Timer/Counter4 Synchronization Register Block Diagram.
8-BIT DATABUS

10-registers Input synchronization Timer/Counter4 Output synchronization
registers registers
<> OCR4A > OCR4A_SI —>
TCNT4
<—>| OCR4B |—>| OCR4B_SI — _>| TCNT4_SO |—>
— OCR4C |—> OCR4C_SlI |—> TC4H
l l —>| TC4H_SO |—>
<«—>| OCR4D —| OCR4D_SI [—>]
<> TCCR4A f—>| TCCR4A S| |—>
<« TCCR4B |—> TCCR4B S| | —»
| | OCF4
—>| OCF4A_SO |—>
<« TCCR4C —{ TCCR4C_SI | —3 TeNTa
<> TCCR4D f—>»| Tccrab s |—>
OCF4B
—>| TCNT4 f—> TonTas —> —>| ocFaB SO [—
—| TCaH | TC4H_SI >
> OCF4A |—> OCF4A_SI — OCFaD
l l —>| OCF4D_SO |—>
—| OCF4B | OCF4B_SI [—>1
—>| OCF4D |—>| OCF4D_SI [—>
TOV4
- Tov4 f—>] Tovasi —> —>| TOV4_SO |—>
v A A A Y
PLLTM1:0
1="'00' i \ ‘,'
CK ! !
S | 1
| . | !
| A ! - ! I
| I >|s | .
J_V. , | I
PCK ' A I I
G : : | :
SYNC 1 1/2 CK Delay ! 1 CK Delay ! 1 CK Delay ! 1/2CKDelay I
MODE I 7] [l 7
1 1 1 ! 1
ASYNC ! ~1/2 CK Delay ! 1PCKDelay ! 1 PCK Delay ! ~1CKDelay !
MODE T > > >
1 1 1 '

15.2.5 Definitions
Many register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 0. A lower case “x” replaces the Output Com-
pare Unit, in this case Compare Unit A, B, C or D. However, when using the register or bit
defines in a program, the precise form must be used, i.e., TCNT4 for accessing Timer/Counter4
counter value and so on. The definitions in Table 15-1 are used extensively throughout the
document.

Table 15-1. Definitions
BOTTOM | The counter reaches the BOTTOM when it becomes 0.

MAX The counter reaches its MAXimum value when it becomes 0x3FF (decimal 1023).

The counter reaches the TOP value (stored in the OCR1C) when it becomes equal to the

TOP highest value in the count sequence. The TOP has a value OxOFF as default after reset.

AI“IE'.@ 141

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

15.3 Counter Unit

The main part of the Timer/Counter4 is the programmable bi-directional counter unit. Figure 15-
3 shows a block diagram of the counter and its surroundings.

Figure 15-3. Counter Unit Block Diagram
DATA BUS

- # i —» TOV4
& ¢———— Timer/Counter4 Count Enable
count (From Prescaler)
TCNT4 clear Control Logic [«——— PLLTM1:0
|
direction <+——— PCK
¢—— CK

bottom T Ttop

Signal description (internal signals):

count TCNT4 increment or decrement enable.

direction Select between increment and decrement.

clear Clear TCNT4 (set all bits to zero).

clky, Timer/Counter clock, referred to as clky, in the following.
top Signalize that TCNT4 has reached maximum value.
bottom Signalize that TCNT4 has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clky4). The timer clock is generated from an synchronous system clock or an
asynchronous PLL clock using the Clock Select bits (CS4<3:0>) and the PLL Postscaler for High
Speed Timer bits (PLLTM1:0). When no clock source is selected (CS4<3:0> = 0) the timer is
stopped. However, the TCNT4 value can be accessed by the CPU, regardless of whether clk,
is present or not. A CPU write overrides (has priority over) all counter clear or count operations.

The counting sequence of the Timer/Counter4 is determined by the setting of the WGM10 and
PWM4x bits located in the Timer/Counter4 Control Registers (TCCR4A, TCCR4C and
TCCRA4D). For more details about advanced counting sequences and waveform generation, see
“Modes of Operation” on page 149. The Timer/Counter Overflow Flag (TOV4) is set according to
the mode of operation selected by the PWM4x and WGMA40 bits. The Overflow Flag can be used
for generating a CPU interrupt.

15.3.1 Counter Initialization for Asynchronous Mode
To change Timer/Counter4 to the asynchronous mode follow the procedure below:
1. Enable PLL.
2. Wait 100ps for PLL to stabilize .
3. Poll the PLOCK bit until it is set.

4. Configure the PLLTM1:0 bits in the PLLFRQ register to enable the asynchronous mode
(different from 0:0 value).

AImEl@ 142

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

15.4 Output Compare Unit

7766F-AVR-11/10

The comparator continuously compares TCNT4 with the Output Compare Registers (OCR4A,
OCR4B, OCR4C and OCR4D). Whenever TCNT4 equals to the Output Compare Register, the
comparator signals a match. A match will set the Output Compare Flag (OCF4A, OCF4B or
OCF4D) at the next timer clock cycle. If the corresponding interrupt is enabled, the Output Com-
pare Flag generates an Output Compare interrupt. The Output Compare Flag is automatically
cleared when the interrupt is executed. Alternatively, the flag can be cleared by software by writ-
ing a logical one to its I/0O bit location. The Waveform Generator uses the match signal to
generate an output according to operating mode set by the PWM4x, WGM40 and Compare Out-
put mode (COM4x1:0) bits. The top and bottom signals are used by the Waveform Generator for
handling the special cases of the extreme values in some modes of operation (See “Modes of
Operation” on page 149.). Figure 15-4 shows a block diagram of the Output Compare unit.

Figure 15-4. Output Compare Unit, Block Diagram

8-BIT DATA BUS
-

10-BIT OCRnx 10-BIT TCNTn

JL L

| = (10-bit Comparator) |

OCFnx (Int.Req.) -

-

TOP ——» |--¢——— PWNMnx

BOTTOM —»| Waveform Generator [«—— WGMnO

FOCn ——»| <—— COMnX1:0

i

OCWnx

The OCR4x Registers are double buffered when using any of the Pulse Width Modulation
(PWM) modes. For the normal mode of operation, the double buffering is disabled. The double
buffering synchronizes the update of the OCR4x Compare Registers to either top or bottom of
the counting sequence. The synchronization prevents the occurrence of odd-length, non-sym-
metrical PWM pulses, thereby making the output glitch-free. See Figure 15-5 for an example.
During the time between the write and the update operation, a read from OCR4A, OCR4B,
OCRA4C or OCR4D will read the contents of the temporary location. This means that the most
recently written value always will read out of OCR4A, OCR4B, OCR4C or OCR4D.

AImEl@ 143

EEEes————————————————————— A TMmega16/32U4

Figure 15-5. Effects of Unsynchronized OCR Latching
Compare Value changes

Counter Value

_ . Compare Value

—I |_| |_| |_| |_| |_|_| |_| |_| | Output Compare

Waveform OCWnx

Synchronized WFnx Latch

Compare Value changes

Counter Value

- - Compare Value

—I |_| |_| |_| |_|_| |_| |_| | Output Compare

Unsynchronized WFnx Latch Glitch Wafeform OCWnx

15.4.1 Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC4x) bit. Forcing Compare Match will not set the
OCF4x Flag or reload/clear the timer, but the Waveform Output (OCW4x) will be updated as if a
real Compare Match had occurred (the COM4x1:0 bits settings define whether the Waveform
Output (OCW4x) is set, cleared or toggled).

15.4.2 Compare Match Blocking by TCNT4 Write
All CPU write operations to the TCNT4 Register will block any Compare Match that occur in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR4x to be initial-
ized to the same value as TCNT4 without triggering an interrupt when the Timer/Counter clock is
enabled.

15.4.3 Using the Output Compare Unit
Since writing TCNT4 in any mode of operation will block all Compare Matches for one timer
clock cycle, there are risks involved when changing TCNT4 when using the Output Compare
Unit, independently of whether the Timer/Counter is running or not. If the value written to TCNT4
equals the OCR4x value, the Compare Match will be missed, resulting in incorrect waveform
generation. Similarly, do not write the TCNT4 value equal to BOTTOM when the counter is
down-counting.

The setup of the Waveform Output (OCW4x) should be performed before setting the Data Direc-
tion Register for the port pin to output. The easiest way of setting the OCW4x value is to use the
Force Output Compare (FOC4x) strobe bits in Normal mode. The OC4x keeps its value even
when changing between Waveform Generation modes.

Be aware that the COM4x1:0 bits are not double buffered together with the compare value.
Changing the COM4x1:0 bits will take effect immediately.

AImEl@ 144

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

15.5 Dead Time Generator

The Dead Time Generator is provided for the Timer/Counter4 PWM output pairs to allow driving
external power control switches safely. The Dead Time Generator is a separate block that can
be used to insert dead times (non-overlapping times) for the Timer/Counter4 complementary
output pairs OC4x and OC4x when the PWM mode is enabled and the COM4x1:0 bits are set to
“01”. The sharing of tasks is as follows: the Waveform Generator generates the Waveform Out-
put (OCW4x) and the Dead Time Generator generates the non-overlapping PWM output pair
from the Waveform Output. Three Dead Time Generators are provided, one for each PWM out-
put. The non-overlap time is adjustable and the PWM output and it's complementary output are
adjusted separately, and independently for both PWM outputs.

Figure 15-6. Output Compare Unit, Block Diagram

top OCnx > ogrr:x
OCWnx

bottom .| \Waveform Generator » Dead Time Generator

FOCn — OCnx p-| OCnx

FT 7.7 17 ©&

PWMnx WGMn0 COMnx CLOCK DTPSn DTnH DTnL

The Dead Time Generation is based on the 4-bit down counters that count the dead time, as
shown in Figure 15-7. There is a dedicated prescaler in front of the Dead Time Generator that
can divide the Timer/Counter4 clock (PCK or CK) by 1, 2, 4 or 8. This provides for large range of
dead times that can be generated. The prescaler is controlled by two control bits DTPS41..40.
The block has also a rising and falling edge detector that is used to start the dead time counting
period. Depending on the edge, one of the transitions on the rising edges, OC4x or OC4x is
delayed until the counter has counted to zero. The comparator is used to compare the counter
with zero and stop the dead time insertion when zero has been reached. The counter is loaded
with a 4-bit DT4H or DT4L value from DT4 I/O register, depending on the edge of the Waveform
Output (OCW4x) when the dead time insertion is started. The Output Compare Output are
delayed by one timer clock cycle at minimum from the Waveform Output when the Dead Time is
adjusted to zero. The outputs OC4x and OC4x are inverted, if the PWM Inversion Mode bit
PWM4X is set. This will also cause both outputs to be high during the dead time.

Figure 15-7. Dead Time Generator
PWMnX

COMPARATOR \I\
| OCnx
A —
CK OR PCK \ 4
CLOCK

DEAD TIME
> PRE-SCALER »>| CLOCK CONTROL P 4-BIT COUNTER

A A A A A FD;DE OCnx

J_ —|_ PWMnX

DTPSn
DTnH
DTnL

TCCRnB REGISTER DTn I/O REGISTER
OCWnx A I I A
v v DATA BUS (8-bit)

A

AImEl@ 145

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

The length of the counting period is user adjustable by selecting the dead time prescaler setting
by using the DTPS41:40 control bits, and selecting then the dead time value in I/O register DT4.
The DT4 register consists of two 4-bit fields, DT4H and DT4L that control the dead time periods
of the PWM output and its' complementary output separately in terms of the number of pres-
caled dead time generator clock cycles. Thus the rising edge of OC4x and OC4x can have
different dead time periods as the t,,,_overiap / rising edge IS @djusted by the 4-bit DT4H value and the
tron-overlap / falling edge 1S @djusted by the 4-bit DT4L value.

Figure 15-8. The Complementary Output Pair, COM4x1:0 = 1

OCWnx

OCnx

1

1

1
1 1
1 1
OCnx —— :
(COMnx = 1)

—P:ﬂ——hﬂ—

tnon-overlap / rising edge t non-overlap / falling edge

15.6 Compare Match Output Unit
The Compare Output Mode (COM4x1:0) bits have two functions. The Waveform Generator uses
the COM4x1:0 bits for defining the inverted or non-inverted Waveform Output (OCW4x) at the
next Compare Match. Also, the COM4x1:0 bits control the OC4x and OC4x pin output source.
Figure 15-9 shows a simplified schematic of the logic affected by the COM4x1:0 bit setting. The
I/O Registers, 1/0 bits, and 1/O pins in the figure are shown in bold. Only the parts of the general
I/0O Port Control Registers (DDR and PORT) that are affected by the COM4x1:0 bits are shown.

In Normal Mode (non-PWM) the Dead Time Generator is disabled and it is working like a syn-
chronizer: the Output Compare (OC4x) is delayed from the Waveform Output (OCW4x) by one
timer clock cycle. Whereas in Fast PWM Mode and in Phase and Frequency Correct PWM
Mode when the COM4x1:0 bits are set to “01” both the non-inverted and the inverted Output
Compare output are generated, and an user programmable Dead Time delay is inserted for
these complementary output pairs (OC4x and OC4x). The functionality in PWM modes is similar
to Normal mode when any other COM4x1:0 bit setup is used. When referring to the OC4x state,
the reference is for the Output Compare output (OC4x) from the Dead Time Generator, not the
OC4x pin. If a system reset occur, the OC4x is reset to “0”.

The general 1/0 port function is overridden by the Output Compare (OC4x / OC4x) from the
Dead Time Generator if either of the COM4x1:0 bits are set. However, the OC4x pin direction
(input or output) is still controlled by the Data Direction Register (DDR) for the port pin. The Data
Direction Register bit for the OC4x and OC4x pins (DDR_OC4x and DDR_OC4x) must be set as
output before the OC4x and OC4x values are visible on the pin. The port override function is
independent of the Output Compare mode.

The design of the Output Compare Pin Configuration logic allows initialization of the OC4x state
before the output is enabled. Note that some COM4x1:0 bit settings are reserved for certain
modes of operation. For Output Compare Pin Configurations refer to Table 15-2 on page 151,
Table 15-3 on page 152, Table 15-4 on page 154, and Table 15-5 on page 155.

AImEl@ 146

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 15-9. Compare Match Output Unit, Schematic

clkyo WGM41
OC40E1:0 Output Compare
A COM4A1:0 Pin Configuration
»D Q
PORTC6 \L
— > 0
—»1 —
_ w1 OC4A
»D Q 0 PIN
DDRC6 >
o OCW4A —1 OC4A
D Q k| Dead Time Q
PORTC7 ZZTn__ N GeneratorA @ | _OC4A 1 ? OCaA
—_— o | PIN
»D Q
DDRC7 WGM41
| OC40E3:2 Output Compare
COM4B1:0 Pin Configuration
»D Q
PORTB5 \L
| 1 - 1
(%) »|0 oc4B
2 »D Q - 0 PIN
< DDRB5 >
2l]
a
ocw4B — OC4B P
=D Q eIk Dead Time Q >
PORTB6 ZZTn__ N Generator B @ | OC4B oo ™11 /\[0caB
- o PIN
»D Q
DDRB6 WGM41
L OC40E5:4 Output Compare
COM4D1:0 Pin Configuration
»D Q
PORTD6 \L
— 2
{1 L B _
0 - ocap
»D Q 0 PIN
DDRD6 >
oCcw4D —] oca _
»D Q olk Dead Time Q > 1
PORTD? Z8Tn N GeneratorD q | OC4D >0 1 F oc4p
L | 0 PIN
»D Q
\j DDRD7

15.6.1 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM4x1:0 bits differently in Normal mode and PWM modes.
For all modes, setting the COM4x1:0 = 0 tells the Waveform Generator that no action on the
OCW4x Output is to be performed on the next Compare Match. For compare output actions in
the non-PWM modes refer to Table 15-6 on page 162. For fast PWM mode, refer to Table 15-7
on page 162, and for the Phase and Frequency Correct PWM refer to Table 15-8 on page 163.
A change of the COM4x1:0 bits state will have effect at the first Compare Match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the

FOC4x strobe bits.
A|IIIEI. 147
Y)

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

15.6.2 Enhanced Compare/PWM mode

7766F-AVR-11/10

When the bit ENHC4 of TCCRA4E register is set, the Enhanced Compare/PWM mode is enabled.
This mode allows user to add an accuracy bit to Output Compare Register OCR4A, OCR4B and
OCRA4D. Like explained previously, a compare condition appears when one of the three Output
Compare Registers (OCR4A/B/D) matches the value of TCNT4 (10-bits resolution). In basic
PWM Mode, the corresponding enabled output toggles on the Compare Match. The Enhanced
Compare/PWM mode introduces a bit that determines on which internal clock edge the Com-
pare Match condition is actually signalled. That means that the corresponding outputs will toggle
on the standard clock edge (like in Normal mode) if the LSB of OCR4A/B/D is ‘0’, or on the oppo-
site (next) edge if the LSB is ‘1.

User will notice that between Normal and Enhanced PWM modes, the output frequency will be
identical, while the PWM resolution will be better in second case.

Writing to the Output Compare registers OCR4A/B/D or reading them will be identical in both
modes. In Enhanced mode, user must just consider that the TC4H register can be up to 3-bits
wide (and have the same behavior than during 2-bits operation). That will concern OCR4A,
OCR4B and OCR4D registers accesses only. Indeed, the OCR4C register must not include the
additional accuracy bit, and remains in the resolution that determines the output signal period.

Figure 15-10. How register access works in Enhanced mode

(TC4H) (OCR4A/B/D)
1019 |8 716|514 |13]2]|1]0
\\ \\\\\\\ User Interface Side
Timer Logic Side
True
9 716|514]|3|2(|11]0
ocraasp | ° |8
o
%)
—
Y =
Output Compare Module A/B/D
Waveform Generation
TCNT4<9:0> —>
OCR4C<9:0> —> Enhanced
Configuration —» Mode «
bits <«—— ENHC4

|

Pin Toggle

That figure shows that the true OCR4A/B/D value corresponds to the value loaded by the user
shifted on the right in order to transfer the least significant bit directly to the Waveform genera-
tion module.

The maximum available resolution is 11-bits, but any other resolution can be specified. For
example, a 8-bits resolution will allow to obtain the same frequency than a Normal PWM mode
with 7-bits resolution.

Example:

— PLL Postcaler output = 64 MHz, No Prescaler on Timer/Counter4.

— Setting OCR4C = 0x7F determines a full 7-bits theoretical resolution, and so a
500kHz output frequency.

AImEl@ 148

EEEes————————————————————— A TMmega16/32U4

— Setting OCR4A = 0x85 (= b’10000101’) signifies that the true value of “Compare A”
register is 0x42 (b’01000010’) and that the Enhanced bit is set. That means that the
duty cycle obtained (51.95%) will be the intermediate value between duty cycles that
can be obtained by 0x42 and 0x43 Compare values (51.56%, 52.34%).

15.7 Synchronous update

To avoid unasynchronous and incoherent values in a cycle, if a synchronous update of one of
several values is necessary, all values can be updated at the same time at the end of the PWM
cycle by the Timer controller. The new set of values is calculated by software and the effective
update can be initiated by software.

Figure 15-11. Lock feature and Synchronous update
TLOCK4=1 TLOCK4=0

Regulation Loop

Calculation v Request for an
l | Writing to Timer | Update
Registers Set

Cycle with
Setj

Cycle with Cycle with Cycle with Cycle with
| Seti | Seti . Seti . Seti
I | 1 1

-, -

In normal operation, each write to a Compare register is effective at the end of the current cycle.
But some cases require that two or more Compare registers are updated synchronously, and
that may not be always possible, mostly at high speed PWM frequencies. That may result in
some PWM periods with incoherent values.

When using the Lock feature (TLOCK4=1), the values written to the Compare registers are not
effective and temporarily buffered. When releasing the TLOCK4 bit, the update is initiated and
the new whole set of values will be loaded at the end of the current PWM cycle.

See Section 15.12.5 "TCCR4E — Timer/Counter4 Control Register E” on page 169.

15.8 Modes of Operation

15.8.1

Normal Mode

7766F-AVR-11/10

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (bits PWM4x and WGM40) and
Compare Output mode (COM4x1:0) bits. The Compare Output mode bits do not affect the
counting sequence, while the Waveform Generation mode bits do. The COM4x1:0 bits control
whether the PWM output generated should be inverted, non-inverted or complementary. For
non-PWM modes the COM4x1:0 bits control whether the output should be set, cleared, or tog-
gled at a Compare Match.

The simplest mode of operation is the Normal mode (PWM4x = 0), the counter counts from
BOTTOM to TOP (defined as OCR4C) then restarts from BOTTOM. The OCR4C defines the
TOP value for the counter, hence also its resolution, and allows control of the Compare Match
output frequency. In toggle Compare Output Mode the Waveform Output (OCW4x) is toggled at
Compare Match between TCNT4 and OCR4x. In non-inverting Compare Output Mode the

AImEl@ 149

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

Waveform Output is cleared on the Compare Match. In inverting Compare Output Mode the
Waveform Output is set on Compare Match.

The timing diagram for the Normal mode is shown in Figure 15-12. The counter value (TCNT4)
that is shown as a histogram in the timing diagram is incremented until the counter value
matches the TOP value. The counter is then cleared at the following clock cycle The diagram
includes the Waveform Output (OCW4x) in toggle Compare Mode. The small horizontal line
marks on the TCNT4 slopes represent Compare Matches between OCR4x and TCNT4.

Figure 15-12. Normal Mode, Timing Diagram

TOVn Interrupt Flag Set

OCnx Interrupt Flag Set

TCNTn ; ‘
v v vy v vy v
OCWnx
(COMnNx=1) J I— | |_|
Period 1 ‘I 2 ‘I 3 ‘I 4 ‘I

The Timer/Counter Overflow Flag (TOV4) is set in the same clock cycle as the TCNT4 becomes
zero. The TOV4 Flag in this case behaves like a 11th bit, except that it is only set, not cleared.
However, combined with the timer overflow interrupt, that automatically clears the TOV4 Flag,
the timer resolution can be increased by software. There are no special cases to consider in the
Normal mode, a new counter value can be written anytime.

The Output Compare Unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time. For generating a waveform, the OCW4x output can be set to
toggle its logical level on each Compare Match by setting the Compare Output mode bits to tog-
gle mode (COM4x1:0 = 1). The OC4x value will not be visible on the port pin unless the data
direction for the pin is set to output. The waveform generated will have a maximum frequency of
focax = fota/4 Wwhen OCRA4C is set to zero. The waveform frequency is defined by the following
equation:

f _ fokTa
0C4x ™ 2.(1+ OCR4C)

Resolution shows how many bit is required to express the value in the OCRA4C register. It is cal-
culated by following equation:

Resolutionpy, = 10g,(OCR4C + 1).

AImEl@ 150

EEEes————————————————————— A TMmega16/32U4

The Output Compare Pin configurations in Normal Mode are described in Table 15-2.

Table 15-2. Output Compare Pin Configurations in Normal Mode

COM4x1 COM4x0 OC4x Pin OC4x Pin

0 0 Disconnected Disconnected
0 1 Disconnected 0OC4x

1 0 Disconnected 0OC4x

1 1 Disconnected OC4x

15.8.2 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (PWM4x = 1 and WGM40 = 0) provides a
high frequency PWM waveform generation option. The fast PWM differs from the other PWM
option by its single-slope operation. The counter counts from BOTTOM to TOP (defined as
OCR4C) then restarts from BOTTOM. In non-inverting Compare Output mode the Waveform
Output (OCW4x) is cleared on the Compare Match between TCNT4 and OCR4x and set at
BOTTOM. In inverting Compare Output mode, the Waveform Output is set on Compare Match
and cleared at BOTTOM. In complementary Compare Output mode the Waveform Output is
cleared on the Compare Match and set at BOTTOM.

Due to the single-slope operation, the operating frequency of the fast PWM mode can be twice
as high as the Phase and Frequency Correct PWM mode that use dual-slope operation. This
high frequency makes the fast PWM mode well suited for power regulation, rectification, and
DAC applications. High frequency allows physically small sized external components (coils,
capacitors), and therefore reduces total system cost.

The timing diagram for the fast PWM mode is shown in Figure 15-13. The counter is incre-
mented until the counter value matches the TOP value. The counter is then cleared at the
following timer clock cycle. The TCNT4 value is in the timing diagram shown as a histogram for
illustrating the single-slope operation. The diagram includes the Waveform Output in non-
inverted and inverted Compare Output modes. The small horizontal line marks on the TCNT4
slopes represent Compare Matches between OCR4x and TCNT4.

Figure 15-13. Fast PWM Mode, Timing Diagram

OCRnNx Interrupt Flag Set

OCRnx Update and
TOVn Interrupt Flag Set

TCNTn % i : |

v - I‘ { I T‘ vy
OCWnx
(COMnx1:0 = 2) | I_I
OCWnx I—I |—| |_|
(COMnx1:0 = 3)

i) N Jo sl NN) ,
Period 1 I 2 I I 4 I I 6 : 7

AImEl@ 151

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

The Timer/Counter Overflow Flag (TOV4) is set each time the counter reaches TOP. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.4In
fast PWM mode, the compare unit allows generation of PWM waveforms on the OC4x pins. Set-
ting the COM4x1:0 bits to two will produce a non-inverted PWM and setting the COM4x1:0 to
three will produce an inverted PWM output. Setting the COM4x1:0 bits to one will enable com-
plementary Compare Output mode and produce both the non-inverted (OC4x) and inverted
output (OC4x). The actual value will only be visible on the port pin if the data direction for the
port pin is set as output. The PWM waveform is generated by setting (or clearing) the Waveform
Output (OCW4x) at the Compare Match between OCR4x and TCNT4, and clearing (or setting)
the Waveform Output at the timer clock cycle the counter is cleared (changes from TOP to

BOTTOM).

The PWM frequency for the output can be calculated by the following equation:
f foikTa
oCnxPWM = T

The N variable represents the number of steps in single-slope operation. The value of N equals
either to the TOP value.

The extreme values for the OCR4C Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR4C is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR4C equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COM4x1:0
bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting the Waveform Output (OCW4x) to toggle its logical level on each Compare Match
(COM4x1:0 = 1). The waveform generated will have a maximum frequency of focy = fo74/4 When
OCRA4C is set to three.

The general I/O port function is overridden by the Output Compare value (OC4x / OC4x) from
the Dead Time Generator, if either of the COM4x1:0 bits are set and the Data Direction Register
bits for the OC4X and OC4X pins are set as an output. If the COM4x1:0 bits are cleared, the
actual value from the port register will be visible on the port pin. The Output Compare Pin config-
urations are described in Table 15-3.

Table 15-3. Output Compare Pin Configurations in Fast PWM Mode

COM4x1 COM4x0 OC4x Pin OC4x Pin

0 0 Disconnected Disconnected
0 1 OC4x OC4x

1 0 Disconnected OC4x

1 1 Disconnected OC4x

15.8.3 Phase and Frequency Correct PWM Mode
The Phase and Frequency Correct PWM Mode (PWM4x = 1 and WGM40 = 1) provides a high
resolution Phase and Frequency Correct PWM waveform generation option. The Phase and
Frequency Correct PWM mode is based on a dual-slope operation. The counter counts repeat-
edly from BOTTOM to TOP (defined as OCR4C) and then from TOP to BOTTOM. In non-
inverting Compare Output Mode the Waveform Output (OCW4x) is cleared on the Compare

AImEl@ 152

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

Match between TCNT4 and OCR4x while upcounting, and set on the Compare Match while
down-counting. In inverting Output Compare mode, the operation is inverted. In complementary
Compare Output Mode, the Waveform Output is cleared on the Compare Match and set at BOT-
TOM. The dual-slope operation has lower maximum operation frequency than single slope
operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes
are preferred for motor control applications.

The timing diagram for the Phase and Frequency Correct PWM mode is shown on Figure 15-14
in which the TCNT4 value is shown as a histogram for illustrating the dual-slope operation. The
counter is incremented until the counter value matches TOP. When the counter reaches TOP, it
changes the count direction. The TCNT4 value will be equal to TOP for one timer clock cycle.
The diagram includes the Waveform Output (OCW4x) in non-inverted and inverted Compare
Output Mode. The small horizontal line marks on the TCNT4 slopes represent Compare
Matches between OCR4x and TCNT4.

Figure 15-14. Phase and Frequency Correct PWM Mode, Timing Diagram

OCnx Interrupt Flag Set

OCRnx Update
TOVn Interrupt Flag Set

TCNTn

OCWnx
(COMnx = 3)

Period 1 Je

Yo ‘
OCWn
ooy |
[]
l.
[

The Timer/Counter Overflow Flag (TOV4) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In the Phase and Frequency Correct PWM mode, the compare unit allows generation of PWM
waveforms on the OC4x pins. Setting the COM4x1:0 bits to two will produce a non-inverted
PWM and setting the COM4x1:0 to three will produce an inverted PWM output. Setting the
COM4A1:0 bits to one will enable complementary Compare Output mode and produce both the
non-inverted (OC4x) and inverted output (OC4x). The actual values will only be visible on the
port pin if the data direction for the port pin is set as output. The PWM waveform is generated by
clearing (or setting) the Waveform Output (OCW4x) at the Compare Match between OCR4x and
TCNT4 when the counter increments, and setting (or clearing) the Waveform Output at Compare
Match when the counter decrements. The PWM frequency for the output when using the Phase
and Frequency Correct PWM can be calculated by the following equation:

fCIkT4

fOCnxPCPWM N

AImEl@ 153

EEEes————————————————————— A TMmega16/32U4

15.8.4

PWM6 Mode

7766F-AVR-11/10

The N variable represents the number of steps in dual-slope operation. The value of N equals to
the TOP value.

The extreme values for the OCR4C Register represent special cases when generating a PWM
waveform output in the Phase and Frequency Correct PWM mode. If the OCR4C is set equal to
BOTTOM, the output will be continuously low and if set equal to MAX the output will be continu-
ously high for non-inverted PWM mode. For inverted PWM the output will have the opposite
logic values.

The general I/O port function is overridden by the Output Compare value (OC4x / OC4x) from
the Dead Time Generator, if either of the COM4x1:0 bits are set and the Data Direction Register
bits for the OC4X and OC4X pins are set as an output. If the COM4x1:0 bits are cleared, the
actual value from the port register will be visible on the port pin. The configurations of the Output
Compare Pins are described in Table 15-4.

Table 15-4. Output Compare pin configurations in Phase and Frequency Correct PWM Mode

COM4x1 COM4x0 OC4x Pin OC4x Pin

0 0 Disconnected Disconnected
0 1 OC4x OC4x

1 0 Disconnected OC4x

1 1 Disconnected OC4x

The PWM6 Mode (PWM4A = 1, WGM41 = 1 and WGM40 = x) provide PWM waveform genera-
tion option e.g. for controlling Brushless DC (BLDC) motors. In the PWM6 Mode the OCR4A
Register controls all six Output Compare waveforms as the same Waveform Output (OCW4A)
from the Waveform Generator is used for generating all waveforms. The PWM6 Mode also pro-
vides an Output Compare Override Enable Register (OC40E) that can be used with an instant
response for disabling or enabling the Output Compare pins. If the Output Compare Override
Enable bit is cleared, the actual value from the port register will be visible on the port pin.

The PWM6 Mode provides two counter operation modes, a single-slope operation and a dual-
slope operation. If the single-slope operation is selected (the WGMA40 bit is set to 0), the counter
counts from BOTTOM to TOP (defined as OCR4C) then restart from BOTTOM like in Fast PWM
Mode. The PWM waveform is generated by setting (or clearing) the Waveform Output (OCW4A)
at the Compare Match between OCR4A and TCNT4, and clearing (or setting) the Waveform
Output at the timer clock cycle the counter is cleared (changes from TOP to BOTTOM). The
Timer/Counter Overflow Flag (TOV4) is set each time the counter reaches the TOP and, if the
interrupt is enabled, the interrupt handler routine can be used for updating the compare value.

Whereas, if the dual-slope operation is selected (the WGMA40 bit is set to 1), the counter counts
repeatedly from BOTTOM to TOP (defined as OCR4C) and then from TOP to BOTTOM like in
Phase and Frequency Correct PWM Mode. The PWM waveform is generated by setting (or
clearing) the Waveform Output (OCW4A) at the Compare Match between OCR4A and TCNT4
when the counter increments, and clearing (or setting) the Waveform Output at the he Compare
Match between OCR4A and TCNT4 when the counter decrements. The Timer/Counter Overflow
Flag (TOV4) is set each time the counter reaches the BOTTOM and, if the interrupt is enabled,
the interrupt handler routine can be used for updating the compare value.

The timing diagram for the PWM6 Mode in single-slope operation (WGM41 = 0) when the
COMA4A1:0 bits are set to “10” is shown in Figure 15-15. The counter is incremented until the

AImEl@ 154

7766F-AVR-11/10

ATmega16/32U4

counter value matches the TOP value. The counter is then cleared at the following timer clock
cycle. The TCNT4 value is in the timing diagram shown as a histogram for illustrating the single-
slope operation. The timing diagram includes Output Compare pins OC4A and OC4A, and the
corresponding Output Compare Override Enable bits (OC40E1..0C40EO0).

Figure 15-15. PWM®6 Mode, Single-slope Operation, Timing Diagram
A A A A A 7

w VIV

Y , Y A J A Y A\

" Y Y \i Y

OCW4A SE— -

OC40E0 J‘ Vo v |

OC4APIn ___| ||
OCA4OET || H

OC4A Pin

OC40E2 | ,|_
OC4B Pin
OC40E3 J v | ; |
OC4BPin — |
OC4OE4 | ; .|
OC4D Pin
OC40ES5 |

OC4D Pin

The general I/O port function is overridden by the Output Compare value (OC4x / OC4x) from
the Dead Time Generator if either of the COM4x1:0 bits are set. The Output Compare pins can
also be overridden by the Output Compare Override Enable bits OC40ES5..0C40EQO. If an Over-
ride Enable bit is cleared, the actual value from the port register will be visible on the port pin
and, if the Override Enable bit is set, the Output Compare pin is allowed to be connected on the
port pin. The Output Compare Pin configurations are described in Table 15-5.

Table 15-5. Output Compare Pin configurations in PWM6 Mode

COM4A1 COM4A0 OC4A Pin (PC6) OC4A Pin (PC7)
0 0 Disconnected Disconnected

0 1 OC4A « OC40E0 OC4A » OC40E1
1 0 OC4A « OC40EO0 OC4A « OC40E1
1 1 OC4A » OC40EOQ OC4A « OC40E1
COM4B1 COM4B0 0OC4B Pin (PB5) OC4B Pin (PB6)
0 0 Disconnected Disconnected

0 1 OC4A « OC40E2 OC4A « OC40E3

AImEl@ 155

EEEes————————————————————— A TMmega16/32U4

Table 15-5. Output Compare Pin configurations in PWM6 Mode (Continued)
COM4A1 COM4A0 OC4A Pin (PC6) OC4A Pin (PC7)
1 0 OC4A « OC40E2 OC4A « OC40E3
1 1 OC4A « OC40E2 OC4A « OC40ES3
COM4D1 COM4D0 0OC4D Pin (PD6) 0C4D Pin (PD7)
0 0 Disconnected Disconnected
0 1 OC4A « OC40E4 OC4A « OC40E5
1 0 OC4A « OC40E4 OC4A « OC40E5
1 1 OC4A « OC40E4 OC4A « OC40E5

15.9 Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clky,) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set.

Figure 15-16 contains timing data for basic Timer/Counter operation. The figure shows the count
sequence close to the MAX value in all modes other than Phase and Frequency Correct PWM
Mode. Figure 15-17 shows the same timing data, but with the prescaler enabled, in all modes
other than Phase and Frequency Correct PWM Mode. Figure 15-18 shows the setting of
OCF4A, OCF4B and OCF4D in all modes, and Figure 15-19 shows the setting of TOV4 in
Phase and Frequency Correct PWM Mode.

Figure 15-16. Timer/Counter Timing Diagram, no Prescaling

clkeox

clk;

n
(clKkpe/1)

TCNTn X TOP -1 TOP BOTTOM BOTTOM + 1

TOVn

Figure 15-17. Timer/Counter Timing Diagram, with Prescaler (f/8)

o [[JUUUUUUULUUUUUTUGUUUUUUUg Uyt
<c?£::/8) F r r r

TCNTn

TOP -1 TOP BOTTOM BOTTOM + 1

TOVn

AImEl@ 156

7766F-AVR-11/10

ATmega16/32U4

Figure 15-18. Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (f14/8)

o TR AN
(c?iii:cTK"/& F r r r

TCNTn OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2
OCRnx OCRnx Value
OCFnx

Figure 15-19. Timer/Counter Timing Diagram, with Prescaler (f,14/8)

e
oy F r r r

TCNTn BOTTOM + 1 BOTTOM + 1 BOTTOM BOTTOM + 1

TOVn

15.10 Fault Protection Unit

The Timer/Counter4 incorporates a Fault Protection unit that can disable the PWM output pins, if
an external event is triggered. The external signal indicating an event can be applied via the
external interrupt INTO pin or alternatively, via the analog-comparator unit. The Fault Protection
unit is illustrated by the block diagram shown in Figure 15-20. The elements of the block diagram
that are not directly a part of the Fault Protection unit are gray shaded.

Figure 15-20. Fault Protection Unit Block Diagram

FAULT_PROTECTION (Int. Req.) o
v ACO* FPAC4 FPNC4 FPES4 FPEN4 >
p Analog o ¢ ¢ ¢
Sl Noise Edge Timer/Counter4
INTO | Canceler Detector

When the Fault Protection mode is enabled by the Fault Protection Enable (FPEN4) bit and a
change of the logic level (an event) occurs on the external interrupt pin (INTO), alternatively on
the Analog Comparator output (ACO), and this change confirms to the setting of the edge detec-
tor, a Fault Protection mode will be triggered. When a Fault Protection is triggered, the COM4x
bits are cleared, Output Comparators are disconnected from the PWM output pins and the
PORTB register bits are connected on the PWM output pins. The Fault Protection Enable
(FPEN4) is automatically cleared at the same system clock as the COM4nx bits are cleared. If
the Fault Protection Interrupt Enable bit (FPIE4) is set, a Fault Protection interrupt is generated
and the FPENA4 bit is cleared. Alternatively the FPEN4 bit can be polled by software to figure out
when the Timer/Counter has entered to Fault Protection mode.

AImEl@ 157

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

15.10.1 Fault Protection Trigger Source

The main trigger source for the Fault Protection unit is the external interrupt pin (INTQ). Alterna-
tively the Analog Comparator output can be used as trigger source for the Fault Protection unit.
The Analog Comparator is selected as trigger source by setting the Fault Protection Analog
Comparator (FPAC4) bit in the Timer/Counter4 Control Register (TCCR4D). Be aware that
changing trigger source can trigger a Fault Protection mode. Therefore it is recommended to
clear the FPF4 flag after changing trigger source, setting edge detector or enabling the Fault
Protection.

Both the external interrupt pin (INTO) and the Analog Comparator output (ACQO) inputs are sam-
pled using the same technique as for the TO pin (Figure 12-1 on page 89). The edge detector is
also identical. However, when the noise canceler is enabled, additional logic is inserted before
the edge detector, which increases the delay by four system clock cycles. An Input Capture can
also be triggered by software by controlling the port of the INTO pin.

15.10.2 Noise Canceler

7766F-AVR-11/10

The noise canceler improves noise immunity by using a simple digital filtering scheme. The
noise canceler input is monitored over four samples, and all four must be equal for changing the
output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Fault Protection Noise Canceler (FPNC4) bit in
Timer/Counter4 Control Register D (TCCR4D). When enabled the noise canceler introduces
additional four system clock cycles of delay from a change applied to the input. The noise can-
celer uses the system clock and is therefore not affected by the prescaler.

AImEl@ 158

EEEes————————————————————— A TMmega16/32U4

15.11 Accessing 10-Bit Registers

If 10-bit values are written to the TCNTn and OCRnA/B/C/D registers, the 10-bit registers can be
byte accessed by the AVR CPU via the 8-bit data bus using two read or write operations. The
10-bit registers have a common 2-bit Timer/Counter4 High Byte Register (TC4H) that is used for
temporary storing of the two MSBs of the 10-bit access. The same TC4H register is shared
between all 10-bit registers. Accessing the low byte triggers the 10-bit read or write operation.
When the low byte of a 10-bit register is written by the CPU, the high byte stored in the TC4H
register, and the low byte written are both copied into the 10-bit register in the same clock cycle.
When the low byte of a 10-bit register is read by the CPU, the high byte of the 10-bit register is
copied into the TC4H register in the same clock cycle as the low byte is read.

To do a 10-bit write, the high byte must be written to the TC4H register before the low byte is
written. For a 10-bit read, the low byte must be read before the high byte.

The following code examples show how to access the 10-bit timer registers assuming that no
interrupts updates the TC4H register. The same principle can be used directly for accessing the
OCRNA/B/C/C/D registers.

Assembly Code Example

; Set TCNTn to O0x01FF
1dirl7,0x01

1di rl6, OxXFF

out TCnH, r17

out TCNTh, rl6

; Read TCNTNn into rl7:rl6
in rl6,TCNTn

in rl7,TCnH

C Code Example

unsigned int i;

/* Set TCNTn to 0x01lFF */
TCnH = 0x01;

TCNTn = OxFF;

/* Read TCNTn into i */

i = TCNTn;

i |= ((unsigned int)TCnH << 8);

Note: 1. The example code assumes that the part specific header file is included.
For I/O registers located in extended I/0 map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended 1/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

AImEl@ 159

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

It is important to notice that accessing 10-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 10-bit register, and the interrupt code
updates the TC4H register by accessing the same or any other of the 10-bit timer registers, then
the result of the access outside the interrupt will be corrupted. Therefore, when both the main
code and the interrupt code update the TC4H register, the main code must disable the interrupts
during the 16-bit access.

The following code examples show how to do an atomic read of the TCNTn register contents.
Reading any of the OCRnA/B/C/D registers can be done by using the same principle.

Assembly Code Example

TIM1_ReadTCNTN:
; Save global interrupt flag
in rl8, SREG
; Disable interrupts
cli
; Read TCNTNn into rl7:rl6
in rl6,TCNTn
in rl7,TCnH
; Restore global interrupt flag
out SREG, rl8

ret

C Code Example

unsigned int TIM1_ReadTCNTn(void)
{
unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;

/* Disable interrupts */

_CLI();

/* Read TCNTn into i */

i = TCNTn;

i |= ((unsigned int)TCnH << 8);

/* Restore global interrupt flag
SREG = sreg;

return 1i;

Note: 1. The example code assumes that the part specific header file is included.
For I/O registers located in extended I/0 map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

AImEl@ 160

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

The following code examples show how to do an atomic write of the TCNTn register contents.
Writing any of the OCRnA/B/C/D registers can be done by using the same principle.

Assembly Code Example

TIM1_WriteTCNTN:
; Save global interrupt flag
in rl8, SREG
; Disable interrupts
cli
; Set TCNTn to rl7:rl6
out TCnH, r17
out TCNTh, rl6
; Restore global interrupt flag
out SREG, rl8

ret

C Code Example

void TIM1_WriteTCNTn(unsigned int i)
{
unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;

/* Disable interrupts */

_CLI();

/* Set TCNTn to i */
TCnH = (i >> 8);

TCNTn = (unsigned char)i;

/* Restore global interrupt flag */
SREG = sreg;

Note: 1. The example code assumes that the part specific header file is included.
For I/O registers located in extended I/0 map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example requires that the r17:r16 register pair contains the value to be writ-
ten to TCNTn.

15.11.1 Reusing the temporary high byte register

If writing to more than one 10-bit register where the high byte is the same for all registers written,
then the high byte only needs to be written once. However, note that the same rule of atomic
operation described previously also applies in this case.

AImEl@ 161

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

15.12 Register Description

15.12.1 TCCRA4A - Timer/Counter4 Control Register A

7766F-AVR-11/10

Bit 7 6 5 4 3 2 1 0

| COM4A1 | COMA4A0 | COM4B1 | COM4BO FOCA4A FOC4B PWM4A PWM4B | TCCRA4A
Read/Write R/W R/W R/W R/W W w R/W R/W
Initial value 0 0 0 0 0 0 0 0

¢ Bits 7,6 - COM4A1, COM4A0: Comparator A Output Mode, Bits 1 and 0

These bits control the behavior of the Waveform Output (OCW4A) and the connection of the
Output Compare pin (OC4A). If one or both of the COM4A1:0 bits are set, the OC4A output
overrides the normal port functionality of the I/O pin it is connected to. The complementary
OC4B output is connected only in PWM modes when the COM4A1:0 bits are set to “01”. Note
that the Data Direction Register (DDR) bit corresponding to the OC4A and OC4A pins must be
set in order to enable the output driver.

The function of the COM4A1:0 bits depends on the PWM4A, WGM40 and WGM41 bit settings.
Table 15-6 shows the COM4A1:0 bit functionality when the PWM4A bit is set to Normal Mode
(non-PWM).

Table 15-6. Compare Output Mode, Normal Mode (non-PWM)

COM4A1..0 | OCW4A Behavior OC4A Pin OC4A Pin
00 Normal port operation. Disconnected Disconnected
01 Toggle on Compare Match. Connected Disconnected
10 Clear on Compare Match. Connected Disconnected
11 Set on Compare Match. Connected Disconnected

Table 15-7 shows the COM4A1:0 bit functionality when the PWM4A, WGM40 and WGM41 bits
are set to fast PWM mode.

Table 15-7. Compare Output Mode, Fast PWM Mode
COM4A1..0 | OCW4A Behavior OC4A OC4A

00 Normal port operation. Disconnected Disconnected

Cleared on Compare Match.
1
0 Set when TCNT4 = 0x000. Connected Connected

Cleared on Compare Match. .
1 D
0 Set when TCNT4 = 0x000. Connected isconnected

Set on Compare Match.)
11 D
Cleared when TCNT4 = 0x000. Connected isconnected

AImEl@ 162

EEEes————————————————————— A TMmega16/32U4

Table 15-8 shows the COM4A1:0 bit functionality when the PWM4A, WGM40 and WGM41 bits
are set to Phase and Frequency Correct PWM Mode.

Table 15-8. Compare Output Mode, Phase and Frequency Correct PWM Mode
COM1A1..0 | OCW1A Behavior OC4A Pin OC4A Pin

00 Normal port operation. Disconnected Disconnected

01 Cleared on Compare Match when up-cour'mng. Connected Connected
Set on Compare Match when down-counting.

10 Cleared on Compare Match when up-cour'mng. Connected Disconnected
Set on Compare Match when down-counting.

11 Set on Compare Match when up-counting. . Connected Disconnected
Cleared on Compare Match when down-counting.

Table 15-9 shows the COM4A1:0 bit functionality when the PWM4A, WGM40 and WGM41 bits
are set to single-slope PWM®6 Mode. In the PWM6 Mode the same Waveform Output (OCW4A)
is used for generating all waveforms and the Output Compare values OC4A and OC4A are con-

nected on OC4x and OC4x pins as described below.

Table 15-9. Compare Output Mode, Single-Slope PWM6 Mode
COM4A1..0 | OCW4A Behavior OC4x Pin OC4x Pin

00 Normal port operation. Disconnected Disconnected
Cleared on Compare Match. —

o1 Set when TCNT4 = 0x000. OC4A OC4A
Cleared on Compare Match.

10 Set when TCNT4 = 0x000. OC4A OC4A
Set on Compare Match.

11 4A 4A
Cleared when TCNT4 = 0x000. oc oc

Table 15-10 shows the COM4A1:0 bit functionality when the PWM4A, WGM40 and WGM41 bits
are set to dual-slope PWM6 Mode.I

Table 15-10. Compare Output Mode, Dual-Slope PWM6 Mode

COM4A1..0 | OCW4A Behavior OC4x Pin OC4x Pin

00 Normal port operation. Disconnected Disconnected

01 Cleared on Compare Match when up-cour.1ting. OC4A OCAA
Set on Compare Match when down-counting.

10 Cleared on Compare Match when up-cour.1t|ng. OC4A OC4A
Set on Compare Match when down-counting.

11 Set on Compare Match when up-counting. . OC4A OC4A
Cleared on Compare Match when down-counting.

¢ Bits 5,4 - COM4B1, COM4B0: Comparator B Output Mode, Bits 1 and 0

These bits control the behavior of the Waveform Output (OCW4B) and the connection of the
Output Compare pin (OC4B). If one or both of the COM4B1:0 bits are set, the OC4B output
overrides the normal port functionality of the 1/O pin it is connected to. The complementary
OC4B output is connected only in PWM modes when the COM4B1:0 bits are set to “01”. Note

AI“"E',® 163

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

that the Data Direction Register (DDR) bit corresponding to the OC4B pin must be set in order to
enable the output driver.

The function of the COM4B1:0 bits depends on the PWM4B and WGM40 bit settings. Table 15-
11 shows the COM4B1:0 bit functionality when the PWM4B bit is set to Normal Mode (non-

PWM).
Table 15-11. Compare Output Mode, Normal Mode (non-PWM)
COM4B1..0 | OCW4B Behavior OC4B Pin OC4B Pin
00 Normal port operation. Disconnected Disconnected
01 Toggle on Compare Match. Connected Disconnected
10 Clear on Compare Match. Connected Disconnected
11 Set on Compare Match. Connected Disconnected

Table 15-12 shows the COM4B1:0 bit functionality when the PWM4B and WGMA40 bits are set to
Fast PWM Mode.

Table 15-12. Compare Output Mode, Fast PWM Mode
COM4B1..0 | OCW4B Behavior OC4B Pin OC4B Pin

00 Normal port operation. Disconnected Disconnected

Cleared on Compare Match.
1
0 Set when TCNT4 = 0x000. Connected Connected

Cleared on Compare Match. .
! D
0 Set when TCNT4 = 0x000. Connected isconnected

Set on Compare Match.)
11 D
Cleared when TCNT4 = 0x000. Connected isconnected

Table 15-13 shows the COM4B1:0 bit functionality when the PWM4B and WGMA40 bits are set to
Phase and Frequency Correct PWM Mode.

Table 15-13. Compare Output Mode, Phase and Frequency Correct PWM Mode

COM4B1..0 | OCW4B Behavior OC4B Pin OC4B Pin

00 Normal port operation. Disconnected Disconnected
Cleared on Compare Match when up-counting.

01 P W up u. "9 Connected Connected
Set on Compare Match when down-counting.
Cleared on Compare Match when up-counting.

10 P W up u. "9 Connected Disconnected
Set on Compare Match when down-counting.
Seton C Match wh - ting.

11 et on -ompare iflaich when up-counting Connected Disconnected

Cleared on Compare Match when down-counting.

e Bit 3 - FOC4A: Force Output Compare Match 4A
The FOC4A bit is only active when the PWM4A bit specify a non-PWM mode.

Writing a logical one to this bit forces a change in the Waveform Output (OCW4A) and the Out-
put Compare pin (OC4A) according to the values already set in COM4A1 and COM4AQO. If
COM4A1 and COMA4AOQ written in the same cycle as FOC4A, the new settings will be used. The
Force Output Compare bit can be used to change the output pin value regardless of the timer

AImEl@ 164

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

value. The automatic action programmed in COM4A1 and COM4AO0 takes place as if a compare
match had occurred, but no interrupt is generated. The FOCA4A bit is always read as zero.

¢ Bit 2 - FOC4B: Force Output Compare Match 4B
The FOCA4B bit is only active when the PWM4B bit specify a non-PWM mode.

Writing a logical one to this bit forces a change in the Waveform Output (OCW4B) and the Out-
put Compare pin (OC4B) according to the values already set in COM4B1 and COM4BO0. If
COM4B1 and COM4BO0 written in the same cycle as FOC4B, the new settings will be used. The
Force Output Compare bit can be used to change the output pin value regardless of the timer
value. The automatic action programmed in COM4B1 and COM4BO0 takes place as if a compare
match had occurred, but no interrupt is generated.

The FOCA4B bit is always read as zero.

e Bit 1 - PWM4A: Pulse Width Modulator A Enable
When set (one) this bit enables PWM mode based on comparator OCR4A

e Bit 0 - PWM4B: Pulse Width Modulator B Enable
When set (one) this bit enables PWM mode based on comparator OCR4B.

15.12.2 TCCR4B - Timer/Counter4 Control Register B

7766F-AVR-11/10

Bit 7 6 5 4 3 2 1 0

| Pwmax | Psra | DTPS41 | DTPS40 Cs43 CS42 CS41 Cs40 | TCcraB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial value 0 0 0 0 0 0 0 0

e Bit 7 - PWM4X: PWM Inversion Mode
When this bit is set (one), the PWM Inversion Mode is selected and the Dead Time Generator
outputs, OC4x and OC4x are inverted.

* Bit 6 - PSR4: Prescaler Reset Timer/Counter4

When this bit is set (one), the Timer/Counter4 prescaler (TCNT4 is unaffected) will be reset. The
bit will be cleared by hardware after the operation is performed. Writing a zero to this bit will have
no effect. This bit will always read as zero.

¢ Bits 5,4 - DTPS41, DTPS40: Dead Time Prescaler Bits
The Timer/Counter4 Control Register B is a 8-bit read/write register.

The dedicated Dead Time prescaler in front of the Dead Time Generator can divide the
Timer/Counter4 clock (PCK or CK) by 1, 2, 4 or 8 providing a large range of dead times that can
be generated. The Dead Time prescaler is controlled by two bits DTPS41 and DTPS40 from the
Dead Time Prescaler register. These bits define the division factor of the Dead Time prescaler.
The division factors are given in Table 15-14.

AImEl@ 165

EEEes————————————————————— A TMmega16/32U4

Table 15-14. Division factors of the Dead Time prescaler

DTPS41 DTPS40 Prescaler divides the T/C4 clock by
0 0 1x (no division)

0 1 2x

1 0 4x

1 1 8x

¢ Bits 3..0-CS43, CS42, CS41, CS40: Clock Select Bits 3,2,1,and 0
The Clock Select bits 3, 2, 1, and 0 define the prescaling source of Timer/Counter4.

Table 15-15. Timer/Counter4 Prescaler Select

CS43 | CS42 | CS41 | CS40 | Asynchronous Clocking Mode | Synchronous Clocking Mode
0 0 0 0 T/C4 stopped T/C4 stopped
0 0 0 1 PCK CK

0 0 1 0 PCK/2 CK/2

0 0 1 1 PCK/4 CK/4

0 1 0 0 PCK/8 CK/8

0 1 0 1 PCK/16 CK/16

0 1 1 0 PCK/32 CK/32

0 1 1 1 PCK/64 CK/64

1 0 0 0 PCK/128 CK/128

1 0 0 1 PCK/256 CK/256

1 0 1 0 PCK/512 CK/512

1 0 1 1 PCK/1024 CK/1024

1 1 0 0 PCK/2048 CK/2048

1 1 0 1 PCK/4096 CK/4096

1 1 1 0 PCK/8192 CK/8192

1 1 1 1 PCK/16384 CK/16384

The Stop condition provides a Timer Enable/Disable function.

15.12.3 TCCRA4C - Timer/Counter4 Control Register C

Bit 7 6 5 4 3 2 1 0

I COM4A1S | COM4A0S | COM4B1S | COMABOS | COM4D1 | COM4DO0O FOC4D PWM4D I TCCR4C
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial value 0 0 0 0 0 0 0 0

¢ Bits 7,6 - COM4A1S, COM4A0S: Comparator A Output Mode, Bits 1 and 0
These bits are the shadow bits of the COM4A1 and COM4AO bits that are described in the sec-
tion “TCCRA4A — Timer/Counter4 Control Register A” on page 162.

AImEl@ 166

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

¢ Bits 5,4 - COM4B1S, COM4B0S: Comparator B Output Mode, Bits 1 and 0
These bits are the shadow bits of the COM4A1 and COMA4AO bits that are described in the sec-
tion “TCCR4A — Timer/Counter4 Control Register A” on page 162.

¢ Bits 3,2 - COM4D1, COM4D0: Comparator D Output Mode, Bits 1 and 0

These bits control the behavior of the Waveform Output (OCW4D) and the connection of the
Output Compare pin (OC4D). If one or both of the COM4D1:0 bits are set, the OC4D output
overrides the normal port functionality of the 1/O pin it is connected to. The complementary
OC4D output is connected only in PWM modes when the COM4D1:0 bits are set to “01”. Note
that the Data Direction Register (DDR) bit corresponding to the OC4D pin must be set in order to
enable the output driver.

The function of the COM4D1:0 bits depends on the PWM4D and WGM40 bit settings. Table 15-
16 shows the COM4D1:0 bit functionality when the PWM4D bit is set to a Normal Mode (non-

PWM).
Table 15-16. Compare Output Mode, Normal Mode (non-PWM)
COM4D1..0 | OCW4D Behavior OC4D Pin 0C4D Pin
00 Normal port operation. Disconnected Disconnected
01 Toggle on Compare Match. Connected Disconnected
10 Clear on Compare Match. Connected Disconnected
11 Set on Compare Match. Connected Disconnected

Table 15-17 shows the COM4D1:0 bit functionality when the PWM4D and WGM40 bits are set
to Fast PWM Mode.

Table 15-17. Compare Output Mode, Fast PWM Mode
COM4D1..0 | OCW4D Behavior OC4D Pin OC4D Pin

00 Normal port operation. Disconnected Disconnected

Cleared on Compare Match.
o1 Set when TCNT4 = 0x000. Connected Connected

Cleared on Compare Match. _
10 C ted D ted
Set when TCNT4 = 0x000. onnecte isconnecte

Set on Compare Match. _
R C ted D ted
Clear when TCNT4 = 0x000. onnecte isconnecte

Table 15-18 on page 168 shows the COM4D1:0 bit functionality when the PWM4D and WGM40
bits are set to Phase and Frequency Correct PWM Mode.

AImEl@ 167

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 15-18. Compare Output Mode, Phase and Frequency Correct PWM Mode
COM4D1..0 | OCW4D Behavior 0OC4D Pin 0OC4D Pin

00 Normal port operation. Disconnected Disconnected

Cleared on Compare Match when up-counting.

01 Connected Connected
Set on Compare Match when down-counting.
Cl d Match wh - ting.
10 eared on Compare Match when up cour.1 ing Connected Disconnected
Set on Compare Match when down-counting.
t Match wh - ting.
11 Set on Compare Match when up-counting Connected Disconnected

Cleared on Compare Match when down-counting.

e Bit1 - FOC4D: Force Output Compare Match 4D
The FOC4D bit is only active when the PWM4D bit specify a non-PWM mode.

Writing a logical one to this bit forces a change in the Waveform Output (OCW4D) and the Out-
put Compare pin (OC4D) according to the values already set in COM4D1 and COM4DO0. If
COM4D1 and COM4DO0 written in the same cycle as FOC4D, the new settings will be used. The
Force Output Compare bit can be used to change the output pin value regardless of the timer
value. The automatic action programmed in COM4D1 and COM4DO0 takes place as if a compare
match had occurred, but no interrupt is generated. The FOC4D bit is always read as zero.

e Bit 0 - PWMA4D: Pulse Width Modulator D Enable
When set (one) this bit enables PWM mode based on comparator OCR4D.

15.12.4 TCCRA4D - Timer/Counter4 Control Register D

Bit 7 6 5 4 3 2 1 0

| FPIE4 | FPEN4 | FPNC4 FPES4 FPAC4 FPF4 WGM41 WGM40 I TCCR4D
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial value 0 0 0 0 0 0 0 0

¢ Bit 7 - FPIE4: Fault Protection Interrupt Enable
Setting this bit (to one) enables the Fault Protection Interrupt.

¢ Bit 6— FPEN4: Fault Protection Mode Enable
Setting this bit (to one) activates the Fault Protection Mode.

¢ Bit 5 — FPNC4: Fault Protection Noise Canceler

Setting this bit activates the Fault Protection Noise Canceler. When the noise canceler is acti-
vated, the input from the Fault Protection Pin (INTO) is filtered. The filter function requires four
successive equal valued samples of the INTO pin for changing its output. The Fault Protection is
therefore delayed by four Oscillator cycles when the noise canceler is enabled.

* Bit 4 — FPES4: Fault Protection Edge Select

This bit selects which edge on the Fault Protection pin (INTO) is used to trigger a fault event.
When the FPES4 bit is written to zero, a falling (negative) edge is used as trigger, and when the
FPES4 bit is written to one, a rising (positive) edge will trigger the fault.

AImEl@ 168

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

* Bit 3 - FPACA4: Fault Protection Analog Comparator Enable

When written logic one, this bit enables the Fault Protection function in Timer/Counter4 to be
triggered by the Analog Comparator. The comparator output is in this case directly connected to
the Fault Protection front-end logic, making the comparator utilize the noise canceler and edge
select features of the Timer/Counter4 Fault Protection interrupt. When written logic zero, no con-
nection between the Analog Comparator and the Fault Protection function exists. To make the
comparator trigger the Timer/Counter4 Fault Protection interrupt, the FPIE4 bit in the
Timer/Counter4 Control Register D (TCCR4D) must be set.

¢ Bit 2- FPF4: Fault Protection Interrupt Flag

When the FPIE4 bit is set (one), the Fault Protection Interrupt is enabled. Activity on the pin will
cause an interrupt request even, if the Fault Protection pin is configured as an output. The corre-
sponding interrupt of Fault Protection Interrupt Request is executed from the Fault Protection
Interrupt Vector. The bit FPF4 is cleared by hardware when executing the corresponding inter-
rupt handling vector. Alternatively, FPF4 is cleared after a synchronization clock cycle by writing
a logical one to the flag. When the SREG I-bit, FPIE4 and FPF4 are set, the Fault Interrupt is
executed.

¢ Bits 1:0 - WGM41, WGM40: Waveform Generation Mode Bits

This bit associated with the PWM4x bits control the counting sequence of the counter, the
source for type of waveform generation to be used, see Table 15-19. Modes of operation sup-
ported by the Timer/Counter4 are: Normal mode (counter), Fast PWM Mode, Phase and
Frequency Correct PWM and PWM6 Modes.

Table 15-19. Waveform Generation Mode Bit Description

Update of | TOV4 Flag
PWM4x | WGM41..40 | Timer/Counter Mode of Operation | TOP OCR4x at | Seton
0 XX Normal OCR4C | Immediate | TOP
1 00 Fast PWM OCR4C | TOP TOP
1 01 Phase and Frequency Correct PWM | OCR4C | BOTTOM BOTTOM
1 10 PWM®6 / Single-slope OCR4C | TOP TOP
1 11 PWMB6 / Dual-slope OCR4C | BOTTOM | BOTTOM

15.12.5 TCCRA4E — Timer/Counter4 Control Register E

Bit 7 6 5 4 3 2 1 0

I TLOCK4 | ENHC4 | OC40E5 | OC40E4 | OC40E3 | OC40E2 | OC40El1l | OC40EO I TCCR4E
Read/Write R R R/W R/W R/W R/W R/W R/W
Initial value 0 0 0 0 0 0 0 0

e Bit 7 - TLOCKA4: Register Update Lock

This bit controls the Compare registers update. When this bit is set, writing to the Compare reg-
isters will not affect the output, however the values are stored and will be updated to the
Compare registers when the TLOCK4 bit will be cleared.

Refer to Section 15.7 "Synchronous update” on page 149 for more details.

AImEl@ 169

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

¢ Bit 6- ENHC4: Enhanced Compare/PWM Mode

When this bit is set, the Waveform Generation Module works in enhanced mode: the compare
registers OCR4A/B/D can welcome one more accuracy bit, while the LSB determines on which
clock edge the Compare condition is signalled and the output pin level is updated.

¢ Bits 5:0 - OC40E5:0C40EQ: Output Compare Override Enable Bits

These bits are the Output Compare Override Enable bits that are used to connect or disconnect
the Output Compare Pins in PWM6 Modes with an instant response on the corresponding Out-
put Compare Pins. The actual value from the port register will be visible on the port pin, when
the Output Compare Override Enable Bit is cleared. Table 15-20 shows the Output Compare
Override Enable Bits and their corresponding Output Compare pins.

Table 15-20. Output Compare Override Enable Bits vs. Output Compare Pins
OC40Eo0 OCA4O0E1 OCA40E2 OCA40E3 OC40E4 OC40E5
OC4A (PC6) |OC4A (PC7) |OC4B (PB5) |0OC4B (PB6) |OC4D (PD6) |0OC4D (PD7)

15.12.6 TCNT4 - Timer/Counter4

Bit 7 6 5 4 3 2 1 0
4 | wmss Lse]| TonTa
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

This 8-bit register contains the value of Timer/Counter4.

The Timer/Counter4 is realized as a 10-bit up/down counter with read and write access. Due to
synchronization of the CPU, Timer/Counter4 data written into Timer/Counter4 is delayed by one
and half CPU clock cycles in synchronous mode and at most one CPU clock cycles for asyn-
chronous mode. When a 10-bit accuracy is preferred, special procedures must be followed for
accessing the 10-bit TCNT4 register via the 8-bit AVR data bus. These procedures are
described in section “Accessing 10-Bit Registers” on page 159. Alternatively the Timer/Counter4
can be used as an 8-bit Timer/Counter. Note that the Timer/Counter4 always starts counting up
after writing the TCNT4 register.

15.12.7 TCA4H - Timer/Counter4 High Byte

Bit 7 6 5 4 3 2 1 0
| - | - - - - TC410 TC49 1C48 | TC4H

Read/Write R R R R R R R/W R/W

Initial value 0 0 0 0 0 0 0 0

The temporary Timer/Counter4 register is an 2-bit read/write register.

¢ Bits 7:3- Res: Reserved Bits
These bits are reserved bits in the ATmega16U4/ATmega32U4 and always reads as zero.

e Bits 2- TC410: Additional MSB bits for 11-bit accesses in Enhanced PWM mode

If 10-bit accuracy is used, the Timer/Counter4 High Byte Register (TC4H) is used for temporary
storing the MSB bits (TC49, TC48) of the 10-bit accesses. The same TC4H register is shared
between all 10-bit registers within the Timer/Counter4. Note that special procedures must be fol-
lowed when accessing the 10-bit TCNT4 register via the 8-bit AVR data bus. These procedures
are described in section “Accessing 10-Bit Registers” on page 159.

AIMEL 170

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

¢ Bits 1:0 - TC49, TC48: Two MSB bits of the 10-bit accesses

If 10-bit accuracy is used, the Timer/Counter4 High Byte Register (TC4H) is used for temporary
storing the MSB bits (TC49, TC48) of the 10-bit accesses. The same TC4H register is shared
between all 10-bit registers within the Timer/Counter4. Note that special procedures must be fol-
lowed when accessing the 10-bit TCNT4 register via the 8-bit AVR data bus. These procedures
are described in section “Accessing 10-Bit Registers” on page 159.

15.12.8 OCRA4A - Timer/Counter4 Output Compare Register A

Bit 7 6 5 4 3 2 1 0
| wmse | | | Lse]| ocraa

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

The output compare register A is an 8-bit read/write register.

The Timer/Counter Output Compare Register A contains data to be continuously compared with
Timer/Counter4. Actions on compare matches are specified in TCCR4A. A compare match does
only occur if Timer/Counter4 counts to the OCR4A value. A software write that sets TCNT4 and
OCR4A to the same value does not generate a compare match.

A compare match will set the compare interrupt flag OCF4A after a synchronization delay follow-
ing the compare event.

Note that, if 10-bit accuracy is used special procedures must be followed when accessing the
internal 10-bit Output Compare Registers via the 8-bit AVR data bus. These procedures are
described in section “Accessing 10-Bit Registers” on page 159.

15.12.9 OCR4B - Timer/Counter4 Output Compare Register B

Bit 7 6 5 4 3 2 1 0
| wse | | | Lse] ocras

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

The output compare register B is an 8-bit read/write register.

The Timer/Counter Output Compare Register B contains data to be continuously compared with
Timer/Counter4. Actions on compare matches are specified in TCCR4. A compare match does
only occur if Timer/Counter4 counts to the OCR4B value. A software write that sets TCNT4 and
OCR4B to the same value does not generate a compare match.

A compare match will set the compare interrupt flag OCF4B after a synchronization delay follow-
ing the compare event.

Note that, if 10-bit accuracy is used special procedures must be followed when accessing the
internal 10-bit Output Compare Registers via the 8-bit AVR data bus. These procedures are
described in section “Accessing 10-Bit Registers” on page 159.

15.12.10 OCR4C — Timer/Counter4 Output Compare Register C

Bit 7 6 5 4 3 2 1 0

| wss | | | LSB | ocra4c
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial value 1 1 1 1 1 1 1 1

AImEl@ 171

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

The output compare register C is an 8-bit read/write register.

The Timer/Counter Output Compare Register C contains data to be continuously compared with
Timer/Counter4, and a compare match will clear TCNT4. This register has the same function in
Normal mode and PWM modes.

Note that, if a smaller value than three is written to the Output Compare Register C, the value is
automatically replaced by three as it is a minimum value allowed to be written to this register.

Note that, if 10-bit accuracy is used special procedures must be followed when accessing the
internal 10-bit Output Compare Registers via the 8-bit AVR data bus. These procedures are
described in section “Accessing 10-Bit Registers” on page 159.

15.12.11 OCRA4D - Timer/Counter4 Output Compare Register D

Bit 7 6 5 4 3 2 1 0

| wss | | | LsB | oOcrap
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial value 0 0 0 0 0 0 0 0

The output compare register D is an 8-bit read/write register.

The Timer/Counter Output Compare Register D contains data to be continuously compared with
Timer/Counter4. Actions on compare matches are specified in TCCR4A. A compare match does
only occur if Timer/Counter4 counts to the OCR4D value. A software write that sets TCNT4 and
OCRA4D to the same value does not generate a compare match.

A compare match will set the compare interrupt flag OCF4D after a synchronization delay follow-
ing the compare event.

Note that, if 10-bit accuracy is used special procedures must be followed when accessing the
internal 10-bit Output Compare Registers via the 8-bit AVR data bus. These procedures are
described in section “Accessing 10-Bit Registers” on page 159.

15.12.12 TIMSK4 - Timer/Counter4 Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0

| ocEap | ocieaa | ociess | TOIE4] mimska
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial value 0 0 0 0 0 0 0 0

e Bit 7- OCIE4D: Timer/Counter4 Output Compare Interrupt Enable

When the OCIE4D bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter4 Compare Match D interrupt is enabled. The corresponding interrupt at vector
$010 is executed if a compare match D occurs. The Compare Flag in Timer/Counter4 is set
(one) in the Timer/Counter Interrupt Flag Register.

¢ Bit 6 - OCIE4A: Timer/Counter4 Output Compare Interrupt Enable

When the OCIE4A bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter4 Compare Match A interrupt is enabled. The corresponding interrupt at vector
$003 is executed if a compare match A occurs. The Compare Flag in Timer/Counter4 is set
(one) in the Timer/Counter Interrupt Flag Register.

AImEl@ 172

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

e Bit 5 - OCIE4B: Timer/Counter4 Output Compare Interrupt Enable

When the OCIE4B bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter4 Compare Match B interrupt is enabled. The corresponding interrupt at vector
$009 is executed if a compare match B occurs. The Compare Flag in Timer/Counter4 is set
(one) in the Timer/Counter Interrupt Flag Register.

¢ Bit 2 - TOIE4: Timer/Counter4 Overflow Interrupt Enable

When the TOIE4 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter4 Overflow interrupt is enabled. The corresponding interrupt (at vector $004) is
executed if an overflow in Timer/Counter4 occurs. The Overflow Flag (Timer4) is set (one) in the
Timer/Counter Interrupt Flag Register - TIFR4.

15.12.13 TIFR4 - Timer/Counter4 Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0

| ocrap | ocran | ocraB TOV4 | TiFra
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial value 0 0 0 0 0 0 0 0

e Bit 7- OCF4D: Output Compare Flag 4D

The OCF4D bit is set (one) when compare match occurs between Timer/Counter4 and the data
value in OCR4D - Output Compare Register 4D. OCF4D is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, OCF4D is cleared, after synchroniza-
tion clock cycle, by writing a logic one to the flag. When the I-bit in SREG, OCIE4D, and OCF4D
are set (one), the Timer/Counter4 D compare match interrupt is executed.

e Bit 6 - OCF4A: Output Compare Flag 4A

The OCF4A bit is set (one) when compare match occurs between Timer/Counter4 and the data
value in OCR4A - Output Compare Register 4A. OCF4A is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, OCF4A is cleared, after synchroniza-
tion clock cycle, by writing a logic one to the flag. When the I-bit in SREG, OCIE4A, and OCF4A
are set (one), the Timer/Counter4 A compare match interrupt is executed.

¢ Bit 5 - OCF4B: Output Compare Flag 4B

The OCF4B bit is set (one) when compare match occurs between Timer/Counter4 and the data
value in OCR4B - Output Compare Register 4B. OCF4B is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, OCF4B is cleared, after synchroniza-
tion clock cycle, by writing a logic one to the flag. When the I-bit in SREG, OCIE4B, and OCF4B
are set (one), the Timer/Counter4 B compare match interrupt is executed.

e Bit 2 - TOV4: Timer/Counter4 Overflow Flag

In Normal Mode and Fast PWM Mode the TOV4 bit is set (one) each time the counter reaches
TOP at the same clock cycle when the counter is reset to BOTTOM. In Phase and Frequency
Correct PWM Mode the TOV4 bit is set (one) each time the counter reaches BOTTOM at the
same clock cycle when zero is clocked to the counter.

The bit TOV4 is cleared by hardware when executing the corresponding interrupt handling vec-
tor. Alternatively, TOV4 is cleared, after synchronization clock cycle, by writing a logical one to
the flag. When the SREG I-bit, and TOIE4 (Timer/Counter4 Overflow Interrupt Enable), and
TOV4 are set (one), the Timer/Counter4 Overflow interrupt is executed.

AIMEL 173

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

15.12.14 DT4 - Timer/Counter4 Dead Time Value

7766F-AVR-11/10

Bit 7 6 5 4 3 2 1 0

I DT4H3 | DT4H2 DT4H1 DT4HO DT4L3 DT4L2 DT4L1 DT4L0 I DT4
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial value 0 0 0 0 0 0 0 0

The dead time value register is an 8-bit read/write register.

The dead time delay of all Timer/Counter4 channels are adjusted by the dead time value regis-
ter, DT4. The register consists of two fields, DT4H3..0 and DT4L3..0, one for each
complementary output. Therefore a different dead time delay can be adjusted for the rising edge
of OC4x and the rising edge of OC4x.

¢ Bits 7:4- DT4H3:DT4HO0: Dead Time Value for OC4x Output

The dead time value for the OC1x output. The dead time delay is set as a number of the pres-
caled timer/counter clocks. The minimum dead time is zero and the maximum dead time is the
prescaled time/counter clock period multiplied by 15.

e Bits 3:0- DT4L3:DT4L0: Dead Time Value for OC4x Output

The dead time value for the OC4x output. The dead time delay is set as a number of the pres-
caled timer/counter clocks. The minimum dead time is zero and the maximum dead time is the
prescaled time/counter clock period multiplied by 15.

AImEl@ 174

EEEes————————————————————— A TMmega16/32U4

16. Output Compare Modulator (OCM1CO0A)

16.1 Overview
The Output Compare Modulator (OCM) allows generation of waveforms modulated with a carrier
frequency. The modulator uses the outputs from the Output Compare Unit C of the 16-bit
Timer/Counter1 and the Output Compare Unit of the 8-bit Timer/Counter0. For more details
about these Timer/Counters see “Timer/Counter0, Timer/Counter1, and Timer/Counter3 Pres-
calers” on page 89.

Figure 16-1. Output Compare Modulator, Block Diagram

Timer/Counter 1 oc1ic
Pin
oc1C/
Timer/Counter 0 ——0cCo0 OCOA / PB7

When the modulator is enabled, the two output compare channels are modulated together as
shown in the block diagram (Figure 16-1).

16.2 Description
The Output Compare unit 1C and Output Compare unit 2 shares the PB7 port pin for output. The
outputs of the Output Compare units (OC1C and OCOA) overrides the normal PORTB7 Register
when one of them is enabled (i.e., when COMnx1:0 is not equal to zero). When both OC1C and
OCOA are enabled at the same time, the modulator is automatically enabled.

The functional equivalent schematic of the modulator is shown on Figure 16-2. The schematic
includes part of the Timer/Counter units and the port B pin 7 output driver circuit.

Figure 16-2. Output Compare Modulator, Schematic
COMA01 Vee
COMA00 Di
oo mID N [

(From Waveform Generator) —»= D Q DI 1 T
1

(From Waveform Generator) —m D Q

™~ Pin

oc1c/
OCO0A/ PB7

JU U

DDRB7
DATABUS
E—

AImEl@ 175

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

When the modulator is enabled the type of modulation (logical AND or OR) can be selected by
the PORTB7 Register. Note that the DDRB7 controls the direction of the port independent of the
COMnx1:0 bit setting.

16.2.1 Timing Example

Figure 16-3 illustrates the modulator in action. In this example the Timer/Counter1 is set to oper-
ate in fast PWM mode (non-inverted) and Timer/CounterO uses CTC waveform mode with toggle
Compare Output mode (COMnx1:0 = 1).

Figure 16-3. Output Compare Modulator, Timing Diagram

clkyo

OcC1C

(FPWM Mode) |

OCOA
(CTC Mode)

PB7
(PORTBY7 =0)

PB7
(PORTB7 = 1)

(Period)

Uy

U

I

UTUOTUUUUY
JUUUTH

)
IS TARRE AR
il

1
1

] JILL

IR

JIUUULUL

3

In this example, Timer/Counter0 provides the carrier, while the modulating signal is generated
by the Output Compare unit C of the Timer/Counter1.

The resolution of the PWM signal (OC1C) is reduced by the modulation. The reduction factor is
equal to the number of system clock cycles of one period of the carrier (OC0A). In this example
the resolution is reduced by a factor of two. The reason for the reduction is illustrated in Figure
16-3 at the second and third period of the PB7 output when PORTB7 equals zero. The period 2
high time is one cycle longer than the period 3 high time, but the result on the PB7 output is
equal in both periods.

7766F-AVR-11/10

ATMEL

176

EEEes————————————————————— A TMmega16/32U4

17. Serial Peripheral Interface — SPI
The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the
ATmegal16U4/ATmega32U4 and peripheral devices or between several AVR devices. The
ATmega16U4/ATmega32U4 SPI includes the following features:

¢ Full-duplex, Three-wire Synchronous Data Transfer
¢ Master or Slave Operation

¢ LSB First or MSB First Data Transfer

* Seven Programmable Bit Rates

* End of Transmission Interrupt Flag

¢ Write Collision Flag Protection

¢ Wake-up from Idle Mode

* Double Speed (CK/2) Master SPI Mode

USART can also be used in Master SPI mode, see “USART in SPI Mode” on page 214.

The Power Reduction SPI bit, PRSPI, in “Power Reduction Register 0 - PRR0O” on page 46 on
page 50 must be written to zero to enable SPI module.

Figure 17-1. SPI Block Diagram‘"

MISO|
y =
XTAL MSB LSB Q -
- PR ® s Q@
l 8 BIT SHIFT REGISTER O
READ DATA BUFFER C_)l
DIVIDER 4
/214/8/16/32/64/128 E
A\ O
O
y v v v CLOCK =z
SPI CLOCK (MASTER o
SELECT CLOCK —S SCK
LOGIC M
><A‘_ o y —
o x| x SS
5 5|5 - i
x [a)]
=l wl X
2% 8
3 <MSTR
SPI CONTROL +SPE
1 Qo L < o
o)
2 S 5 o Bl 85 8 EEE
»l = o w| o A 2 O O o ©
Y A4 ‘ ‘ ‘ ‘ ‘U)
|SP| STATUS REGISTER | | SPI CONTROL REGISTER
R 8 8,
Fy
v v

SPI INTERRUPT INTERNAL
REQUEST DATA BUS

Note: 1. Refer to “Pinout ATmega16U4/ATmega32U4” on page 3, and Table 10-3 on page 72 for SPI
pin placement.

The interconnection between Master and Slave CPUs with SPI is shown in Figure 17-2. The sys-
tem consists of two shift Registers, and a Master clock generator. The SPI Master initiates the

AImEl@ 177

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and
Slave prepare the data to be sent in their respective shift Registers, and the Master generates
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out — Slave In, MOSI, line, and from Slave to Master on the Master In
— Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long
as the SS pin is driven high. In this state, software may update the contents of the SPI Data
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin
until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission
Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt
is requested. The Slave may continue to place new data to be sent into SPDR before reading
the incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 17-2. SPI| Master-slave Interconnection

MSB MASTER LSB %MISO MISO% MSB SLAVE LSB
—|8 BIT SHIFT REGISTER I a * I 8 BIT SHIFT REGlSTER}T
'y : :
. iMOSI_MosIi
SHIFT

‘ ENABLE
SPI isCK scKi
CLOCK GENERATOR > Y —
iSS SS!

The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before
the entire shift cycle is completed. When receiving data, however, a received character must be
read from the SPI Data Register before the next character has been completely shifted in. Oth-
erwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the frequency of the SPI clock should never exceed f,./4.

AIMEL 178

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden
according to Table 17-1. For more details on automatic port overrides, refer to “Alternate Port
Functions” on page 70.

Table 17-1. SPI Pin Overrides")
Pin Direction, Master SPI Direction, Slave SPI
MOSI User Defined Input
MISO Input User Defined
SCK User Defined Input
SS User Defined Input
Note: 1. See “Alternate Functions of Port B” on page 72 for a detailed description of how to define the

direction of the user defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to perform a
simple transmission. DDR_SPI in the examples must be replaced by the actual Data Direction
Register controlling the SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the
actual data direction bits for these pins. E.g. if MOSI is placed on pin PB5, replace DD_MOSI
with DDB5 and DDR_SPI with DDRB.

ATMEL

179

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

Assembly Code Example!"

SPI_MasterInit:
; Set MOSI and SCK output, all others input

1di rl17, (1<<DD_MOSI) | (1<<DD_SCK)

out DDR_SPI,rl7

; Enable SPI, Master, set clock rate fck/1l6

1di 117, (1<<SPE) | (1<<MSTR) | (1<<SPRO)

out SPCR,rl7

ret

SPI_MasterTransmit:
; Start transmission of data (rlé6)
out SPDR,rl6

Wait_Transmit:

; Wait for transmission complete
sbis SPSR, SPIF

rjmp Wait_Transmit

ret

C Code Example"

void SPI_MasterInit (void)

{
/* Set MOSI and SCK output, all others input */

DDR_SPI = (1<<DD_MOSI) | (1<<DD_SCK) ;
/* Enable SPI, Master, set clock rate fck/16 */
SPCR = (1<<SPE) | (1<<MSTR) | (1<<SPRO) ;

void SPI_MasterTransmit (char cData)
{
/* Start transmission */

SPDR = cData;

/* Wait for transmission complete */

while (! (SPSR & (1<<SPIF)))

7

Note: 1. See “Code Examples” on page 8.

ATMEL

180

EEEes————————————————————— A TMmega16/32U4

The following code examples show how to initialize the SPI as a Slave and how to perform a
simple reception.

Assembly Code Example("

SPI_SlaveInit:
; Set MISO output, all others input
1di r17, (1<<DD_MISO)
out DDR_SPI,rl7
; Enable SPI
1di 117, (1<<SPE)
out SPCR,rl7

ret

SPI_SlaveReceive:
; Wait for reception complete
sbis SPSR, SPIF
rjmp SPI_SlaveReceive
; Read received data and return
in rl6,SPDR

ret

C Code Example!"

void SPI_SlaveInit (void)
{
/* Set MISO output, all others input */
DDR_SPI = (1<<DD_MISO) ;
/* Enable SPI */
SPCR = (1<<SPE) ;

char SPI_SlaveReceive (void)

{
/* Wait for reception complete */
while (! (SPSR & (1<<SPIF)))
/* Return Data Register */
return SPDR;

Note: 1. See “Code Examples” on page 8.

17.1 SS Pin Functionality
1711 Slave Mode

When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is
held low, the SPI is activated, and MISO becomes an output if configured so by the user. All

AImEl@ 181

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

171.2 Master Mode

other pins are inputs. When SS is driven high, all pins are inputs, and the SPI is passive, which
means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin
is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous
with the master clock generator. When the SS pin is driven high, the SPI slave will immediately
reset the send and receive logic, and drop any partially received data in the Shift Register.

When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the
direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI
system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the
SS pin is driven low by peripheral circuitry when the SPI is configured as a Master with the SS
pin defined as an input, the SPI system interprets this as another master selecting the SPI as a
slave and starting to send data to it. To avoid bus contention, the SPI system takes the following
actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of
the SPI becoming a Slave, the MOSI and SCK pins become inputs.
2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG
is set, the interrupt routine will be executed.
Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possi-
bility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the
MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI Master
mode.

1713 SPI Control Register - SPCR

7766F-AVR-11/10

Bit 7 6 5 4 3 2 1 0
| sPE | sPE DORD | MSTR | CPOL | CPHA | SPR1 | SPRO | SPCR

Read/Write ~ R/W RIW RW RW RIW RIW R/W RW

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if
the Global Interrupt Enable bit in SREG is set.

* Bit 6 — SPE: SPI Enable

When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.

e Bit 5 - DORD: Data Order

When the DORD bit is written to one, the LSB of the data word is transmitted first.
When the DORD bit is written to zero, the MSB of the data word is transmitted first.
¢ Bit 4 - MSTR: Master/Slave Select

This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,

AImEl@ 182

EEEes————————————————————— A TMmega16/32U4

and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.

¢ Bit 3 - CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to Figure 17-3 and Figure 17-4 for an example. The CPOL functionality is sum-
marized below:

Table 17-2. CPOL Functionality

CPOL Leading Edge Trailing Edge
0 Rising Falling
1 Falling Rising

e Bit 2 - CPHA: Clock Phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to Figure 17-3 and Figure 17-4 for an example. The CPOL
functionality is summarized below:

Table 17-3. CPHA Functionality

CPHA Leading Edge Trailing Edge
0 Sample Setup
1 Setup Sample

e Bits 1, 0 — SPR1, SPRO: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a Master. SPR1 and SPRO have
no effect on the Slave. The relationship between SCK and the Oscillator Clock frequency f.. is
shown in the following table:

Table 17-4. Relationship Between SCK and the Oscillator Frequency

17.1.4 SPI Status Register — SPSR

7766F-AVR-11/10

SPI2X SPR1 SPRO SCK Frequency

0 0 0 fosc/d

0 1 fosc/16

0 1 0 fosc/64

0 1 1 fosc/128

1 0 0 fosc/2

1 0 1 fosc/8

1 1 0 fec/32

1 1 1 fosc/64
Bit 7 6 5 4 3 2 1 0

| spiF WCOoL | - - - - - SPI2X | SPSR

Read/Write R R R R R R R R/W
Initial Value 0 0 0 0 0 0 0 0

AImEl@ 183

EEEes————————————————————— A TMmega16/32U4

e Bit 7 — SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in
SPCR is set and global interrupts are enabled. If SS is an input and is driven low when the SPI is
in Master mode, this will also set the SPIF Flag. SPIF is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the
SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

e Bit 6 — WCOL: Write COLIlision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The
WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set,
and then accessing the SPI Data Register.

¢ Bit5..1 — Res: Reserved Bits
These bits are reserved bits in the ATmega16U4/ATmega32U4 and will always read as zero.

e Bit 0 — SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI
is in Master mode (see Table 17-4). This means that the minimum SCK period will be two CPU
clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at f,;./4
or lower.

The SPI interface on the ATmega16U4/ATmega32U4 is also used for program memory and
EEPROM downloading or uploading. See page 360 for serial programming and verification.

17.1.5 SPI Data Register — SPDR

17.2 Data Modes

7766F-AVR-11/10

Bit 7 6 5 4 3 2 1 0

| wsB LSB | SPDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value X X X X X X X X Undefined

The SPI Data Register is a read/write register used for data transfer between the Register File
and the SPI Shift Register. Writing to the register initiates data transmission. Reading the regis-
ter causes the Shift Register Receive buffer to be read.

There are four combinations of SCK phase and polarity with respect to serial data, which are
determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure
17-3 and Figure 17-4. Data bits are shifted out and latched in on opposite edges of the SCK sig-
nal, ensuring sufficient time for data signals to stabilize. This is clearly seen by summarizing
Table 17-2 and Table 17-3, as done below:

AImEl@ 184

EEEes————————————————————— A TMmega16/32U4

Table 17-5. CPOL Functionality

Leading Edge Trailing eDge SPI Mode
CPOL=0, CPHA=0 Sample (Rising) Setup (Falling) 0
CPOL=0, CPHA=1 Setup (Rising) Sample (Falling) 1
CPOL=1, CPHA=0 Sample (Falling) Setup (Rising) 2
CPOL=1, CPHA=A Setup (Falling) Sample (Rising) 3

Figure 17-3. SPI Transfer Format with CPHA =0

[~ SCK (CPOL = 0)

mode 0

SCK (CPOL=1)"|
| mode 2

[~ SAMPLE |
| MOSI/MISO

[~ CHANGE 0

MOSI PIN \ >_< >_<
cmese <O N
(s

MSB first (DORD = 0) MSB Bit6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 LSB
LSB first (DORD = 1) LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit5 Bit6 MSB

JEREREREEE
SRR REEE
H_ H A H_
H_ H HH O

A
s

A

Figure 17-4. SPI Transfer Format with CPHA = 1

[~ sck (CPOL =0)
mode 1

SCK (CPOL =1)
| mode 3

[
L

[SAMPLE |
L MOSI/MISO

[~ CHANGE 0
MOSI PIN

CHANGE 0
L MISO PIN

H
H

SN ERENEEN
JEEEEEENEEEE .
H XA H R
HOLHCK H KK

\\l/\~

(s

MSB first (DORD = 0) MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 LSB
LSB first (DORD = 1) LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 MSB

AI“IE'.@ 185

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

18. USART

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a
highly flexible serial communication device. The main features are:

¢ Full Duplex Operation (Independent Serial Receive and Transmit Registers)
¢ Asynchronous or Synchronous Operation

* Flow control CTS/RTS signals hardware management

* Master or Slave Clocked Synchronous Operation

* High Resolution Baud Rate Generator

* Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits

¢ Odd or Even Parity Generation and Parity Check Supported by Hardware

¢ Data OverRun Detection

* Framing Error Detection

* Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
* Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
¢ Multi-processor Communication Mode

* Double Speed Asynchronous Communication Mode

18.1 Overview

A simplified block diagram of the USART Transmitter is shown in Figure 18-1 on page 187. CPU
accessible 1/0O Registers and 1/O pins are shown in bold.

AImEl@ 186

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 18-1. USART Block Diagram("

| 1 Clock Generator |
I UBRR[H:L] I
| osc |
[¥ [
| |
I BAUD RATE GENERATOR | I
|) |
I [syNC LoGIC PIN I
I Y »| CONTROL [*1™] *XCK
| |
FrhrF—e——— e e e e e e e e — —_
I Transmltter_iI
TX
: UDR (Transmit) CONTROL |
7 PARITY |
ol | GENERATOR |
of | PIN |
af | TRANSMIT SHIFT REGISTER CONTROL IV TxD
< -
o ___
all ! Receiver |
I » CcLOCK RX I
| RECOVERY CONTROL |
| |
I DATA PIN I
| RECEIVE SHIFT REGISTER RECOVERY [* controL [+ RxP
| |
| v |
! PARITY
: UDR (Receive) CHECKER :
[r- - ___ |
UCSRA UCSRB UCSRC

Note: 1. See “Pinout ATmega16U4/ATmega32U4” on page 3, Table 10-8 on page 77 and for USART
pin placement.

The dashed boxes in the block diagram separate the three main parts of the USART (listed from
the top): Clock Generator, Transmitter and Receiver. Control Registers are shared by all units.
The Clock Generation logic consists of synchronization logic for external clock input used by
synchronous slave operation, and the baud rate generator. The XCKn (Transfer Clock) pin is
only used by synchronous transfer mode. The Transmitter consists of a single write buffer, a
serial Shift Register, Parity Generator and Control logic for handling different serial frame for-
mats. The write buffer allows a continuous transfer of data without any delay between frames.
The Receiver is the most complex part of the USART module due to its clock and data recovery
units. The recovery units are used for asynchronous data reception. In addition to the recovery
units, the Receiver includes a Parity Checker, Control logic, a Shift Register and a two level
receive buffer (UDRn). The Receiver supports the same frame formats as the Transmitter, and
can detect Frame Error, Data OverRun and Parity Errors.

18.2 Clock Generation

The Clock Generation logic generates the base clock for the Transmitter and Receiver. The
USARTN supports four modes of clock operation: Normal asynchronous, Double Speed asyn-
chronous, Master synchronous and Slave synchronous mode. The UMSELnN bit in USART
Control and Status Register C (UCSRNC) selects between asynchronous and synchronous
operation. Double Speed (asynchronous mode only) is controlled by the U2Xn found in the

AImEl@ 187

7766F-AVR-11/10

ATmega16/32U4

UCSRnNA Register. When using synchronous mode (UMSELnN = 1), the Data Direction Register
for the XCKn pin (DDR_XCKn) controls whether the clock source is internal (Master mode) or
external (Slave mode). The XCKn pin is only active when using synchronous mode.

Figure 18-2 shows a block diagram of the clock generation logic.

Figure 18-2. Clock Generation Logic, Block Diagram

UBRR
u2Xx
fosc

oo [T 2] 2 .
A
OSC — txclk
DDR_XCK
Y ;
Sy_nc > Edge
o xcki |’> Register Detector 0 UMSEL
Pin | xcko v |1
DDR_XCK UCPOL
rxclk
Signal description:
txclk Transmitter clock (Internal Signal).
rxclk Receiver base clock (Internal Signal).
xcki Input from XCK pin (internal Signal). Used for synchronous slave
operation.
xcko Clock output to XCK pin (Internal Signal). Used for synchronous master
operation.
fosc XTAL pin frequency (System Clock).
18.2.1 Internal Clock Generation — The Baud Rate Generator

Internal clock generation is used for the asynchronous and the synchronous master modes of
operation. The description in this section refers to Figure 18-2.

The USART Baud Rate Register (UBRRn) and the down-counter connected to it function as a
programmable prescaler or baud rate generator. The down-counter, running at system clock
(fosc), is loaded with the UBRRn value each time the counter has counted down to zero or when
the UBRRLn Register is written. A clock is generated each time the counter reaches zero. This
clock is the baud rate generator clock output (= f,/(UBRRn+1)). The Transmitter divides the
baud rate generator clock output by 2, 8 or 16 depending on mode. The baud rate generator out-
put is used directly by the Receiver’s clock and data recovery units. However, the recovery units
use a state machine that uses 2, 8 or 16 states depending on mode set by the state of the
UMSELnN, U2Xn and DDR_XCKn bits.

AImEl@ 188

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 18-1 contains equations for calculating the baud rate (in bits per second) and for calculat-
ing the UBRRn value for each mode of operation using an internally generated clock source.

Table 18-1. Equations for Calculating Baud Rate Register Setting
Equation for Calculating Equation for Calculating
Operating Mode Baud Rate(") UBRR Value
f
UBRRn = —95C

16BAUD

Asynchronous Normal f
y BAUD = 0s¢

mode (U2Xn = 0)

16(UBRRN+ 1)

Asynchronous Double
Speed mode (U2Xn =

1)

f
BAUD = —0SC
8(UBRRn + 1)

f
UBRRn = —925€__
8BAUD

Synchronous Master
mode

f
BAUD = —09SC
2(UBRRN+1)

f
UBRRn 0SC_ _ 4
2BAUD

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUD Baud rate (in bits per second, bps)
fosc System Oscillator clock frequency
UBRRn Contents of the UBRRHNn and UBRRLn Registers, (0-4095)

Some examples of UBRRn values for some system clock frequencies are found in Table 18-9 on
page 210.

18.2.2 Double Speed Operation (U2Xn)
The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit only has

effect for the asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling
the transfer rate for asynchronous communication. Note however that the Receiver will in this
case only use half the number of samples (reduced from 16 to 8) for data sampling and clock
recovery, and therefore a more accurate baud rate setting and system clock are required when
this mode is used. For the Transmitter, there are no downsides.

AImEl@ 189

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

18.2.3 External Clock

External clocking is used by the synchronous slave modes of operation. The description in this
section refers to Figure 18-2 for details.

External clock input from the XCKn pin is sampled by a synchronization register to minimize the
chance of meta-stability. The output from the synchronization register must then pass through
an edge detector before it can be used by the Transmitter and Receiver. This process intro-
duces a two CPU clock period delay and therefore the maximum external XCKn clock frequency
is limited by the following equation:

fOSC

fxek <
Note that f .. depends on the stability of the system clock source. It is therefore recommended to

add some margin to avoid possible loss of data due to frequency variations.

18.2.4 Synchronous Clock Operation
When synchronous mode is used (UMSELn = 1), the XCKn pin will be used as either clock input
(Slave) or clock output (Master). The dependency between the clock edges and data sampling
or data change is the same. The basic principle is that data input (on RxDn) is sampled at the
opposite XCKn clock edge of the edge the data output (TxDn) is changed.

Figure 18-3. Synchronous Mode XCKn Timing.

UCPOL =1 XCK

w00 X Y Y Y

Sample

UCPOL =0 XCK

womo X Y Y Y

Sample

The UCPOLnN bit UCRSC selects which XCKn clock edge is used for data sampling and which is
used for data change. As Figure 18-3 shows, when UCPOLn is zero the data will be changed at
rising XCKn edge and sampled at falling XCKn edge. If UCPOLn is set, the data will be changed
at falling XCKn edge and sampled at rising XCKn edge.

18.3 Frame Formats

A serial frame is defined to be one character of data bits with synchronization bits (start and stop
bits), and optionally a parity bit for error checking. The USART accepts all 30 combinations of
the following as valid frame formats:

¢ 1 start bit

* 5,6, 7,8, or9 data bits

* no, even or odd parity bit

* 1 or 2 stop bits

AImEl@ 190

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

A frame starts with the start bit followed by the least significant data bit. Then the next data bits,
up to a total of nine, are succeeding, ending with the most significant bit. If enabled, the parity bit
is inserted after the data bits, before the stop bits. When a complete frame is transmitted, it can
be directly followed by a new frame, or the communication line can be set to an idle (high) state.
Figure 18-4 illustrates the possible combinations of the frame formats. Bits inside brackets are
optional.

Figure 18-4. Frame Formats

| FRAME |

(IDLE) \sr/ 0 X 1 X 2 X 3 X 4 X[5]X[6]X[7]X[8]X[P] /Sp1 [sz]\ (St/ IDLE)

St Start bit, always low.
(n) Data bits (0 to 8).
P Parity bit. Can be odd or even.
Sp Stop bit, always high.
IDLE No transfers on the communication line (RxDn or TxDn). An IDLE line
must be
high.

The frame format used by the USART is set by the UCSZn2:0, UPMn1:0 and USBSn bits in
UCSRNB and UCSRNC. The Receiver and Transmitter use the same setting. Note that changing
the setting of any of these bits will corrupt all ongoing communication for both the Receiver and
Transmitter.

The USART Character SiZe (UCSZn2:0) bits select the number of data bits in the frame. The
USART Parity mode (UPMn1:0) bits enable and set the type of parity bit. The selection between
one or two stop bits is done by the USART Stop Bit Select (USBSn) bit. The Receiver ignores
the second stop bit. An FE (Frame Error) will therefore only be detected in the cases where the
first stop bit is zero.

18.3.1 Parity Bit Calculation
The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the
result of the exclusive or is inverted. The relation between the parity bit and data bits is as

follows::
Peven=0,_1®...©d;®d, ®d; ®d; ®0
Peven Parity bit using even parity
podd Parity bit using odd parity
d, Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

AImEl@ 191

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

18.4 USART Initialization

The USART has to be initialized before any communication can take place. The initialization pro-
cess normally consists of setting the baud rate, setting frame format and enabling the
Transmitter or the Receiver depending on the usage. For interrupt driven USART operation, the
Global Interrupt Flag should be cleared (and interrupts globally disabled) when doing the
initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no
ongoing transmissions during the period the registers are changed. The TXCn Flag can be used
to check that the Transmitter has completed all transfers, and the RXC Flag can be used to
check that there are no unread data in the receive buffer. Note that the TXCn Flag must be
cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume asynchronous operation using polling
(no interrupts enabled) and a fixed frame format. The baud rate is given as a function parameter.
For the assembly code, the baud rate parameter is assumed to be stored in the r17:r16
Registers.

Assembly Code Example("

USART Init:
; Set baud rate
out UBRRHn, rl7
out UBRRLn, rlé6
; Enable receiver and transmitter
1di 1rl16, (1<<RXENn) | (1<<TXENn)
out UCSRnB,rl6
; Set frame format: 8data, 2stop bit
1di 1rl6, (1<<USBSn) | (3<<UCSZn0)
out UCSRnC,rlé6

ret
C Code Example("

void USART Init(unsigned int baud)
{

/* Set baud rate */

UBRRHn = (unsigned char) (baud>>8);

UBRRLn = (unsigned char)baud;

/* Enable receiver and transmitter */

UCSRnB = (1<<RXENn) | (1<<TXENn) ;
/* Set frame format: 8data, 2stop bit */
UCSRnC = (1<<USBSn) | (3<<UCSZn0) ;

Note: 1. See “Code Examples” on page 8.

More advanced initialization routines can be made that include frame format as parameters, dis-
able interrupts and so on. However, many applications use a fixed setting of the baud and
control registers, and for these types of applications the initialization code can be placed directly
in the main routine, or be combined with initialization code for other 1/O modules.

AImEl@ 192

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

18.5 Data Transmission — The USART Transmitter

The USART Transmitter is enabled by setting the Transmit Enable (TXEN) bit in the UCSRnB
Register. When the Transmitter is enabled, the normal port operation of the TxDn pin is overrid-
den by the USART and given the function as the Transmitter’s serial output. The baud rate,
mode of operation and frame format must be set up once before doing any transmissions. If syn-
chronous operation is used, the clock on the XCKn pin will be overridden and used as
transmission clock.

18.5.1 Sending Frames with 5 to 8 Data Bit

7766F-AVR-11/10

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The
CPU can load the transmit buffer by writing to the UDRn 1/O location. The buffered data in the
transmit buffer will be moved to the Shift Register when the Shift Register is ready to send a new
frame. The Shift Register is loaded with new data if it is in idle state (no ongoing transmission) or
immediately after the last stop bit of the previous frame is transmitted. When the Shift Register is
loaded with new data, it will transfer one complete frame at the rate given by the Baud Register,
U2Xn bit or by XCKn depending on mode of operation.

The following code examples show a simple USART transmit function based on polling of the
Data Register Empty (UDREN) Flag. When using frames with less than eight bits, the most sig-
nificant bits written to the UDRn are ignored. The USART has to be initialized before the function
can be used. For the assembly code, the data to be sent is assumed to be stored in Register
R16.

Assembly Code Example!"

USART_Transmit:
; Wait for empty transmit buffer
sbis UCSRnA, UDREn
rjmp USART_Transmit
; Put data (rl6) into buffer, sends the data
out UDRn,rlé6

ret

C Code Example"

void USART Transmit(unsigned char data)

{
/* Wait for empty transmit buffer */
while (! (UCSRnA & (1<<UDREn)))
/* Put data into buffer, sends the data */
UDRn = data;

Note: 1. See “Code Examples” on page 8.

The function simply waits for the transmit buffer to be empty by checking the UDREnN Flag,
before loading it with new data to be transmitted. If the Data Register Empty interrupt is utilized,
the interrupt routine writes the data into the buffer.

AImEl@ 193

EEEes————————————————————— A TMmega16/32U4

18.5.2 Sending Frames with 9 Data Bit
If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXBS8 bit in
UCSRnNB before the low byte of the character is written to UDRn. The following code examples
show a transmit function that handles 9-bit characters. For the assembly code, the data to be
sent is assumed to be stored in registers R17:R16.

Assembly Code Example("®

USART_ Transmit:
; Wait for empty transmit buffer
sbis UCSRnA, UDREn
rjmp USART_Transmit
; Copy 9th bit from rl7 to TXB8
cbi UCSRnB, TXB38
sbrc rl17,0
sbi UCSRnB, TXBS8
; Put LSB data (rl6) into buffer, sends the data
out UDRn,rl6

ret

C Code Example(M®

void USART Transmit (unsigned int data)
{
/* Wait for empty transmit buffer */
while (! (UCSRnA & (1<<UDREn))))

/* Copy 9th bit to TXB8 */

UCSRnB &= ~(1<<TXBS8) ;
if (data & 0x0100)
UCSRnB |= (1<<TXBS8);

/* Put data into buffer, sends the data */
UDRn = data;

Notes: 1. These transmit functions are written to be general functions. They can be optimized if the con-
tents of the UCSRnB is static. For example, only the TXB8 bit of the UCSRnB Register is used
after initialization.

2. See “Code Examples” on page 8.

The ninth bit can be used for indicating an address frame when using multi processor communi-
cation mode or for other protocol handling as for example synchronization.

18.5.3 Transmitter Flags and Interrupts

The USART Transmitter has two flags that indicate its state: USART Data Register Empty
(UDREN) and Transmit Complete (TXCn). Both flags can be used for generating interrupts.

The Data Register Empty (UDRERN) Flag indicates whether the transmit buffer is ready to receive
new data. This bit is set when the transmit buffer is empty, and cleared when the transmit buffer
contains data to be transmitted that has not yet been moved into the Shift Register. For compat-
ibility with future devices, always write this bit to zero when writing the UCSRnA Register.

AImEl@ 194

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

When the Data Register Empty Interrupt Enable (UDRIEN) bit in UCSRnB is written to one, the
USART Data Register Empty Interrupt will be executed as long as UDRERn is set (provided that
global interrupts are enabled). UDRERn is cleared by writing UDRn. When interrupt-driven data
transmission is used, the Data Register Empty interrupt routine must either write new data to
UDRn in order to clear UDREn or disable the Data Register Empty interrupt, otherwise a new
interrupt will occur once the interrupt routine terminates.

The Transmit Complete (TXCn) Flag bit is set one when the entire frame in the Transmit Shift
Register has been shifted out and there are no new data currently present in the transmit buffer.
The TXCn Flag bit is automatically cleared when a transmit complete interrupt is executed, or it
can be cleared by writing a one to its bit location. The TXCn Flag is useful in half-duplex commu-
nication interfaces (like the RS-485 standard), where a transmitting application must enter
receive mode and free the communication bus immediately after completing the transmission.

When the Transmit Compete Interrupt Enable (TXCIEn) bit in UCSRnB is set, the USART
Transmit Complete Interrupt will be executed when the TXCn Flag becomes set (provided that
global interrupts are enabled). When the transmit complete interrupt is used, the interrupt han-
dling routine does not have to clear the TXCn Flag, this is done automatically when the interrupt
is executed.

18.5.4 Parity Generator
The Parity Generator calculates the parity bit for the serial frame data. When parity bit is enabled
(UPMn1 = 1), the transmitter control logic inserts the parity bit between the last data bit and the
first stop bit of the frame that is sent.

18.5.5 Disabling the Transmitter
The disabling of the Transmitter (setting the TXEN to zero) will not become effective until ongo-
ing and pending transmissions are completed, i.e., when the Transmit Shift Register and
Transmit Buffer Register do not contain data to be transmitted. When disabled, the Transmitter
will no longer override the TxDn pin.

18.6 Data Reception — The USART Receiver

The USART Receiver is enabled by writing the Receive Enable (RXENN) bit in the

UCSRnNB Register to one. When the Receiver is enabled, the normal pin operation of the RxDn
pin is overridden by the USART and given the function as the Receiver’s serial input. The baud
rate, mode of operation and frame format must be set up once before any serial reception can
be done. If synchronous operation is used, the clock on the XCKn pin will be used as transfer
clock.

18.6.1 Receiving Frames with 5 to 8 Data Bits
The Receiver starts data reception when it detects a valid start bit. Each bit that follows the start
bit will be sampled at the baud rate or XCKn clock, and shifted into the Receive Shift Register
until the first stop bit of a frame is received. A second stop bit will be ignored by the Receiver.
When the first stop bit is received, i.e., a complete serial frame is present in the Receive Shift
Register, the contents of the Shift Register will be moved into the receive buffer. The receive
buffer can then be read by reading the UDRn I/O location.

The following code example shows a simple USART receive function based on polling of the
Receive Complete (RXCn) Flag. When using frames with less than eight bits the most significant

AImEl@ 195

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

bits of the data read from the UDRn will be masked to zero. The USART has to be initialized

before the function can be used.

Assembly Code Example("

USART_Receive:
; Wait for data to be received
sbis UCSRnA, RXCn
rjmp USART_Receive
; Get and return received data from buffer
in rl6, UDRn

ret

C Code Example"

unsigned char USART Receive(void)

{
/* Wait for data to be received */
while (! (UCSRnA & (1<<RXCn)))
/* Get and return received data from buffer */

return UDRn;

Note: 1. See “Code Examples” on page 8.

The function simply waits for data to be present in the receive buffer by checking the RXCn Flag,

before reading the buffer and returning the value.

18.6.2 Receiving Frames with 9 Data Bits
If 9-bit characters are used (UCSZn=7) the ninth bit must be read from the RXB8n bit in
UCSRnNB before reading the low bits from the UDRn. This rule applies to the FEn, DORn and
UPEn Status Flags as well. Read status from UCSRnA, then data from UDRn. Reading the
UDRn I/O location will change the state of the receive buffer FIFO and consequently the TXB8n,

7766F-AVR-11/10

FEn, DORn and UPEn bits, which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both nine bit

characters and the status bits.

ATMEL

196

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

Assembly Code Example!"

USART_Receive:

; Wait for data to be received

sbis UCSRnA, RXCn
rjmp USART_Receive

; Get status and 9th bit, then data from buffer

in r1l8, UCSRnA

in rl7, UCSRnB

in rl6, UDRn

; If error, return -1

andi rl8, (1<<FEn) | (1<<DORn) | (1<<UPEn)
breq USART_ReceiveNoError

1di rl7, HIGH(-1)

1di rleée, LOow(-1)

USART_ReceiveNoError:

; Filter the 9th bit, then return
lsr 17
andi rl17, 0x01

ret

C Code Example"

unsigned int USART_Receive(void)

{

unsigned char status, resh, resl;

/* Wait for data to be received */

while (! (UCSRnA & (1<<RXCn)))

/* Get status and 9th bit, then data */

/* from buffer */

status = UCSRnA;

resh = UCSRnB;

resl = UDRn;

/* If error, return -1 */

if (status & (l<<FEn) | (1<<DORn) | (1<<UPEn)
return -1;

/* Filter the 9th bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

)

Note:

1. See “Code Examples” on page 8.

The receive function example reads all the 1/0 Registers into the Register File before any com-
putation is done. This gives an optimal receive buffer utilization since the buffer location read will
be free to accept new data as early as possible.

ATMEL

197

EEEes————————————————————— A TMmega16/32U4

18.6.3 Receive Compete Flag and Interrupt
The USART Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXCn) Flag indicates if there are unread data present in the receive buf-
fer. This flag is one when unread data exist in the receive buffer, and zero when the receive
buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled (RXENn = 0),
the receive buffer will be flushed and consequently the RXCn bit will become zero.

When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnB is set, the USART Receive
Complete interrupt will be executed as long as the RXCn Flag is set (provided that global inter-
rupts are enabled). When interrupt-driven data reception is used, the receive complete routine
must read the received data from UDRn in order to clear the RXCn Flag, otherwise a new inter-
rupt will occur once the interrupt routine terminates.

18.6.4 Receiver Error Flags
The USART Receiver has three Error Flags: Frame Error (FEn), Data OverRun (DORn) and
Parity Error (UPEN). All can be accessed by reading UCSRnA. Common for the Error Flags is
that they are located in the receive buffer together with the frame for which they indicate the
error status. Due to the buffering of the Error Flags, the UCSRnA must be read before the
receive buffer (UDRn), since reading the UDRn I/O location changes the buffer read location.
Another equality for the Error Flags is that they can not be altered by software doing a write to
the flag location. However, all flags must be set to zero when the UCSRnA is written for upward
compatibility of future USART implementations. None of the Error Flags can generate interrupts.

The Frame Error (FEn) Flag indicates the state of the first stop bit of the next readable frame
stored in the receive buffer. The FEn Flag is zero when the stop bit was correctly read (as one),
and the FEn Flag will be one when the stop bit was incorrect (zero). This flag can be used for
detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn
Flag is not affected by the setting of the USBSnh bit in UCSRNC since the Receiver ignores all,
except for the first, stop bits. For compatibility with future devices, always set this bit to zero
when writing to UCSRnA.

The Data OverRun (DORN) Flag indicates data loss due to a receiver buffer full condition. A
Data OverRun occurs when the receive buffer is full (two characters), it is a new character wait-
ing in the Receive Shift Register, and a new start bit is detected. If the DORn Flag is set there
was one or more serial frame lost between the frame last read from UDRn, and the next frame
read from UDRnN. For compatibility with future devices, always write this bit to zero when writing
to UCSRnA. The DORn Flag is cleared when the frame received was successfully moved from
the Shift Register to the receive buffer.

The Parity Error (UPEN) Flag indicates that the next frame in the receive buffer had a Parity
Error when received. If Parity Check is not enabled the UPEn bit will always be read zero. For
compatibility with future devices, always set this bit to zero when writing to UCSRnA. For more
details see “Parity Bit Calculation” on page 191 and “Parity Checker” on page 198.

18.6.5 Parity Checker
The Parity Checker is active when the high USART Parity mode (UPMn1) bit is set. Type of Par-
ity Check to be performed (odd or even) is selected by the UPMnO bit. When enabled, the Parity
Checker calculates the parity of the data bits in incoming frames and compares the result with
the parity bit from the serial frame. The result of the check is stored in the receive buffer together
with the received data and stop bits. The Parity Error (UPEnN) Flag can then be read by software
to check if the frame had a Parity Error.

AImEl@ 198

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

The UPERN bit is set if the next character that can be read from the receive buffer had a Parity
Error when received and the Parity Checking was enabled at that point (UPMn1 = 1). This bit is
valid until the receive buffer (UDRn) is read.

18.6.6 Disabling the Receiver
In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing
receptions will therefore be lost. When disabled (i.e., the RXENn is set to zero) the Receiver will
no longer override the normal function of the RxDn port pin. The Receiver buffer FIFO will be
flushed when the Receiver is disabled. Remaining data in the buffer will be lost

18.6.7 Flushing the Receive Buffer
The receiver buffer FIFO will be flushed when the Receiver is disabled, i.e., the buffer will be
emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal
operation, due to for instance an error condition, read the UDRn I/O location until the RXCn Flag
is cleared. The following code example shows how to flush the receive buffer.

Assembly Code Example"

USART_Flush:
sbis UCSRnA, RXCn
ret
in rl6, UDRn
rjmp USART_Flush

C Code Example!")

void USART Flush(wvoid)
{
unsigned char dummy;
while (UCSRnA & (1<<RXCn)) dummy = UDRn;

Note: 1. See “Code Examples” on page 8.

18.7 Asynchronous Data Reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data
reception. The clock recovery logic is used for synchronizing the internally generated baud rate
clock to the incoming asynchronous serial frames at the RxDn pin. The data recovery logic sam-
ples and low pass filters each incoming bit, thereby improving the noise immunity of the
Receiver. The asynchronous reception operational range depends on the accuracy of the inter-
nal baud rate clock, the rate of the incoming frames, and the frame size in number of bits.

18.7.1 Asynchronous Clock Recovery
The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 18-5
illustrates the sampling process of the start bit of an incoming frame. The sample rate is 16 times
the baud rate for Normal mode, and eight times the baud rate for Double Speed mode. The hor-
izontal arrows illustrate the synchronization variation due to the sampling process. Note the
larger time variation when using the Double Speed mode (U2Xn = 1) of operation. Samples
denoted zero are samples done when the RxDn line is idle (i.e., no communication activity).

AImEl@ 199

7766F-AVR-11/10

ATmega16/32U4

Figure 18-5. Start Bit Sampling

RxD IDLE START BITO

e I

(U2x = 0) o o 1 2 3
2

Sample T P—T—H

(U2x = 1) 0 1

When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn line, the
start bit detection sequence is initiated. Let sample 1 denote the first zero-sample as shown in
the figure. The clock recovery logic then uses samples 8, 9, and 10 for Normal mode, and sam-
ples 4, 5, and 6 for Double Speed mode (indicated with sample numbers inside boxes on the
figure), to decide if a valid start bit is received. If two or more of these three samples have logical
high levels (the majority wins), the start bit is rejected as a noise spike and the Receiver starts
looking for the next high to low-transition. If however, a valid start bit is detected, the clock recov-
ery logic is synchronized and the data recovery can begin. The synchronization process is
repeated for each start bit.

18.7.2 Asynchronous Data Recovery
When the receiver clock is synchronized to the start bit, the data recovery can begin. The data
recovery unit uses a state machine that has 16 states for each bit in Normal mode and eight
states for each bit in Double Speed mode. Figure 18-6 shows the sampling of the data bits and
the parity bit. Each of the samples is given a number that is equal to the state of the recovery
unit.

Figure 18-6. Sampling of Data and Parity Bit

RxD >< BITn ><
R N O A

5 6 7 [8]9J1o]111 12 13 14 15 16 1
3

bbbt

The decision of the logic level of the received bit is taken by doing a majority voting of the logic
value to the three samples in the center of the received bit. The center samples are emphasized
on the figure by having the sample number inside boxes. The majority voting process is done as
follows: If two or all three samples have high levels, the received bit is registered to be a logic 1.
If two or all three samples have low levels, the received bit is registered to be a logic 0. This
majority voting process acts as a low pass filter for the incoming signal on the RxDn pin. The
recovery process is then repeated until a complete frame is received. Including the first stop bit.
Note that the Receiver only uses the first stop bit of a frame.

Sample T
(U2X = 0) 1 2

Sample I<—T—>|

(U2x = 1) 1

!
!

Figure 18-7 shows the sampling of the stop bit and the earliest possible beginning of the start bit
of the next frame.

AImEl@ 200

7766F-AVR-11/10

ATmega16/32U4

Figure 18-7. Stop Bit Sampling and Next Start Bit Sampling

RxD STOP1 (A ®) ©)

Sample I‘i" T

(U2X=0) 102

f
Sample P_T_q I

(U2x = 1) 1

6 7 [8]9J10]or o1 on

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop
bit is registered to have a logic 0 value, the Frame Error (FEn) Flag will be set.

A new high to low transition indicating the start bit of a new frame can come right after the last of
the bits used for majority voting. For Normal Speed mode, the first low level sample can be at
point marked (A) in Figure 18-7. For Double Speed mode the first low level must be delayed to
(B). (C) marks a stop bit of full length. The early start bit detection influences the operational
range of the Receiver.

18.7.3 Asynchronous Operational Range
The operational range of the Receiver is dependent on the mismatch between the received bit
rate and the internally generated baud rate. If the Transmitter is sending frames at too fast or too
slow bit rates, or the internally generated baud rate of the Receiver does not have a similar (see
Table 18-2) base frequency, the Receiver will not be able to synchronize the frames to the start
bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal
receiver baud rate.

R, =_(D+DS R, . _(D+2)s
slow ™ s 1+D-S+5¢ fast = (D+1)S+5,,

Sum of character size and parity size (D = 5 to 10 bit)

Samples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed
mode.

Se First sample number used for majority voting. S = 8 for normal speed and Sg = 4
for Double Speed mode.

Sy Middle sample number used for majority voting. Sy, = 9 for normal speed and
Sy = 5 for Double Speed mode.

Rsiow is the ratio of the slowest incoming data rate that can be accepted in relation to the
receiver baud rate. Ry, is the ratio of the fastest incoming data rate that can be
accepted in relation to the receiver baud rate.

Table 18-2 and Table 18-3 list the maximum receiver baud rate error that can be tolerated. Note
that Normal Speed mode has higher toleration of baud rate variations.

AImEl@ 201

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 18-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode

(U2Xn =0)

D Recommended Max
(Data+Parity Bit) | Rgow (%) | Riast(%) | Max Total Error (%) Receiver Error (%)

5 93.20 106.67 +6.67/-6.8 +3.0

6 94.12 105.79 +5.79/-5.88 +25

7 94.81 105.11 +5.11/-5.19 +2.0

8 95.36 104.58 +4.58/-4.54 +2.0

9 95.81 104.14 +4.14/-4.19 +15

10 96.17 103.78 +3.78/-3.83 +1.5

Table 18-3. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode

(Uu2xn=1)

D Recommended Max
(Data+Parity Bit) | Ry, (%) | Riast (%) | Max Total Error (%) Receiver Error (%)

5 94.12 105.66 +5.66/-5.88 +25

6 94.92 104.92 +4.92/-5.08 +2.0

7 95.52 104,35 +4.35/-4.48 +1.5

8 96.00 103.90 +3.90/-4.00 +1.5

9 96.39 103.53 +3.53/-3.61 +1.5

10 96.70 103.23 +3.23/-3.30 +1.0

The recommendations of the maximum receiver baud rate error was made under the assump-
tion that the Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The Receiver's system clock
(XTAL) will always have some minor instability over the supply voltage range and the tempera-
ture range. When using a crystal to generate the system clock, this is rarely a problem, but for a
resonator the system clock may differ more than 2% depending of the resonators tolerance. The
second source for the error is more controllable. The baud rate generator can not always do an
exact division of the system frequency to get the baud rate wanted. In this case an UBRR value
that gives an acceptable low error can be used if possible.

18.8 Multi-processor Communication Mode

Setting the Multi-processor Communication mode (MPCMn) bit in UCSRNA enables a filtering
function of incoming frames received by the USART Receiver. Frames that do not contain
address information will be ignored and not put into the receive buffer. This effectively reduces
the number of incoming frames that has to be handled by the CPU, in a system with multiple
MCUs that communicate via the same serial bus. The Transmitter is unaffected by the MPCMn
setting, but has to be used differently when it is a part of a system utilizing the Multi-processor
Communication mode.

If the Receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit indi-
cates if the frame contains data or address information. If the Receiver is set up for frames with

AImEl@ 202

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

18.8.1 Using MPCMn

nine data bits, then the ninth bit (RXB8n) is used for identifying address and data frames. When
the frame type bit (the first stop or the ninth bit) is one, the frame contains an address. When the
frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data from a
master MCU. This is done by first decoding an address frame to find out which MCU has been
addressed. If a particular slave MCU has been addressed, it will receive the following data
frames as normal, while the other slave MCUs will ignore the received frames until another
address frame is received.

For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZn = 7). The
ninth bit (TXB8n) must be set when an address frame (TXB8n = 1) or cleared when a data frame
(TXB = 0) is being transmitted. The slave MCUs must in this case be set to use a 9-bit character
frame format.

The following procedure should be used to exchange data in Multi-processor Communication
mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in UCSRnNA is
set).
2. The Master MCU sends an address frame, and all slaves receive and read this frame.
In the Slave MCUs, the RXCn Flag in UCSRnA will be set as normal.
3. Each Slave MCU reads the UDRn Register and determines if it has been selected. If
S0, it clears the MPCMn bit in UCSRNA, otherwise it waits for the next address byte and
keeps the MPCMn setting.
4. The addressed MCU will receive all data frames until a new address frame is received.
The other Slave MCUs, which still have the MPCMn bit set, will ignore the data frames.
5. When the last data frame is received by the addressed MCU, the addressed MCU sets
the MPCMn bit and waits for a new address frame from master. The process then
repeats from 2.
Using any of the 5- to 8-bit character frame formats is possible, but impractical since the
Receiver must change between using n and n+1 character frame formats. This makes full-
duplex operation difficult since the Transmitter and Receiver uses the same character size set-
ting. If 5- to 8-bit character frames are used, the Transmitter must be set to use two stop bit
(USBSnN = 1) since the first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCMn bit. The
MPCMn bit shares the same I/O location as the TXCn Flag and this might accidentally be
cleared when using SBI or CBI instructions.

18.9 Hardware Flow Control

7766F-AVR-11/10

The hardware flow control can be enabled by software.
CTS: (Clear to Send)
RTS: (Request to Send)

HOST ATmegal16U4/ATm
TXD TXD
RXD <—><—> RXD
RTS RTS

AImEl@ 203

EEEes————————————————————— A TMmega16/32U4

18.9.1 Receiver Flow Control

The reception flow can be controlled by hardware using the RTS pin. The aim of the flow control
is to inform the external transmitter when the internal receive Fifo is full. Thus the transmitter can
stop sending characters. RTS usage and so associated flow control is enabled using RTSEN bit
in UCSRND.

Figure 18-8. shows a reception example.

Figure 18-8. Reception Flow Control Waveform Example

FIFO
Index

o [1]e]fofr]

CPU Read

RTS / \
Figure 18-9. RTS behavior
Cc— — — — 7
RXD \ Stan{ ByteO / Stop Stan{ Byte1 / Stop Stan{ Byte2
L - - — JK1 additional byte may be sent
if the transmitter misses the RTS trig
N\
RTS / N
b
r "
Read from CPU ANTAY
L

RTS will rise at 2/3 of the last received stop bit if the receive fifo is full.

To ensure reliable transmissions, even after a RTS rise, an extra-data can still be received and
stored in the Receive Shift Register.

18.9.2 Transmission Flow Control

7766F-AVR-11/10

The transmission flow can be controlled by hardware using the CTS pin controlled by the exter-
nal receiver. The aim of the flow control is to stop transmission when the receiver is full of data
(CTS = 1). CTS usage and so associated flow control is enabled using CTSEN bit in UCSRnD.
The CTS pin is sampled at each CPU write and at the middle of the last stop bit that is currently
being sent.

Figure 18-10. CTS behavior

Write from CPU N N N
|
TXD Start / ByteO / Stop Start / Byte1 / Stop Stan{ Byte2
sample ¢sample ;sampe
CTS |

AImEl@ 204

EEEes————————————————————— A TMmega16/32U4

18.10 USART Register Description

18.10.1 USART I/O Data Register n— UDRn

Bit 7 6 5 4 3 2 1 0
RXB[7:0] UDRn (Read)
TXB[7:0] UDRn (Write)
Read/Write RW RIW RW RIW RW RW RIW RW
Initial Value 0 0 0 0 0 0 0 0

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the
same |/O address referred to as USART Data Register or UDRn. The Transmit Data Buffer Reg-
ister (TXB) will be the destination for data written to the UDRn Register location. Reading the
UDRnN Register location will return the contents of the Receive Data Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to
zero by the Receiver.

The transmit buffer can only be written when the UDRER Flag in the UCSRnA Register is set.
Data written to UDRn when the UDREnN Flag is not set, will be ignored by the USART Transmit-
ter. When data is written to the transmit buffer, and the Transmitter is enabled, the Transmitter
will load the data into the Transmit Shift Register when the Shift Register is empty. Then the
data will be serially transmitted on the TxDn pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the
receive buffer is accessed. Due to this behavior of the receive buffer, do not use Read-Modify-
Write instructions (SBI and CBI) on this location. Be careful when using bit test instructions
(SBIC and SBIS), since these also will change the state of the FIFO.

18.10.2 USART Control and Status Register A — UCSRnA

Bit 7 6 5 4 3 2 1 0

| RXCn | TXCn | UDREn | FEn DORn UPEn U2Xn MPCMn | UCSRnA
Read/Write R R/W R R R R R/W R/W
Initial Value 0 0 1 0 0 0 0 0

e Bit 7 - RXCn: USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive
buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled, the receive
buffer will be flushed and consequently the RXCn bit will become zero. The RXCn Flag can be
used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

e Bit 6 — TXCn: USART Transmit Complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and
there are no new data currently present in the transmit buffer (UDRn). The TXCn Flag bit is auto-
matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing
a one to its bit location. The TXCn Flag can generate a Transmit Complete interrupt (see
description of the TXCIEn bit).

e Bit 5 — UDREnNn: USART Data Register Empty

The UDREN Flag indicates if the transmit buffer (UDRN) is ready to receive new data. If UDREn
is one, the buffer is empty, and therefore ready to be written. The UDREnN Flag can generate a
Data Register Empty interrupt (see description of the UDRIER bit).

UDREn is set after a reset to indicate that the Transmitter is ready.

AImEl@ 205

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

¢ Bit 4 — FEn: Frame Error

This bit is set if the next character in the receive buffer had a Frame Error when received. l.e.,
when the first stop bit of the next character in the receive buffer is zero. This bit is valid until the
receive buffer (UDRn) is read. The FEn bit is zero when the stop bit of received data is one.
Always set this bit to zero when writing to UCSRnA.

¢ Bit 3 — DORn: Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive
buffer is full (two characters), it is a new character waiting in the Receive Shift Register, and a
new start bit is detected. This bit is valid until the receive buffer (UDRn) is read. Always set this
bit to zero when writing to UCSRnA.

* Bit 2 — UPEn: USART Parity Error

This bit is set if the next character in the receive buffer had a Parity Error when received and the
Parity Checking was enabled at that point (UPMn1 = 1). This bit is valid until the receive buffer
(UDRn) is read. Always set this bit to zero when writing to UCSRnA.

e Bit 1 — U2Xn: Double the USART Transmission Speed
This bit only has effect for the asynchronous operation. Write this bit to zero when using syn-
chronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively dou-
bling the transfer rate for asynchronous communication.

e Bit 0 — MPCMn: Multi-processor Communication Mode

This bit enables the Multi-processor Communication mode. When the MPCMn bit is written to
one, all the incoming frames received by the USART Receiver that do not contain address infor-
mation will be ignored. The Transmitter is unaffected by the MPCMn setting. For more detailed
information see “Multi-processor Communication Mode” on page 202.

18.10.3 USART Control and Status Register n B — UCSRnB

Bit 7 6 5 4 3 2 1 0

| RXCIEn | TXCIEn | UDRIEn | RXENn | TXENn | UCSZn2 | RXB8n | TXB8n | UCSRnB
Read/Write ~ R/W R/W R/W R/W R/W R/W R R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — RXCIEn: RX Complete Interrupt Enable n

Writing this bit to one enables interrupt on the RXCn Flag. A USART Receive Complete interrupt
will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the RXCn bit in UCSRNA is set.

¢ Bit 6 — TXCIEn: TX Complete Interrupt Enable n

Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete interrupt
will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the TXCn bit in UCSRnNA is set.

¢ Bit 5 — UDRIEn: USART Data Register Empty Interrupt Enable n

Writing this bit to one enables interrupt on the UDREnN Flag. A Data Register Empty interrupt will
be generated only if the UDRIEn bit is written to one, the Global Interrupt Flag in SREG is written
to one and the UDRERn bit in UCSRnNA is set.

AImEl@ 206

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

¢ Bit 4 — RXENn: Receiver Enable n
Writing this bit to one enables the USART Receiver. The Receiver will override normal port oper-

ation for the RxDn pin when enabled. Disabling the Receiver will flush the receive buffer
invalidating the FEn, DORn, and UPEn Flags.

* Bit 3 - TXENn: Transmitter Enable n

Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port
operation for the TxDn pin when enabled. The disabling of the Transmitter (writing TXENn to
zero) will not become effective until ongoing and pending transmissions are completed, i.e.,
when the Transmit Shift Register and Transmit Buffer Register do not contain data to be trans-
mitted. When disabled, the Transmitter will no longer override the TxDn port.

e Bit 2 - UCSZn2: Character Size n
The UCSZn2 bits combined with the UCSZn1:0 bit in UCSRNC sets the number of data bits
(Character SiZe) in a frame the Receiver and Transmitter use.

* Bit 1 — RXB8n: Receive Data Bit 8 n
RXB8n is the ninth data bit of the received character when operating with serial frames with nine
data bits. Must be read before reading the low bits from UDRn.

e Bit 0 — TXB8n: Transmit Data Bit 8 n
TXB8n is the ninth data bit in the character to be transmitted when operating with serial frames
with nine data bits. Must be written before writing the low bits to UDRn.

18.10.4 USART Control and Status Register n C — UCSRnC

7766F-AVR-11/10

Bit 7 6 5 4 3 2 1 0
| UMSELn1 | UMSELno | UPMn1 | UPMn0 | USBSn | UCSZn1 | UCSZn0 | UCPOLn | ucsRnc

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

e Bits 7:6 — UMSELN1:0 USART Mode Select
These bits select the mode of operation of the USARTn as shown in Table 18-4.

Table 18-4. UMSELn Bit Settings

UMSELN1 UMSELNO Mode
0 0 Asynchronous USART
0 1 Synchronous USART
1 0 (Reserved)
1 1 Master SPI (MSPIM)™"

Note: 1. See “USART in SPI Mode” on page 214 for full description of the Master SPI Mode (MSPIM)
operation

¢ Bits 5:4 — UPMn1:0: Parity Mode
These bits enable and set type of parity generation and check. If enabled, the Transmitter will
automatically generate and send the parity of the transmitted data bits within each frame. The

AImEl@ 207

EEEes————————————————————— A TMmega16/32U4

Receiver will generate a parity value for the incoming data and compare it to the UPMn setting.
If a mismatch is detected, the UPEn Flag in UCSRnA will be set.

Table 18-5. UPMn Bit Settings

UPMn1 UPMnO Parity Mode
0 0 Disabled
0 1 Reserved
1 0 Enabled, Even Parity
1 1 Enabled, Odd Parity

¢ Bit 3 — USBSn: Stop Bit Select
This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver ignores
this setting.

Table 18-6. USBS Bit Settings

USBSn Stop Bit(s)
0 1-bit
1 2-bit

¢ Bit 2:1 - UCSZn1:0: Character Size
The UCSZn1:0 bits combined with the UCSZn2 bit in UCSRNB sets the number of data bits
(Character SiZe) in a frame the Receiver and Transmitter use.

Table 18-7. UCSZn Bit Settings

UCSZn2 UCSZn1 UCSZn0 Character Size
0 0 0 5-bit
0 0 1 6-bit
0 1 0 7-bit
0 1 1 8-bit
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Reserved
1 1 1 9-bit

* Bit 0 — UCPOLN: Clock Polarity
This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is
used. The UCPOLRN bit sets the relationship between data output change and data input sample,
and the synchronous clock (XCKn).

Table 18-8. UCPOLn Bit Settings

Transmitted Data Changed (Output Received Data Sampled (Input on
UCPOLn | of TxDn Pin) RxDn Pin)
0 Rising XCKn Edge Falling XCKn Edge
1 Falling XCKn Edge Rising XCKn Edge

AImEl@ 208

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

18.10.5 USART Control and Status Register n D—- UCSRnD

Bit 7 6 5 4 3 2 1 0

| = | - | - | - - - CTSEN | RTSEN | UCSRnD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7:2 — Reserved bits
These bits are reserved and will be read as ‘0’. Do not set these bits.

 Bits 1 — CTSEN: UART CTS Signal Enable

Set this bit by firmware to enable the transmission flow control signal (CTS). Transmission will
be enabled only if CTS input = 0. Clear this bit to disable the transmission flow control signal.
Transmission will occur without hardware condition. Data Direction Register bit must be correctly
clear to enable the pin as an input.

 Bits 0 — RTSEN: UART RTS Signal Enable

Set this bit by firmware to enable the reception flow control signal (RTS). In this case the RTS
line will automatically rise when the FIFQ is full. Clear this bit to disable the reception flow control
signal. Data Direction Register bit must be correctly set to enable the pin as an output.

18.10.6 USART Baud Rate Registers — UBRRLn and UBRRHn

Bit 15 14 13 12 11 10 9 8
- | - | - | - [UBRR[H1g UBRRHn
UBRR[7:0] UBRRLn
7 6 5 4 3 2 1 0
Read/Write R R R R R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0
0 0 0 0 0 0 0

¢ Bit 15:12 — Reserved Bits
These bits are reserved for future use. For compatibility with future devices, these bit must be
written to zero when UBRRH is written.

e Bit 11:0 - UBRR11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRH contains the four
most significant bits, and the UBRRL contains the eight least significant bits of the USART baud
rate. Ongoing transmissions by the Transmitter and Receiver will be corrupted if the baud rate is
changed. Writing UBRRL will trigger an immediate update of the baud rate prescaler.

18.11 Examples of Baud Rate Setting
For standard crystal and resonator frequencies, the most commonly used baud rates for asyn-
chronous operation can be generated by using the UBRR settings in Table 18-9 to Table 18-12.
UBRR values which yield an actual baud rate differing less than 0.5% from the target baud rate,
are bold in the table. Higher error ratings are acceptable, but the Receiver will have less noise

AImEl@ 209

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

resistance when the error ratings are high, especially for large serial frames (see “Asynchronous
Operational Range” on page 201). The error values are calculated using the following equation:

BaudRate;osest Match _
BaudRate

Error[%] = (1) «100%

Table 18-9. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies

fsc = 1.0000 MHz fosc = 1.8432 MHz fosc = 2.0000 MHz
g::‘ed U2Xn =0 u2Xn = 1 U2Xn = 0 U2Xn =1 U2Xn = 0 u2Xn = 1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%
4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%
9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%
14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%
19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%
28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%
38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%
57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%
76.8k - - 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%
115.2k - - 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%
230.4k - - - - - - 0 0.0% - - - -
250k - - - - - - - - - - 0 0.0%
Max. (" 62.5 kbps 125 kbps 115.2 kbps 230.4 kbps 125 kbps 250 kbps

1. UBRR =0, Error = 0.0%

AImEl@ 210

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 18-10. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

fosc = 3.6864 MHz f,sc = 4.0000 MHz fosc = 7.3728 MHz

g:;’ed U2Xn =0 U2Xn = 1 U2Xn =0 U2Xn = 1 U2Xn =0 U2Xn = 1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%
4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%
9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%
14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%
19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%
28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%
38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%
57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%
76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%
115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%
230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%
250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%
0.5M - - 0 -7.8% - - 0 0.0% 0 -7.8% 1 -7.8%
1M - - - - - - - - - - 0 -7.8%
Max. (" 230.4 kbps 460.8 kbps 250 kbps 0.5 Mbps 460.8 kbps 921.6 kbps

1. UBRR = 0, Error = 0.0%

AImEl@ 211

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 18-11. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

f,.. = 8.0000 MHz f,.. = 11.0592 MHz f,.. = 14.7456 MHz
g:;’ed U2Xn = 0 U2Xn = 1 U2Xn = 0 u2Xn = 1 U2Xn = 0 U2Xn = 1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 207 | 02% | 416 | -01% | 287 | 00% | 575 | 00% | 383 | 00% | 767 | 0.0%
4800 103 | 02% | 207 | 02% | 143 | 00% | 287 | 00% | 191 | 0.0% | 383 | 0.0%
9600 51 02% | 103 | 02% | 71 00% | 143 | 00% | 95 | 00% | 191 | 00%
14.4K 34 | 08% | 68 | 06% | 47 | 00% | 95 | 00% | 63 | 00% | 127 | 00%
19.2k 25 | 02% | 51 02% | 35 | 00% | 71 00% | 47 | 00% | 95 | 0.0%
28.8k 16 | 21% | 34 | -08% | 23 | 00% | 47 | 00% | 31 00% | 63 | 0.0%
38.4k 12 | 02% | 25 | 02% 17 | 00% | 35 | 00% | 23 | 00% | 47 | 00%
57.6k 8 35% | 16 | 21% 11 00% | 23 | 00% 15 | 00% | 31 0.0%
76.8k 6 70% | 12 | 02% 8 0.0% 17 | 0.0% 11 00% | 23 | 0.0%
115.2k 3 8.5% 8 3.5% 5 0.0% 11 0.0% 7 0.0% 15 | 0.0%
230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%
250k 1 0.0% 3 0.0% 2 7.8% 5 7.8% 3 7.8% 6 5.3%
0.5M 0 0.0% 1 0.0% - - 2 7.8% 1 7.8% 3 7.8%
1M - - 0 0.0% - - - - 0 7.8% 1 7.8%
Max.) 0.5 Mbps 1 Mbps 691.2 Kbps 1.3824 Mbps 921.6 kbps 1.8432 Mbps
1, UBRR = 0, Error = 0.0%

AImEl@ 212

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 18-12. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

f,sc = 16.0000 MHz f o = 18.4320 MHz f,sc = 20.0000 MHz
g:;’ed U2Xn = 0 U2Xn = 1 U2Xn = 0 u2Xn = 1 U2Xn = 0 U2Xn = 1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 416 -0.1% 832 0.0% 479 0.0% 959 0.0% 520 0.0% 1041 0.0%
4800 207 0.2% 416 -0.1% 239 0.0% 479 0.0% 259 0.2% 520 0.0%
9600 103 0.2% 207 0.2% 119 0.0% 239 0.0% 129 0.2% 259 0.2%
14.4k 68 0.6% 138 -0.1% 79 0.0% 159 0.0% 86 -0.2% 173 -0.2%
19.2k 51 0.2% 103 0.2% 59 0.0% 119 0.0% 64 0.2% 129 0.2%
28.8k 34 -0.8% 68 0.6% 39 0.0% 79 0.0% 42 0.9% 86 -0.2%
38.4k 25 0.2% 51 0.2% 29 0.0% 59 0.0% 32 -1.4% 64 0.2%
57.6k 16 2.1% 34 -0.8% 19 0.0% 39 0.0% 21 -1.4% 42 0.9%
76.8k 12 0.2% 25 0.2% 14 0.0% 29 0.0% 15 1.7% 32 -1.4%
115.2k 8 -3.5% 16 2.1% 9 0.0% 19 0.0% 10 -1.4% 21 -1.4%
230.4k 3 8.5% 8 -3.5% 4 0.0% 9 0.0% 4 8.5% 10 -1.4%
250k 3 0.0% 7 0.0% 4 -7.8% 8 2.4% 4 0.0% 9 0.0%
0.5M 1 0.0% 3 0.0% - - 4 -7.8% - - 4 0.0%
1M 0 0.0% 1 0.0% - - - - - - - -
Max. (" 1 Mbps 2 Mbps 1.152 Mbps 2.304 Mbps 1.25 Mbps 2.5 Mbps

1. UBRR =0, Error = 0.0%

AImEl@ 213

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

19. USART in SPI Mode

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) can be
set to a master SPI compliant mode of operation. The Master SPI Mode (MSPIM) has the follow-
ing features:

¢ Full Duplex, Three-wire Synchronous Data Transfer

* Master Operation

* Supports all four SPI Modes of Operation (Mode 0, 1, 2, and 3)
* LSB First or MSB First Data Transfer (Configurable Data Order)
* Queued Operation (Double Buffered)

* High Resolution Baud Rate Generator

* High Speed Operation (fXCKmax = fCK/2)

* Flexible Interrupt Generation

19.1 Overview

Setting both UMSELN1:0 bits to one enables the USART in MSPIM logic. In this mode of opera-
tion the SPI master control logic takes direct control over the USART resources. These
resources include the transmitter and receiver shift register and buffers, and the baud rate gen-
erator. The parity generator and checker, the data and clock recovery logic, and the RX and TX
control logic is disabled. The USART RX and TX control logic is replaced by a common SPI
transfer control logic. However, the pin control logic and interrupt generation logic is identical in
both modes of operation.

The I/O register locations are the same in both modes. However, some of the functionality of the
control registers changes when using MSPIM.

19.2 Clock Generation
The Clock Generation logic generates the base clock for the Transmitter and Receiver. For
USART MSPIM mode of operation only internal clock generation (i.e. master operation) is sup-
ported. The Data Direction Register for the XCKn pin (DDR_XCKn) must therefore be set to one
(i.e. as output) for the USART in MSPIM to operate correctly. Preferably the DDR_XCKn should
be set up before the USART in MSPIM is enabled (i.e. TXENn and RXENN bit set to one).

The internal clock generation used in MSPIM mode is identical to the USART synchronous mas-
ter mode. The baud rate or UBRRn setting can therefore be calculated using the same
equations, see Table 19-1:

7766F-AVR-11/10

Table 19-1. Equations for Calculating Baud Rate Register Setting
Equation for Calculating Baud Equation for Calculating
Operating Mode Rate(" UBRRn Value
Synchronous Master f f
y BAUD = 0sG UBRRn = —-0C

mode

2(UBRRn + 1)

2BAUD

ATMEL

214

EEEes————————————————————— A TMmega16/32U4

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUD Baud rate (in bits per second, bps)
fosc System Oscillator clock frequency
UBRRn Contents of the UBRRnH and UBRRnL Registers, (0-4095)

19.3 SPI Data Modes and Timing

There are four combinations of XCKn (SCK) phase and polarity with respect to serial data, which
are determined by control bits UCPHANn and UCPOLN. The data transfer timing diagrams are
shown in Figure 19-1. Data bits are shifted out and latched in on opposite edges of the XCKn
signal, ensuring sufficient time for data signals to stabilize. The UCPOLn and UCPHAn function-
ality is summarized in Table 19-2. Note that changing the setting of any of these bits will corrupt
all ongoing communication for both the Receiver and Transmitter.

Table 19-2. UCPOLn and UCPHAnN Functionality-

UCPOLN UCPHAnN SPI Mode Leading Edge Trailing Edge
0 0 0 Sample (Rising) Setup (Falling)
0 1 1 Setup (Rising) Sample (Falling)
1 0 2 Sample (Falling) Setup (Rising)
1 1 3 Setup (Falling) Sample (Rising)

Figure 19-1. UCPHAnN and UCPOLn data transfer timing diagrams.

UCPOL=0 UCPOL=1

4 XK L L XCK L L
I

& paasetp(mxo) LI Datasetup(Mx0) _ L k| [
> Data sample (RXD) T T T T Data sample (RXD) T T T T
3 xex L L XCK L L
g Data setup (TXD) 4X_X_X__X Data setup (TXD) 4X_X_X__X
> Data sample (RXD) T T T T Data sample (RXD) T T T T

19.4 Frame Formats

A serial frame for the MSPIM is defined to be one character of 8 data bits. The USART in MSPIM
mode has two valid frame formats:

¢ 8-bit data with MSB first

¢ 8-bit data with LSB first

A frame starts with the least or most significant data bit. Then the next data bits, up to a total of
eight, are succeeding, ending with the most or least significant bit accordingly. When a complete
frame is transmitted, a new frame can directly follow it, or the communication line can be set to
an idle (high) state.

AImEl@ 215

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

The UDORDN bit in UCSRNC sets the frame format used by the USART in MSPIM mode. The
Receiver and Transmitter use the same setting. Note that changing the setting of any of these
bits will corrupt all ongoing communication for both the Receiver and Transmitter.

16-bit data transfer can be achieved by writing two data bytes to UDRn. A UART transmit com-
plete interrupt will then signal that the 16-bit value has been shifted out.

19.4.1 USART MSPIM Initialization

7766F-AVR-11/10

The USART in MSPIM mode has to be initialized before any communication can take place. The
initialization process normally consists of setting the baud rate, setting master mode of operation
(by setting DDR_XCKn to one), setting frame format and enabling the Transmitter and the
Receiver. Only the transmitter can operate independently. For interrupt driven USART opera-
tion, the Global Interrupt Flag should be cleared (and thus interrupts globally disabled) when
doing the initialization.

Note: To ensure immediate initialization of the XCKn output the baud-rate register (UBRRn) must be
zero at the time the transmitter is enabled. Contrary to the normal mode USART operation the
UBRRnN must then be written to the desired value after the transmitter is enabled, but before the
first transmission is started. Setting UBRRn to zero before enabling the transmitter is not neces-
sary if the initialization is done immediately after a reset since UBRRn is reset to zero.

Before doing a re-initialization with changed baud rate, data mode, or frame format, be sure that

there is no ongoing transmissions during the period the registers are changed. The TXCn Flag

can be used to check that the Transmitter has completed all transfers, and the RXCn Flag can

be used to check that there are no unread data in the receive buffer. Note that the TXCn Flag

must be cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume polling (no interrupts enabled). The
baud rate is given as a function parameter. For the assembly code, the baud rate parameter is
assumed to be stored in the r17:r16 registers.

AImEl@ 216

EEEes————————————————————— A TMmega16/32U4

Assembly Code Example("

USART Init:
clr rl8
out UBRRnH,rl8
out UBRRnL,rl8
; Setting the XCKn port pin as output, enables master mode.
sbi XCKn_DDR, XCKn
; Set MSPI mode of operation and SPI data mode O.
1di r18, (1<<UMSELnl) | (1<<UMSELnO) | (0<<UCPHAn) | (0<<UCPOLn)
out UCSRnC,rlS8
; Enable receiver and transmitter.
1di r18, (1<<RXENn) | (1<<TXENn)
out UCSRnB,rlS8
; Set baud rate.

; IMPORTANT: The Baud Rate must be set after the transmitter is
enabled!

out UBRRnH, rl7
out UBRRnL, rl8

ret

C Code Example"

void USART Init(unsigned int baud)
{
UBRRn = 0;
/* Setting the XCKn port pin as output, enables master mode. */
XCKn_DDR |= (1<<XCKn) ;
/* Set MSPI mode of operation and SPI data mode 0. */
UCSRnC = (1<<UMSELnl) | (1<<UMSELnO) | (0<<UCPHAn) | (0<<UCPOLn) ;
/* Enable receiver and transmitter. */
UCSRnB = (1<<RXENn) | (1<<TXENn) ;
/* Set baud rate. */

/* IMPORTANT: The Baud Rate must be set after the transmitter is
enabled */

UBRRn = baud;

Note: 1. See “Code Examples” on page 8.

19.5 Data Transfer

Using the USART in MSPI mode requires the Transmitter to be enabled, i.e. the TXENN bit in
the UCSRnNB register is set to one. When the Transmitter is enabled, the normal port operation
of the TxDn pin is overridden and given the function as the Transmitter's serial output. Enabling
the receiver is optional and is done by setting the RXENn bit in the UCSRnB register to one.
When the receiver is enabled, the normal pin operation of the RxDn pin is overridden and given
the function as the Receiver's serial input. The XCKn will in both cases be used as the transfer
clock.

AImEl@ 217

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

After initialization the USART is ready for doing data transfers. A data transfer is initiated by writ-
ing to the UDRn 1I/O location. This is the case for both sending and receiving data since the
transmitter controls the transfer clock. The data written to UDRn is moved from the transmit buf-
fer to the shift register when the shift register is ready to send a new frame.

Note: To keep the input buffer in sync with the number of data bytes transmitted, the UDRn register must
be read once for each byte transmitted. The input buffer operation is identical to normal USART
mode, i.e. if an overflow occurs the character last received will be lost, not the first data in the buf-
fer. This means that if four bytes are transferred, byte 1 first, then byte 2, 3, and 4, and the UDRn
is not read before all transfers are completed, then byte 3 to be received will be lost, and not byte
1.

The following code examples show a simple USART in MSPIM mode transfer function based on

polling of the Data Register Empty (UDREN) Flag and the Receive Complete (RXCn) Flag. The

USART has to be initialized before the function can be used. For the assembly code, the data to

be sent is assumed to be stored in Register R16 and the data received will be available in the

same register (R16) after the function returns.

The function simply waits for the transmit buffer to be empty by checking the UDREn Flag,
before loading it with new data to be transmitted. The function then waits for data to be present
in the receive buffer by checking the RXCn Flag, before reading the buffer and returning the
value.

Assembly Code Example"

USART MSPIM Transfer:
; Wait for empty transmit buffer
sbis UCSRnA, UDREn
rjmp USART MSPIM_ Transfer
; Put data (rl6) into buffer, sends the data
out UDRn,rlé6
; Wait for data to be received
USART MSPIM_Wait_RXCn:
sbis UCSRnA, RXCn
rjmp USART MSPIM Wait_RXCn
; Get and return received data from buffer
in rl6, UDRn

ret

C Code Example("

unsigned char USART_Receive(void)
{
/* Wait for empty transmit buffer */
while (! (UCSRnA & (1<<UDREn)));
/* Put data into buffer, sends the data */
UDRn = data;
/* Wait for data to be received */
while (! (UCSRnA & (1<<RXCn)));
/* Get and return received data from buffer */

return UDRn;

AImEl@ 218

EEEes————————————————————— A TMmega16/32U4

19.5.1

19.5.2

19.6

19.6.1

19.6.2

7766F-AVR-11/10

Note: 1. See “Code Examples” on page 8.

Transmitter and Receiver Flags and Interrupts

The RXCn, TXCn, and UDRERN flags and corresponding interrupts in USART in MSPIM mode
are identical in function to the normal USART operation. However, the receiver error status flags
(FE, DOR, and PE) are not in use and is always read as zero.

Disabling the Transmitter or Receiver

The disabling of the transmitter or receiver in USART in MSPIM mode is identical in function to
the normal USART operation.

USART MSPIM Register Description

The following section describes the registers used for SPI operation using the USART.

USART MSPIM I/O Data Register - UDRn

The function and bit description of the USART data register (UDRn) in MSPI mode is identical to
normal USART operation. See “USART I/O Data Register n— UDRn” on page 205.

USART MSPIM Control and Status Register n A - UCSRnA

Bit 7 6 5 4 3 2 1 0

| rxcn | TXCn | UDREn - - | ucsrna
Read/Write ~ R/W R/W R/W R R R R
Initial Value 0 0 0 0 1 1 0

e Bit 7 - RXCn: USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive
buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled, the receive
buffer will be flushed and consequently the RXCn bit will become zero. The RXCn Flag can be
used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

e Bit 6 - TXCn: USART Transmit Complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and
there are no new data currently present in the transmit buffer (UDRn). The TXCn Flag bit is auto-
matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing
a one to its bit location. The TXCn Flag can generate a Transmit Complete interrupt (see
description of the TXCIEn bit).

* Bit 5 - UDREn: USART Data Register Empty

The UDREN Flag indicates if the transmit buffer (UDRN) is ready to receive new data. If UDREn
is one, the buffer is empty, and therefore ready to be written. The UDREnN Flag can generate a
Data Register Empty interrupt (see description of the UDRIE bit). UDREn is set after a reset to
indicate that the Transmitter is ready.

¢ Bit 4:0 - Reserved Bits in MSPI mode
When in MSPI mode, these bits are reserved for future use. For compatibility with future devices,
these bits must be written to zero when UCSRNA is written.

AImEl@ 219

EEEes————————————————————— A TMmega16/32U4

19.6.3 USART MSPIM Control and Status Register n B - UCSRnB

Bit 7 6 5 4 3 2 1 0

I RXCIEn TXCIEn UDRIE RXENNn TXENn - - - I UCSRnB
Read/Write R/W R/W R/W R/W R/W R R R
Initial Value 0 0 0 0 0 1 1 0

¢ Bit 7 - RXCIEn: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXCn Flag. A USART Receive Complete interrupt
will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the RXCn bit in UCSRNA is set.

e Bit 6 - TXCIEn: TX Complete Interrupt Enable
Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete interrupt
will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the TXCn bit in UCSRnNA is set.

e Bit 5 - UDRIE: USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDREnN Flag. A Data Register Empty interrupt will
be generated only if the UDRIE bit is written to one, the Global Interrupt Flag in SREG is written
to one and the UDREn bit in UCSRNA is set.

¢ Bit 4 - RXENn: Receiver Enable

Writing this bit to one enables the USART Receiver in MSPIM mode. The Receiver will override
normal port operation for the RxDn pin when enabled. Disabling the Receiver will flush the
receive buffer. Only enabling the receiver in MSPI mode (i.e. setting RXENn=1 and TXENn=0)
has no meaning since it is the transmitter that controls the transfer clock and since only master
mode is supported.

¢ Bit 3 - TXENn: Transmitter Enable

Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port
operation for the TxDn pin when enabled. The disabling of the Transmitter (writing TXENn to
zero) will not become effective until ongoing and pending transmissions are completed, i.e.,
when the Transmit Shift Register and Transmit Buffer Register do not contain data to be trans-
mitted. When disabled, the Transmitter will no longer override the TxDn port.

¢ Bit 2:0 - Reserved Bits in MSPI mode
When in MSPI mode, these bits are reserved for future use. For compatibility with future devices,
these bits must be written to zero when UCSRNB is written.

19.6.4 USART MSPIM Control and Status Register n C - UCSRnC

7766F-AVR-11/10

Bit 7 6 5 4 3 2 1 0

| uMSELn1 | UMSELno | - | - | - | UDORDn | UCPHAn | UCPOLn | UCSRnC
Read/Write R/W R/W R R R R/W R/W R/W
Initial Value 0 0 0 0 0 1 1 0

AImEl@ 220

EEEes————————————————————— A TMmega16/32U4

19.6.5

19.7

7766F-AVR-11/10

e Bit 7:6 - UMSELN1:0: USART Mode Select

These bits select the mode of operation of the USART as shown in Table 19-3. See “USART
Control and Status Register n C — UCSRnC” on page 207 for full description of the normal
USART operation. The MSPIM is enabled when both UMSELnN bits are set to one. The
UDORDnN, UCPHAnN, and UCPOLnN can be set in the same write operation where the MSPIM is
enabled.

Table 19-3. UMSELn Bits Settings

UMSELN1 UMSELNO Mode

0 0 Asynchronous USART
0 1 Synchronous USART
1 0 (Reserved)

1 1 Master SPI (MSPIM)

¢ Bit 5:3 - Reserved Bits in MSPI mode
When in MSPI mode, these bits are reserved for future use. For compatibility with future devices,
these bits must be written to zero when UCSRNC is written.

¢ Bit 2 - UDORDnN: Data Order
When set to one the LSB of the data word is transmitted first. When set to zero the MSB of the
data word is transmitted first. Refer to the Frame Formats section page 4 for details.

e Bit 1 - UCPHAN: Clock Phase
The UCPHAnN bit setting determine if data is sampled on the leasing edge (first) or tailing (last)
edge of XCKn. Refer to the SPI Data Modes and Timing section page 4 for details.

e Bit 0 - UCPOLN: Clock Polarity

The UCPOLnN bit sets the polarity of the XCKn clock. The combination of the UCPOLn and
UCPHAnN bit settings determine the timing of the data transfer. Refer to the SPI Data Modes and
Timing section page 4 for details.

USART MSPIM Baud Rate Registers - UBRRnL and UBRRnH

The function and bit description of the baud rate registers in MSPI mode is identical to normal
USART operation. See “USART Baud Rate Registers — UBRRLn and UBRRHnN” on page 209.

AVR USART MSPIM vs. AVR SPI

The USART in MSPIM mode is fully compatible with the AVR SPI regarding:

* Master mode timing diagram.

¢ The UCPOLn bit functionality is identical to the SPI CPOL bit.

e The UCPHAN bit functionality is identical to the SPI CPHA bit.

* The UDORDn bit functionality is identical to the SPI DORD bit.

However, since the USART in MSPIM mode reuses the USART resources, the use of the
USART in MSPIM mode is somewhat different compared to the SPI. In addition to differences of
the control register bits, and that only master operation is supported by the USART in MSPIM
mode, the following features differ between the two modules:

AImEl@ 221

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

¢ The USART in MSPIM mode includes (double) buffering of the transmitter. The SPI has no
buffer.

¢ The USART in MSPIM mode receiver includes an additional buffer level.
* The SPI WCOL (Write Collision) bit is not included in USART in MSPIM mode.

* The SPI double speed mode (SPI2X) bit is not included. However, the same effect is
achieved by setting UBRRn accordingly.

e Interrupt timing is not compatible.
¢ Pin control differs due to the master only operation of the USART in MSPIM mode.

A comparison of the USART in MSPIM mode and the SPI pins is shown in Table 19-4 on page
222.

Table 19-4. Comparison of USART in MSPIM mode and SPI pins.

USART_MSPIM SPI Comment
TxDn MOSI Master Out only
RxDn MISO Master In only
XCKn SCK (Functionally identical)
(N/A) SsS Not supported by USART in MSPIM

AImEl@ 222

EEEes————————————————————— A TMmega16/32U4

20. 2-wire Serial Interface

20.1 Features
¢ Simple Yet Powerful and Flexible Communication Interface, only two Bus Lines Needed
* Both Master and Slave Operation Supported
* Device can Operate as Transmitter or Receiver
¢ 7-bit Address Space Allows up to 128 Different Slave Addresses
¢ Multi-master Arbitration Support
¢ Up to 400 kHz Data Transfer Speed
¢ Slew-rate Limited Output Drivers
* Noise Suppression Circuitry Rejects Spikes on Bus Lines
* Fully Programmable Slave Address with General Call Support
* Address Recognition Causes Wake-up When AVR is in Sleep Mode

20.2 2-wire Serial Interface Bus Definition
The 2-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The
TWI protocol allows the systems designer to interconnect up to 128 different devices using only
two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external hard-
ware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All
devices connected to the bus have individual addresses, and mechanisms for resolving bus
contention are inherent in the TWI protocol.

Figure 20-1. TWI Bus Interconnection

cC

Device 1 Device 2 Device 3 | Device n R1 R2

SDA

A
\/

SCL

A
\/

20.2.1 TWI Terminology
The following definitions are frequently encountered in this section.

Table 20-1. TWI Terminology

Term Description

The device that initiates and terminates a transmission. The Master also

Master generates the SCL clock.

Slave The device addressed by a Master.

Transmitter | The device placing data on the bus.

Receiver The device reading data from the bus.

AImEl@ 223

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

20.2.2

The Power Reduction TWI bit, PRTWI bit in “Power Reduction Register 0 - PRR0” on page 46
must be written to zero to enable the 2-wire Serial Interface.

Electrical Interconnection

As depicted in Figure 20-1, both bus lines are connected to the positive supply voltage through
pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector.
This implements a wired-AND function which is essential to the operation of the interface. A low
level on a TWI bus line is generated when one or more TWI devices output a zero. A high level
is output when all TWI devices trim-state their outputs, allowing the pull-up resistors to pull the
line high. Note that all AVR devices connected to the TWI bus must be powered in order to allow
any bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance
limit of 400 pF and the 7-bit slave address space. A detailed specification of the electrical char-
acteristics of the TWIl is given in “SPI Timing Characteristics” on page 383. Two different sets of
specifications are presented there, one relevant for bus speeds below 100 kHz, and one valid for
bus speeds up to 400 kHz.

20.3 Data Transfer and Frame Format

20.3.1

20.3.2

7766F-AVR-11/10

Transferring Bits

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level
of the data line must be stable when the clock line is high. The only exception to this rule is for
generating start and stop conditions.

Figure 20-2. Data Validity

SDA

SCL

Data Stable Data Stable

Data Change

START and STOP Conditions

The Master initiates and terminates a data transmission. The transmission is initiated when the
Master issues a START condition on the bus, and it is terminated when the Master issues a
STOP condition. Between a START and a STOP condition, the bus is considered busy, and no
other master should try to seize control of the bus. A special case occurs when a new START
condition is issued between a START and STOP condition. This is referred to as a REPEATED
START condition, and is used when the Master wishes to initiate a new transfer without relin-
quishing control of the bus. After a REPEATED START, the bus is considered busy until the next
STOP. This is identical to the START behavior, and therefore START is used to describe both
START and REPEATED START for the remainder of this datasheet, unless otherwise noted. As

AImEl@ 224

ATmega16/32U4

depicted below, START and STOP conditions are signalled by changing the level of the SDA
line when the SCL line is high.

Figure 20-3. START, REPEATED START and STOP conditions

START STOP START REPEATED START STOP

20.3.3 Address Packet Format

7766F-AVR-11/10

All address packets transmitted on the TWI bus are 9 bits long, consisting of 7 address bits, one
READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read opera-
tion is to be performed, otherwise a write operation should be performed. When a Slave
recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL
(ACK) cycle. If the addressed Slave is busy, or for some other reason can not service the Mas-
ter's request, the SDA line should be left high in the ACK clock cycle. The Master can then
transmit a STOP condition, or a REPEATED START condition to initiate a new transmission. An
address packet consisting of a slave address and a READ or a WRITE bit is called SLA+R or
SLA+W, respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the
designer, but the address 0000 000 is reserved for a general call.

When a general call is issued, all slaves should respond by pulling the SDA line low in the ACK
cycle. A general call is used when a Master wishes to transmit the same message to several
slaves in the system. When the general call address followed by a Write bit is transmitted on the
bus, all slaves set up to acknowledge the general call will pull the SDA line low in the ack cycle.
The following data packets will then be received by all the slaves that acknowledged the general
call. Note that transmitting the general call address followed by a Read bit is meaningless, as
this would cause contention if several slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 20-4. Address Packet Format

Addr MSB . Addr LSB R/W ACK
XX
WAVAVAN

START

AImEl@ 225

EEEes————————————————————— A TMmega16/32U4

20.3.4 Data Packet Format

All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and
an acknowledge bit. During a data transfer, the Master generates the clock and the START and
STOP conditions, while the Receiver is responsible for acknowledging the reception. An
Acknowledge (ACK) is signalled by the Receiver pulling the SDA line low during the ninth SCL
cycle. If the Receiver leaves the SDA line high, a NACK is signalled. When the Receiver has
received the last byte, or for some reason cannot receive any more bytes, it should inform the
Transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted first.

Figure 20-5. Data Packet Format

Data MSB DataLSB ACK

Aggregate
SDA

I
I
I
I
I
I
I
I
I
|
SDA from 3
Transmitter N
I

]

T

I

I

I

I

I

I

I

I

I

I

R R =R

SDA from /
Receiver

SCL from
Master 5 ,,,,,,
1 2 7 8 9

Data Byte

STOP, REPEATED
START or Next
Data Byte

20.3.5 Combining Address and Data Packets into a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets
and a STOP condition. An empty message, consisting of a START followed by a STOP condi-
tion, is illegal. Note that the Wired-ANDing of the SCL line can be used to implement
handshaking between the Master and the Slave. The Slave can extend the SCL low period by
pulling the SCL line low. This is useful if the clock speed set up by the Master is too fast for the
Slave, or the Slave needs extra time for processing between the data transmissions. The Slave
extending the SCL low period will not affect the SCL high period, which is determined by the
Master. As a consequence, the Slave can reduce the TWI data transfer speed by prolonging the
SCL duty cycle.

Figure 20-6 shows a typical data transmission. Note that several data bytes can be transmitted
between the SLA+R/W and the STOP condition, depending on the software protocol imple-
mented by the application software.

Figure 20-6. Typical Data Transmission

SDA

Addr MSB

AddrLSB R/W ACK Data MSB DataLSB ACK

IANVAVANYVAVAVANE BV AV AV ANV
2] 7 8 9 1 2) 7 8 9

START

7766F-AVR-11/10

1

§ § —
X X

SLA+R/W Data Byte STOP

AImEl@ 226

EEEes————————————————————— A TMmega16/32U4

20.4 Multi-master Bus Systems, Arbitration and Synchronization
The TWI protocol allows bus systems with several masters. Special concerns have been taken
in order to ensure that transmissions will proceed as normal, even if two or more masters initiate
a transmission at the same time. Two problems arise in multi-master systems:

* An algorithm must be implemented allowing only one of the masters to complete the
transmission. All other masters should cease transmission when they discover that they have
lost the selection process. This selection process is called arbitration. When a contending
master discovers that it has lost the arbitration process, it should immediately switch to Slave
mode to check whether it is being addressed by the winning master. The fact that multiple
masters have started transmission at the same time should not be detectable to the slaves,
i.e. the data being transferred on the bus must not be corrupted.

« Different masters may use different SCL frequencies. A scheme must be devised to
synchronize the serial clocks from all masters, in order to let the transmission proceed in a
lockstep fashion. This will facilitate the arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from
all masters will be wired-ANDed, yielding a combined clock with a high period equal to the one
from the Master with the shortest high period. The low period of the combined clock is equal to
the low period of the Master with the longest low period. Note that all masters listen to the SCL
line, effectively starting to count their SCL high and low time-out periods when the combined
SCL line goes high or low, respectively.

Figure 20-7. SCL Synchronization Between Multiple Masters

‘ TA low } | TA high }
I I I I
| I J |
SCL from ! L,/ ! !
Master A | / | |
I I
! !
,,,,,, | | I
SCL from | \ L/ | I
Master B | \ /| | I
[| | | I
| | | |
SCL Bus | W ‘ |
Line \ /| | \
I 1 } ! I
! ! !
\ By } } TBhigh }
\ Masters Start \ Masters Start
Counting Low Period Counting High Period

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting
data. If the value read from the SDA line does not match the value the Master had output, it has
lost the arbitration. Note that a Master can only lose arbitration when it outputs a high SDA value
while another Master outputs a low value. The losing Master should immediately go to Slave
mode, checking if it is being addressed by the winning Master. The SDA line should be left high,
but losing masters are allowed to generate a clock signal until the end of the current data or
address packet. Arbitration will continue until only one Master remains, and this may take many

AImEl@ 227

7766F-AVR-11/10

ATmega16/32U4

bits. If several masters are trying to address the same Slave, arbitration will continue into the
data packet.

Figure 20-8. Arbitration Between Two Masters
START Master A Loses

SDA f | rbitration, SDA,# SDA
rom

Master A

SDA from
Master B \ / \ / \

Synchronized
|| |

Note that arbitration is not allowed between:

o A REPEATED START condition and a data bit.
* A STOP condition and a data bit.
e A REPEATED START and a STOP condition.

It is the user software’s responsibility to ensure that these illegal arbitration conditions never
occur. This implies that in multi-master systems, all data transfers must use the same composi-
tion of SLA+R/W and data packets. In other words: All transmissions must contain the same
number of data packets, otherwise the result of the arbitration is undefined.

20.5 Overview of the TWI Module

The TWI module is comprised of several submodules, as shown in Figure 20-9. All registers
drawn in a thick line are accessible through the AVR data bus.

AImEl@ 228

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

SCL

Slew-rate Spike

Figure 20-9. Overview of the TWI Module

SDA

Slew-rate Spike

Control

Filter

A

Control

Filter

A

Bus Interface Unit

START / STOP
Control

Spike Suppression

Bit Rate Generator

Prescaler

Arbitration detection

Address/Data Shift
Register (TWDR)

Ack

Bit Rate Register
(TWBR)

A
/

Address Match Unit

Address Register
(TWAR)

J
A

Control Unit

Address Comparator

Status Register
(TWSR)

Control Register
(TWCR)

State Machine and

TWI Unit

Status control

20.5.1 SCL and SDA Pins

These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a
slew-rate limiter in order to conform to the TWI specification. The input stages contain a spike
suppression unit removing spikes shorter than 50 ns. Note that the internal pull-ups in the AVR
pads can be enabled by setting the PORT bits corresponding to the SCL and SDA pins, as
explained in the I/O Port section. The internal pull-ups can in some systems eliminate the need
for external ones.

20.5.2 Bit Rate Generator Unit

7766F-AVR-11/10

This unit controls the period of SCL when operating in a Master mode. The SCL period is con-
trolled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI Status
Register (TWSR). Slave operation does not depend on Bit Rate or Prescaler settings, but the
CPU clock frequency in the Slave must be at least 16 times higher than the SCL frequency. Note
that slaves may prolong the SCL low period, thereby reducing the average TWI bus clock
period. The SCL frequency is generated according to the following equation:

AImEl@ 229

EEEes————————————————————— A TMmega16/32U4

CPU Clock frequency

SCL frequency =
16+ 2(TWBR) - 473

* TWBR = Value of the TWI Bit Rate Register.
* TWPS = Value of the prescaler bits in the TWI Status Register.

Note: TWBR should be 10 or higher if the TWI operates in Master mode. If TWBR is lower than 10, the
Master may produce an incorrect output on SDA and SCL for the reminder of the byte. The prob-
lem occurs when operating the TWI in Master mode, sending Start + SLA + R/W to a Slave (a
Slave does not need to be connected to the bus for the condition to happen).

20.5.3 Bus Interface Unit

This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and
Arbitration detection hardware. The TWDR contains the address or data bytes to be transmitted,
or the address or data bytes received. In addition to the 8-bit TWDR, the Bus Interface Unit also
contains a register containing the (N)ACK bit to be transmitted or received. This (N)ACK Regis-
ter is not directly accessible by the application software. However, when receiving, it can be set
or cleared by manipulating the TWI Control Register (TWCR). When in Transmitter mode, the
value of the received (N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED
START, and STOP conditions. The START/STOP controller is able to detect START and STOP
conditions even when the AVR MCU is in one of the sleep modes, enabling the MCU to wake up
if addressed by a Master.

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware continu-
ously monitors the transmission trying to determine if arbitration is in process. If the TWI has lost
an arbitration, the Control Unit is informed. Correct action can then be taken and appropriate
status codes generated.

20.5.4 Address Match Unit

The Address Match unit checks if received address bytes match the seven-bit address in the
TWI Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the
TWAR is written to one, all incoming address bits will also be compared against the General Call
address. Upon an address match, the Control Unit is informed, allowing correct action to be
taken. The TWI may or may not acknowledge its address, depending on settings in the TWCR.
The Address Match unit is able to compare addresses even when the AVR MCU is in sleep
mode, enabling the MCU to wake up if addressed by a Master. If another interrupt (e.g., INTO)
occurs during TWI Power-down address match and wakes up the CPU, the TWI aborts opera-
tion and return to it’s idle state. If this cause any problems, ensure that TWI Address Match is the
only enabled interrupt when entering Power-down.

20.5.5 Control Unit

The Control unit monitors the TWI bus and generates responses corresponding to settings in the
TWI Control Register (TWCR). When an event requiring the attention of the application occurs
on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the next clock cycle, the TWI Sta-
tus Register (TWSR) is updated with a status code identifying the event. The TWSR only
contains relevant status information when the TWI Interrupt Flag is asserted. At all other times,
the TWSR contains a special status code indicating that no relevant status information is avail-
able. As long as the TWINT Flag is set, the SCL line is held low. This allows the application
software to complete its tasks before allowing the TWI transmission to continue.

AImEl@ 230

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

The TWINT Flag is set in the following situations:

¢ After the TWI has transmitted a START/REPEATED START condition.

 After the TWI has transmitted SLA+R/W.

¢ After the TWI has transmitted an address byte.

* After the TWI has lost arbitration.

 After the TWI has been addressed by own slave address or general call.

o After the TWI has received a data byte.

 After a STOP or REPEATED START has been received while still addressed as a Slave.
* When a bus error has occurred due to an illegal START or STOP condition.

20.6 TWI Register Description

20.6.1 TWI Bit Rate Register - TWBR

Bit 7 6 5 4 3 2 1 0

I TWBR7 | TWBR6 | TWBR5 | TWBR4 | TWBR3 | TWBR2 | TWBR1 | TWBRO I TWBR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7..0 - TWI Bit Rate Register

TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency
divider which generates the SCL clock frequency in the Master modes. See “Bit Rate Generator
Unit” on page 229 for calculating bit rates.

20.6.2 TWI Control Register - TWCR

Bit 7 6 5 4 3 2 1 0

I TWINT | TWEA TWSTA | TWSTO | TWWC TWEN - TWIE I TWCR
Read/Write R/W R/W R/W R/W R R/W R R/W
Initial Value 0 0 0 0 0 0 0 0

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a
Master access by applying a START condition to the bus, to generate a Receiver acknowledge,
to generate a stop condition, and to control halting of the bus while the data to be written to the
bus are written to the TWDR. It also indicates a write collision if data is attempted written to
TWDR while the register is inaccessible.

e Bit 7 - TWINT: TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects application
software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the
TWI Interrupt Vector. While the TWINT Flag is set, the SCL low period is stretched. The TWINT
Flag must be cleared by software by writing a logic one to it. Note that this flag is not automati-
cally cleared by hardware when executing the interrupt routine. Also note that clearing this flag
starts the operation of the TWI, so all accesses to the TWI Address Register (TWAR), TWI Sta-
tus Register (TWSR), and TWI Data Register (TWDR) must be complete before clearing this
flag.

e Bit 6 — TWEA: TWI Enable Acknowledge Bit
The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is written to
one, the ACK pulse is generated on the TWI bus if the following conditions are met:

AImEl@ 231

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

1. The device’s own slave address has been received.
2. A general call has been received, while the TWGCE bit in the TWAR is set.
3. A data byte has been received in Master Receiver or Slave Receiver mode.
By writing the TWEA bit to zero, the device can be virtually disconnected from the 2-wire Serial

Bus temporarily. Address recognition can then be resumed by writing the TWEA bit to one
again.

e Bit 5 - TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a Master on the 2-wire
Serial Bus. The TWI hardware checks if the bus is available, and generates a START condition
on the bus if it is free. However, if the bus is not free, the TWI waits until a STOP condition is
detected, and then generates a new START condition to claim the bus Master status. TWSTA
must be cleared by software when the START condition has been transmitted.

e Bit4 - TWSTO: TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the 2-wire
Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit is cleared auto-
matically. In Slave mode, setting the TWSTO bit can be used to recover from an error condition.
This will not generate a STOP condition, but the TWI returns to a well-defined unaddressed
Slave mode and releases the SCL and SDA lines to a high impedance state.

e Bit 3 - TWWC: TWI Write Collision Flag
The TWWOC bit is set when attempting to write to the TWI Data Register —- TWDR when TWINT is
low. This flag is cleared by writing the TWDR Register when TWINT is high.

e Bit 2 - TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to
one, the TWI takes control over the 1/0 pins connected to the SCL and SDA pins, enabling the
slew-rate limiters and spike filters. If this bit is written to zero, the TWI is switched off and all TWI
transmissions are terminated, regardless of any ongoing operation.

¢ Bit 1 — Res: Reserved Bit
This bit is a reserved bit and will always read as zero.

e Bit 0 — TWIE: TWI Interrupt Enable
When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be acti-
vated for as long as the TWINT Flag is high.

20.6.3 TWI Status Register - TWSR

Bit 7 6 5 4 3 2 1 0
| tws7 | Twse TWS5 TWS4 TWS3 - TWPSL | TWPSO | TWSR

Read/Write R R R R R R R/W R/W

Initial Value 1 1 1 1 1 0 0 0

e Bits 7..3 - TWS: TWI Status

These 5 bits reflect the status of the TWI logic and the 2-wire Serial Bus. The different status
codes are described later in this section. Note that the value read from TWSR contains both the
5-bit status value and the 2-bit prescaler value. The application designer should mask the pres-

AImEl@ 232

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

caler bits to zero when checking the Status bits. This makes status checking independent of
prescaler setting. This approach is used in this datasheet, unless otherwise noted.

¢ Bit 2 — Res: Reserved Bit
This bit is reserved and will always read as zero.

e Bits 1..0 - TWPS: TWI Prescaler Bits
These bits can be read and written, and control the bit rate prescaler.

Table 20-2. TWI Bit Rate Prescaler

TWPS1 TWPSO0 Prescaler Value
0 0 1

0 1 4

1 0 16

1 1 64

To calculate bit rates, see “Bit Rate Generator Unit” on page 229. The value of TWPS1..0 is
used in the equation.

20.6.4 TWI Data Register - TWDR

Bit 7 6 5 4 3 2 1 0

I TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWDO I TWDR
Read/Write R/W R/W R/W R/IW R/W R/W R/W R/IW
Initial Value 1 1 1 1 1 1 1 1

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the TWDR
contains the last byte received. It is writable while the TWI is not in the process of shifting a byte.
This occurs when the TWI Interrupt Flag (TWINT) is set by hardware. Note that the Data Regis-
ter cannot be initialized by the user before the first interrupt occurs. The data in TWDR remains
stable as long as TWINT is set. While data is shifted out, data on the bus is simultaneously
shifted in. TWDR always contains the last byte present on the bus, except after a wake up from
a sleep mode by the TWI interrupt. In this case, the contents of TWDR is undefined. In the case
of a lost bus arbitration, no data is lost in the transition from Master to Slave. Handling of the
ACK bit is controlled automatically by the TWI logic, the CPU cannot access the ACK bit directly.

¢ Bits 7..0 - TWD: TWI Data Register
These eight bits constitute the next data byte to be transmitted, or the latest data byte received
on the 2-wire Serial Bus.

20.6.5 TWI (Slave) Address Register - TWAR

Bit 7 6 5 4 3 2 1 0

| TWA6 | TWA5 | TWA4 TWA3 TWA2 TWAL TWAO | TWGCE | TWAR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 1 1 1 1 1 1 1 0

The TWAR should be loaded with the 7-bit Slave address (in the seven most significant bits of
TWAR) to which the TWI will respond when programmed as a Slave Transmitter or Receiver,
and not needed in the Master modes. In multi master systems, TWAR must be set in masters
which can be addressed as Slaves by other Masters.

AImEl@ 233

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

The LSB of TWAR is used to enable recognition of the general call address (0x00). There is an
associated address comparator that looks for the slave address (or general call address if
enabled) in the received serial address. If a match is found, an interrupt request is generated.

e Bits 7..1 - TWA: TWI (Slave) Address Register
These seven bits constitute the slave address of the TWI unit.

* Bit 0 - TWGCE: TWI General Call Recognition Enable Bit
If set, this bit enables the recognition of a General Call given over the 2-wire Serial Bus.

20.6.6 TWI (Slave) Address Mask Register - TWAMR

Bit 7 6 5 4 3 2 1 0

| TWAM[6:0] - | TWAMR
Read/Write R/W R/W R/W R/W RIW R/W R/W R
Initial Value 0 0 0 0 0 0 0 0

e Bits 7..1 - TWAM: TWI Address Mask

The TWAMR can be loaded with a 7-bit Slave Address mask. Each of the bits in TWAMR can
mask (disable) the corresponding address bit in the TWI Address Register (TWAR). If the mask
bit is set to one then the address match logic ignores the compare between the incoming
address bit and the corresponding bit in TWAR. Figure 20-10 shows the address match logic in
detail.

Figure 20-10. TWI Address Match Logic, Block Diagram

I 1
I 1
TWARO :) |
1
: / : ° Address
! L Match

Address
Bit 0

TWAMRO

¢ Bit 0 — Res: Reserved Bit
This bit is reserved and will always read as zero.

20.7 Using the TWI

The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like
reception of a byte or transmission of a START condition. Because the TWI is interrupt-based,
the application software is free to carry on other operations during a TWI byte transfer. Note that
the TWI Interrupt Enable (TWIE) bit in TWCR together with the Global Interrupt Enable bit in
SREG allow the application to decide whether or not assertion of the TWINT Flag should gener-
ate an interrupt request. If the TWIE bit is cleared, the application must poll the TWINT Flag in
order to detect actions on the TWI bus.

When the TWINT Flag is asserted, the TWI has finished an operation and awaits application
response. In this case, the TWI Status Register (TWSR) contains a value indicating the current

AImEl@ 234

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

state of the TWI bus. The application software can then decide how the TWI should behave in
the next TWI bus cycle by manipulating the TWCR and TWDR Registers.

Figure 20-11 is a simple example of how the application can interface to the TWI hardware. In
this example, a Master wishes to transmit a single data byte to a Slave. This description is quite
abstract, a more detailed explanation follows later in this section. A simple code example imple-
menting the desired behavior is also presented.

Figure 20-11. Interfacing the Application to the TWI in a Typical Transmission

1. Application
5 writes to TWCR to
§ S initiate
328 transmission of
g START

3. Check TWSR to see if START was
sent. Application loads SLA+W into
TWDR, and loads appropriate control
signals into TWCR, makin sure that
TWINT is written to one,
and TWSTA is written to zero.

5. Check TWSR to see if SLA+W was
sent and ACK received.
Application loads data into TWDR, and
loads appropriate control signals into
TWCR, making sure that TWINT is
written to one

7.Check TWSR to see if data was sent
and ACK received.
Application loads appropriate control
signals to send STOP into TWCR,
making sure that TWINT is written to one

| ﬁ

TWIlbus | START

T

Data A

SLA+W STOP ‘

2. TWINT set.
Status code indicates
START condition sent

TWI
Hardware
Action

7766F-AVR-11/10

Indicates

4. TWINT set. TWINT set

Status code indicates
SLA+W sent, ACK
received

6. TWINT set.
Status code indicates
data sent, ACK received

The first step in a TWI transmission is to transmit a START condition. This is done by
writing a specific value into TWCR, instructing the TWI hardware to transmit a START
condition. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI
will not start any operation as long as the TWINT bit in TWCR is set. Immediately after
the application has cleared TWINT, the TWI will initiate transmission of the START
condition.

When the START condition has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the START condition has success-
fully been sent.

The application software should now examine the value of TWSR, to make sure that the
START condition was successfully transmitted. If TWSR indicates otherwise, the appli-
cation software might take some special action, like calling an error routine. Assuming
that the status code is as expected, the application must load SLA+W into TWDR.
Remember that TWDR is used both for address and data. After TWDR has been
loaded with the desired SLA+W, a specific value must be written to TWCR, instructing
the TWI hardware to transmit the SLA+W present in TWDR. Which value to write is
described later on. However, it is important that the TWINT bit is set in the value written.
Writing a one to TWINT clears the flag. The TWI will not start any operation as long as
the TWINT bit in TWCR is set. Immediately after the application has cleared TWINT,
the TWI will initiate transmission of the address packet.

When the address packet has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the address packet has success-
fully been sent. The status code will also reflect whether a Slave acknowledged the
packet or not.

ATMEL

235

EEEes————————————————————— A TMmega16/32U4

5. The application software should now examine the value of TWSR, to make sure that the
address packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some spe-
cial action, like calling an error routine. Assuming that the status code is as expected,
the application must load a data packet into TWDR. Subsequently, a specific value
must be written to TWCR, instructing the TWI hardware to transmit the data packet
present in TWDR. Which value to write is described later on. However, it is important
that the TWINT bit is set in the value written. Writing a one to TWINT clears the flag.
The TWI will not start any operation as long as the TWINT bit in TWCR is set. Immedi-
ately after the application has cleared TWINT, the TWI will initiate transmission of the
data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the data packet has successfully
been sent. The status code will also reflect whether a Slave acknowledged the packet
or not.

7. The application software should now examine the value of TWSR, to make sure that the
data packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some spe-
cial action, like calling an error routine. Assuming that the status code is as expected,
the application must write a specific value to TWCR, instructing the TWI hardware to
transmit a STOP condition. Which value to write is described later on. However, it is
important that the TWINT bit is set in the value written. Writing a one to TWINT clears
the flag. The TWI will not start any operation as long as the TWINT bit in TWCR is set.
Immediately after the application has cleared TWINT, the TWI will initiate transmission
of the STOP condition. Note that TWINT is NOT set after a STOP condition has been
sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions.
These can be summarized as follows:

* When the TWI has finished an operation and expects application response, the TWINT Flag
is set. The SCL line is pulled low until TWINT is cleared.

* When the TWINT Flag is set, the user must update all TWI Registers with the value relevant
for the next TWI bus cycle. As an example, TWDR must be loaded with the value to be
transmitted in the next bus cycle.

* After all TWI Register updates and other pending application software tasks have been
completed, TWCR is written. When writing TWCR, the TWINT bit should be set. Writing a
one to TWINT clears the flag. The TWI will then commence executing whatever operation
was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that the code
below assumes that several definitions have been made, for example by using include-files.

AImEl@ 236

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

cpi rl6, START
brne ERROR

Assembly Code Example C Example Comments

ldi rle, TWCR = (1<<TWINT) | (1<<TWSTA) |
(1<<TWINT) | (1<<TWSTA) |

1 (1<<TWEN) Send START condition

(1<<TWEN)

out TWCR, rlé6
waitl: while (! (TWCR & (1<<TWINT)))
in 16, TWCR . Waﬁ for TWINT Flag set. This

2 indicates that the START
sbrs rl6, TWINT condition has been transmitted
rijmp waitl
in rl6,TWSR if ((TWSR & O0xF8) != START) Check value of TWI Status
andi rl6, OxF8 ERROR () ; Register. Mask prescaler bits. If

status different from START go to
ERROR

3 1di rl6, SLA W

TWDR = SLA_W;

Load SLA_W into TWDR

in rl6, TWCR
sbrs rl16, TWINT

rjmp wait?2

out TWDR, rlé6 TWCR = (1<<TWINT) | Register. Clear TWINT bit

)) egister. Clear it in
1@i rl6, (L<<TWINT) | (1<<TWEN) ; TWCR to start transmission of
(1<<TWEN) address
out TWCR, rlé6
wait2: while (! (TWCR & (1<<TWINT)))

Wait for TWINT Flag set. This
indicates that the SLA+W has
been transmitted, and
ACK/NACK has been received.

in rl6, TWSR

andi rl6, OxF8

cpi rl6, MT_SLA_ACK
brne ERROR

if ((TWSR & O0xF8) !=
MT_SLA_ACK)

ERROR () ;

Check value of TWI Status
Register. Mask prescaler bits. If
status different from
MT_SLA_ACK go to ERROR

5 1di rl6, DATA

TWDR = DATA;

in rl6, TWCR

out TWDR, rlé6 TWCR = (1<<TWINT) | Load DATA into TWDR Register.
1di rl6, (1<<TWINT) | (1<<TWEN) ; Clear TWINT bit in TWCR to
(1<<TWEN) start transmission of data

out TWCR, rlé6

wait3: while (! (TWCR & (1<<TWINT)))

Wait for TWINT Flag set. This
indicates that the DATA has been

(1<<TWSTO)

out TWCR, rlé6

6 sbrs rl6, TWINT transmitted, and ACK/NACK has
. . been received.

rjmp wait3
in rlé6,TWSR if ((TWSR & 0xF8) != Check value of TWI Status
andi rl6, OxF8 MT_DATA_ACK) Register. Mask prescaler bits. If
cpi rl6, MT_DATA_ACK ERROR() ; status different from

. brne ERROR MT_DATA_ACK go to ERROR
1di rle, TWCR = (1<<TWINT) | (1<<TWEN) |
(1<<TWINT) | (1<<TWEN) | (1<<TWSTO) ;

Transmit STOP condition

7766F-AVR-11/10

ATMEL

237

EEEes————————————————————— A TMmega16/32U4

20.8 Transmission Modes

The TWI can operate in one of four major modes. These are named Master Transmitter (MT),
Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several of these
modes can be used in the same application. As an example, the TWI can use MT mode to write
data into a TWI EEPROM, MR mode to read the data back from the EEPROM. If other masters
are present in the system, some of these might transmit data to the TWI, and then SR mode
would be used. It is the application software that decides which modes are legal.

The following sections describe each of these modes. Possible status codes are described
along with figures detailing data transmission in each of the modes. These figures contain the
following abbreviations:

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)
Data: 8-bit data byte

P: STOP condition

SLA: Slave Address

In Figure 20-13 to Figure 20-19, circles are used to indicate that the TWINT Flag is set. The
numbers in the circles show the status code held in TWSR, with the prescaler bits masked to
zero. At these points, actions must be taken by the application to continue or complete the TWI
transfer. The TWI transfer is suspended until the TWINT Flag is cleared by software.

When the TWINT Flag is set, the status code in TWSR is used to determine the appropriate soft-
ware action. For each status code, the required software action and details of the following serial
transfer are given in Table 20-3 to Table 20-6. Note that the prescaler bits are masked to zero in
these tables.

20.8.1 Master Transmitter Mode

7766F-AVR-11/10

In the Master Transmitter mode, a number of data bytes are transmitted to a Slave Receiver
(see Figure 20-12). In order to enter a Master mode, a START condition must be transmitted.
The format of the following address packet determines whether Master Transmitter or Master
Receiver mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R is trans-
mitted, MR mode is entered. All the status codes mentioned in this section assume that the
prescaler bits are zero or are masked to zero.

AImEl@ 238

EEEes————————————————————— A TMmega16/32U4

Figure 20-12. Data Transfer in Master Transmitter Mode

cc

Device 1 Device 2 . .
MASTER SLAVE Device 3 | Device n
TRANSMITTER RECEIVER

py]
[

py)
L~]

SDA

scL A

A START condition is sent by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 1 0 X 1 0 X

TWEN must be set to enable the 2-wire Serial Interface, TWSTA must be written to one to trans-
mit a START condition and TWINT must be written to one to clear the TWINT Flag. The TWI will
then test the 2-wire Serial Bus and generate a START condition as soon as the bus becomes
free. After a START condition has been transmitted, the TWINT Flag is set by hardware, and the
status code in TWSR will be 0x08 (see Table 20-3). In order to enter MT mode, SLA+W must be
transmitted. This is done by writing SLA+W to TWDR. Thereafter the TWINT bit should be
cleared (by writing it to one) to continue the transfer. This is accomplished by writing the follow-

ing value to TWCR:
TWCR TWINT TWEA TWSTA | TwsTO | TwwcC TWEN = TWIE
value 1 X 0 0 X 1 0 X

When SLA+W have been transmitted and an acknowledgement bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are 0x18, 0x20, or 0x38. The appropriate action to be taken for each of these status codes
is detailed in Table 20-3.

When SLA+W has been successfully transmitted, a data packet should be transmitted. This is
done by writing the data byte to TWDR. TWDR must only be written when TWINT is high. If not,
the access will be discarded, and the Write Collision bit (TWWC) will be set in the TWCR Regis-
ter. After updating TWDR, the TWINT bit should be cleared (by writing it to one) to continue the
transfer. This is accomplished by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 0 X 1 0 X

This scheme is repeated until the last byte has been sent and the transfer is ended by generat-
ing a STOP condition or a repeated START condition. A STOP condition is generated by writing
the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 1 X 1 0 X

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 1 0 X 1 0 X

AImEl@ 239

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

After a repeated START condition (state 0x10) the 2-wire Serial Interface can access the same
Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables
the Master to switch between Slaves, Master Transmitter mode and Master Receiver mode with-
out losing control of the bus.

Table 20-3. Status codes for Master Transmitter Mode
Status Code Application Software Response
(TWSR) Status of the 2-wire Serial Bus | 1o/from TWDR To TWCR
Prescaler Bits and 2-wire Serial Interface
are 0 Hardware STA STO TV_Y_lN TVXE Next Action Taken by TWI Hardware
0x08 A START condition has been Load SLA+W 0 0 1 X SLA+W will be transmitted;
transmitted ACK or NOT ACK will be received
0x10 A repeated START condition | Load SLA+W or 0 0 1 X SLA+W will be transmitted;
has been transmitted ACK or NOT ACK will be received
Load SLA+R 0 0 1 X SLA+R will be transmitted;
Logic will switch to Master Receiver mode
0x18 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x20 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
NOT ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x28 Data byte has been transmit- | Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
ted; be received
ACK has been received No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x30 Data byte has been transmit- | Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
ted; be received
NOT ACK has been received No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x38 Arbitration lost in SLA+W or | No TWDR action or 0 0 1 X 2-wire Serial Bus will be released and not addressed
data bytes Slave mode entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus
becomes free

7766F-AVR-11/10

ATMEL

240

ATmega16/32U4

Figure 20-13. Formats and States in the Master Transmitter Mode

MT

S | SLA | W A DATA A B |

Successfull
transmission
to a slave
receiver

$08 $18 $28

Next transfer T
started with a Rs | SLA W
repeated start
condition

Not acknowledge
received after the A P |

slave address

MR

Not acknowledge

received after a data R P |

byte

Arbitration lost in slave Other master Other master

address or data byte AorA | continues AorA continues
$38 $38

Arbitration lost and Other master
addressed as slave A continues

To corresponding
states in slave mode

- Any number of data bytes
I:I From master to slave DATA and their associated acknowledge bits
I:I From slave to master This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The

prescaler bits are zero or masked to zero

20.8.2 Master Receiver Mode
In the Master Receiver mode, a number of data bytes are received from a Slave Transmitter
(Slave see Figure 20-14). In order to enter a Master mode, a START condition must be transmit-
ted. The format of the following address packet determines whether Master Transmitter or
Master Receiver mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R
is transmitted, MR mode is entered. All the status codes mentioned in this section assume that
the prescaler bits are zero or are masked to zero.

AI“IE'.@ 241

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 20-14. Data Transfer in Master Receiver Mode

cc

Device 1 Device 2 . .
MASTER SLAVE Device 3 | Device n
RECEIVER TRANSMITTER

)
I
)
L~]

SDA y

SCL

A START condition is sent by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 1 0 X 1 0 X

TWEN must be written to one to enable the 2-wire Serial Interface, TWSTA must be written to
one to transmit a START condition and TWINT must be set to clear the TWINT Flag. The TWI
will then test the 2-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT Flag is set by hard-
ware, and the status code in TWSR will be 0x08 (See Table 20-3). In order to enter MR mode,
SLA+R must be transmitted. This is done by writing SLA+R to TWDR. Thereafter the TWINT bit
should be cleared (by writing it to one) to continue the transfer. This is accomplished by writing
the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 0 X 1 0 X

When SLA+R have been transmitted and an acknowledgement bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are 0x38, 0x40, or 0x48. The appropriate action to be taken for each of these status codes
is detailed in Table 20-4. Received data can be read from the TWDR Register when the TWINT
Flag is set high by hardware. This scheme is repeated until the last byte has been received.
After the last byte has been received, the MR should inform the ST by sending a NACK after the
last received data byte. The transfer is ended by generating a STOP condition or a repeated
START condition. A STOP condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 1 X 1 0 X

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 1 0 X 1 0 X

After a repeated START condition (state 0x10) the 2-wire Serial Interface can access the same
Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables

AImEl@ 242

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

the Master to switch between Slaves, Master Transmitter mode and Master Receiver mode with-
out losing control over the bus.

Table 20-4. Status codes for Master Receiver Mode
Status Code Application Software Response
(TWSR) Status of the 2-wire Serial Bus To TWCR
Prescaler Bits and 2-wire Serial Interface | To/from TWDR
are 0 Hardware STA STO TV_Y_lN T\Q‘/E Next Action Taken by TWI Hardware
0x08 A START condition has been Load SLA+R 0 0 1 X SLA+R will be transmitted
transmitted ACK or NOT ACK will be received
0x10 A repeated START condition Load SLA+R or 0 0 1 X SLA+R will be transmitted
has been transmitted ACK or NOT ACK will be received
Load SLA+W 0 0 1 X SLA+W will be transmitted
Logic will switch to Master Transmitter mode
0x38 Arbitration lost in SLA+R or | No TWDR action or 0 0 1 X 2-wire Serial Bus will be released and not addressed
NOT ACK bit Slave mode will be entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus
becomes free
0x40 SLA+R has been transmitted; No TWDR action or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been received returned
No TWDR action 0 0 1 1 Data byte will be received and ACK will be returned
0x48 SLA+R has been transmitted; No TWDR action or 1 0 1 X Repeated START will be transmitted
NOT ACK has been received No TWDR action or 0 1 1 X STOP condition will be transmitted and TWSTO Flag
will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x50 Data byte has been received; Read data byte or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
Read data byte 0 0 1 1 Data byte will be received and ACK will be returned
0x58 Data byte has been received; Read data byte or 1 0 1 X Repeated START will be transmitted
NOT ACK has been returned Read data byte or 0 1 1 X STOP condition will be transmitted and TWSTO Flag
will be reset
Read data byte 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

7766F-AVR-11/10

ATMEL

243

20.8.3

ATmega16/32U4

Figure 20-15. Formats and States in the Master Receiver Mode

MR

Successfull
reception

»_|

DATA

from a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the

slave address

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

$40

A | DATA | A

$58

> |

$48

MT

AorA |

Other master
continues

Other master
continues

7|

Other master
continues

$38

To corresponding
states in slave mode

[]
]

Slave Receiver Mode

From master to slave |

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

In the Slave Receiver mode, a number of data bytes are received from a Master Transmitter
(see Figure 20-16). All the status codes mentioned in this section assume that the prescaler bits
are zero or are masked to zero.

Figure 20-16. Data transfer in Slave Receiver mode

VCC
Device 1 Device 2) .
SLAVE MASTER Device3 | Device n R1 R2
RECEIVER TRANSMITTER
A A
SDA A
scL y

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

TWAR

value

7766F-AVR-11/10

TWAG | TWAS ’ TWA4 ‘ TWA3 | TWA2 | TWA1 ‘ TWAO

TWGCE

Device’s Own Slave Address

ATMEL

244

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

The upper 7 bits are the address to which the 2-wire Serial Interface will respond when
addressed by a Master. If the LSB is set, the TWI will respond to the general call address (0x00),
otherwise it will ignore the general call address.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgement of the device’s own slave address or the general call address. TWSTA
and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “0” (write), the TWI will operate in SR mode, otherwise ST mode is entered. After
its own slave address and the write bit have been received, the TWINT Flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 20-5.
The Slave Receiver mode may also be entered if arbitration is lost while the TWI is in the Master
mode (see states Ox68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) to SDA
after the next received data byte. This can be used to indicate that the Slave is not able to
receive any more bytes. While TWEA is zero, the TWI does not acknowledge its own slave
address. However, the 2-wire Serial Bus is still monitored and address recognition may resume
at any time by setting TWEA. This implies that the TWEA bit may be used to temporarily isolate
the TWI from the 2-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address by
using the 2-wire Serial Bus clock as a clock source. The part will then wake up from sleep and
the TWI will hold the SCL clock low during the wake up and until the TWINT Flag is cleared (by
writing it to one). Further data reception will be carried out as normal, with the AVR clocks run-
ning as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may be
held low for a long time, blocking other data transmissions.

Note that the 2-wire Serial Interface Data Register —- TWDR does not reflect the last byte present
on the bus when waking up from these Sleep modes.

AImEl@ 245

EEEes————————————————————— A TMmega16/32U4

Table 20-5.

Status Codes for Slave Receiver Mode

Status Code

Application Software Response

(TWSR) Status of the 2-wire Serial Bus To TWCR
Prescaler Bits and 2-wire Serial Interface Hard- Tolfrom TWDR
are 0 ware STA STO TV_VrlN TV/_\\/E Next Action Taken by TWI Hardware
0x60 Own SLA+W has been received; No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
0x68 Arbitration lost in SLA+R/W as | No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
Master; own SLA+W has been returned
received; ACK has been returned No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
0x70 General call address has been No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
received; ACK has been returned returned
No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
0x78 Arbitration lost in SLA+R/W as | No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
Master; General call address has returned
been received; ACK has been No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
returned
0x80 Previously addressed with own Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
SLA+W; data has been received; returned
ACK has been returned Read data byte X 0 1 1 Data byte will be received and ACK will be returned
0x88 Previously addressed with own Read data byte or 0 0 1 0 Switched to the not addressed Slave mode;
SLA+W; data has been received; no recognition of own SLA or GCA
NOT ACK has been returned Read data byte or 0 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Read data byte or 1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
0x90 Previously addressed with Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
general call; data has been re- returned
ceived; ACK has been returned Read data byte X 0 1 1 Data byte will be received and ACK will be returned
0x98 Previously addressed with Read data byte or 0 0 1 0 Switched to the not addressed Slave mode;
general call; data has been no recognition of own SLA or GCA
received; NOT ACK has been Read data byte or 0 0 1 1 Switched to the not addressed Slave mode;
returned own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Read data byte or 1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA,;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
0xAO0 A STOP condition or repeated No action 0 0 1 0 Switched to the not addressed Slave mode;
START condition has been no recognition of own SLA or GCA
received while still addressed as 0 0 1 1 Switched to the not addressed Slave mode;
Slave own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free

7766F-AVR-11/10

ATMEL

246

Figure 20-17. Formats and States in the Slave Receiver Mode

ATmega16/32U4

Reception of the own ¥ T
slave address and one or S SLA W A DATA A DATA A PorS
more data bytes. All are I
acknowledged

$60 $80 $80 $A0
Last data byte received
is not acknowledged A

$88

Arbitration lost as master
and addressed as slave A

$68
Reception of the general call -
address and one or more data General Call A DATA A DATA A PorS
bytes - -

$90 590) (0
Last data byte received is
not acknowledged A
$98

Arbitration lost as master and
addressed as slave by general call A

$78

- Any number of data bytes
From master to slave DATA A

From slave to master

[]
]

20.8.4 Slave Transmitter Mode

@

and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

In the Slave Transmitter mode, a number of data bytes are transmitted to a Master Receiver
(see Figure 20-18). All the status codes mentioned in this section assume that the prescaler bits
are zero or are masked to zero.

Figure 20-18. Data Transfer in Slave Transmitter Mode

VCC
Device 1 Device 2 . .
SLAVE MASTER Device 3 | Device n R R2
TRANSMITTER RECEIVER
A A
SDA v
scL Y

7766F-AVR-11/10

247

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

TWAR TWA6 | TWAS \ TWA4 \ TWA3 | TWA2 | TWA1 \ TWAO TWGCE
value Device’s Own Slave Address

The upper seven bits are the address to which the 2-wire Serial Interface will respond when
addressed by a Master. If the LSB is set, the TWI will respond to the general call address (0x00),
otherwise it will ignore the general call address.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgement of the device’s own slave address or the general call address. TWSTA
and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode is entered. After
its own slave address and the write bit have been received, the TWINT Flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 20-6.
The Slave Transmitter mode may also be entered if arbitration is lost while the TWI is in the
Master mode (see state 0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the trans-
fer. State 0xCO or state 0xC8 will be entered, depending on whether the Master Receiver
transmits a NACK or ACK after the final byte. The TWI is switched to the not addressed Slave
mode, and will ignore the Master if it continues the transfer. Thus the Master Receiver receives
all “1” as serial data. State OxC8 is entered if the Master demands additional data bytes (by
transmitting ACK), even though the Slave has transmitted the last byte (TWEA zero and expect-
ing NACK from the Master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the 2-wire
Serial Bus is still monitored and address recognition may resume at any time by setting TWEA.
This implies that the TWEA bit may be used to temporarily isolate the TWI from the 2-wire Serial
Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address by
using the 2-wire Serial Bus clock as a clock source. The part will then wake up from sleep and
the TWI will hold the SCL clock will low during the wake up and until the TWINT Flag is cleared
(by writing it to one). Further data transmission will be carried out as normal, with the AVR clocks
running as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may
be held low for a long time, blocking other data transmissions.

Note that the 2-wire Serial Interface Data Register —- TWDR does not reflect the last byte present
on the bus when waking up from these sleep modes.

AImEl@ 248

EEEes————————————————————— A TMmega16/32U4

Table 20-6.

Status Codes for Slave Transmitter Mode

Status Code
(TWSR)
Prescaler
Bits

are 0

Status of the 2-wire Serial Bus
and 2-wire Serial Interface Hard-
ware

Application Software Response

To TWCR

To/from TWDR

STA STO TWIN

T

TWE

Next Action Taken by TWI Hardware

O0xA8

Own SLA+R has been received;
ACK has been returned

Load data byte or X 0 1

Load data byte X 0 1

Last data byte will be transmitted and NOT ACK should
be received

Data byte will be transmitted and ACK should be re-
ceived

0xB0

Arbitration lost in SLA+R/W as
Master; own SLA+R has been
received; ACK has been returned

Load data byte or X 0 1

Load data byte X 0 1

Last data byte will be transmitted and NOT ACK should
be received

Data byte will be transmitted and ACK should be re-
ceived

0xB8

Data byte in TWDR has been
transmitted; ACK has been
received

Load data byte or X 0 1

Load data byte X 0 1

Last data byte will be transmitted and NOT ACK should
be received

Data byte will be transmitted and ACK should be re-
ceived

0xCO

Data byte in TWDR has been
transmitted; NOT ACK has been
received

No TWDR action or 0 0 1

No TWDR action or 0 0 1

No TWDR action or 1 0 1

No TWDR action 1 0 1

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “17;

a START condition will be transmitted when the bus
becomes free

0xC8

Last data byte in TWDR has been
transmitted (TWEA = “0”); ACK
has been received

No TWDR action or 0 0 1

No TWDR action or 0 0 1

No TWDR action or 1 0 1

No TWDR action 1 0 1

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “17;

a START condition will be transmitted when the bus
becomes free

7766F-AVR-11/10

ATMEL

249

ATmega16/32U4

Figure 20-19. Formats and States in the Slave Transmitter Mode

Reception of the own

slave address and one or S | SLA . R A DATA | A | DATA A | PorS |
more data bytes EE—
Arbitration lost as master
and addressed as slave A
$BO
Last data byte transmitted. - ’v -
Switched to not addressed A | All 1's | PorS |

slave (TWEA ='0")

$C8

o7 Any number of data bytes
From master to slave DATA A and their associated acknowledge bits
I:l From slave to master This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

20.8.5 Miscellaneous States

There are two status codes that do not correspond to a defined TWI state, see Table 20-7.

Status 0xF8 indicates that no relevant information is available because the TWINT Flag is not
set. This occurs between other states, and when the TWI is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a 2-wire Serial Bus transfer. A bus
error occurs when a START or STOP condition occurs at an illegal position in the format frame.
Examples of such illegal positions are during the serial transfer of an address byte, a data byte,
or an acknowledge bit. When a bus error occurs, TWINT is set. To recover from a bus error, the
TWSTO Flag must set and TWINT must be cleared by writing a logic one to it. This causes the
TWI to enter the not addressed Slave mode and to clear the TWSTO Flag (no other bits in
TWCR are affected). The SDA and SCL lines are released, and no STOP condition is
transmitted.

Table 20-7. Miscellaneous States

Status Code Application Software Response

(TWSR) Status of the 2-wire Serial Bus To TWCR

Prescaler Bits and 2-wire Serial Interface Tolfrom TWDR

are 0 Hardware STA STO TV_I\UN TVXE Next Action Taken by TWI Hardware

O0xF8 No relevant state information | No TWDR action No TWCR action Wait or proceed current transfer
available; TWINT = “0”

0x00 Bus error due to an illegal | No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condi-
START or STOP condition tion is sent on the bus. In all cases, the bus is released

and TWSTO is cleared.

20.8.6 Combining Several TWI Modes
In some cases, several TWI modes must be combined in order to complete the desired action.
Consider for example reading data from a serial EEPROM. Typically, such a transfer involves
the following steps:

PO b =

7766F-AVR-11/10

The transfer must be initiated.
The EEPROM must be instructed what location should be read.
The reading must be performed.
The transfer must be finished.

ATMEL

250

EEEes————————————————————— A TMmega16/32U4

Note that data is transmitted both from Master to Slave and vice versa. The Master must instruct
the Slave what location it wants to read, requiring the use of the MT mode. Subsequently, data
must be read from the Slave, implying the use of the MR mode. Thus, the transfer direction must
be changed. The Master must keep control of the bus during all these steps, and the steps
should be carried out as an atomical operation. If this principle is violated in a multi master sys-
tem, another Master can alter the data pointer in the EEPROM between steps 2 and 3, and the
Master will read the wrong data location. Such a change in transfer direction is accomplished by
transmitting a REPEATED START between the transmission of the address byte and reception
of the data. After a REPEATED START, the Master keeps ownership of the bus. The following
figure shows the flow in this transfer.

Figure 20-20. Combining Several TWI Modes to Access a Serial EEPROM

Master Transmitter Master Receiver
T —
S SLA+W A ADDRESS A | Rs SLA+R A DATA Al P
S = START Rs = REPEATED START P = STOP
Transmitted from master to slave Transmitted from slave to master

20.9 Multi-master Systems and Arbitration
If multiple masters are connected to the same bus, transmissions may be initiated simultane-
ously by one or more of them. The TWI standard ensures that such situations are handled in
such a way that one of the masters will be allowed to proceed with the transfer, and that no data
will be lost in the process. An example of an arbitration situation is depicted below, where two
masters are trying to transmit data to a Slave Receiver.

Figure 20-21. An Arbitration Example

VCC
Device 1 Device 2 Device 3 .
MASTER MASTER SLAVE | weeennen Device n R1 R2
TRANSMITTER TRANSMITTER RECEIVER
A A
. | y >
A A »

SCL =

Several different scenarios may arise during arbitration, as described below:

* Two or more masters are performing identical communication with the same Slave. In this
case, neither the Slave nor any of the masters will know about the bus contention.

* Two or more masters are accessing the same Slave with different data or direction bit. In this
case, arbitration will occur, either in the READ/WRITE bit or in the data bits. The masters
trying to output a one on SDA while another Master outputs a zero will lose the arbitration.
Losing masters will switch to not addressed Slave mode or wait until the bus is free and
transmit a new START condition, depending on application software action.

AImEl@ 251

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

* Two or more masters are accessing different slaves. In this case, arbitration will occur in the
SLA bits. Masters trying to output a one on SDA while another Master outputs a zero will lose
the arbitration. Masters losing arbitration in SLA will switch to Slave mode to check if they are
being addressed by the winning Master. If addressed, they will switch to SR or ST mode,
depending on the value of the READ/WRITE bit. If they are not being addressed, they will
switch to not addressed Slave mode or wait until the bus is free and transmit a new START
condition, depending on application software action.

This is summarized in Figure 20-22. Possible status values are given in circles.

Figure 20-22. Possible Status Codes Caused by Arbitration

START SLA

Data STOP

Arbitration lost in SLA

Own o
Address / General Call

Arbitration lost in Data

38 ' TWI bus will be released and not addressed slave mode will be entered

received

Yes

Write

Direction

'\LSTART condition will be transmitted when the bus becomes free

(68/78) JDiata byte will be received and NOT ACK will be returned

Read

'@a byte will be received and ACK will be returned

| Last data byte will be transmitted and NOT ACK should be received

ATMEL

Q};(y'@a byte will be transmitted and ACK should be received

252

EEEes————————————————————— A TMmega16/32U4

21. USB controller

21.1 Features

Supports full-speed and low-speed Device role

* Complies with USB Specification v2.0

¢ Supports ping-pong mode (dual bank)

832 bytes of DPRAM:
— 1 endpoint 64 bytes max (default control endpoint)
— 1 endpoints of 256 bytes max, (one or two banks)
— 5 endpoints of 64 bytes max, (one or two banks)

Crystal-less operation for low-speed mode

21.2 Block Diagram
The USB controller provides the hardware to interface a USB link to a data flow stored in a dou-
ble port memory (DPRAM).

The USB controller requires a 48 MHz +0.25% reference clock (for Full-Speed operation), which
is the output of an internal PLL. The on-chip PLL generates the internal high frequency (48 MHz)
clock for USB interface. The PLL clock input can be configured to use external low-power crystal
oscillator, external source clock or internal RC (see Section “Crystal-less operation”, page 256).

The 48MHz clock is used to generate a 12 MHz Full-speed (or 1.5 MHz Low-Speed) bit clock
from the received USB differential data and to transmit data according to full or low speed USB
device tolerance. Clock recovery is done by a Digital Phase Locked Loop (DPLL) block, which is
compliant with the jitter specification of the USB bus.

To comply with the USB Electrical specification, USB buffers (D+ or D-) should be powered
within the 3.0 to 3.6V range. As ATmega16U4/ATmega32U4 can be powered up to 5.5V, an
internal regulator provides the USB buffers power supply.

Figure 21-1. USB controller Block Diagram overview

| Clock Mux
clk

|
|
I
|
|
PLL
UCAP USB Regulator & 8MHz gLL clock
rescaler
|
|

Div-by-2

clk
48MHz

H AVR cru

DPLL

Clock

Recovery
usB

Interface

|
I
|
.
On-Chip

USB DPRAM

AImEl@ 253

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

21.3 Typical Application Implementation

Depending on the target application power supply, the ATmega16U4/ATmega32U4 requires dif-
ferent hardware typical implementations.

Figure 21-2. Operating modes versus frequency and power-supply

5.5

VCC (V)

Max
Operating Frequency (MHz)

4.5

3.6

3.4 _]

3.0

USB compliant,
with internal regulator

v b

USB compliant,
without internal regulator

16 MHz

2.7

VCC min _|

0

USB not operational

8 MHz

2 MHz

21.3.1 Bus Powered device

Y

Figure 21-3. Typical Bus powered application with 5V I/O

VBUS

<
S
>
il

\\H

ubP

Rs-22

uvss

uiD

HHEHE

7766F-AVR-11/10

<
El

ATMEL

| uvee Avee
|

>
ES

|
%
>
g

|
x
E

'
E
9

I

|

I

I

I

I

|

254

ATmegal6/32U4

Figure 21-4. Typical Bus powered application with 3V I/O

T
= |
VBUS VBUS EVR
ubP D+
ubMm D-
2
uvss L UGND|
uiD uiD

HH
]
i

21.3.2 Self Powered device

Figure 21-5. Typical Self powered application with 3.4V to 5.5V 1/0

W |
= |
VBUS VvBUS aVR
ubpP D+
Rs=22
UDM D-
nnnnn
uvss L UGND)|
uiD uiD
|
|
=i
| — - — = — [
|

AImEl@ 255

7766F-AVR-11/10

ATmegal6/32U4

Figure 21-6. Typical Self powered application with 3.0V to 3.6 I/0

c
S
>
3

\\}—i

VBUS

ubpP

Rs=22

UbM

Rs=22

uvss

uiD

c
El

XTAL1| GND GND
|
L I

21.4 Crystal-less operation

To reduce external components count and BOM cost, the USB module can be configured to
operate in low-speed mode with internal RC oscillator as input source clock for the PLL. The
internal RC oscillator is factory calibrated to satisfy the USB low speed frequency accuracy
within the 0°C and -40°C temperature range.

For USB full-speed operation only external crystal oscillator or external source clock can be
used.

21.5 Design guidelines
e Serial resistors on USB Data lines must have 22 Ohms value (+/- 5%).

¢ Traces from the input USB receptable (or from the cable connection in the case of a tethered
device) to the USB microcontroller pads should be as short as possible, and follow differential
traces routing rules (same length, as near as possible, avoid via accumulation).

* Voltage transient / ESD suppressors may also be used to prevent USB pads to be damaged
by external disturbances.

* Uy, capacitor should be 1pF (+/- 10%) for correct operation.
¢ A 10uF capacitor is highly recommended on VBUS line

AImEl@ 256

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

21.6 General Operating Modes

21.6.1 Introduction

The USB controller is disabled and reset after an hardware reset generated by:
— Power on reset
— External reset
— Watchdog reset
— Brown out reset
— JTAG reset

But another available and optional CPU reset source is:

— USB End Of Reset
In this case, the USB controller is reset, but not disabled (so that the device remains attached).

21.6.2 Power-on and reset
The next diagram explains the USB controller main states on power-on:

Figure 21-7. USB controller states after reset

’
———<any othel 3
\ state> /

N\, -

Clock stopped
FRZCLK=1
Macro off

USBE=0
N

HW
RESET
N

USBE=1

USB Controller state after an hardware reset is ‘Reset’. In this state:

USBE=0

USBE=0

¢ USBE is not set

¢ the USB controller clock is stopped in order to minimize the power consumption
(FRZCLK=1),

* the USB controller is disabled,
* the USB pad is in the suspend mode,
* the Device USB controller internal state is reset.
After setting USBE, the USB Controller enters the Device state. The controller is ‘Idle’.

The USB Controller can at any time be stopped by clearing USBE. In fact, clearing USBE acts
as an hardware reset.

21.6.3 Interrupts
Two interrupts vectors are assigned to USB interface.

AImEl@ 257

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 21-8. USB Interrupt System

USB General
Interrupt
USB General
Interrupt Vector
USB Device
Interrupt
Endpoint USB Endpoint/Pipe
Interrupt Interrupt Vector

The USB hardware module distinguishes between USB General events and USB Endpoint
events that are relevant with data transfers relative to each endpoint.

Figure 21-9. USB General interrupt vector sources

VBUSTI S USB General
Interrupt Vector
SBINT.
VBUSTE
USBCON.0
UPRSMI >
UDINT.6
UPRSME
UDIEN.6
EORSMI >
UDINT.5
EORSME]
UDIEN.5
WAKEUPI
UDINT.4
USB Device USB General
UDIEN.4 Interrupt Interrupt Vector
EORSTI
UDINT.3
UDIEN.3
SOFI >
UDINT.2
SOFE
UDIEN.2
SUSPI >
UDINT.0 Asynchronous Interrupt source
SUSPE (allows the CPU to wake up from power down mode)
UDIEN.O

Almost all these interrupts are time-relative events that will be detected only if the USB clock is
enabled (FRZCLK bit set), except for:

¢ VBUS plug-in detection (insert, remove)
* WAKEUP interrupt that will trigger each time a state change is detected on the data lines.

This asynchronous interrupts allow to wake-up a device that is in power-down mode, generally
after that the USB has entered the Suspend state.

AIMEL 258

7766F-AVR-11/10 I ©

EEEes————————————————————— A TMmega16/32U4

Figure 21-10. USB Endpoint Interrupt vector sources

Endpoint 6
| Endpoint 5
| Endpoint 4
| Endpoint 3
| Endpoint 2
| Endpoint 1
Endpoint 0
UESTAX.6
ESTAX.
UES 5 UEIENX.7
NAKINI S
UEINTX.6
UEIENX.6
NAKOUT] S
UEINTX.4
TXSTPE
UEIENX.4 USB Endpoint
RXSTPI ? Tnterrupt Vector
UEINTX.3
RXSTPE UEINT.X
UEIENX.3
RXOUTI >
UEINTX.2
RXOUTE
UEIENX.2
STALLEDI S
UEINTX.1
-
UEIENX.1
TXINI S
UEINTX.0
—
UEIENX.0 —

Each endpoint has 8 interrupts sources associated with flags, and each source can be enabled
or not to trigger the corresponding endpoint interrupt. If, for an endpoint, at least one of the
sources is enabled to trigger interrupt, the corresponding event(s) will make the program branch
to the USB Endpoint Interrupt vector. The user may determine the source (endpoint) of the inter-
rupt by reading the UEINT register, and then handle the event detected by polling the different
flags.

21.7 Power modes

21.71 Idle mode

In this mode, the CPU core is halted (CPU clock stopped). The Idle mode is taken wether the
USB controller is running or not. The CPU “wakes up” on any USB interrupts.

21.7.2 Power down

In this mode, the oscillator is stopped and halts all the clocks (CPU and peripherals). The USB
controller “wakes up” when:

e the WAKEUPI interrupt is triggered
 the VBUSTI interrupt is triggered

AImEl@ 259

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

21,73 Freeze clock
The firmware has the ability to reduce the power consumption by setting the FRZCLK bit, which
freeze the clock of USB controller. When FRZCLK is set, it is still possible to access to the fol-
lowing registers:
* USBCON, USBSTA, USBINT
* UDCON (detach, ...)
e UDINT
* UDIEN
Moreover, when FRZCLK is set, only the following interrupts may be triggered:

* WAKEUPI
* VBUSTI

21.8 Speed Control

The speed selection (Full Speed or Low Speed) depends on the D+/D- pull-up. The LSM bit in
UDCON register allows to select an internal pull up on D- (Low Speed mode) or D+ (Full Speed
mode) data lines.

Figure 21-11. Device mode Speed Selection

......................................

UCAP 3 uSsB
S : l Regulator

UDCON.0

= — — 1 Lsw]

UDCON.2
H

21.9 Memory management
The controller only supports the following memory allocation management.

The reservation of a Pipe or an Endpoint can only be made in the increasing order (Pipe/End-
point O to the last Pipe/Endpoint). The firmware shall thus configure them in the same order.

The reservation of a Pipe or an Endpoint “k” is done when its ALLOC bit is set. Then, the hard-
ware allocates the memory and inserts it between the Pipe/Endpoints “k"'” and “k™'”. The “k""”
Pipe/Endpoint memory “slides” up and its data is lost. Note that the “k™2” and upper Pipe/End-
point memory does not slide.

Clearing a Pipe enable (PEN) or an Endpoint enable (EPEN) does not clear either its ALLOC bit,
or its configuration (EPSIZE/PSIZE, EPBK/PBK). To free its memory, the firmware should clear
ALLOC. Then, the “k*"” Pipe/Endpoint memory automatically “slides” down. Note that the “k"*?”
and upper Pipe/Endpoint memory does not slide.

AImEl@ 260

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

The following figure illustrates the allocation and reorganization of the USB memory in a typical
example:

Table 21-1. Allocation and reorganization USB memory flow

Free memory Free memory Free memory Free memory
> 5 5 5 5 L
‘ 4 A Conflict
- 4 4 Lost memory
o | EPEN=0 4 Y 3 (bigger size)
gl (ALLOC=1)
> 2 2 2 2
> 1 1 1 1
> 0 0 0 0
EPEN=1
ALLOC=1
Endpoints . . Free its memory Endpoint
activation Endpoint Disable (ALLOC=0) Activatation
* First, Endpoint 0 to Endpoint 5 are configured, in the growing order. The memory of each is
reserved in the DPRAM.
¢ Then, the Endpoint 3 is disabled (EPEN=0), but its memory reservation is internally kept by
the controller.
¢ Its ALLOC bit is cleared: the Endpoint 4 “slides” down, but the Endpoint 5 does not “slide”.
* Finally, if the firmware chooses to reconfigure the Endpoint 3, with a bigger size. The
controller reserved the memory after the Endpoint 2 memory and automatically “slide” the
Endpoint 4. The Endpoint 5 does not move and a memory conflict appear, in that both
Endpoint 4 and 5 use a common area. The data of those endpoints are potentially lost.
Note that:

* the data of Endpoint 0 are never lost whatever the activation or deactivation of the higher
Endpoint. Its data is lost if it is deactivated.

¢ Deactivate and reactivate the same Endpoint with the same parameters does not lead to a
“slide” of the higher endpoints. For those endpoints, the data are preserved.

* CFGOK is set by hardware even in the case where there is a “conflict” in the memory
allocation.

21.10 PAD suspend
The next figures illustrates the pad behaviour:

¢ |n the “idle” mode, the pad is put in low power consumption mode.
¢ In the “active” mode, the pad is working.

AImEl@ 261

7766F-AVR-11/10

ATmega16/32U4

Figure 21-12. Pad behaviour

USBE=1
& DETACH=0
Idle mode & suspend
| 3218-5;8'_1 Active mode
| suspend

The SUSPI flag indicated that a suspend state has been detected on the USB bus. This flag
automatically put the USB pad in Idle. The detection of a non-idle event sets the WAKEUPI flag
and wakes-up the USB pad.

S U S PI Suspend detected = USB pad power down Clear Suspend by software

WAKE U P I Clear Resume by software

Resume = USB pad wake-up

PAD status

Active Power Down Active

Moreover, the pad can also be put in the “idle” mode if the DETACH bit is set. It come back in
the active mode when the DETACH bit is cleared.

21.11 Plug-in detection
The USB connection is detected by the VBUS pad, thanks to the following architecture:

AImEl@ 262

7766F-AVR-11/10

ATmegal6/32U4

Figure 21-13. Plug-in Detection Input Block Diagram

Session_valid

veus [}

' V!
| Pad logic

The control logic of the VBUS pad outputs a signal regarding the VBUS voltage level:

¢ The “Session_valid” signal is active high when the voltage on the UVBUS pad is higher or
equal to 1.4V. If lower than 1.4V, the signal is not active.

* The VBUS status bit is set when “Session_valid” signal is active (VBUS > 1.4V).

* The VBUSTI flag is set each time the VBUS state changes.

* The USB peripheral cannot attach to the bus while VBUS bit is not set.

21.12 Registers description

21.12.1 USB general registers

Bit 7 6 5 4 3 2 1 0

| - - - - - - - UVREGE | UHWCON
Read/Write R/W R/W R R/W R R R R/W
Initial Value 0 0 0 0 0 0 0 0

¢ 7-1 — Reserved
These bits are reserved. Do not modify these bits.

* 0 - UVREGE: USB pad regulator Enable
Set to enable the USB pad regulator. Clear to disable the USB pad regulator.

Bit 7 6 5 4 3 2 1 0

I USBE - FRZCLK OTGPADE - - - VBUSTE I USBCON
Read/Write R/W R/W R/W R/W R R R/W R/W
Initial Value 0 0 1 0 0 0 0 0

e 7 — USBE: USB macro Enable Bit
Set to enable the USB controller. Clear to disable and reset the USB controller, to disable the
USB transceiver and to disable the USB controller clock inputs.

* 6 — Reserved
The value read from these bits is always 0. Do not set these bits.

AImEl@ 263

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

* 5 - FRZCLK: Freeze USB Clock Bit
Set to disable the clock inputs (the "Resume Detection” is still active). This reduces the power
consumption. Clear to enable the clock inputs.

* 4 - OTGPADE: VBUS Pad Enable
Set to enable the VBUS pad. Clear to disable the VBUS pad.

Note that this bit can be set/cleared even if USBE=0. That allows the VBUS detection even if the
USB macro is disable.

e 3-1 - Reserved
The value read from these bits is always 0. Do not set these bits.

e 0 - VBUSTE: VBUS Transition Interrupt Enable Bit
Set this bit to enable the VBUS Transition interrupt generation.
Clear this bit to disable the VBUS Transition interrupt generation.

Bit 7 6 5 4 3 2 1 0
| - ID VBUS | USBSTA

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 1 0

e 7-2 - Reserved
The value read from these bits is always 0. Do not set these bits.

e 1-1D: ID status
This bit is always read as “17, it has been conserved for compatibility with AT90USB64/128 (in
which it indicates the value of the OTG ID pin).

* 0-VBUS: VBus Flag

The value read from this bit indicates the state of the VBUS pin. This bit can be used in device
mode to monitor the USB bus connection state of the application. See Section 21.11, page 262
for more details.

Bit 7 6 5 4 3 2 1 0
| - - - - - - - VBUSTI | USBINT

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

7-1 - Reserved
The value read from these bits is always 0. Do not set these bits.
e 0 - VBUSTI: IVBUS Transition Interrupt Flag

Set by hardware when a transition (high to low, low to high) has been detected on the VBUS
pad.

Shall be cleared by software.

AImEl@ 264

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

21.13 USB Software Operating modes

Depending on the USB operating mode, the software should perform some the following
operations:

Power On the USB interface

¢ Power-On USB pads regulator

* Configure PLL interface

e Enable PLL

¢ Check PLL lock

e Enable USB interface

* Configure USB interface (USB speed, Endpoints configuration...)
¢ Wait for USB VBUS information connection

* Attach USB device

Power Off the USB interface

* Detach USB interface

* Disable USB interface
 Disable PLL

* Disable USB pad regulator

Suspending the USB interface

¢ Clear Suspend Bit

* Freeze USB clock

e Disable PLL

* Be sure to have interrupts enable to exit sleep mode
* Make the MCU enter sleep mode

Resuming the USB interface

e Enable PLL

e Wait PLL lock

¢ Unfreeze USB clock

¢ Clear Resume information

AImEl@ 265

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

22. USB Device Operating modes

22.1 Introduction
The USB device controller supports full speed and low speed data transfers. In addition to the
default control endpoint, it provides six other endpoints, which can be configured in control, bulk,
interrupt or isochronous modes:
¢ Endpoint 0:programmable size FIFO up to 64 bytes, default control endpoint
¢ Endpoints 1 programmable size FIFO up to 256 bytes in ping-pong mode.
* Endpoints 2 to 6: programmable size FIFO up to 64 bytes in ping-pong mode.

The controller starts in the “idle” mode. In this mode, the pad consumption is reduced to the
minimum.

22.2 Power-on and reset
The next diagram explains the USB device controller main states on power-on:

Figure 22-1. USB device controller states after reset

S any g
. other | -

use=o Stae>/

\
USBE=0

USBE=1

HW
RESET

The reset state of the Device controller is:

¢ the macro clock is stopped in order to minimize the power consumption (FRZCLK set),

* the USB device controller internal state is reset (all the registers are reset to their default
value. Note that DETACH is set.)

¢ the endpoint banks are reset

e the D+ or D- pull up are not activated (mode Detach)
The D+ or D- pull-up will be activated as soon as the DETACH bit is cleared and VBUS is
present.

The macro is in the ‘Idle’ state after reset with a minimum power consumption and does not
need to have the PLL activated to enter this state.

The USB device controller can at any time be reset by clearing USBE (disable USB interface).

22.3 Endpoint reset

An endpoint can be reset at any time by setting in the UERST register the bit corresponding to
the endpoint (EPRSTX). This resets:

* the internal state machine on that endpoint,
¢ the Rx and Tx banks are cleared and their internal pointers are restored,

AImEl@ 266

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

22.4 USB reset

¢ the UEINTX, UESTAOX and UESTA1X are restored to their reset value.
The data toggle field remains unchanged.

The other registers remain unchanged.
The endpoint configuration remains active and the endpoint is still enabled.

The endpoint reset may be associated with a clear of the data toggle command (RSTDT bit) as
an answer to the CLEAR_FEATURE USB command.

When an USB reset is detected on the USB line (SEO state with a minimum duration of 2.5ps),
the next operations are performed by the controller:

e all the endpoints are disabled

e the default control endpoint remains configured (see Section 22.3, page 266 for more
details).
If the CPU hardware reset function is activated (RSTCPU bit set in UDCON register), a reset is
generated to the CPU core without disabling the USB controller (that follows the same behavior
than after a standard USB End of Reset, and remains attached). That feature may be used to
enhance device reliability.

22.5 Endpoint selection

Prior to any operation performed by the CPU, the endpoint must first be selected. This is done
by setting the EPNUM2:0 bits (UENUM register) with the endpoint number which will be man-
aged by the CPU.

The CPU can then access to the various endpoint registers and data.

22.6 Endpoint activation

7766F-AVR-11/10

The endpoint is maintained under reset as long as the EPEN bit is not set.

The following flow must be respected in order to activate an endpoint:

AImEl@ 267

ATmegal6/32U4

Figure 22-2. Endpoint activation flow:

Endpoint
Activation

UENUM Select the endpoint
EPNUM=x

Activate the endpoint

UECFGOX Configure:
EPDIR - the endpoint direction
EPTYPE - the endpoint type
Configure:
UECFG1X - thge endpoint size
ALLOC - the bank parametrization
EPSIZE Allocation and reorganization of
EPBK the memory is made on-the-fly

Test the correct endpoint
configuration

As long as the endpoint is not correctly configured (CFGOK cleared), the hardware does not
acknowledge the packets sent by the host.

CFGOK is will not be sent if the Endpoint size parameter is bigger than the DPRAM size.

A clear of EPEN acts as an endpoint reset (see Section 22.3, page 266 for more details). It also
performs the next operation:

* The configuration of the endpoint is kept (EPSIZE, EPBK, ALLOC kept)

* |t resets the data toggle field.

* The DPRAM memory associated to the endpoint is still reserved.
See Section 21.9, page 260 for more details about the memory allocation/reorganization.

22.7 Address Setup
The USB device address is set up according to the USB protocol:

* the USB device, after power-up, responds at address 0
¢ the host sends a SETUP command (SET_ADDRESS(addr)),

* the firmware handles this request, and records that address in UADD, but keep ADDEN
cleared,

* the USB device firmware sends an IN command of 0 bytes (IN 0 Zero Length Packet),

* then, the firmware can enable the USB device address by setting ADDEN. The only accepted
address by the controller is the one stored in UADD.

ADDEN and UADD shall not be written at the same time.
UADD contains the default address 00h after a power-up or USB reset.

AImEl@ 268

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

ADDEN is cleared by hardware:

e after a power-up reset,
e when an USB reset is received,
¢ or when the macro is disabled (USBE cleared)
When this bit is cleared, the default device address 00h is used.

22.8 Suspend, Wake-up and Resume

22.9 Detach

7766F-AVR-11/10

After a period of 3 ms during which the USB line was inactive, the controller switches to the full-
speed mode and triggers (if enabled) the SUSPI (suspend) interrupt. The firmware may then set
the FRZCLK bit.

The CPU can also, depending on software architecture, enter in the idle mode to lower again the
power consumption.

There are two ways to recover from the “Suspend” mode:

¢ First one is to clear the FRZCLK bit. This is possible if the CPU is not in the Idle mode.

* Second way, if the CPU is “idle”, is to enable the WAKEUPI interrupt (WAKEUPE set). Then,
as soon as an non-idle signal is seen by the controller, the WAKEUPI interrupt is triggered.
The firmware shall then clear the FRZCLK bit to restart the transfer.

There are no relationship between the SUSPI interrupt and the WAKEUPI interrupt: the WAKE-
UPI interrupt is triggered as soon as there are non-idle patterns on the data lines. Thus, the
WAKEUPI interrupt can occurs even if the controller is not in the “suspend” mode.

When the WAKEUPI interrupt is triggered, if the SUSPI interrupt bit was already set, it is cleared
by hardware.

When the SUSPI interrupt is triggered, if the WAKEUPI interrupt bit was already set, it is cleared
by hardware.

The reset value of the DETACH bit is 1.

It is possible to re-enumerate a device, simply by setting and clearing the DETACH bit (but firm-
ware must take in account a debouncing delay of some milliseconds).

 Setting DETACH will disconnect the pull-up on the D+ or D- pad (depending on full or low
speed mode selected). Then, clearing DETACH will connect the pull-up on the D+ or D- pad.

Figure 22-3. Detach a device in Full-speed:

UVREF UVREF
D+ D+

Detach, then
=1 Attach

aYaY,
YAV

AImEl@ 269

EEEes————————————————————— A TMmega16/32U4

22.10 Remote Wake-up

The “Remote Wake-up” (or “upstream resume”) feature is the only operation allowed to be sent
by the device on its own initiative. Anyway, to do that, the device should first have received a
DEVICE_REMOTE_WAKEUP request from the host.

¢ First, the USB controller must have detected the “suspend” state of the line: the remote wake-
up can only be sent when a SUSPI flag is set.

* The firmware has then the ability to set RMWKUP to send the “upstream resume” stream.
This will automatically be done by the controller after 5ms of inactivity on the USB line.

* When the controller starts to send the “upstream resume”, the UPRSMI interrupt is triggered
(if enabled). SUSPI is cleared by hardware.

* RMWKUP is cleared by hardware at the end of the “upstream resume”.

¢ If the controller detects a good “End Of Resume” signal from the host, an EORSMI interrupt
is triggered (if enabled).

22.11 STALL request
For each endpoint, the STALL management is performed using 2 bits:

— STALLRQ (enable stall request)

— STALLRQC (disable stall request)

— STALLEDI (stall sent interrupt)
To send a STALL handshake at the next request, the STALLRQ request bit has to be set. All fol-
lowing requests will be handshak’ed with a STALL until the STALLRQC bit is set.

Setting STALLRQC automatically clears the STALLRQ bit. The STALLRQC bit is also immedi-
ately cleared by hardware after being set by software. Thus, the firmware will never read this bit
as set.

Each time the STALL handshake is sent, the STALLEDI flag is set by the USB controller and the
EPINTx interrupt will be triggered (if enabled).

The incoming packets will be discarded (RXOUTI and RWAL will not be set).

The host will then send a command to reset the STALL: the firmware just has to set the STALL-
RQC bit and to reset the endpoint.

22.11.1 Special consideration for Control Endpoints
A SETUP request is always ACK’ed.

If a STALL request is set for a Control Endpoint and if a SETUP request occurs, the SETUP
request has to be ACK’ed and the STALLRQ request and STALLEDI sent flags are automati-
cally reset (RXSETUPI set, TXIN cleared, STALLED cleared, TXINI cleared...).

This management simplifies the enumeration process management. If a command is not sup-
ported or contains an error, the firmware set the STALL request flag and can return to the main
task, waiting for the next SETUP request.

This function is compliant with the Chapter 8 test that may send extra status for a
GET_DESCRIPTOR. The firmware sets the STALL request just after receiving the status. All
extra status will be automatically STALL’ed until the next SETUP request.

AIMEL 270

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

22.11.2 STALL handshake and Retry mechanism
The Retry mechanism has priority over the STALL handshake. A STALL handshake is sent if the
STALLRQ request bit is set and if there is no retry required.

22.12 CONTROL endpoint management

A SETUP request is always ACK’ed. When a new setup packet is received, the RXSTPI inter-
rupt is triggered (if enabled). The RXOUTI interrupt is not triggered.

The FIFOCON and RWAL fields are irrelevant with CONTROL endpoints. The firmware shall
thus never use them on that endpoints. When read, their value is always O.

CONTROL endpoints are managed by the following bits:
* RXSTPI is set when a new SETUP is received. It shall be cleared by firmware to
acknowledge the packet and to clear the endpoint bank.

* RXOUTI is set when a new OUT data is received. It shall be cleared by firmware to
acknowledge the packet and to clear the endpoint bank.

* TXINI is set when the bank is ready to accept a new IN packet. It shall be cleared by firmware
to send the packet and to clear the endpoint bank.

22.12.1 Control Write
The next figure shows a control write transaction. During the status stage, the controller will not
necessary send a NAK at the first IN token:

* If the firmware knows the exact number of descriptor bytes that must be read, it can then
anticipate on the status stage and send a ZLP for the next IN token,

e or it can read the bytes and poll NAKINI, which tells that all the bytes have been sent by the
host, and the transaction is now in the status stage.

SETUP [DATA [STATUS

USBline | SETUP ouT out N [N

| I NAK
RXSTPI H sw ! !
| |
RXOUTI | HW sw HW sw|
T T
TXNI | | Ea
— ATTNEL 271
I ©

7766F-AVR-11/10

22.12.2 Control Read

ATmegal6/32U4

The next figure shows a control read transaction. The USB controller has to manage the simulta-
neous write requests from the CPU and the USB host:

SETUP } DATA [STATUS

USB line SETUP IN ouT ouT
I I NAK
RXSTPI H sSWo | !
| i \
RXOUTI ! / (| HW sw
I T
TN o o OO
Wr Enable
HOST
Wr Enable
CPU

A NAK handshake is always generated at the first status stage command.

When the controller detect the status stage, all the data written by the CPU are erased, and
clearing TXINI has no effects.

The firmware checks if the transmission is complete or if the reception is complete.
The OUT retry is always ack’ed. This reception:

- set the RXOUTI flag (received OUT data)

- set the TXINI flag (data sent, ready to accept new data)

software algorithm:

set transmit ready
wait (transmit complete OR Receive complete)
if receive complete, clear flag and return

if transmit complete, continue

Once the OUT status stage has been received, the USB controller waits for a SETUP request.
The SETUP request have priority over any other request and has to be ACK’ed. This means that
any other flag should be cleared and the fifo reset when a SETUP is received.

WARNING: the byte counter is reset when the OUT Zero Length Packet is received. The firm-
ware has to take care of this.

22.13 OUT endpoint management

22.13.1

Overview

7766F-AVR-11/10

OUT packets are sent by the host. All the data can be read by the CPU, which acknowledges or
not the bank when it is empty.

The Endpoint must be configured first.

Each time the current bank is full, the RXOUTI and the FIFOCON bits are set. This triggers an
interrupt if the RXOUTE bit is set. The firmware can acknowledge the USB interrupt by clearing
the RXOUTI bit. The Firmware read the data and clear the FIFOCON bit in order to free the cur-
rent bank. If the OUT Endpoint is composed of multiple banks, clearing the FIFOCON bit will

AImEl@ 272

EEEes————————————————————— A TMmega16/32U4

switch to the next bank. The RXOUTI and FIFOCON bits are then updated by hardware in accor-
dance with the status of the new bank.

RXOUTI shall always be cleared before clearing FIFOCON.

The RWAL bit always reflects the state of the current bank. This bit is set if the firmware can
read data from the bank, and cleared by hardware when the bank is empty.

Example with 1 OUT data bank

DATA NAK DATA
out (to bank 0) ACK j« > | out (to bank 0) ACK
HW HW
RXOUTI SwW sSwW
\ \
FIFOCON \4 read data from CPU swW \4
BANK 0 | read data from CPU

BANK 0

Example with 2 OUT data banks

DATA DATA
out (to bank 0) ACK out (to bank 1) ACK

RXOUTI

L
2y

read data from CPU
BANK 0 1

FIFOCON

read data from CPU
BANK 1

22.13.2 Detailed description

22.13.2.1
The data are read by the CPU, following the next flow:

* When the bank is filled by the host, an endpoint interrupt (EPINTX) is triggered, if enabled
(RXOUTE set) and RXOUTI is set. The CPU can also poll RXOUTI or FIFOCON, depending
on the software architecture,

* The CPU acknowledges the interrupt by clearing RXOUTI,

e The CPU can read the number of byte (N) in the current bank (N=BYCT),

* The CPU can read the data from the current bank (“N” read of UEDATX),

* The CPU can free the bank by clearing FIFOCON when all the data is read, that is:
— after “N” read of UEDATX,
— as soon as RWAL is cleared by hardware.

If the endpoint uses 2 banks, the second one can be filled by the HOST while the current one is
being read by the CPU. Then, when the CPU clear FIFOCON, the next bank may be already
ready and RXOUTI is set immediately.

AIMEL 273

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

22.14 IN endpoint management

IN packets are sent by the USB device controller, upon an IN request from the host. All the data
can be written by the CPU, which acknowledge or not the bank when it is full.Overview

The Endpoint must be configured first.

The TXINI bit is set by hardware when the current bank becomes free. This triggers an interrupt
if the TXINE bit is set. The FIFOCON bit is set at the same time. The CPU writes into the FIFO
and clears the FIFOCON bit to allow the USB controller to send the data. If the IN Endpoint is
composed of multiple banks, this also switches to the next data bank. The TXINI and FIFOCON
bits are automatically updated by hardware regarding the status of the next bank.

TXINI shall always be cleared before clearing FIFOCON.

The RWAL bit always reflects the state of the current bank. This bit is set if the firmware can
write data to the bank, and cleared by hardware when the bank is full.

Example with 1 IN data bank

NAK > IN DATA ACK IN
- (bank 0)
HW
N
TXINI sw SwW
\ \
. | \ |
EIFOCON write data from CPU SW SW
BANK 0 ‘ write data from CPU L
BANK 0
Example with 2 IN data banks
DATA DATA
IN (bank 0) ACK IN (bank 1) ACK
HW
[\j
TXINI sw sw SwW
\ \ \
| | \4 ite data from CPU
FIFOCON write data from CPU ~ SW write data from CPU ~ SW write data from

22.14.1 Detailed description

BANK 0] BANK 1

The data are written by the CPU, following the next flow:

BANKO

* When the bank is empty, an endpoint interrupt (EPINTX) is triggered, if enabled (TXINE set)
and TXINI is set. The CPU can also poll TXINI or FIFOCON, depending the software
architecture choice,

* The CPU acknowledges the interrupt by clearing TXINI,
* The CPU can write the data into the current bank (write in UEDATX),

* The CPU can free the bank by clearing FIFOCON when all the data are written, that is:

7766F-AVR-11/10

ATMEL

274

EEEes————————————————————— A TMmega16/32U4

e after “N” write into UEDATX
* as soon as RWAL is cleared by hardware.

If the endpoint uses 2 banks, the second one can be read by the HOST while the current is
being written by the CPU. Then, when the CPU clears FIFOCON, the next bank may be already
ready (free) and TXINI is set immediately.

22.14.1.1 Abort
An “abort” stage can be produced by the host in some situations:
¢ In a control transaction: ZLP data OUT received during a IN stage,

* In an isochronous IN transaction: ZLP data OUT received on the OUT endpoint during a IN
stage on the IN endpoint

The KILLBK bit is used to kill the last “written” bank. The best way to manage this abort is to per-
form the following operations:

Table 22-1. Abort flow

Endpoint
Abort

Clear Disable the TXINI interrupt.
UEIENX.
TXINE
\
Abort is based on the fact
NBUSYBK that no banks are busy,
=0 meaning that nothing has to
be sent.
' . 2
Endpoint Kill the last written
P KILLBK=1 bank.
reset
r Wait for the end of the
Y procedure.
No

Y
Abort done

22.15 Isochronous mode

22.15.1 Underflow
An underflow can occur during IN stage if the host attempts to read a bank which is empty. In
this situation, the UNDERFI interrupt is triggered.

An underflow can also occur during OUT stage if the host send a packet while the banks are
already full. Typically, he CPU is not fast enough. The packet is lost.

It is not possible to have underflow error during OUT stage, in the CPU side, since the CPU
should read only if the bank is ready to give data (RXOUTI=1 or RWAL=1)

AImEl@ 275

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

22.15.2 CRC Error

22.16 Overflow

22.17 Interrupts

7766F-AVR-11/10

A CRC error can occur during OUT stage if the USB controller detects a bad received packet. In
this situation, the STALLEDI interrupt is triggered. This does not prevent the RXOUTI interrupt
from being triggered.

In Control, Isochronous, Bulk or Interrupt Endpoint, an overflow can occur during OUT stage, if
the host attempts to write in a bank that is too small for the packet. In this situation, the OVERFI
interrupt is triggered (if enabled). The packet is acknowledged and the RXOUTI interrupt is also
triggered (if enabled). The bank is filled with the first bytes of the packet.

It is not possible to have overflow error during IN stage, in the CPU side, since the CPU should
write only if the bank is ready to access data (TXINI=1 or RWAL=1).

The next figure shows all the interrupts sources:

Figure 22-4. USB Device Controller Interrupt System

UPRSMI P>
UDINT.6
UPRSME
UDIEN.6
EORSMI >
UDINT.5
EORSME
UDIEN 5
D>
UDINT4
WAKEUPE USB Device
UDIEN.4 Interrupt
|Eﬁﬂiﬁi]———————————————{.r———l
UDINT.3]
EORSTE
UDIEN.3
SOFI P>
UDINT.2
SOFE
UDIEN.2
SUSPI >
UDINT.0
UDIEN.0

There are 2 kind of interrupts: processing (i.e. their generation are part of the normal processing)
and exception (errors).

Processing interrupts are generated when:

¢ VBUS plug-in detection (insert, remove)(VBUSTI)

¢ Upstream resume(UPRSMI)

* End of resume(EORSMI)

* Wake up(WAKEUPI)

¢ End of reset (Speed Initialization)(EORSTI)

e Start of frame(SOFI, if FNCERR=0)

* Suspend detected after 3 ms of inactivity(SUSPI)
Exception Interrupts are generated when:

¢ CRC error in frame number of SOF(SOFI, FNCERR=1)

AIMEL 276

EEEes————————————————————— A TMmega16/32U4

Figure 22-5. USB Device Controller Endpoint Interrupt System

| Endpoint 6
| Endpoint 5
| Endpoint 4
| Endpoint 3
| Endpoint 2
| Endpoint 1
Endpoint 0
UESTAX.5
UEIENX.7
NAKINI S
UEINTX.6
NAKINE
UEIENX.6
NAKOUT] >
UEINTX.4
TXSTPE .
UEIENX.4 Endpoint Interrupt
RXSTPI ?
UEINTX.3 TXOUTE UEINTX
UEIENX.3
RXOUTI >
UEINTX.2
RXOUTE]
UEIENX.2
STALLEDI > —
UEINTX.1
-
UEIENX.1
TXINI >
UEINTX.0 —
UEIENX.0 —

Processing interrupts are generated when:

* Ready to accept IN data(EPINTx, TXINI=1)

* Received OUT data(EPINTx, RXOUTI=1)

* Received SETUP(EPINTx, RXSTPI=1)
Exception Interrupts are generated when:

e Stalled packet(EPINTx, STALLEDI=1)

* CRC error on OUT in isochronous mode(EPINTx, STALLEDI=1)
¢ Overflow in isochronous mode(EPINTx, OVERFI=1)

* Underflow in isochronous mode(EPINTx, UNDERFI=1)

* NAK IN sent(EPINTx, NAKINI=1)

* NAK OUT sent(EPINTx, NAKOUTI=1)

22.18 Registers

22.18.1 USB device general registers

Bit 7 6 5 4 3 2 1 0

S - - -~ |RSICPU| LSM | RMWKUP | DETACH | UDCON
Read/Write R R R R R RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 1

AImEl@ 277

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

¢ 7-4 - Reserved
The value read from these bits is always 0. Do not set these bits.

e 3-RSTCPU - USB Reset CPU bit

Set this bit to 1 by firmware in order to reset the CPU on the detection of a USB End of Reset
signal (without disabling the USB controller and Attached state). This bit is reset when the USB
controller is disabled, but is not affected by the CPU reset generated after a USB End of Reset
(remains enabled).

e 2-LSM - USB Device Low Speed Mode Selection
When configured USB is configured in device mode, this bit allows to select the USB the USB
Low Speed or Full Speed Mod.

Clear to select full speed mode (D+ internal pull-up will be activate with the ATTACH bit will be
set).

Set to select low speed mode (D- internal pull-up will be activate with the ATTACH bit will be
set). This bit has no effect when the USB interface is configured in HOST mode.

e 1- RMWKUP - Remote Wake-up Bit

Set to send an “upstream-resume” to the host for a remote wake-up (the SUSPI bit must be set).
Cleared by hardware when signalling finished. Clearing by software has no effect.

See Section 22.10, page 270 for more details.

* 0- DETACH - Detach Bit

Set to physically detach de device (disconnect internal pull-up on D+ or D-).

Clear to reconnect the device. See Section 22.9, page 269 for more details.

Bit 7 6 5 4 3 2 1 0

- UPRSMI | EORSMI | WAKEUPI | EORSTI | SOFI | - | SUSPI | UDINT
Read/Write
Initial Value 0 0 0 0 0 0 0 0

e 7 - Reserved
The value read from this bits is always 0. Do not set this bit.

¢ 6 - UPRSMI - Upstream Resume Interrupt Flag

Set by hardware when the USB controller is sending a resume signal called “Upstream
Resume”. This triggers an USB interrupt if UPRSME is set.

Shall be cleared by software (USB clocks must be enabled before). Setting by software has no
effect.

e 5- EORSMI - End Of Resume Interrupt Flag

Set by hardware when the USB controller detects a good “End Of Resume” signal initiated by
the host. This triggers an USB interrupt if EORSME is set.

Shall be cleared by software. Setting by software has no effect.

AIMEL 278

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

e 4 - WAKEUPI - Wake-up CPU Interrupt Flag
Set by hardware when the USB controller is re-activated by a filtered non-idle signal from the
lines (not by an upstream resume). This triggers an interrupt if WAKEUPE is set.

Shall be cleared by software (USB clock inputs must be enabled before). Setting by software
has no effect.

See Section 22.8, page 269 for more details.

e 3 - EORSTI - End Of Reset Interrupt Flag
Set by hardware when an “End Of Reset” has been detected by the USB controller. This triggers
an USB interrupt if EORSTE is set.

Shall be cleared by software. Setting by software has no effect.

e 2 - SOFI - Start Of Frame Interrupt Flag
Set by hardware when an USB “Start Of Frame” PID (SOF) has been detected (every 1 ms).
This triggers an USB interrupt if SOFE is set.

* 1 - Reserved
The value read from this bits is always 0. Do not set this bit

* 0 - SUSPI - Suspend Interrupt Flag
Set by hardware when an USB “Suspend” ‘idle bus for 3 frame periods: a J state for 3 ms) is
detected. This triggers an USB interrupt if SUSPE is set.

Shall be cleared by software. Setting by software has no effect.

See Section 22.8, page 269 for more details.
The interrupt bits are set even if their corresponding ‘Enable’ bits is not set.

Bit 7 6 5 4 3 2 1 0
[- T UPRSME | EORSME | WAKEUPE | EORSTE | SOFE | - | SUSPE]| UDIEN

Read/Write

Initial Value 0 0 0 0 0 0 0 0

e 7 - Reserved
The value read from this bits is always 0. Do not set this bit.

¢ 6 - UPRSME - Upstream Resume Interrupt Enable Bit
Set to enable the UPRSMI interrupt.

Clear to disable the UPRSMI interrupt.

e 5- EORSME - End Of Resume Interrupt Enable Bit
Set to enable the EORSMI interrupt.

Clear to disable the EORSMI interrupt.

e 4 - WAKEUPE - Wake-up CPU Interrupt Enable Bit
Set to enable the WAKEUPI interrupt.

Clear to disable the WAKEUPI interrupt.

AIMEL 279

EEEes————————————————————— A TMmega16/32U4

e 3 - EORSTE - End Of Reset Interrupt Enable Bit
Set to enable the EORSTI interrupt. This bit is set after a reset.

Clear to disable the EORSTI interrupt.

e 2 - SOFE - Start Of Frame Interrupt Enable Bit
Set to enable the SOFI interrupt.

Clear to disable the SOFI interrupt.

¢ 1-Reserved
The value read from this bits is always 0. Do not set this bit

e 0- SUSPE - Suspend Interrupt Enable Bit
Set to enable the SUSPI interrupt.

Clear to disable the SUSPI interrupt.

Bit 7 6 5 4 3 2 1 0

I ADDEN | UADDE6:0 I UDADDR
Read/Write W R/W R/W R/W R/W R/W R/W R/W
Initial Val- 0 0 0 0 0 0 0 0

ue
e 7 - ADDEN - Address Enable Bit
Set to activate the UADD (USB address).
Cleared by hardware. Clearing by software has no effect.
See Section 22.7, page 268 for more details.

* 6-0 - UADDG6:0 - USB Address Bits
Load by software to configure the device address.

Bit 7 6 5 4 3 2 1 0

(e - - - - FNUM10:8] ubFNUMH
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0

e 7-3 - Reserved
The value read from these bits is always 0. Do not set these bits.

e 2-0 - FNUM10:8 - Frame Number Upper Value
Set by hardware. These bits are the 3 MSB of the 11-bits Frame Number information. They are
provided in the last received SOF packet. FNUM is updated if a corrupted SOF is received.

Bit 7 6 5 4 3 2 1 0

I FNUM7:0] upENUML
Read/Write R R R R R R R
Initial Value 0 0 0 0 0 0 0 0

AI“"E',® 280

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

¢ Frame Number Lower Value
Set by hardware. These bits are the 8 LSB of the 11-bits Frame Number information.

Bit 7 6 5 4 3 2 1 0

| - - - | FNCERR | - - - - | UDMFN
Read/W R
rite
Initial 0 0 0 0 0 0 0 0
Value

e 7-5 - Reserved
The value read from these bits is always 0. Do not set these bits.

* 4 - FNCERR -Frame Number CRC Error Flag
Set by hardware when a corrupted Frame Number in start of frame packet is received.

This bit and the SOFI interrupt are updated at the same time.

¢ 3-0 - Reserved
The value read from these bits is always 0. Do not set these bits.

22.18.2 USB device endpoint registers

Bit 7 6 5 4 3 2 1 0

- - - - - EPNUMZ2:0] uenum
Read/Write R R R R R RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

s 7-3 - Reserved
The value read from these bits is always 0. Do not set these bits.

¢ 2-0 - EPNUM2:0 Endpoint Number Bits
Load by software to select the number of the endpoint which shall be accessed by the CPU. See
Section 22.5, page 267 for more details.

EPNUM = 111b is forbidden.

Bit 7 6 5 4 3 2 1 0

- EPRST6 | EPRST5 | EPRST4 | EPRST3 | EPRST2 | EPRST1 | EPRSTO UERST
Read/Write R R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* 7 - Reserved
The value read from these bits is always 0. Do not set these bits.

e 6-0 - EPRST6:0 - Endpoint FIFO Reset Bits
Set to reset the selected endpoint FIFO prior to any other operation, upon hardware reset or
when an USB bus reset has been received. See Section 22.3, page 266 for more information

AImEl@ 281

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

Then, clear by software to complete the reset operation and start using the endpoint.

Bit 7 6 5 4 3 2 1 0

(I - | STALLRQ | STALLRQC | RSTDT | - - | EPEN | UECONX
Read/Write R R W W W R R RIW
Initial Value 0 0 0 0 0 0 0 0

e 7-6 - Reserved
The value read from these bits is always 0. Do not set these bits.

e 5-STALLRQ - STALL Request Handshake Bit

Set to request a STALL answer to the host for the next handshake.

Cleared by hardware when a new SETUP is received. Clearing by software has no effect.
See Section 22.11, page 270 for more details.

e 4 - STALLRQC - STALL Request Clear Handshake Bit

Set to disable the STALL handshake mechanism.

Cleared by hardware immediately after the set. Clearing by software has no effect.

See Section 22.11, page 270 for more details.

3

e RSTDT - Reset Data Toggle Bit
Set to automatically clear the data toggle sequence:

For OUT endpoint: the next received packet will have the data toggle O.
For IN endpoint: the next packet to be sent will have the data toggle 0.
Cleared by hardware instantaneously. The firmware does not have to wait that the bit is cleared.

Clearing by software has no effect.

¢ 2-Reserved
The value read from these bits is always 0. Do not set these bits.

* 1 - Reserved
The value read from these bits is always 0. Do not set these bits.

¢ 0- EPEN - Endpoint Enable Bit
Set to enable the endpoint according to the device configuration. Endpoint 0 shall always be
enabled after a hardware or USB reset and participate in the device configuration.

Clear this bit to disable the endpoint. See Section 22.6, page 267 for more details.

Bit 7 6 5 4 3 2 1 0

[EPTYPET:0 | = — 1 -]| - - [EPDIR] UECFGOX
Read/Write R/W RIW R R R R R RIW
Initial Value 0 0 0 0 0 0 0 0

e 7-6 - EPTYPE1:0 - Endpoint Type Bits
Set this bit according to the endpoint configuration:

AImEl@ 282

EEEes————————————————————— A TMmega16/32U4

00b: Control10b: Bulk
01b: Isochronous11b: Interrupt

¢ 5-1 - Reserved
The value read from these bits is always 0. Do not set these bits.

e 0- EPDIR - Endpoint Direction Bit
Set to configure an IN direction for bulk, interrupt or isochronous endpoints.

Clear to configure an OUT direction for bulk, interrupt, isochronous or control endpoints.

Bit 7 6 5 4 3 2 1 0
I | EPSIZE2:0 | EPBK1:0 TALLOC | -] UECFGIX

Read/Write R RIW RIW RIW RIW RIW RIW R

Initial Value 0 0 0 0 0 0 0 0

¢ 7 - Reserved
The value read from these bits is always 0. Do not set these bits.

* 6-4 - EPSIZE2:0 - Endpoint Size Bits
Set this bit according to the endpoint size:
000b: 8 bytes100b: 128 bytes

001b: 16 bytes101b: 256 bytes

010b: 32 bytes110b: 512 bytes

011b: 64 bytes111b: Reserved. Do not use this configuration.
¢ 3-2 - EPBK1:0 - Endpoint Bank Bits

Set this field according to the endpoint size:
00b: One bank

01b: Double bank

1xb: Reserved. Do not use this configuration.
e 1-ALLOC - Endpoint Allocation Bit

Set this bit to allocate the endpoint memory.
Clear to free the endpoint memory.

See Section 22.6, page 267 for more details.

* 0 - Reserved
The value read from these bits is always 0. Do not set these bits.

Bit 7 6 5 4 3 2 1 0

CFGOK OVERFI | UNDERFI | - | DTSEQ1:0 | NBUSYBK1:0 I UESTAOX
Read/Write R R/W R/W R/W R R R R
Initial Value 0 0 0 0 0 0 0 0

AImEl@ 283

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

e 7 - CFGOK - Configuration Status Flag

Set by hardware when the endpoint X size parameter (EPSIZE) and the bank parametrization
(EPBK) are correct compared to the max FIFO capacity and the max number of allowed bank.
This bit is updated when the bit ALLOC is set.

If this bit is cleared, the user should reprogram the UECFG1X register with correct EPSIZE and
EPBK values.

* 6 - OVERFI - Overflow Error Interrupt Flag

Set by hardware when an overflow error occurs in an isochronous endpoint. An interrupt
(EPINTYX) is triggered (if enabled).

See Section 22.15, page 275 for more details.
Shall be cleared by software. Setting by software has no effect.

* 5- UNDERFI - Flow Error Interrupt Flag

Set by hardware when an underflow error occurs in an isochronous endpoint. An interrupt
(EPINTYX) is triggered (if enabled).

See Section 22.15, page 275 for more details.
Shall be cleared by software. Setting by software has no effect.

* 4 - Reserved
The value read from these bits is always 0. Do not set these bits.

* 3-2 - DTSEQ1:0 - Data Toggle Sequencing Flag

Set by hardware to indicate the PID data of the current bank:

00b Data0

01b Data1

1xb Reserved.

For OUT transfer, this value indicates the last data toggle received on the current bank.

For IN transfer, it indicates the Toggle that will be used for the next packet to be sent. This is not
relative to the current bank.

* 1-0 - NBUSYBK1:0 - Busy Bank Flag

Set by hardware to indicate the number of busy bank.

For IN endpoint, it indicates the number of busy bank(s), filled by the user, ready for IN transfer.

For OUT endpoint, it indicates the number of busy bank(s) filled by OUT transaction from the
host.

00b All banks are free
01b 1 busy bank

10b 2 busy banks
11b Reserved.

AImEl@ 284

EEEes————————————————————— A TMmega16/32U4

Bit 7 6 5 4 3 2 1 0

e - |CTRLDIR | CURRBKI:0 | UESTA1X
Read/Write R R R R R
Initial Value 0 0 0 0 0 0 0 0

e 7-3 - Reserved
The value read from these bits is always 0. Do not set these bits.

* 2 - CTRLDIR - Control Direction (Flag, and bit for debug purpose)

Set by hardware after a SETUP packet, and gives the direction of the following packet:
- 1 for IN endpoint

- 0 for OUT endpoint.

Can not be set or cleared by software.

¢ 1-0 - CURRBK1:0 - Current Bank (all endpoints except Control endpoint) Flag
Set by hardware to indicate the number of the current bank:

00b BankO

01b Bank1

1xb Reserved.

Can not be set or cleared by software.

Bit 7 6 5 4 3 2 1 0

[FIFOCON T NAKINI | RWAL | NAKOUTI | RXSTPI | RXOUTI |STALLEDI| TXINI | UEINTX
Read/Write R/W RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

* 7 - FIFOCON - FIFO Control Bit
For OUT and SETUP Endpoint:

Set by hardware when a new OUT message is stored in the current bank, at the same time than
RXOUT or RXSTP.

Clear to free the current bank and to switch to the following bank. Setting by software has no
effect.

For IN Endpoint:

Set by hardware when the current bank is free, at the same time than TXIN.

Clear to send the FIFO data and to switch the bank. Setting by software has no effect.
¢ 6 - NAKINI - NAK IN Received Interrupt Flag

Set by hardware when a NAK handshake has been sent in response of a IN request from the
host. This triggers an USB interrupt if NAKINE is sent.

Shall be cleared by software. Setting by software has no effect.

AImEl@ 285

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

* 5- RWAL - Read/Write Allowed Flag
Set by hardware to signal:

- for an IN endpoint: the current bank is not full i.e. the firmware can push data into the FIFO,

- for an OUT endpoint: the current bank is not empty, i.e. the firmware can read data from the
FIFO.

The bit is never set if STALLRQ is set, or in case of error.
Cleared by hardware otherwise.

This bit shall not be used for the control endpoint.

e 4 - NAKOUTI - NAK OUT Received Interrupt Flag

Set by hardware when a NAK handshake has been sent in response of a OUT/PING request
from the host. This triggers an USB interrupt if NAKOUTE is sent.

Shall be cleared by software. Setting by software has no effect.
* 3 - RXSTPI - Received SETUP Interrupt Flag

Set by hardware to signal that the current bank contains a new valid SETUP packet. An inter-
rupt (EPINTYX) is triggered (if enabled).

Shall be cleared by software to handshake the interrupt. Setting by software has no effect.
This bit is inactive (cleared) if the endpoint is an IN endpoint.
e 2 - RXOUTI/KILLBK - Received OUT Data Interrupt Flag

Set by hardware to signal that the current bank contains a new packet. An interrupt (EPINTX) is
triggered (if enabled).

Shall be cleared by software to handshake the interrupt. Setting by software has no effect.
Kill Bank IN Bit

Set this bit to kill the last written bank.

Cleared by hardware when the bank is killed. Clearing by software has no effect.

See page 275 for more details on the Abort.

* 1-STALLEDI - STALLEDI Interrupt Flag

Set by hardware to signal that a STALL handshake has been sent, or that a CRC error has been
detected in a OUT isochronous endpoint.

Shall be cleared by software. Setting by software has no effect.
e 0 - TXINI - Transmitter Ready Interrupt Flag

Set by hardware to signal that the current bank is free and can be filled. An interrupt (EPINTX) is
triggered (if enabled).

Shall be cleared by software to handshake the interrupt. Setting by software has no effect.

This bit is inactive (cleared) if the endpoint is an OUT endpoint.

AImEl@ 286

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Bit 7 6 5 4 3 2 1 0
[FLERRENAKINE | - | NAKOUTE | RXSTPE | RXOUTE | STALLEDE | TXINE | UEIENX

Read/Write R/W RIW R RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

* 7 - FLERRE - Flow Error Interrupt Enable Flag
Set to enable an endpoint interrupt (EPINTx) when OVERFI or UNDERFI are sent.

Clear to disable an endpoint interrupt (EPINTx) when OVERFI or UNDERFI are sent.
e 6 - NAKINE - NAK IN Interrupt Enable Bit

Set to enable an endpoint interrupt (EPINTx) when NAKINI is set.

Clear to disable an endpoint interrupt (EPINTx) when NAKINI is set.

e 5-Reserved
The value read from these bits is always 0. Do not set these bits.

e 4 - NAKOUTE - NAK OUT Interrupt Enable Bit

Set to enable an endpoint interrupt (EPINTx) when NAKOUTI is set.
Clear to disable an endpoint interrupt (EPINTXx) when NAKOUTI is set.
e 3 - RXSTPE - Received SETUP Interrupt Enable Flag

Set to enable an endpoint interrupt (EPINTx) when RXSTPI is sent.
Clear to disable an endpoint interrupt (EPINTx) when RXSTPI is sent.
e 2 - RXOUTE - Received OUT Data Interrupt Enable Flag

Set to enable an endpoint interrupt (EPINTx) when RXOUTI is sent.
Clear to disable an endpoint interrupt (EPINTx) when RXOUTI is sent.
* 1 - STALLEDE - Stalled Interrupt Enable Flag

Set to enable an endpoint interrupt (EPINTx) when STALLEDI is sent.
Clear to disable an endpoint interrupt (EPINTx) when STALLEDI is sent.
¢ 0 - TXINE - Transmitter Ready Interrupt Enable Flag

Set to enable an endpoint interrupt (EPINTx) when TXINI is sent.
Clear to disable an endpoint interrupt (EPINTx) when TXINI is sent.

Bit 7 6 5 4 3 2 1 0

l DAT D7 | DAT D6 | DAT D5 | DAT D4 | DAT D3 | DAT D2 | DAT D1 | DAT DO I UEDATX
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e 7-0 - DAT7:0 -Data Bits
Set by the software to read/write a byte from/to the endpoint FIFO selected by EPNUM.

AImEl@ 287

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Bit 7 6 5 4 3 2 1 0

B - - - - TBYCT D10 |BYCT D9 |BYCT D8 _J UEBCHX
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0

e 7-3 - Reserved
The value read from these bits is always 0. Do not set these bits.

e 2-0 - BYCT10:8 - Byte count (high) Bits
Set by hardware. This field is the MSB of the byte count of the FIFO endpoint. The LSB part is
provided by the UEBCLX register.

Bit 7 6 5 4 3 2 1 0

[EYCTD7 TBVCT D6 [BYCT 5 [BYCT D4 [BYCT B3 [BYCT D2 [BYCT DT [BYCT D0] uEBCLx
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0

e 7-0 - BYCT7:0 - Byte Count (low) Bits
Set by the hardware. BYCT10:0 is:

- (for IN endpoint) increased after each writing into the endpoint and decremented after each
byte sent,

- (for OUT endpoint) increased after each byte sent by the host, and decremented after each
byte read by the software.

Bit 7 6 5 4 3 2 1 0

(I EPINT D6 | EPINT D5 | EPINT D4 | EPINT D3 | EPINT D2 | EPINT D1 | EPINT DO JUEINT
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0

¢ 7 - Reserved
The value read from these bits is always 0. Do not set these bits.

e 6-0 - EPINT6:0 - Endpoint Interrupts Bits
Set by hardware when an interrupt is triggered by the UEINTX register and if the corresponding
endpoint interrupt enable bit is set.

Cleared by hardware when the interrupt source is served.

AImEl@ 288

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

23. Analog Comparator

The Analog Comparator compares the input values on the positive pin AIN+ and negative pin
AIN-. When the voltage on the positive pin AIN+ is higher than the voltage on the negative pin
AIN-, the Analog Comparator output, ACO, is set. The comparator’s output can be set to trigger
the Timer/Counter1 Input Capture function. In addition, the comparator can trigger a separate
interrupt, exclusive to the Analog Comparator. The user can select Interrupt triggering on com-
parator output rise, fall or toggle. A block diagram of the comparator and its surrounding logic is
shown in Figure 23-1. AIN+ can be connected either to the AINO (PEB6) pin, or to the internal
Bandgap reference. AIN- can only be connected to the ADC multiplexer.

The Power Reduction ADC bit, PRADC, in “Power Reduction Register 0 - PRR0” on page 46
must be disabled by writing a logical zero to be able to use the ADC input MUX.

Figure 23-1. Analog Comparator Block Diagram®

BANDGAP

REFERENCE vce
ACBG
ACD —>
ACIE
AINO
AIN+ A ANALOG
INTERRUPT COMPARATOR
SELECT IRQ
BANDGAP _NN' T T AC
REFERENCE
ACIS1 ACISO AcIC

TO T/C1 CAPTURE
TRIGGER MUX

ADC MULTIPLEXER
OuUTPUT™

\4

Notes: 1. See Table 23-2 on page 291.

2. Refer to “Pinout ATmega16U4/ATmega32U4” on page 3 and Table 10-3 on page 72 for Ana-
log Comparator pin placement.

23.0.1 ADC Control and Status Register B - ADCSRB

Bit 7 6 5 4 3 2 1 0

| ADHSM | ACME | Muxs | - ADTS3 | ADTS2 | ADTS1 | ADTSO | ADCSRB
Read/Write R R/W R R R R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 6 — ACME: Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the
ADC multiplexer is connected to the negative input to the Analog Comparator. When this bit is
written logic zero, the Bandgap reference is connected to the negative input of the Analog Com-
parator (See “Internal Voltage Reference” on page 54.). For a detailed description of this bit, see
“Analog Comparator Multiplexed Input” on page 291.

23.0.2 Analog Comparator Control and Status Register — ACSR

7766F-AVR-11/10

Bit 7 6 5 4 3 2 1 0

|Aco | AcBG | ACO | ACI | ACIE ACIC ACIS1 | ACISO | ACSR
Read/Write R/W RW R RW R/W RIW RW RW
Initial Value 0 0 N/A 0 0 0 0 0

AImEl@ 289

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

* Bit 7 — ACD: Analog Comparator Disable

When this bit is written logic one, the power to the Analog Comparator is switched off. This bit
can be set at any time to turn off the Analog Comparator. This will reduce power consumption in
Active and Idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be
disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is
changed.

e Bit 6 — ACBG: Analog Comparator Bandgap Select

When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog
Comparator. When this bit is cleared, AINO is applied to the positive input of the Analog Compar-
ator. See “Internal Voltage Reference” on page 54.

e Bit 5 - ACO: Analog Comparator Output
The output of the Analog Comparator is synchronized and then directly connected to ACO. The
synchronization introduces a delay of 1 - 2 clock cycles.

e Bit 4 — ACI: Analog Comparator Interrupt Flag

This bit is set by hardware when a comparator output event triggers the interrupt mode defined
by ACIS1 and ACIS0. The Analog Comparator interrupt routine is executed if the ACIE bit is set
and the I-bit in SREG is set. ACl is cleared by hardware when executing the corresponding inter-
rupt handling vector. Alternatively, ACl is cleared by writing a logic one to the flag.

e Bit 3 — ACIE: Analog Comparator Interrupt Enable
When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Com-
parator interrupt is activated. When written logic zero, the interrupt is disabled.

e Bit2 — ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the input capture function in Timer/Counter1 to be trig-
gered by the Analog Comparator. The comparator output is in this case directly connected to the
input capture front-end logic, making the comparator utilize the noise canceler and edge select
features of the Timer/Counter1 Input Capture interrupt. When written logic zero, no connection
between the Analog Comparator and the input capture function exists. To make the comparator
trigger the Timer/Counter1 Input Capture interrupt, the ICIE1 bit in the Timer Interrupt Mask
Register (TIMSK1) must be set.

e Bits 1,0 — ACIS1, ACIS0: Analog Comparator Interrupt Mode Select

These bits determine which comparator events that trigger the Analog Comparator interrupt. The
different settings are shown in Table 23-1.

Table 23-1. ACIS1/ACISO Settings

ACIS1 ACISO Interrupt Mode
0 0 Comparator Interrupt on Output Toggle.
0 1 Reserved
1 0 Comparator Interrupt on Falling Output Edge.
1 1 Comparator Interrupt on Rising Output Edge.

When changing the ACIS1/ACISO bits, the Analog Comparator Interrupt must be disabled by
clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the

bits are changed.
I)

EEEes————————————————————— A TMmega16/32U4

23.1 Analog Comparator Multiplexed Input

It is possible to select any of the ADC13..0 pins to replace the negative input to the Analog Com-
parator. The ADC multiplexer is used to select this input, and consequently, the ADC must be
switched off to utilize this feature. If the Analog Comparator Multiplexer Enable bit (ACME in
ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is zero), and MUX2..0 in
ADMUX select the input pin to replace the negative input to the Analog Comparator, as shown in
Table 23-2. If ACME is cleared or ADEN is set, the Bandgap reference is applied to the negative
input to the Analog Comparator.

Table 23-2. Analog Comparator Multiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input
0 X XXX Bandgap Ref.
1 1 XXX Bandgap Ref.
1 0 000 ADCO
1 0 001 ADCH1
1 0 010

N/A
1 0 011
1 0 100 ADC4
1 0 101 ADC5
1 0 110 ADCB6
1 0 111 ADC7

23.11 Digital Input Disable Register 1 — DIDR1

Bit 7 6 5 4 3 2 1 0
| - | - | - - - - - AINOD | DIDR1

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 0 — AINOD: AINO Digital Input Disable

When this bit is written logic one, the digital input buffer on the AINO pin is disabled. The corre-
sponding PIN Register bit will always read as zero when this bit is set. When an analog signal is
applied to the AINO pin and the digital input from this pin is not needed, this bit should be written
logic one to reduce power consumption in the digital input buffer.

AImEl@ 291

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

24. Analog to Digital Converter - ADC

24.1 Features
* 10/8-bit Resolution
¢ 0.5 LSB Integral Non-linearity
¢ + 2 LSB Absolute Accuracy
® 65 - 260 ps Conversion Time
¢ Up to 15 kSPS at Maximum Resolution
* Twelve Multiplexed Single-Ended Input Channels
* One Differential amplifier providing gain of 1x - 10x - 40x - 200x
¢ Temperature sensor
¢ Optional Left Adjustment for ADC Result Readout
® 0-Vcc ADC Input Voltage Range
¢ Selectable 2.56 V ADC Reference Voltage
* Free Running or Single Conversion Mode
¢ ADC Start Conversion by Auto Triggering on Interrupt Sources
¢ Interrupt on ADC Conversion Complete
¢ Sleep Mode Noise Canceler

The ATmega16U4/ATmega32U4 features a 10-bit successive approximation ADC. The ADC is
connected to an 12-channel Analog Multiplexer which allows six single-ended voltage inputs
constructed from several pins of Port B, D and F. The single-ended voltage inputs refer to
0V (GND).

The device also supports 32 differential voltage input combinations, thanks to a differential
amplifier equipped with a programmable gain stage, providing amplification steps of 0 dB (1x),
10 dB (10x), 16dB (40x) or 23dB (200x) on the differential input voltage before the A/D conver-
sion. Two differential analog input channels share a common negative terminal (ADC0/ADC1),
while any other ADC input can be selected as the positive input terminal. If 1x, 10x or 40x gain is
used, 8-bit resolution can be expected. If 200x gain is used, 7-bit resolution can be expected.

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is
held at a constant level during conversion. A block diagram of the ADC is shown in Figure 24-1.

The ADC has a separate analog supply voltage pin, AVs. AVc must not differ more than +
0.3V from V. See the paragraph “ADC Noise Canceler” on page 301 on how to connect this
pin.

Internal reference voltages of nominally 2.56V or AV are provided On-chip. The voltage refer-
ence may be externally decoupled at the AREF pin by a capacitor for better noise performance.

AImEl@ 292

7766F-AVR-11/10

ATmega16/32U4

Figure 24-1. Analog to Digital Converter Block Schematic

ADC CONVERSION
COMPLETE IRQ

INTERRUPT
FLAGS
ADTS[3:0]
o 8-BIT DATA BUS >
- A A A
wlw
A Yy 2% 15 0
ADC MULTIPLEXER ADC CTRL. & STATUS ADC DATA REGISTER
SELECT (ADMUX) REGISTER (ADCSRA) (ADCH/ADCL)
EENREEEERRA X
u u g 3| 5| 5| £| 5| = 2| g 2 2 9 2| 2 =
»| TRIGGER g
»| SELECT <
A Y Vv
| MUX DECODER | Y YY
z PRESCALER |«
] z START
= Q
2 5 Y %)
g g
d 2
Y z z CONVERSION LOGIC
INTERNAL
REFERENCE \ SAMPLE & HOLD

\ COMPARATOR
AREFl I @ 10-BIT DAC -
ﬁ/ 4 +
ADHSM
oo o L
<

Y

BANDGAP
REFERENCE

TEMPERATURE
SENSOR
ADC13D7 POS. ADC MULTIPLEXER
INPUT » OUTPUT
ADC12D7 MUX
ADC11 I:Ii
DIFFERENTIAL
AD09D7 /
ADC1| I

'\ SINGLE ENDED / DIFFERENTIAL SELECTION

ADCO

\

NEG.
INPUT
MUX

AI“"E',® 293

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

24.2 Operation

The ADC converts an analog input voltage to a 10-bit digital value through successive approxi-
mation. The minimum value represents GND and the maximum value represents the voltage on
the AREF pin minus 1 LSB. Optionally, AV or an internal 2.56V reference voltage may be con-
nected to the AREF pin by writing to the REFSn bits in the ADMUX Register. The internal
voltage reference may thus be decoupled by an external capacitor at the AREF pin to improve
noise immunity.

The analog input channel and differential gain are selected by writing to the MUX bits in
ADMUX. Any of the ADC input pins, as well as GND and a fixed bandgap voltage reference, can
be selected as single ended inputs to the ADC. A selection of ADC input pins can be selected as
positive and negative inputs to the differential amplifier.

The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage reference and
input channel selections will not go into effect until ADEN is set. The ADC does not consume
power when ADEN is cleared, so it is recommended to switch off the ADC before entering power
saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and
ADCL. By default, the result is presented right adjusted, but can optionally be presented left
adjusted by setting the ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content of the Data
Registers belongs to the same conversion. Once ADCL is read, ADC access to Data Registers
is blocked. This means that if ADCL has been read, and a conversion completes before ADCH is
read, neither register is updated and the result from the conversion is lost. When ADCH is read,
ADC access to the ADCH and ADCL Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. The ADC
access to the Data Registers is prohibited between reading of ADCH and ADCL, the interrupt
will trigger even if the result is lost.

24.3 Starting a Conversion

A single conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC.
This bit stays high as long as the conversion is in progress and will be cleared by hardware
when the conversion is completed. If a different data channel is selected while a conversion is in
progress, the ADC will finish the current conversion before performing the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is
enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is
selected by setting the ADC Trigger Select bits, ADTS in ADCSRB (See description of the ADTS
bits for a list of the trigger sources). When a positive edge occurs on the selected trigger signal,
the ADC prescaler is reset and a conversion is started. This provides a method of starting con-
versions at fixed intervals. If the trigger signal is still set when the conversion completes, a new
conversion will not be started. If another positive edge occurs on the trigger signal during con-
version, the edge will be ignored. Note that an interrupt flag will be set even if the specific
interrupt is disabled or the Global Interrupt Enable bit in SREG is cleared. A conversion can thus
be triggered without causing an interrupt. However, the interrupt flag must be cleared in order to
trigger a new conversion at the next interrupt event.

AImEl@ 294

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 24-2. ADC Auto Trigger Logic

ADTS[2:0]
PRESCALER
START CLK, o,
ADIF —] ADATE
SOURCE1 —— t
***** I CONVERSION
,,,,, LOGIC
B EDGE
SOURGE n DETECTOR
ADSC

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon
as the ongoing conversion has finished. The ADC then operates in Free Running mode, con-
stantly sampling and updating the ADC Data Register. The first conversion must be started by
writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform successive
conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to
one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be
read as one during a conversion, independently of how the conversion was started.

24.4 Prescaling and Conversion Timing

Figure 24-3. ADC Prescaler

TART ese
S 7-BIT ADC PRESCALER

CK —»
@
N I Y I
[4 IS4 IR v] v
Of O] O] O] O] O] O
YV V V.V V VY
ADPS0
ADPSH1

ADPS2

ADC CLOCK SOURCE

By default, the successive approximation circuitry requires an input clock frequency between 50
kHz and 200 kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the
input clock frequency to the ADC can be higher than 200 kHz to get a higher sample rate. Alter-
natively, setting the ADHSM bit in ADCSRB allows an increased ADC clock frequency at the
expense of higher power consumption.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency
from any CPU frequency above 100 kHz. The prescaling is set by the ADPS bits in ADCSRA.
The prescaler starts counting from the moment the ADC is switched on by setting the ADEN bit

AImEl@ 295

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is continuously
reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion
starts at the following rising edge of the ADC clock cycle. See “Differential Channels” on page
297 for details on differential conversion timing.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched
on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conver-
sion and 13.5 ADC clock cycles after the start of an first conversion. When a conversion is
complete, the result is written to the ADC Data Registers, and ADIF is set. In Single Conversion
mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a new
conversion will be initiated on the first rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures
a fixed delay from the trigger event to the start of conversion. In this mode, the sample-and-hold
takes place two ADC clock cycles after the rising edge on the trigger source signal. Three addi-
tional CPU clock cycles are used for synchronization logic.

In Free Running mode, a new conversion will be started immediately after the conversion com-
pletes, while ADSC remains high. For a summary of conversion times, see Table 24-1.

Figure 24-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Next

First Conversion Conversion

1 | 1 1 1
!

\
Cycle Number [1] 2 | 12 | 13| 44| 15| 16| 17| 18| 19| 20| 21 | 22| 23| 24| 25|
| | |

1123
S nininininEpinEnEnEnEnEnEpEnPe YNNI
noccos 4 L1
! | | ! 1 1
ADEN : ‘ | ! [
| | | |
wsc M) ‘ \ ! JIT
l ‘ I l) !
ADIF ! i ‘ ! 1
! | I 1
ApcH [1 A (LT /1177, / /1777, / /1777777 Sign and MSB of Result
1 | ! | !
aDcL (/111 /‘ ! /1 / / 7/P<__,LSB of Result
' | ' ' '
MUX
MUX and REFS Conversion and REFS
Update Sample & Hold Complete Update

Figure 24-5. ADC Timing Diagram, Single Conversion

One Conversion _Next Conversion
<

I I I I
Cycle Number | v 2 3] 4| s| 6| 7| 8] of t0f 11] 12 18 | 1] 2| s

ADIF | | [
soon 77T I T T T T T TTT T TTTTTTT K Signans s o resin

S ITTTHIITTETTH T SR T

Sample & Hold Conversion MUX and REFS
MUX and REFS Complete Update
Update

AImEl@ 296

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

2441

Figure 24-6. ADC Timing Diagram, Auto Triggered Conversion
One Conversion Next Conversion
Cycle Number :11‘:2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘131 :\1\2\

ADC Clock ZZZZZZZZZ% § 1 %ZZZZZZZ

Trigger
Source

ADATE

ADIF

ADCH

ADCL

Figure 24-7.

. i,

7/

e ' |

/T T T T T T T TTTTT T T TTTT K Sian ans s o meso
I Y (/1111711171777 /T[T /177777777 K L8B of Result

1o I I I
/> 4_\ Sample & Conversion /" 4\ Prescaler
Prescaler Hold

Complete Reset

Reset
MUX and REFS

Update

ADC Timing Diagram, Free Running Conversion

One Conversion Next Conversion
<

1 1
Cycle Number 11| 12| 13' 1| |2| 3| 4|

ADC Clock $ 1

ADSC ! !
1 1
I

ADIF

aocr Z777TTTTTTT X Sian apa ws of Resut
ADCL '/ //)'(LSBo;f Result

Conversion /_) ‘\ <_\ Sample & Hold

MUX and REFS
Update

Complete

Table 24-1. ADC Conversion Time
Normal
First Conversion, Auto Triggered
Condition Conversion Single Ended Convertion
Sample & Hold
(Cycles from Start of Convention) 145 15 2
Conversion Time o5 13 135
(Cycles)

Differential Channels

When using differential channels, certain aspects of the conversion need to be taken into

consideration.

Differential conversions are synchronized to the internal clock CK,pco equal to half the ADC
clock frequency. This synchronization is done automatically by the ADC interface in such a way
that the sample-and-hold occurs at a specific phase of CK,pc,- A conversion initiated by the
user (i.e., all single conversions, and the first free running conversion) when CK,pc, is low will
take the same amount of time as a single ended conversion (13 ADC clock cycles from the next
prescaled clock cycle). A conversion initiated by the user when CK,pc, is high will take 14 ADC

7766F-AVR-11/10

ATMEL

297

EEEes————————————————————— A TMmega16/32U4

clock cycles due to the synchronization mechanism. In Free Running mode, a new conversion is
initiated immediately after the previous conversion completes, and since CK,pc, is high at this
time, all automatically started (i.e., all but the first) Free Running conversions will take 14 ADC
clock cycles.

If differential channels are used and conversions are started by Auto Triggering, the ADC must
be switched off between conversions. When Auto Triggering is used, the ADC prescaler is reset
before the conversion is started. Since the stage is dependent of a stable ADC clock prior to the
conversion, this conversion will not be valid. By disabling and then re-enabling the ADC between
each conversion (writing ADEN in ADCSRA to “0” then to “1”), only extended conversions are
performed. The result from the extended conversions will be valid. See “Prescaling and Conver-
sion Timing” on page 295 for timing details.

The gain stage is optimized for a bandwidth of 4 kHz at all gain settings. Higher frequencies may
be subjected to non-linear amplification. An external low-pass filter should be used if the input
signal contains higher frequency components than the gain stage bandwidth. Note that the ADC
clock frequency is independent of the gain stage bandwidth limitation. E.g. the ADC clock period
may be 6 us, allowing a channel to be sampled at 12 kSPS, regardless of the bandwidth of this
channel.

24.5 Changing Channel or Reference Selection

The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary
register to which the CPU has random access. This ensures that the channels and reference
selection only takes place at a safe point during the conversion. The channel and reference
selection is continuously updated until a conversion is started. Once the conversion starts, the
channel and reference selection is locked to ensure a sufficient sampling time for the ADC. Con-
tinuous updating resumes in the last ADC clock cycle before the conversion completes (ADIF in
ADCSRA is set). Note that the conversion starts on the following rising ADC clock edge after
ADSC is written. The user is thus advised not to write new channel or reference selection values
to ADMUX until one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special
care must be taken when updating the ADMUX Register, in order to control which conversion
will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the
ADMUX Register is changed in this period, the user cannot tell if the next conversion is based
on the old or the new settings. ADMUX can be safely updated in the following ways:

a. When ADATE or ADEN is cleared.
b. During conversion, minimum one ADC clock cycle after the trigger event.
c. After a conversion, before the interrupt flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC
conversion.

Special care should be taken when changing differential channels. Once a differential channel
has been selected, the stage may take as much as 125 ps to stabilize to the new value. Thus
conversions should not be started within the first 125 ps after selecting a new differential chan-
nel. Alternatively, conversion results obtained within this period should be discarded.

The same settling time should be observed for the first differential conversion after changing
ADC reference (by changing the REFS1:0 bits in ADMUX).

AImEl@ 298

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

The settling time and gain stage bandwidth is independent of the ADHSM bit setting.

2451 ADC Input Channels

When changing channel selections, the user should observe the following guidelines to ensure
that the correct channel is selected:

¢ In Single Conversion mode, always select the channel before starting the conversion. The
channel selection may be changed one ADC clock cycle after writing one to ADSC. However,
the simplest method is to wait for the conversion to complete before changing the channel
selection.

¢ In Free Running mode, always select the channel before starting the first conversion. The
channel selection may be changed one ADC clock cycle after writing one to ADSC. However,
the simplest method is to wait for the first conversion to complete, and then change the
channel selection. Since the next conversion has already started automatically, the next
result will reflect the previous channel selection. Subsequent conversions will reflect the new
channel selection.

When switching to a differential gain channel, the first conversion result may have a poor accu-
racy due to the required settling time for the automatic offset cancellation circuitry. The user
should preferably disregard the first conversion result.

24.5.2 ADC Voltage Reference
The reference voltage for the ADC (Vggr) indicates the conversion range for the ADC. Single
ended channels that exceed Vg will result in codes close to 0x3FF. Vg can be selected as
either AV, internal 2.56V reference, or external AREF pin.

AV is connected to the ADC through a passive switch. The internal 2.56V reference is gener-
ated from the internal bandgap reference (Vgg) through an internal amplifier. In either case, the
external AREF pin is directly connected to the ADC, and the reference voltage can be made
more immune to noise by connecting a capacitor between the AREF pin and ground. Vgge can
also be measured at the AREF pin with a high impedance voltmeter. Note that Ve is a high
impudent source, and only a capacitive load should be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use the other
reference voltage options in the application, as they will be shorted to the external voltage. If no
external voltage is applied to the AREF pin, the user may switch between AV and 2.56V as
reference selection. The first ADC conversion result after switching reference voltage source
may be inaccurate, and the user is advised to discard this result.

If differential channels are used, the selected reference should not be closer to AV than indi-
cated in Table 29-5 on page 384.

24.6 Temperature Sensor

The ATmega16U4/ATmega32U4 includes an on-chip temperature sensor, whose the value can
be read through the A/D Converter.

The temperature measurement is based on an on-chip temperature sensor that is coupled to a
single ended ADC input. MUX[5..0] bits in ADMUX register enables the temperature sensor. The
nternal 2.56V voltage reference must also be selected for the ADC voltage reference source in
he temperature sensor measurement. When the temperature sensor is enabled, the ADC con-
verter can be used in single conversion mode to measure the voltage over the temperature
sensor.

AImEl@ 299

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

The temperature sensor and its internal driver are enabled when ADMUX value selects the tem-
perature sensor as ADC input. The propagation delay of this driver is approximatively 2uS.
Therefore two successive conversions are required. The correct temperature measurement will
be the second one.

One can also reduce this timing to one conversion by setting the ADMUX during the previous
conversion. Indeed the ADMUX can be programmed to select the temperature sensor just after
the beginning of the previous conversion start event and then the driver will be enabled 2 pS
before sampling and hold phase of temperature sensor measurement.

24.6.1 Sensor Calibration

7766F-AVR-11/10

The sensor initial tolerance is large (+/-10°C), but its characteristic is linear. Thus, if the applica-
tion requires accuracy, the firmware must include a calibration stage to use the sensor for direct
temperature measurement.

Another application of this sensor may concern the Internal Calibrated RC Oscillator, whose the
frequency can be adjusted by the user through the OSCCAL register (see Section 6.5.1 "Oscilla-
tor Calibration Register - OSCCAL” on page 32). During the production, a calibration is done at
two temperatures (+25°C and +85°C, with a tolerance of +/-10°C{")). At each temperature, the
temperature sensor value T, is measured and stored in EEPROM memory®, and the OSCCAL
calibration value O; (i.e. the value that should be set in OSCCAL register at this temperature to
have an accurate 8MHz output) is stored in another memory zone.

Thanks to these four values and the linear characteristics of the temperature sensor and Internal
RC Oscillator, firmware can easily recalibrate the RC Oscillator on-the-go in function of the tem-
perature sensor measure® (an application note describes the operation):

Figure 24-8. Linear Characterization of OSCCAL in function of T° measurement from ADC

OSCCAL
A

02
01

N
>

TO(ADC

Notes: 1. The temperature sensor calibration values cannot be used to do accurate temperature mea-
surements since the calibration temperature during production is not accurate (+/- 10°C)

2. Be aware that if EESAVE fuse is left unprogrammed, any chip erase operation will
clear the temperature sensor calibration values contained in EEPROM memory.

3. Accuracy results after a software recalibration of OSCCAL in function of T° will be
given when device will be fully characterized.

AI“"E',® 300

EEEes————————————————————— A TMmega16/32U4

24.7 ADC Noise Canceler

The ADC features a noise canceler that enables conversion during sleep mode to reduce noise
induced from the CPU core and other I/O peripherals. The noise canceler can be used with ADC
Noise Reduction and Idle mode. To make use of this feature, the following procedure should be
used:

a. Make sure that the ADC is enabled and is not busy converting. Single Conversion
mode must be selected and the ADC conversion complete interrupt must be
enabled.
b. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion
once the CPU has been halted.
c. If no other interrupts occur before the ADC conversion completes, the ADC inter-
rupt will wake up the CPU and execute the ADC Conversion Complete interrupt
routine. If another interrupt wakes up the CPU before the ADC conversion is com-
plete, that interrupt will be executed, and an ADC Conversion Complete interrupt
request will be generated when the ADC conversion completes. The CPU will
remain in active mode until a new sleep command is executed.
Note that the ADC will not be automatically turned off when entering other sleep modes than Idle
mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before enter-
ing such sleep modes to avoid excessive power consumption.

If the ADC is enabled in such sleep modes and the user wants to perform differential conver-
sions, the user is advised to switch the ADC off and on after waking up from sleep to prompt an
extended conversion to get a valid result.

24.71 Analog Input Circuitry

7766F-AVR-11/10

The analog input circuitry for single ended channels is illustrated in Figure 24-9. An analog
source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-
less of whether that channel is selected as input for the ADC. When the channel is selected, the
source must drive the S/H capacitor through the series resistance (combined resistance in the
input path).

The ADC is optimized for analog signals with an output impedance of approximately 10 kQ or
less. If such a source is used, the sampling time will be negligible. If a source with higher imped-
ance is used, the sampling time will depend on how long time the source needs to charge the
S/H capacitor, with can vary widely. The user is recommended to only use low impedance
sources with slowly varying signals, since this minimizes the required charge transfer to the S/H
capacitor.

If differential gain channels are used, the input circuitry looks somewhat different, although
source impedances of a few hundred kQ or less is recommended.

Signal components higher than the Nyquist frequency (f5pc/2) should not be present for either
kind of channels, to avoid distortion from unpredictable signal convolution. The user is advised
to remove high frequency components with a low-pass filter before applying the signals as
inputs to the ADC.

AI“"E',® 301

ATmega16/32U4

Figure 24-9. Analog Input Circuitry

liH

ADCn D AN l

1.100 kQ
Cgm= 14 pF

Vog/2

24.7.2 Analog Noise Canceling Techniques
Digital circuitry inside and outside the device generates EMI which might affect the accuracy of
analog measurements. If conversion accuracy is critical, the noise level can be reduced by
applying the following techniques:

a. Keep analog signal paths as short as possible. Make sure analog tracks run over
the analog ground plane, and keep them well away from high-speed switching digi-
tal tracks.

b. The AV pin on the device should be connected to the digital V¢ supply voltage
via an LC network as shown in Figure 24-10.

c. Use the ADC noise canceler function to reduce induced noise from the CPU.

d. If any ADC port pins are used as digital outputs, it is essential that these do not
switch while a conversion is in progress.

Figure 24-10. ADC Power Connections

(ADC7) PF7 [3]
(ADCE) PFs [37]

(ADC5) PF5 [3]

(ADC1) PF1 @
(ADCO) PFO [41]

10pH
g AREF E

|
|
|
|
|
|
|
|
|
|
|
|
|
|
(ADC4) PF4 [39) |
|
|
|
|
|
|
|
|
|
|

Note: The same circuitry should be used for AVCC filtering on the ADC8-ADC13 side

AI“"E',® 302

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

24.7.3 Offset Compensation Schemes
The gain stage has a built-in offset cancellation circuitry that nulls the offset of differential mea-
surements as much as possible. The remaining offset in the analog path can be measured
directly by selecting the same channel for both differential inputs. This offset residue can be then
subtracted in software from the measurement results. Using this kind of software based offset
correction, offset on any channel can be reduced below one LSB.

24.7.4 ADC Accuracy Definitions
An n-bit single-ended ADC converts a voltage linearly between GND and Vg in 2" steps
(LSBs). The lowest code is read as 0, and the highest code is read as 2"-1.

Several parameters describe the deviation from the ideal behavior:
 Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition
(at 0.5 LSB). Ideal value: 0 LSB.

Figure 24-11. Offset Error

Output Codeh
————— Ideal ADC
Actual ADC
‘_OffseL >
E Ll
fror™ VRrer Input Voltage

* Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the last
transition (Ox3FE to Ox3FF) compared to the ideal transition (at 1.5 LSB below maximum).
Ideal value: 0 LSB

AI“"E',® 303

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 24-12. Gain Error
Output Code 4

Gain
Error

————— Ideal ADC

Actual ADC

[y

Vgeg Input Voltage

* Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the maximum
deviation of an actual transition compared to an ideal transition for any code. Ideal value: 0

LSB.

Figure 24-13. Integral Non-linearity (INL)

Output Code

A

NI

----- Ideal ADC
Actual ADC

[

VREFV Input Voltage

* Differential Non-linearity (DNL): The maximum deviation of the actual code width (the interval
between two adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0 LSB.

7766F-AVR-11/10

ATMEL

304

EEEes————————————————————— A TMmega16/32U4

Figure 24-14. Differential Non-linearity (DNL)

Output Code A
Ox3FF
I |
_,lLsB
- !
] |<—DNL—>
0x000
0 Vgreg Input Voltage

¢ Quantization Error: Due to the quantization of the input voltage into a finite number of codes,
a range of input voltages (1 LSB wide) will code to the same value. Always + 0.5 LSB.

* Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition compared to
an ideal transition for any code. This is the compound effect of offset, gain error, differential
error, non-linearity, and quantization error. Ideal value: + 0.5 LSB.

24.8 ADC Conversion Result
After the conversion is complete (ADIF is high), the conversion result can be found in the ADC
Result Registers (ADCL, ADCH).

For single ended conversion, the result is:

V- 1023
ADC = N7
REF

where V, is the voltage on the selected input pin and Vzgr the selected voltage reference (see
Table 24-3 on page 307 and Table 24-4 on page 308). 0x000 represents analog ground, and
Ox3FF represents the selected reference voltage minus one LSB.

If differential channels are used, the result is:

ADC = (Vpos—Vneg) - GAIN - 512

VREF

where Vpqg is the voltage on the positive input pin, Vygg the voltage on the negative input pin,
GAIN the selected gain factor and Vzer the selected voltage reference. The result is presented
in two’s complement form, from 0x200 (-512d) through Ox1FF (+511d). Note that if the user
wants to perform a quick polarity check of the result, it is sufficient to read the MSB of the result
(ADC9 in ADCH). If the bit is one, the result is negative, and if this bit is zero, the result is posi-
tive. Figure 24-15 shows the decoding of the differential input range.

Table 82 shows the resulting output codes if the differential input channel pair (ADCn - ADCm) is
selected with a reference voltage of Vggg.

AI“"E',® 305

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 24-15. Differential Measurement Range
A

Output Code

Ox1FF

)
]

N
N—
0x000
[I I I ()() I I IX I I I T ()() T T I >
Y 0 Vv Differential Input
REF Ox3FF _ REF Voltage (Volts)
~=

0x200

Table 24-2. Correlation Between Input Voltage and Output Codes

Vancn Read code Corresponding decimal value
Vapcm + Vrer /GAIN Ox1FF 511
Vapcm + 0.999 Veer /GAIN Ox1FF 511
Vapcm + 0.998 Vger /GAIN Ox1FE 510
VADCm + 0001 VREF /GAIN OXOO1 1
Vabcm 0x000 0
Vapcm - 0.001 Ve /GAIN Ox3FF -1
Vapcm - 0.999 Vger /GAIN 0x201 -511
Vaocm - Vrer/GAIN 0x200 -512
Example 1:
— ADMUX = O0xE9, MUX5 = 0 (ADC1 - ADCO, 10x gain, 2.56V reference, left adjusted
result)

— Voltage on ADC1 is 300 mV, voltage on ADCO is 500 mV.
— ADCR =512 * 10 * (300 - 500) / 2560 = -400 = 0x270

AI“"E',® 306

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

— ADCL will thus read 0x00, and ADCH will read 0x9C.
Writing zero to ADLAR right adjusts the result: ADCL = 0x70, ADCH = 0x02.

Example 2:
— ADMUX = 0xF0, MUX5 = 0 (ADCO - ADC1, 1x gain, 2.56V reference, left adjusted
result)
— Voltage on ADCO is 300 mV, voltage on ADC1 is 500 mV.
— ADCR =512 *1 * (300 - 500) / 2560 = -41 = 0x029.

— ADCL will thus read 0x40, and ADCH will read OxO0A.
Writing zero to ADLAR right adjusts the result: ADCL = 0x00, ADCH = 0x29.

24.9 ADC Register Description

24.91 ADC Multiplexer Selection Register - ADMUX

Bit 7 6 5 4 3 2 1 0

| REFS1 | REFS0 | ADLAR | MUx4 MUX3 MUX2 MUX1 Muxo | Apbmux
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:6 — REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 24-3. If these bits are
changed during a conversion, the change will not go in effect until this conversion is complete
(ADIF in ADCSRA is set). The internal voltage reference options may not be used if an external
reference voltage is being applied to the AREF pin.

Table 24-3. Voltage Reference Selections for ADC

REFS1 | REFS0 | Voltage Reference Selection
0 0 AREF, Internal Vref turned off
0 1 AV with external capacitor on AREF pin
1 0 Reserved
1 1 Internal 2.56V Voltage Reference with external capacitor on AREF pin

e Bit5 - ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Register.
Write one to ADLAR to left adjust the result. Otherwise, the result is right adjusted. Changing the
ADLAR bit will affect the ADC Data Register immediately, regardless of any ongoing conver-
sions. For a complete description of this bit, see “The ADC Data Register — ADCL and ADCH” on
page 311.

* Bits 4:0 — MUX4:0: Analog Channel Selection Bits

The value of these bits selects which combination of analog inputs are connected to the ADC.
These bits also select the gain for the differential channels. See Table 24-4 for details. If these
bits are changed during a conversion, the change will not go in effect until this conversion is
complete (ADIF in ADCSRA is set).

AI“"E',® 307

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 24-4. Input Channel and Gain Selections

MUX5..00" | Single Ended Input | Positive Differential Input | Negative Differential Input | Gain
000000 ADCO
000001 ADCH1
000010
N/A
000011
N/A
000100 ADC4
000101 ADC5
000110 ADC6
000111 ADC7
001000 N/A N/A N/A
001001 ADCA1 ADCO 10x
001010 N/A N/A N/A
001011 ADCA1 ADCO 200x
001100 N/A
001101
N/A
001110
001111
010000 ADCO ADC1 1x

AI“"E',® 308

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 24-4. Input Channel and Gain Selections (Continued)

MUX5..00" | Single Ended Input | Positive Differential Input | Negative Differential Input | Gain

010001

010010 N/A

010011

010100 ADC4 ADCH1 1x

010101 ADC5 ADCH1 1x

010110 ADC6 ADCH1 1x

010111 N/A ADC7 ADCH1 1x

011000

011001

011010

011011

011100

011101

011110 1.1V (Vaand Gap) /A

011111 0V (GND)

100000 ADC8

100001 ADC9

100010 ADC10

100011 ADC11

100100 ADC12

100101 ADC13

100110 N/A ADC1 ADCO 40x

100111 Temperature Sensor

101000 ADC4 ADCO 10x

101001 ADC5 ADCO 10x

101010 ADC6 ADCO 10x

101011 ADC7 ADCO 10x

101100 ADC4 ADCH1 10x

101101 ADC5 ADCH1 10x
N/A

101110 ADC6 ADCA1 10x

101111 ADC7 ADCH1 10x

110000 ADCA4 ADCO 40x

110001 ADC5 ADCO 40x

110010 ADC6 ADCO 40x

110011 ADC7 ADCO 40x

AI“]EL@ 309

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

24.9.2

7766F-AVR-11/10

Table 24-4. Input Channel and Gain Selections (Continued)

MUX5..00" | Single Ended Input | Positive Differential Input | Negative Differential Input | Gain
110100 ADCA4 ADCH1 40x
110101 ADC5 ADCH1 40x
110110 ADC6 ADCH1 40x
110111 ADC7 ADCH1 40x
111000 ADC4 ADCO 200x
111001 ADC5 ADCO 200x
111010 NA ADC6 ADCO 200x
111011 ADC7 ADCO 200x
111100 ADC4 ADCH1 200x
111101 ADC5 ADCH1 200x
111110 ADC6 ADCH1 200x
111111 ADC7 ADCA1 200x

Note: 1. MUX5 bit make part of ADCSRB register

ADC Control and Status Register A— ADCSRA

Bit 7 6 5 4 3 2 1 0
| ADEN | ADsc | ADATE | ADIF ADIE | ADPS2 | ADPS1 | ADPSO0 | ADCSRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - ADEN: ADC Enable
Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the
ADC off while a conversion is in progress, will terminate this conversion.

e Bit 6 — ADSC: ADC Start Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free Running mode,
write this bit to one to start the first conversion. The first conversion after ADSC has been written
after the ADC has been enabled, or if ADSC is written at the same time as the ADC is enabled,
will take 25 ADC clock cycles instead of the normal 13. This first conversion performs initializa-
tion of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete,
it returns to zero. Writing zero to this bit has no effect.

e Bit 5 - ADATE: ADC Auto Trigger Enable

When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a con-
version on a positive edge of the selected trigger signal. The trigger source is selected by setting
the ADC Trigger Select bits, ADTS in ADCSRB.

e Bit 4 — ADIF: ADC Interrupt Flag

This bit is set when an ADC conversion completes and the Data Registers are updated. The
ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set.
ADIF is cleared by hardware when executing the corresponding interrupt handling vector. Alter-
natively, ADIF is cleared by writing a logical one to the flag. Beware that if doing a Read-Modify-

AI“"E',® 310

EEEes————————————————————— A TMmega16/32U4

2493

24.9.3.1

24.9.3.2

ADLAR =0

ADLAR =1

Write on ADCSRA, a pending interrupt can be disabled. This also applies if the SBI and CBI
instructions are used.

* Bit 3 — ADIE: ADC Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Inter-
rupt is activated.

¢ Bits 2:0 — ADPS2:0: ADC Prescaler Select Bits

These bits determine the division factor between the XTAL frequency and the input clock to the
ADC.

Table 24-5. ADC Prescaler Selections
ADPS2 ADPS1 ADPSO Division Factor
0 0 0 2
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128
The ADC Data Register — ADCL and ADCH
Bit 15 14 13 12 11 10 9 8
- - - - - - ADC9 ADC8 ADCH
ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADCO ADCL
Bit 7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH
ADC1 ADCO - - - - - - ADCL
Bit 7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

7766F-AVR-11/10

When an ADC conversion is complete, the result is found in these two registers. If differential
channels are used, the result is presented in two’s complement form.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently, if
the result is left adjusted and no more than 8-bit precision (7 bit + sign bit for differential input

ATMEL

311

EEEes————————————————————— A TMmega16/32U4

2494

7766F-AVR-11/10

channels) is required, it is sufficient to read ADCH. Otherwise, ADCL must be read first, then
ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from
the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result
is right adjusted.

e ADC9:0: ADC Conversion Result
These bits represent the result from the conversion, as detailed in “ADC Conversion Result” on
page 305.

ADC Control and Status Register B— ADCSRB

Bit 7 6 5 4 3 2 1 0
| AbHsm | ACME | mMuxs | - ADTS3 | ADTS2 | ADTS1 | ADTSO | ADCSRB

Read/Write R/W R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7—- ADHSM: ADC High Speed Mode
Writing this bit to one enables the ADC High Speed mode. This mode enables higher conversion
rate at the expense of higher power consumption.

e Bit 5 — MUX5: Analog Channel Additional Selection Bits
This bit make part of MUX5:0 bits of ADRCSRB and ADMUX register, that select the combina-
tion of analog inputs connected to the ADC (including differential amplifier configuration).

e Bit 3:0 - ADTS3:0: ADC Auto Trigger Source

If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger
an ADC conversion. If ADATE is cleared, the ADTS3:0 settings will have no effect. A conversion
will be triggered by the rising edge of the selected interrupt flag. Note that switching from a trig-
ger source that is cleared to a trigger source that is set, will generate a positive edge on the
trigger signal. If ADEN in ADCSRA is set, this will start a conversion. Switching to Free Running
mode (ADTS[3:0]=0) will not cause a trigger event, even if the ADC Interrupt Flag is set.

Table 24-6. ADC Auto Trigger Source Selections

ADTS3 ADTS2 ADTS1 ADTSO Trigger Source
0 0 0 0 Free Running mode
0 0 0 1 Analog Comparator
0 0 1 0 External Interrupt Request 0
0 0 1 1 Timer/Counter0 Compare Match
0 1 0 0 Timer/Counter0 Overflow
0 1 0 1 Timer/Counter1 Compare Match B
0 1 1 0 Timer/Counter1 Overflow
0 1 1 1 Timer/Counter1 Capture Event
1 0 0 0 Timer/Counter4 Overflow

AImEl@ 312

EEEes————————————————————— A TMmega16/32U4

24.9.5

24.9.6

7766F-AVR-11/10

Table 24-6. ADC Auto Trigger Source Selections (Continued)
ADTS3 ADTS2 ADTS1 ADTSO Trigger Source
1 0 0 1 Timer/Counter4 Compare Match A
1 0 1 0 Timer/Counter4 Compare Match B
1 0 1 1 Timer/Counter4 Compare Match D
Digital Input Disable Register 0 — DIDRO
Bit 7 6 5 4 3 2 1 0
| Abc7bp | ADcCeD | ADC5D | ADC4D - ADC1D | ADCOD | DIDRo
Read/Write RW R/W R/W RW RW RW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit7:4,1:0 - ADC7D..4D - ADC1D..0D : ADC7:4 - ADC1:0 Digital Input Disable

When this bit is written logic one, the digital input buffer on the corresponding ADC pin is dis-
abled. The corresponding PIN Register bit will always read as zero when this bit is set. When an
analog signal is applied to the ADC7..4 / ADC1..0 pin and the digital input from this pin is not
needed, this bit should be written logic one to reduce power consumption in the digital input

buffer.

Bit

Read/Write
Initial Value

Digital Input Disable Register 2 — DIDR2

7 6 5 4 3 2 1 0
| | | ADC13D | ADC12D | ADC11D | ADC10D | ADC9D | ADC8D | DIDR2
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

e Bit 5:0 - ADC13D..ADC8D: ADC13:8 Digital Input Disable

When this bit is written logic one, the digital input buffer on the corresponding ADC pin is dis-
abled. The corresponding PIN Register bit will always read as zero when this bit is set. When an
analog signal is applied to the ADC13..8 pin and the digital input from this pin is not needed, this
bit should be written logic one to reduce power consumption in the digital input buffer.

ATMEL

313

EEEes————————————————————— A TMmega16/32U4

25. JTAG Interface and On-chip Debug System

25.0.1 Features
¢ JTAG (IEEE std. 1149.1 Compliant) Interface

¢ Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard
* Debugger Access to:

— All Internal Peripheral Units

— Internal and External RAM

— The Internal Register File

— Program Counter

— EEPROM and Flash Memories
* Extensive On-chip Debug Support for Break Conditions, Including

— AVR Break Instruction

— Break on Change of Program Memory Flow

— Single Step Break

— Program Memory Break Points on Single Address or Address Range

— Data Memory Break Points on Single Address or Address Range
* Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
* On-chip Debugging Supported by AVR Studio®

25.1 Overview
The AVR IEEE std. 1149.1 compliant JTAG interface can be used for

* Testing PCBs by using the JTAG Boundary-scan capability

* Programming the non-volatile memories, Fuses and Lock bits

* On-chip debugging
A brief description is given in the following sections. Detailed descriptions for Programming via
the JTAG interface, and using the Boundary-scan Chain can be found in the sections “Program-
ming via the JTAG Interface” on page 365 and “IEEE 1149.1 (JTAG) Boundary-scan” on page

320, respectively. The On-chip Debug support is considered being private JTAG instructions,
and distributed within ATMEL and to selected third party vendors only.

Figure 25-1 shows a block diagram of the JTAG interface and the On-chip Debug system. The
TAP Controller is a state machine controlled by the TCK and TMS signals. The TAP Controller
selects either the JTAG Instruction Register or one of several Data Registers as the scan chain
(Shift Register) between the TDI — input and TDO — output. The Instruction Register holds JTAG
instructions controlling the behavior of a Data Register.

The ID-Register, Bypass Register, and the Boundary-scan Chain are the Data Registers used
for board-level testing. The JTAG Programming Interface (actually consisting of several physical
and virtual Data Registers) is used for serial programming via the JTAG interface. The Internal
Scan Chain and Break Point Scan Chain are used for On-chip debugging only.

25.2 Test Access Port — TAP

The JTAG interface is accessed through four of the AVR'’s pins. In JTAG terminology, these pins
constitute the Test Access Port — TAP. These pins are:

e TMS: Test mode select. This pin is used for navigating through the TAP-controller state
machine.

* TCK: Test Clock. JTAG operation is synchronous to TCK.

AImEl@ 314

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

» TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data Register
(Scan Chains).

* TDO: Test Data Out. Serial output data from Instruction Register or Data Register.

The IEEE std. 1149.1 also specifies an optional TAP signal; TRST — Test ReSeT — which is not
provided.

When the JTAGEN Fuse is unprogrammed, these four TAP pins are normal port pins, and the
TAP controller is in reset. When programmed, the input TAP signals are internally pulled high
and the JTAG is enabled for Boundary-scan and programming. The device is shipped with this
fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is moni-
tored by the debugger to be able to detect external reset sources. The debugger can also pull
the RESET pin low to reset the whole system, assuming only open collectors on the reset line
are used in the application.

Figure 25-1. Block Diagram
1/0 PORT 0 . . .
A
DEVICE BOUNDARY Y
>
> BOUNDARY SCAN CHAIN
o L
TDO < - p JTAG PROGRAMMING
=] TAP INTERFACE
TCK » | CONTROLLER
™S > 4
! v AVR CPU
INTERNAL
FLASH Address [« " gcan [€ PG
INSTRUCTION MEMORY Data —» SHAIN)
REGISTER Instruction
I
D
REGISTER BREAKPOINT >
M UNIT FLOW CONTROL[>
U BYPASS X UNIT l
X REGISTER DIGITAL ANALOG
< PERIPHERAL <> PERIPHERIAL — Analog inputs
< UNITS le UNITS

BREAKPOINT
SCAN CHAIN

v JTAG / AVR CORE

oo
DECODER OCD STATUS

AND CONTROL

A4

< Control & Clock lines

7766F-AVR-11/10

I/0 PORT n

AI“"E',® 315

EEEes————————————————————— A TMmega16/32U4

Figure 25-2. TAP Controller State Diagram

1 C; Test-Logic-Reset

0

0 C Run-Test/Idle

25.3 TAP Controller

Select-DR Scan

0

Capture-DR

v

Shift-DR

Exit1-DR

Select-IR Scan

0

Capture-IR

Shift-IR

Pause-DR

Exit2-DR

1

Update-DR

Exit1-IR

J o

Update-IR

A

1 0

The TAP controller is a 16-state finite state machine that controls the operation of the Boundary-
scan circuitry, JTAG programming circuitry, or On-chip Debug system. The state transitions
depicted in Figure 25-2 depend on the signal present on TMS (shown adjacent to each state
transition) at the time of the rising edge at TCK. The initial state after a Power-on Reset is Test-

Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is:

¢ At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the Shift

Instruction Register — Shift-IR state. While in this state, shift the four bits of the JTAG

instructions into the JTAG Instruction Register from the TDI input at the rising edge of TCK.
The TMS input must be held low during input of the 3 LSBs in order to remain in the Shift-IR

state. The MSB of the instruction is shifted in when this state is left by setting TMS high.

While the instruction is shifted in from the TDI pin, the captured IR-state 0x01 is shifted out on
the TDO pin. The JTAG Instruction selects a particular Data Register as path between TDI
and TDO and controls the circuitry surrounding the selected Data Register.

7766F-AVR-11/10

ATMEL

316

EEEes————————————————————— A TMmega16/32U4

¢ Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is latched
onto the parallel output from the Shift Register path in the Update-IR state. The Exit-IR,
Pause-IR, and Exit2-IR states are only used for navigating the state machine.

¢ At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift
Data Register — Shift-DR state. While in this state, upload the selected Data Register
(selected by the present JTAG instruction in the JTAG Instruction Register) from the TDI input
at the rising edge of TCK. In order to remain in the Shift-DR state, the TMS input must be
held low during input of all bits except the MSB. The MSB of the data is shifted in when this
state is left by setting TMS high. While the Data Register is shifted in from the TDI pin, the
parallel inputs to the Data Register captured in the Capture-DR state is shifted out on the
TDO pin.

¢ Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected Data
Register has a latched parallel-output, the latching takes place in the Update-DR state. The
Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting
JTAG instruction and using Data Registers, and some JTAG instructions may select certain
functions to be performed in the Run-Test/Idle, making it unsuitable as an Idle state.

Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be
entered by holding TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in “Bibliography”
on page 319.

25.4 Using the Boundary-scan Chain

A complete description of the Boundary-scan capabilities are given in the section “IEEE 1149.1
(JTAG) Boundary-scan” on page 320.

25.5 Using the On-chip Debug System
As shown in Figure 25-1, the hardware support for On-chip Debugging consists mainly of

* A scan chain on the interface between the internal AVR CPU and the internal peripheral
units.

* Break Point unit.
* Communication interface between the CPU and JTAG system.

All read or modify/write operations needed for implementing the Debugger are done by applying
AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the result to an 1/0

memory mapped location which is part of the communication interface between the CPU and the
JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step Break, two
Program Memory Break Points, and two combined Break Points. Together, the four Break
Points can be configured as either:

¢ 4 single Program Memory Break Points.

* 3 Single Program Memory Break Point + 1 single Data Memory Break Point.

* 2 single Program Memory Break Points + 2 single Data Memory Break Points.

* 2 single Program Memory Break Points + 1 Program Memory Break Point with mask (“range
Break Point”).

AIMEL 317

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

¢ 2 single Program Memory Break Points + 1 Data Memory Break Point with mask (“range
Break Point”).

A debugger, like the AVR Studio, may however use one or more of these resources for its inter-
nal purpose, leaving less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in “On-chip Debug Specific JTAG
Instructions” on page 318.

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addition, the
OCDEN Fuse must be programmed and no Lock bits must be set for the On-chip debug system
to work. As a security feature, the On-chip debug system is disabled when either of the LB1 or
LB2 Lock bits are set. Otherwise, the On-chip debug system would have provided a back-door
into a secured device.

The AVR Studio enables the user to fully control execution of programs on an AVR device with
On-chip Debug capability, AVR In-Circuit Emulator, or the built-in AVR Instruction Set Simulator.
AVR Studio® supports source level execution of Assembly programs assembled with ATMEL
Corporation’s AVR Assembler and C programs compiled with third party vendors’ compilers.

AVR Studio runs under Microsoft® Windows® 95/98/2000 and Microsoft Windows NT®.

For a full description of the AVR Studio, please refer to the AVR Studio User Guide. Only high-
lights are presented in this document.

All necessary execution commands are available in AVR Studio, both on source level and on
disassembly level. The user can execute the program, single step through the code either by
tracing into or stepping over functions, step out of functions, place the cursor on a statement and
execute until the statement is reached, stop the execution, and reset the execution target. In
addition, the user can have an unlimited number of code Break Points (using the BREAK
instruction) and up to two data memory Break Points, alternatively combined as a mask (range)
Break Point.

25.6 On-chip Debug Specific JTAG Instructions

25.6.1 PRIVATEO; 0x8

25.6.2 PRIVATE1; 0x9

The On-chip debug support is considered being private JTAG instructions, and distributed within
ATMEL and to selected third party vendors only. Instruction opcodes are listed for reference.

Private JTAG instruction for accessing On-chip debug system.

Private JTAG instruction for accessing On-chip debug system.

25.6.3 PRIVATE2; 0xA

Private JTAG instruction for accessing On-chip debug system.

25.6.4 PRIVATE3; 0xB

7766F-AVR-11/10

Private JTAG instruction for accessing On-chip debug system.

AI“"E',® 318

EEEes————————————————————— A TMmega16/32U4

25.7 On-chip Debug Related Register in I/0 Memory

25.7.1 On-chip Debug Register - OCDR

Bit 7 6 5 4 3 2 1 0

| msB/DRD | Lse | ocor
Read/Write RIW RIW RIW RIW RIW RW RW RIW
Initial Value 0 0 0 0 0 0 0 0

The OCDR Register provides a communication channel from the running program in the micro-
controller to the debugger. The CPU can transfer a byte to the debugger by writing to this
location. At the same time, an internal flag; I/O Debug Register Dirty — IDRD — is set to indicate
to the debugger that the register has been written. When the CPU reads the OCDR Register the
7 LSB will be from the OCDR Register, while the MSB is the IDRD bit. The debugger clears the
IDRD bit when it has read the information.

In some AVR devices, this register is shared with a standard I/O location. In this case, the OCDR
Register can only be accessed if the OCDEN Fuse is programmed, and the debugger enables
access to the OCDR Register. In all other cases, the standard 1/O location is accessed.

Refer to the debugger documentation for further information on how to use this register.

25.8 Using the JTAG Programming Capabilities

25.9 Bibliography

7766F-AVR-11/10

Programming of AVR parts via JTAG is performed via the 4-pin JTAG port, TCK, TMS, TDI, and
TDO. These are the only pins that need to be controlled/observed to perform JTAG program-
ming (in addition to power pins). It is not required to apply 12V externally. The JTAGEN Fuse
must be programmed and the JTD bit in the MCUCR Register must be cleared to enable the
JTAG Test Access Port.

The JTAG programming capability supports:

* Flash programming and verifying.

* EEPROM programming and verifying.

¢ Fuse programming and verifying.

* Lock bit programming and verifying.
The Lock bit security is exactly as in parallel programming mode. If the Lock bits LB1 or LB2 are
programmed, the OCDEN Fuse cannot be programmed unless first doing a chip erase. This is a
security feature that ensures no back-door exists for reading out the content of a secured
device.

The details on programming through the JTAG interface and programming specific JTAG
instructions are given in the section “Programming via the JTAG Interface” on page 365.

For more information about general Boundary-scan, the following literature can be consulted:

e |EEE: IEEE Std. 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan
Architecture, IEEE, 1993.

¢ Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-Wesley,
1992.

AI“"E',® 319

EEEes————————————————————— A TMmega16/32U4

26. IEEE 1149.1 (JTAG) Boundary-scan

26.1 Features

JTAG (IEEE std. 1149.1 compliant) Interface

* Boundary-scan Capabilities According to the JTAG Standard

Full Scan of all Port Functions as well as Analog Circuitry having Off-chip Connections
* Supports the Optional IDCODE Instruction

Additional Public AVR_RESET Instruction to Reset the AVR

26.2 System Overview

The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-
tal I/O pins, as well as the boundary between digital and analog logic for analog circuitry having
off-chip connections. At system level, all ICs having JTAG capabilities are connected serially by
the TDI/TDO signals to form a long Shift Register. An external controller sets up the devices to
drive values at their output pins, and observe the input values received from other devices. The
controller compares the received data with the expected result. In this way, Boundary-scan pro-
vides a mechanism for testing interconnections and integrity of components on Printed Circuits
Boards by using the four TAP signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAMPLE/PRE-
LOAD, and EXTEST, as well as the AVR specific public JTAG instruction AVR_RESET can be
used for testing the Printed Circuit Board. Initial scanning of the Data Register path will show the
ID-Code of the device, since IDCODE is the default JTAG instruction. It may be desirable to
have the AVR device in reset during test mode. If not reset, inputs to the device may be deter-
mined by the scan operations, and the internal software may be in an undetermined state when
exiting the test mode. Entering reset, the outputs of any port pin will instantly enter the high
impedance state, making the HIGHZ instruction redundant. If needed, the BYPASS instruction
can be issued to make the shortest possible scan chain through the device. The device can be
set in the reset state either by pulling the external RESET pin low, or issuing the AVR_RESET
instruction with appropriate setting of the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with data.
The data from the output latch will be driven out on the pins as soon as the EXTEST instruction
is loaded into the JTAG IR-Register. Therefore, the SAMPLE/PRELOAD should also be used for
setting initial values to the scan ring, to avoid damaging the board when issuing the EXTEST
instruction for the first time. SAMPLE/PRELOAD can also be used for taking a snapshot of the
external pins during normal operation of the part.

The JTAGEN Fuse must be programmed and the JTD bit in the 1/0 Register MCUCR must be
cleared to enable the JTAG Test Access Port.

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency higher
than the internal chip frequency is possible. The chip clock is not required to run.

26.3 Data Registers
The Data Registers relevant for Boundary-scan operations are:

¢ Bypass Register

* Device Identification Register
* Reset Register

¢ Boundary-scan Chain

AI“"E',® 320

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

26.3.1 Bypass Register
The Bypass Register consists of a single Shift Register stage. When the Bypass Register is
selected as path between TDI and TDO, the register is reset to 0 when leaving the Capture-DR
controller state. The Bypass Register can be used to shorten the scan chain on a system when
the other devices are to be tested.

26.3.2 Device Identification Register
Figure 26-1 shows the structure of the Device Identification Register.

Figure 26-1. The Format of the Device Identification Register

MSB LSB
Bit 31 28 27 12 1 1 0
Device ID | Version Part Number Manufacturer ID 1 |
4 bits 16 bits 11 bits 1-bit

26.3.2.1 Version
Version is a 4-bit number identifying the revision of the component. The JTAG version number
follows the revision of the device. Revision A is 0x0, revision B is 0x1 and so on.

26.3.22 Part Number
The part number is a 16-bit code identifying the component. The JTAG Part Number for
ATmega16U4/ATmega32U4 is listed in Table 26-1.

Table 26-1. AVR JTAG Part Number
Part Number JTAG Part Number (Hex)
AVR USB 0x9782

26.3.2.3 Manufacturer ID
The Manufacturer ID is a 11-bit code identifying the manufacturer. The JTAG manufacturer ID
for ATMEL is listed in Table 26-2.
Table 26-2. Manufacturer ID

Manufacturer JTAG Manufacturer ID (Hex)

ATMEL Ox01F

26.3.3 Reset Register
The Reset Register is a test Data Register used to reset the part. Since the AVR tri-states Port

Pins when reset, the Reset Register can also replace the function of the unimplemented optional
JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the external Reset low. The part is
reset as long as there is a high value present in the Reset Register. Depending on the fuse set-
tings for the clock options, the part will remain reset for a reset time-out period (refer to “Clock
Sources” on page 28) after releasing the Reset Register. The output from this Data Register is
not latched, so the reset will take place immediately, as shown in Figure 26-2.

AImEl@ 321

7766F-AVR-11/10

ATmega16/32U4

Figure 26-2. Reset Register

To
TDO

From Other Internal and
External Reset Sources

From i)—» Internal reset
gD Q

TDI

ClockDR - AVR_RESET

26.3.4 Boundary-scan Chain
The Boundary-scan Chain has the capability of driving and observing the logic levels on the dig-
ital /0O pins, as well as the boundary between digital and analog logic for analog circuitry having
off-chip connections.

See “Boundary-scan Chain” on page 324 for a complete description.

26.4 Boundary-scan Specific JTAG Instructions
The Instruction Register is 4-bit wide, supporting up to 16 instructions. Listed below are the
JTAG instructions useful for Boundary-scan operation. Note that the optional HIGHZ instruction
is not implemented, but all outputs with tri-state capability can be set in high-impedance state by
using the AVR_RESET instruction, since the initial state for all port pins is tri-state.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text
describes which Data Register is selected as path between TDI and TDO for each instruction.

26.4.1 EXTEST; 0x0
Mandatory JTAG instruction for selecting the Boundary-scan Chain as Data Register for testing
circuitry external to the AVR package. For port-pins, Pull-up Disable, Output Control, Output
Data, and Input Data are all accessible in the scan chain. For Analog circuits having off-chip
connections, the interface between the analog and the digital logic is in the scan chain. The con-
tents of the latched outputs of the Boundary-scan chain is driven out as soon as the JTAG IR-
Register is loaded with the EXTEST instruction.

The active states are:

e Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.
¢ Shift-DR: The Internal Scan Chain is shifted by the TCK input.
¢ Update-DR: Data from the scan chain is applied to output pins.

26.4.2 IDCODE; 0x1
Optional JTAG instruction selecting the 32 bit ID-Register as Data Register. The ID-Register
consists of a version number, a device number and the manufacturer code chosen by JEDEC.
This is the default instruction after power-up.

AImEl@ 322

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

The active states are:

* Capture-DR: Data in the IDCODE Register is sampled into the Boundary-scan Chain.
¢ Shift-DR: The IDCODE scan chain is shifted by the TCK input.

26.4.3 SAMPLE_PRELOAD; 0x2
Mandatory JTAG instruction for pre-loading the output latches and taking a snap-shot of the
input/output pins without affecting the system operation. However, the output latches are not
connected to the pins. The Boundary-scan Chain is selected as Data Register.

The active states are:

* Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.
¢ Shift-DR: The Boundary-scan Chain is shifted by the TCK input.

¢ Update-DR: Data from the Boundary-scan chain is applied to the output latches. However,
the output latches are not connected to the pins.

26.4.4 AVR_RESET; 0xC
The AVR specific public JTAG instruction for forcing the AVR device into the Reset mode or
releasing the JTAG reset source. The TAP controller is not reset by this instruction. The one bit
Reset Register is selected as Data Register. Note that the reset will be active as long as there is
a logic “one” in the Reset Chain. The output from this chain is not latched.

The active states are:
» Shift-DR: The Reset Register is shifted by the TCK input.
26.4.5 BYPASS; OxF
Mandatory JTAG instruction selecting the Bypass Register for Data Register.
The active states are:

» Capture-DR: Loads a logic “0” into the Bypass Register.
* Shift-DR: The Bypass Register cell between TDI and TDO is shifted.

26.5 Boundary-scan Related Register in /O Memory

26.5.1 MCU Control Register - MCUCR
The MCU Control Register contains control bits for general MCU functions.

Bit 7 6 5 4 3 2 1 0
| w0 | - | - | PUD | - | - | IVSEL | IVCE]| mcucr

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bits 7 — JTD: JTAG Interface Disable

When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is programmed. If this
bit is one, the JTAG interface is disabled. In order to avoid unintentional disabling or enabling of
the JTAG interface, a timed sequence must be followed when changing this bit: The application
software must write this bit to the desired value twice within four cycles to change its value. Note
that this bit must not be altered when using the On-chip Debug system.

AI“"E',® 323

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

26.5.2 MCU Status Register - MCUSR

The MCU Status Register provides information on which reset source caused an MCU reset.

Bit 7 6 5 4 3 2 1 0

|- | - | - | JTRF | WDRF | BORF | EXTRF | PORF | MCUSR
Read/Write R R R R/W R/W R/W R/W R/W
Initial Value 0 0 0 See Bit Description

e Bit4 - JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic
zero to the flag.

26.6 Boundary-scan Chain

The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-
tal I/0 pins, as well as the boundary between digital and analog logic for analog circuitry having
off-chip connection.

26.6.1 Scanning the Digital Port Pins

7766F-AVR-11/10

Figure 26-3 shows the Boundary-scan Cell for a bi-directional port pin. The pull-up function is
disabled during Boundary-scan when the JTAG IC contains EXTEST or SAMPLE_PRELOAD.
The cell consists of a bi-directional pin cell that combines the three signals Output Control -
OCxn, Output Data - ODxn, and Input Data - IDxn, into only a two-stage Shift Register. The port
and pin indexes are not used in the following description

The Boundary-scan logic is not included in the figures in the datasheet. Figure 26-4 shows a
simple digital port pin as described in the section “I/O-Ports” on page 65. The Boundary-scan
details from Figure 26-3 replaces the dashed box in Figure 26-4.

When no alternate port function is present, the Input Data - ID - corresponds to the PINxn Regis-
ter value (but ID has no synchronizer), Output Data corresponds to the PORT Register, Output
Control corresponds to the Data Direction - DD Register, and the Pull-up Enable - PUExn - cor-
responds to logic expression PUD - DDxn - PORTxn.

Digital alternate port functions are connected outside the dotted box in Figure 26-4 to make the
scan chain read the actual pin value. For analog function, there is a direct connection from the
external pin to the analog circuit. There is no scan chain on the interface between the digital and
the analog circuitry, but some digital control signal to analog circuitry are turned off to avoid driv-
ing contention on the pads.

When JTAG IR contains EXTEST or SAMPLE_PRELOAD the clock is not sent out on the port
pins even if the CKOUT fuse is programmed. Even though the clock is output when the JTAG IR
contains SAMPLE_PRELOAD, the clock is not sampled by the boundary scan.

AImEl@ 324

ATmega16/32U4

Figure 26-3. Boundary-scan Cell for Bi-directional Port Pin with Pull-up Function.

ShiftDR To Next Cell EXTEST Voo
s

Pull-up Enable (PUE) 0

>

[
A
VWV—

Output Control (OC)

Output Data (OD)

0 FFO LDO
) >
1 D

Port Pin (PXn)

Input Data (ID)

From Last Cell ClockDR UpdateDR

AI“"E',® 325

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 26-4. General Port Pin Schematic Diagram

See Boundary-scan
Description for Details!

e |
| |
| |
| i PUExn b PUD
ill ——
I
| : Q D
| | Qe
WD
| | ocxn RESET X
I L |z o
| g | RDx
| | I>[> o2
| | o ol m
P Q D |
| D ~ | ODxn porten | <
- —_ Qe 2
IDxn WRx o
RESET
SLEEP C RRx

SYNCHRONIZER

>
Z>
|
]
PUD: PULLUP DISABLE WDx: WRITE DDRx
PUExn: PULLUP ENABLE for pin Pxn RDx: READ DDRx
QOCxn: QUTPUT CONTROL for pin Pxn WRx: WRITE PORTx
ODxn: OUTPUT DATA to pin Pxn RRx: READ PORTx REGISTER
IDxn: INPUT DATA from pin Pxn RPx: READ PORTx PIN
SLEEP: SLEEP CONTROL CLK yo: 1/0 CLOCK

26.6.2 Scanning the RESET Pin
The RESET pin accepts 5V active low logic for standard reset operation, and 12V active high
logic for High Voltage Parallel programming. An observe-only cell as shown in Figure 26-5 is
inserted for the 5V reset signal.

Figure 26-5. Observe-only Cell

To
Next
ShiftDR Cell
From System Pin 4 (I > To System Logic
FF1
D Q

From ClockDR
Previous
Cell

AI“"E',® 326

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

26.7 ATmegai6U4/ATmega32U4 Boundary-scan Order

Table 26-3 shows the Scan order between TDI and TDO when the Boundary-scan chain is
selected as data path. Bit 0 is the LSB; the first bit scanned in, and the first bit scanned out. The
scan order follows the pin-out order as far as possible. Exceptions from the rules are the Scan
chains for the analog circuits, which constitute the most significant bits of the scan chain regard-
less of which physical pin they are connected to. In Figure 26-3, PXn. Data corresponds to FFO,
PXn. Control corresponds to FF1, PXn. Bit 4, 5, 6 and 7 of Port F is not in the scan chain, since
these pins constitute the TAP pins when the JTAG is enabled. The USB pads are not included in
the boundary-scan.

Table 26-3. ATmega16U4/ATmega32U4 Boundary-scan Order

Bit Number | Signal Name Module
88 PE6.Data
87 PE6.Control
86 Reserved
Port E
85 Reserved
84 Reserved
83 Reserved
82 PB0.Data
81 PBO0.Control
80 PB1.Data
79 PB1.Control
78 PB2.Data
77 PB2.Control
76 PB3.Data
75 PB3.Control
Port B
74 PB4.Data
73 PB4.Control
72 PB5.Data
71 PB5.Control
70 PB6.Data
69 PB6.Control
68 PB7.Data
67 PB7.Control
66 Reserved
65 Reserved
PORTE
64 Reserved
63 Reserved
62 RSTT Reset Logic (Observe Only)

AIMEL 327

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 26-3. ATmega16U4/ATmega32U4 Boundary-scan Order (Continued)

Bit Number | Signal Name Module
61 PDO0.Data
60 PDO0.Control
59 PD1.Data
58 PD1.Control
57 PD2.Data
56 PD2.Control
55 PD3.Data
54 PD3.Control
Port D
53 PD4.Data
52 PD4.Control
51 PD5.Data
50 PD5.Control
49 PD6.Data
48 PD6.Control
47 PD7.Data
46 PD7.Control
45 Reserved
44 Reserved
Port E
43 Reserved
42 Reserved
4 Reserved
40 Reserved
39 Reserved
38 Reserved
37 Reserved
36 Reserved
35 Reserved
34 Reserved
Reserved
33 Reserved
32 Reserved
31 Reserved
30 Reserved
29 Reserved
28 Reserved
27 Reserved
26 Reserved

AI“"E',® 328

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 26-3. ATmega16U4/ATmega32U4 Boundary-scan Order (Continued)

Bit Number | Signal Name Module
25 PE2.Data
Port E
24 PE2.Control
23 Reserved
22 Reserved
21 Reserved
20 Reserved
19 Reserved
18 Reserved
17 Reserved
16 Reserved
Reserved
15 Reserved
14 Reserved
13 Reserved
12 Reserved
11 Reserved
10 Reserved
9 Reserved
8 Reserved
7 Reserved
6 Reserved
5 Reserved
4 Reserved
Port F
3 PF1.Data
2 PF1.Control
1 PFO0.Data
0 PF0.Control

26.8 Boundary-scan Description Language Files
Boundary-scan Description Language (BSDL) files describe Boundary-scan capable devices in
a standard format used by automated test-generation software. The order and function of bits in
the Boundary-scan Data Register are included in this description. BSDL files are available for
ATmega16U4/ATmega32U4.

AI“"E',® 329

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

27. Boot Loader Support — Read-While-Write Self-Programming

The Boot Loader Support provides a real Read-While-Write Self-Programming mechanism for
downloading and uploading program code by the MCU itself. This feature allows flexible applica-
tion software updates controlled by the MCU using a Flash-resident Boot Loader program. The
Boot Loader program can use any available data interface and associated protocol to read code
and write (program) that code into the Flash memory, or read the code from the program mem-
ory. The program code within the Boot Loader section has the capability to write into the entire
Flash, including the Boot Loader memory. The Boot Loader can thus even modify itself, and it
can also erase itself from the code if the feature is not needed anymore. The size of the Boot
Loader memory is configurable with fuses and the Boot Loader has two separate sets of Boot
Lock bits which can be set independently. This gives the user a unique flexibility to select differ-
ent levels of protection. General information on SPM and ELPM is provided in See “AVR CPU
Core” on page 9.

27.1 Boot Loader Features
* Read-While-Write Self-Programming
* Flexible Boot Memory Size
* High Security (Separate Boot Lock Bits for a Flexible Protection)
* Separate Fuse to Select Reset Vector
* Optimized Page(" Size
¢ Code Efficient Algorithm
¢ Efficient Read-Modify-Write Support

Note: 1. A page is a section in the Flash consisting of several bytes (see Table 28-11 on page 351)
used during programming. The page organization does not affect normal operation.

27.2 Application and Boot Loader Flash Sections

The Flash memory is organized in two main sections, the Application section and the Boot
Loader section (see Figure 27-2). The size of the different sections is configured by the
BOOTSZ Fuses as shown in Table 27-8 on page 344 and Figure 27-2. These two sections can
have different level of protection since they have different sets of Lock bits.

27.2.1 Application Section
The Application section is the section of the Flash that is used for storing the application code.
The protection level for the Application section can be selected by the application Boot Lock bits
(Boot Lock bits 0), see Table 27-2 on page 334. The Application section can never store any
Boot Loader code since the SPM instruction is disabled when executed from the Application
section.

27.2.2 BLS - Boot Loader Section

While the Application section is used for storing the application code, the The Boot Loader soft-
ware must be located in the BLS since the SPM instruction can initiate a programming when
executing from the BLS only. The SPM instruction can access the entire Flash, including the
BLS itself. The protection level for the Boot Loader section can be selected by the Boot Loader
Lock bits (Boot Lock bits 1), see Table 27-3 on page 334.

27.3 Read-While-Write and No Read-While-Write Flash Sections

Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader soft-
ware update is dependent on which address that is being programmed. In addition to the two

AI“"E',® 330

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

sections that are configurable by the BOOTSZ Fuses as described above, the Flash is also
divided into two fixed sections, the Read-While-Write (RWW) section and the No Read-While-
Write (NRWW) section. The limit between the RWW- and NRWW sections is given in Table 27-
1 and Figure 27-1 on page 332. The main difference between the two sections is:

* When erasing or writing a page located inside the RWW section, the NRWW section can be
read during the operation.

* When erasing or writing a page located inside the NRWW section, the CPU is halted during
the entire operation.

Note that the user software can never read any code that is located inside the RWW section dur-
ing a Boot Loader software operation. The syntax “Read-While-Write section” refers to which
section that is being programmed (erased or written), not which section that actually is being
read during a Boot Loader software update.

27.3.1 RWW - Read-While-Write Section

If a Boot Loader software update is programming a page inside the RWW section, it is possible
to read code from the Flash, but only code that is located in the NRWW section. During an on-
going programming, the software must ensure that the RWW section never is being read. If the
user software is trying to read code that is located inside the RWW section (i.e., by load program
memory, call, or jump instructions or an interrupt) during programming, the software might end
up in an unknown state. To avoid this, the interrupts should either be disabled or moved to the
Boot Loader section. The Boot Loader section is always located in the NRWW section. The
RWW Section Busy bit (RWWSB) in the Store Program Memory Control and Status Register
(SPMCSR) will be read as logical one as long as the RWW section is blocked for reading. After
a programming is completed, the RWWSB must be cleared by software before reading code
located in the RWW section. See “Store Program Memory Control and Status Register —
SPMCSR” on page 336. for details on how to clear RWWSB.

27.3.2 NRWW - No Read-While-Write Section

7766F-AVR-11/10

The code located in the NRWW section can be read when the Boot Loader software is updating
a page in the RWW section. When the Boot Loader code updates the NRWW section, the CPU
is halted during the entire Page Erase or Page Write operation.

Table 27-1. Read-While-Write Features

Which Section does the Z- Which Section Can
pointer Address During the be Read During Isthe CPU | Read-While-Write
Programming? Programming? Halted? Supported?
RWW Section NRWW Section No Yes
NRWW Section None Yes No

AI“"E',® 331

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

Figure 27-1.

Read-While-Wr

ite vs. No Read-While-Write

Z-pointer
Addresses RWW
Section

Read-While-Write
(RWW) Section

No Read-While-Write
(NRWW) Section

Code Located in s
NRWW Section

Can be Read During
the Operation

ATMEL

Z-pointer
Addresses NRWW
Section

CPU is Halted
During the Operation

332

EEEes————————————————————— A TMmega16/32U4

Figure 27-2. Memory Sections

Program Memory

Program Memory

BOOTSZ ="'11' BOOTSZ ='10'
[0x0000 0x0000
= c
o o
o ©
jo3 jo)
» »
%, Application Flash Section % Application Flash Section
= =
° <2
< <=
S S
J: 3
i o
_5 -\ _ _ _ _ _ _ _] End RWW s - - _ _ _ _ _] End RWW
E Start NRWW I Start NRWW
»n »
.% Application Flash Section _g Application Flash Section
= =
%} K End Application
- z
= End Application = T —— Start Boot Loader
c g oot Loader Flash Section
§ Boot Loader Flash Section Start Boot Loader E ' :
c L— Flashend o Flashend
o o
= z
Program Memory Program Memory
BOOTSZ ='01' BOOTSZ ='00'
— 0x0000 0x0000
c f=
k<] o
° kst
Jod Q
»n »
-'05’ Application Flash Section % Application Flash Section
= =
2 Ko}
< <
S S
el o
©]
Q [
o o
c / o : / End RWW, End Application
s~ T T T T 7 Start NRWW s— [~ — T T = = Start NRWW, Start Boot Loader
o Application Flash Section @
b 2
s End Application = ’
%, Start Boot Loader % Boot Loader Flash Section
= Boot Loader Flash Section =
o o
3 3
oo L— Flashend o Flashend
o o
z z
Note: 1. The parameters in the figure above are given in Table 27-8 on page 344.

27.4 Boot Loader Lock Bits

7766F-AVR-11/10

If no Boot Loader capability is needed, the entire Flash is available for application code. The
Boot Loader has two separate sets of Boot Lock bits which can be set independently. This gives
the user a unique flexibility to select different levels of protection.

The user can select:

 To protect the entire Flash from a software update by the MCU.

* To protect only the Boot Loader Flash section from a software update by the MCU.
¢ To protect only the Application Flash section from a software update by the MCU.
* Allow software update in the entire Flash.

See Table 27-2 and Table 27-3 for further details. The Boot Lock bits can be set by software and
in Serial or in Parallel Programming mode. They can only be cleared by a Chip Erase command
only. The general Write Lock (Lock Bit mode 2) does not control the programming of the Flash
memory by SPM instruction. Similarly, the general Read/Write Lock (Lock Bit mode 1) does not
control reading nor writing by (E)LPM/SPM, if it is attempted.

ATMEL

333

EEEes————————————————————— A TMmega16/32U4

Table 27-2. Boot Lock Bit0 Protection Modes (Application Section)"

BLBO Mode | BLB02 | BLB01 | Protection

No restrictions for SPM or (E)LPM accessing the

1 1 1 Application section.

2 1 0 SPM is not allowed to write to the Application section.

SPM is not allowed to write to the Application section, and
(E)LPM executing from the Boot Loader section is not

3 0 0 allowed to read from the Application section. If Interrupt
Vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

(E)LPM executing from the Boot Loader section is not
allowed to read from the Application section. If Interrupt
Vectors are placed in the Boot Loader section, interrupts
are disabled while executing from the Application section.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 27-3. Boot Lock Bit1 Protection Modes (Boot Loader Section)"

BLB1 Mode | BLB12 | BLB11 | Protection

No restrictions for SPM or (E)LPM accessing the Boot

1 1 1 Loader section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

SPM is not allowed to write to the Boot Loader section,
and (E)LPM executing from the Application section is not
3 0 0 allowed to read from the Boot Loader section. If Interrupt
Vectors are placed in the Application section, interrupts

are disabled while executing from the Boot Loader section.

(E)LPM executing from the Application section is not
allowed to read from the Boot Loader section. If Interrupt
Vectors are placed in the Application section, interrupts

are disabled while executing from the Boot Loader section.

Note: 1. “1” means unprogrammed, “0” means programmed

27.5 Entering the Boot Loader Program
The bootloader can be executed with three different conditions:

27.5.1 Regular application conditions.

A jump or call from the application program. This may be initiated by a trigger such as a com-

mand received via USART, SPI or USB.

27.5.2 Boot Reset Fuse

7766F-AVR-11/10

The Boot Reset Fuse (BOOTRST) can be programmed so that the Reset Vector is pointing to
the Boot Flash start address after a reset. In this case, the Boot Loader is started after a reset.
After the application code is loaded, the program can start executing the application code. Note
that the fuses cannot be changed by the MCU itself. This means that once the Boot Reset Fuse

AI“"E',® 334

EEEes————————————————————— A TMmega16/32U4

is programmed, the Reset Vector will always point to the Boot Loader Reset and the fuse can
only be changed through the serial or parallel programming interface.
Table 27-4. Boot Reset Fuse!"
BOOTRST Reset Address

1 Reset Vector = Application Reset (address 0x0000)

0 Reset Vector = Boot Loader Reset (see Table 27-8 on page 344)

Note: 1. “1” means unprogrammed, “0” means programmed

27.5.3 External Hardware conditions
The Hardware Boot Enable Fuse (HWBE) can be programmed (See Table 27-5) so that upon
special hardware conditions under reset, the bootloader execution is forced after reset.

Table 27-5. Hardware Boot Enable Fuse("

HWBE Reset Address
1 ALE/HWB pin can not be used to force Boot Loader execution after reset
0 ALE/HWB pin is used during reset to force bootloader execution after reset

Note: 1. “1” means unprogrammed, “0” means programmed

When the HWBE fuse is enable the ALE/HWB pin is configured as input during reset and sam-
pled during reset rising edge. When ALE/HWB pin is ‘0’ during reset rising edge, the reset vector
will be set as the Boot Loader Reset address and the Boot Loader will be executed (See Figures
27-3).

Figure 27-3. Boot Process Description

RESET —
SN . tHHRH

ALEFAWB — T T T T -

HWBE ?

Ext. Hardware
Conditions ?

BOOTRST ?

[Reset Vector = Application Reset] [Reset Vector =Boot Lhoader Reset]

AI“"E',® 335

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

27.5.4 Store Program Memory Control and Status Register - SPMCSR
The Store Program Memory Control and Status Register contains the control bits needed to con-
trol the Boot Loader operations.

Bit 7 6 5 4 3 2 1 0

| sPmIE | RWWSB | SIGRD | RWWSRE | BLBSET | PGWRT | PGERS | SPMEN | SPMCSR
Read/Write ~ R/W R R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — SPMIE: SPM Interrupt Enable
When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM

ready interrupt will be enabled. The SPM ready Interrupt will be executed as long as the SPMEN
bit in the SPMCSR Register is cleared.

¢ Bit 6 - RWWSB: Read-While-Write Section Busy

When a Self-Programming (Page Erase or Page Write) operation to the RWW section is initi-
ated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the RWW section
cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit is written to one after a
Self-Programming operation is completed. Alternatively the RWWSB bit will automatically be
cleared if a page load operation is initiated.

e Bit 5 — SIGRD: Signature Row Read

If this bit is written to one at the same time as SPMEN, the next LPM instruction within three
clock cycles will read a byte from the signature row into the destination register. see “Reading
the Signature Row from Software” on page 341 for details. An SPM instruction within four cycles
after SIGRD and SPMEN are set will have no effect. This operation is reserved for future use
and should not be used.

* Bit 4 - RWWSRE: Read-While-Write Section Read Enable

When programming (Page Erase or Page Write) to the RWW section, the RWW section is
blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW section, the
user software must wait until the programming is completed (SPMEN will be cleared). Then, if
the RWWSRE bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles re-enables the RWW section. The RWW section cannot be re-enabled while
the Flash is busy with a Page Erase or a Page Write (SPMEN is set). If the RWWSRE bit is writ-
ten while the Flash is being loaded, the Flash load operation will abort and the data loaded will
be lost.

e Bit 3 - BLBSET: Boot Lock Bit Set

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles sets Boot Lock bits, according to the data in RO. The data in R1 and the address in the Z-
pointer are ignored. The BLBSET bit will automatically be cleared upon completion of the Lock
bit set, or if no SPM instruction is executed within four clock cycles.

An (E)LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCSR
Register, will read either the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the
destination register. See “Reading the Fuse and Lock Bits from Software” on page 340 for
details.

AI“"E',® 336

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

* Bit 2 - PGWRT: Page Write

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Write, with the data stored in the temporary buffer. The page address is
taken from the high part of the Z-pointer. The data in R1 and RO are ignored. The PGWRT bit
will auto-clear upon completion of a Page Write, or if no SPM instruction is executed within four
clock cycles. The CPU is halted during the entire Page Write operation if the NRWW section is
addressed.

e Bit 1 — PGERS: Page Erase

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Erase. The page address is taken from the high part of the Z-pointer. The
data in R1 and RO are ignored. The PGERS bit will auto-clear upon completion of a Page Erase,
or if no SPM instruction is executed within four clock cycles. The CPU is halted during the entire
Page Write operation if the NRWW section is addressed.

e Bit 0 — SPMEN: Store Program Memory Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one together with
either RWWSRE, BLBSET, PGWRT or PGERS, the following SPM instruction will have a spe-
cial meaning, see description above. If only SPMEN is written, the following SPM instruction will
store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer. The LSB of
the Z-pointer is ignored. The SPMEN bit will auto-clear upon completion of an SPM instruction,
or if no SPM instruction is executed within four clock cycles. During Page Erase and Page Write,
the SPMEN bit remains high until the operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower
five bits will have no effect.

Note: Only one SPM instruction should be active at any time.

27.6 Addressing the Flash During Self-Programming
The Z-pointer is used to address the SPM commands. The Z pointer consists of the Z-registers
ZL and ZH in the register file, and RAMPZ in the 1/0 space. The number of bits actually used is
implementation dependent. Note that the RAMPZ register is only implemented when the pro-
gram space is larger than 64K bytes.

Bit 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8
RAMPZ RAMPZ7 RAMPZ6 RAMPZ5 RAMPZ4 RAMPZ3 RAMPZ2 RAMPZ1 RAMPZ0
ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 z8
ZL (R30) z7 Z6 z5 Z4 Z3 z2 Z1 Z0

7 6 5 4 3 2 1 0

Since the Flash is organized in pages (see Table 28-11 on page 351), the Program Counter can
be treated as having two different sections. One section, consisting of the least significant bits, is
addressing the words within a page, while the most significant bits are addressing the pages.
This is shown in Figure 27-4. Note that the Page Erase and Page Write operations are
addressed independently. Therefore it is of major importance that the Boot Loader software
addresses the same page in both the Page Erase and Page Write operation. Once a program-
ming operation is initiated, the address is latched and the Z-pointer can be used for other
operations.

The (E)LPM instruction use the Z-pointer to store the address. Since this instruction addresses
the Flash byte-by-byte, also bit Z0 of the Z-pointer is used.

AI“"E',® 337

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 27-4. Addressing the Flash During SPM(")

BIT 23 ZPCMSB ZPAGEMSB 1 0
| | | [0 | z-PoinTER

‘ PCMSB ‘PAGEMSB ‘

PROGRAM COUNTER | PCPAGE | PCWORD |
PAGE ADDRESS WORD ADDRESS
WITHIN THE FLASH WITHIN A PAGE
PROGRAM MEMORY PAGE PCWORD[PAGEMSB:0]:
PAGE INSTRUCTION WORD 00
- - T - - 7\
\ 01
\
\ 02
\
< \ Loy

|
|
|
|
|
\
|
|
|
|
|

PAGEEND

— -

Note: 1. The different variables used in Figure 27-4 are listed in Table 27-10 on page 345.

27.7 Self-Programming the Flash

The program memory is updated in a page by page fashion. Before programming a page with
the data stored in the temporary page buffer, the page must be erased. The temporary page buf-
fer is filled one word at a time using SPM and the buffer can be filled either before the Page
Erase command or between a Page Erase and a Page Write operation:

Alternative 1, fill the buffer before a Page Erase

¢ Fill temporary page buffer
¢ Perform a Page Erase
* Perform a Page Write
Alternative 2, fill the buffer after Page Erase

¢ Perform a Page Erase
e Fill temporary page buffer
* Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for example
in the temporary page buffer) before the erase, and then be rewritten. When using alternative 1,
the Boot Loader provides an effective Read-Modify-Write feature which allows the user software
to first read the page, do the necessary changes, and then write back the modified data. If alter-
native 2 is used, it is not possible to read the old data while loading since the page is already
erased. The temporary page buffer can be accessed in a random sequence. It is essential that
the page address used in both the Page Erase and Page Write operation is addressing the same

AI“"E',® 338

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

page. See “Simple Assembly Code Example for a Boot Loader” on page 342 for an assembly
code example.

27.71 Performing Page Erase by SPM
To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and RO is ignored.
The page address must be written to PCPAGE in the Z-register. Other bits in the Z-pointer will
be ignored during this operation.

* Page Erase to the RWW section: The NRWW section can be read during the Page Erase.
* Page Erase to the NRWW section: The CPU is halted during the operation.

27.7.2 Filling the Temporary Buffer (Page Loading)
To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The
content of PCWORD in the Z-register is used to address the data in the temporary buffer. The
temporary buffer will auto-erase after a Page Write operation or by writing the RWWSRE bit in
SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than
one time to each address without erasing the temporary buffer.

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be
lost.

27.7.3 Performing a Page Write
To execute Page Write, set up the address in the Z-pointer, write “X0000101” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and RO is ignored.
The page address must be written to PCPAGE. Other bits in the Z-pointer must be written to
zero during this operation.

* Page Write to the RWW section: The NRWW section can be read during the Page Write.
* Page Write to the NRWW section: The CPU is halted during the operation.

27.7.4 Using the SPM Interrupt
If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the
SPMEN bit in SPMCSR is cleared. This means that the interrupt can be used instead of polling
the SPMCSR Register in software. When using the SPM interrupt, the Interrupt Vectors should
be moved to the BLS section to avoid that an interrupt is accessing the RWW section when it is
blocked for reading. How to move the interrupts is described in “Interrupts” on page 61.

27.75 Consideration While Updating BLS
Special care must be taken if the user allows the Boot Loader section to be updated by leaving
Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the
entire Boot Loader, and further software updates might be impossible. If it is not necessary to
change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to
protect the Boot Loader software from any internal software changes.

27.7.6 Prevent Reading the RWW Section During Self-Programming
During Self-Programming (either Page Erase or Page Write), the RWW section is always
blocked for reading. The user software itself must prevent that this section is addressed during
the self programming operation. The RWWSB in the SPMCSR will be set as long as the RWW
section is busy. During Self-Programming the Interrupt Vector table should be moved to the BLS

AI“"E',® 339

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

as described in “Interrupts” on page 61, or the interrupts must be disabled. Before addressing
the RWW section after the programming is completed, the user software must clear the
RWWSB by writing the RWWSRE. See “Simple Assembly Code Example for a Boot Loader” on
page 342 for an example.

27.7.7 Setting the Boot Loader Lock Bits by SPM
To set the Boot Loader Lock bits, write the desired data to RO, write “X0001001” to SPMCSR
and execute SPM within four clock cycles after writing SPMCSR. The only accessible Lock bits
are the Boot Lock bits that may prevent the Application and Boot Loader section from any soft-
ware update by the MCU.

Bit 7 6 5 4 3 2 1 0
RO | 1 | 1 | BLB12 | BLB11 | BLB02 | BLBO1 | 1 | 1 |

See Table 27-2 and Table 27-3 for how the different settings of the Boot Loader bits affect the
Flash access.

If bits 5..2 in RO are cleared (zero), the corresponding Boot Lock bit will be programmed if an
SPM instruction is executed within four cycles after BLBSET and SPMEN are set in SPMCSR.
The Z-pointer is don’t care during this operation, but for future compatibility it is recommended to
load the Z-pointer with 0x0001 (same as used for reading the 10, bits). For future compatibility it
is also recommended to set bits 7, 6, 1, and 0 in RO to “1” when writing the Lock bits. When pro-
gramming the Lock bits the entire Flash can be read during the operation.

27.7.8 EEPROM Write Prevents Writing to SPMCSR
Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
is recommended that the user checks the status bit (EEPE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCSR Register.

27.7.9 Reading the Fuse and Lock Bits from Software
It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCSR. When an (E)LPM
instruction is executed within three CPU cycles after the BLBSET and SPMEN bits are set in
SPMCSR, the value of the Lock bits will be loaded in the destination register. The BLBSET and
SPMEN bits will auto-clear upon completion of reading the Lock bits or if no (E)LPM instruction
is executed within three CPU cycles or no SPM instruction is executed within four CPU cycles.
When BLBSET and SPMEN are cleared, (E)LPM will work as described in the Instruction set

Manual.
Bit 7 6 5 4 3 2 1 0
Rd | - | - | BLB12 | BLB11 | BLB02 | BLBO1 | LB2 | LB |

The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET
and SPMEN bits in SPMCSR. When an (E)LPM instruction is executed within three cycles after
the BLBSET and SPMEN bits are set in the SPMCSR, the value of the Fuse Low byte (FLB) will
be loaded in the destination register as shown below. Refer to Table 28-5 on page 348 for a
detailed description and mapping of the Fuse Low byte.

Bit 7 6 5 4 3 2 1 0
Rd |FLB7 |FLBB |FLBS |FLB4 |FLB3 |FLBZ FLB1 FLBO |

AI“"E',® 340

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an (E)LPM
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in the
SPMCSR, the value of the Fuse High byte (FHB) will be loaded in the destination register as
shown below. Refer to Table 28-4 on page 348 for detailed description and mapping of the Fuse

High byte.
Bit 7 6 5 4 3 2 1 0
Rd | FHB7 | FHB6 | FHB5 | FHB4 | FHB3 | FHB2 | FHB1 | FHBO |

When reading the Extended Fuse byte, load 0x0002 in the Z-pointer. When an (E)LPM instruc-
tion is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR,
the value of the Extended Fuse byte (EFB) will be loaded in the destination register as shown
below. Refer to Table 28-3 on page 347 for detailed description and mapping of the Extended

Fuse byte.
Bit 7 6 5 4 3 2 1 0
Rd | - | - | - | - | - | EFB2 | EFB1 | EFBO |

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.

27.7.10 Reading the Signature Row from Software

To read the Signature Row from software, load the Z-pointer with the signature byte address
given in Table 27-6 on page 341 and set the SIGRD and SPMEN bits in SPMCSR. When an
LPM instruction is executed within three CPU cycles after the SIGRD and SPMEN bits are set in
SPMCSR, the signature byte value will be loaded in the destination register. The SIGRD and
SPMEN bits will auto-clear upon completion of reading the Signature Row Lock bits or if no LPM
instruction is executed within three CPU cycles. When SIGRD and SPMEN are cleared, LPM will
work as described in the Instruction set Manual.

Table 27-6. Signature Row Addressing

Signature Byte Z-Pointer Address
Device Signature Byte 1 0x0000
Device Signature Byte 2 0x0002
Device Signature Byte 3 0x0004
RC Oscillator Calibration Byte 0x0001

Note: All other addresses are reserved for future use.

27.7.11 Preventing Flash Corruption
During periods of low V¢, the Flash program can be corrupted because the supply voltage is
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied.

A Flash program corruption can be caused by two situations when the voltage is too low. First, a
regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,
the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions
is too low.

Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):

AImEl@ 341

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

If there is no need for a Boot Loader update in the system, program the Boot Loader
Lock bits to prevent any Boot Loader software updates.

Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD) if the operating
voltage matches the detection level. If not, an external low V reset protection circuit
can be used. If a reset occurs while a write operation is in progress, the write operation
will be completed provided that the power supply voltage is sufficient.

Keep the AVR core in Power-down sleep mode during periods of low V. This will pre-
vent the CPU from attempting to decode and execute instructions, effectively protecting
the SPMCSR Register and thus the Flash from unintentional writes.

27.7.12 Programming Time for Flash when Using SPM

The calibrated RC Oscillator is used to time Flash accesses. Table 27-7 shows the typical pro-

gramming time for Flash accesses from the CPU.

Table 27-7. SPM Programming Time

Symbol Min Programming Time

Max Programming Time

Flash write (Page Erase, Page Write,

and write Lock bits by SPM) 3.7ms

4.5ms

27.7.13 Simple Assembly Code Example for a Boot Loader

;-the routine writes one page of data from RAM to Flash

the first data location in RAM is pointed to by the Y pointer

; the first data location in Flash is pointed to by the Z-pointer
;—error handling is not included

;-the routine must be placed inside the Boot space

; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during Self-Programming (Page Erase and Page Write).
;-registers used: r0, rl, templ (rl6), temp2 (rl7), looplo (r24),

; loophi (r25), spmcrval (r20)

storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size

;-It is assumed that either the interrupt table is moved to the Boot

7

7

; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words
.org SMALLBOOTSTART
Write_page:

; Page Erase

1di spmcrval, (1<<PGERS) | (1<<SPMEN)

call Do_spm
; re-enable the RWW section
1di spmcrval, (1<<RWWSRE) | (1l<<SPMEN)

call Do_spm

; transfer data from RAM to Flash page buffer

1di looplo, low(PAGESIZEB) ;init loop variable
1di loophi, high (PAGESIZEB) ;not required for PAGESIZEB<=256
Wrloop:

1d r0, Y+

1d rl, Y+

1di spmcrval, (1<<SPMEN)
call Do_spm

adiw ZH:2L, 2

sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256

ATMEL

7766F-AVR-11/10

342

EEEes————————————————————— A TMmega16/32U4

brne Wrloop

; execute Page Write

subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
1di spmcrval, (1<<PGWRT) | (l<<SPMEN)

call Do_spm
; re-enable the RWW section
1di spmcrval, (1<<RWWSRE) | (1l<<SPMEN)

call Do_spm

; read back and check, optional

1di looplo, low(PAGESIZEB) ;init loop variable
1di 1loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)
Rdloop:

elpm r0, Z+
1d rl, Y+
cpse r0, rl
jmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

; return to RWW section
; verify that RWW section is safe to read

Return:
in templ, SPMCSR
sbrs templ, RWWSB ; If RWWSB is set, the RWW section is not ready yet
ret
; re-enable the RWW section
1di spmcrval, (1<<RWWSRE) | (l<<SPMEN)

call Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete
Wait_spm:
in templ, SPMCSR
sbrc templ, SPMEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present
Wait_ee:
sbic EECR, EEPE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret

AI“"E',® 343

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

27.7.14 ATmegal6U4/ATmega32U4 Boot Loader Parameters
In Table 27-8 through Table 27-10, the parameters used in the description of the Self-Program-
ming are given.

Table 27-8. Boot Size Configuration (Word Addresses)(")
c c 3 —
o NN 8 c2 o2 c e S
ol »w n o0 T o o .3
S| k| = - = 0] = T Q0
2199 9 3@ a9 3 & I8?
(a] (@] O [} o = c - E— - ‘6 +— O
m| o m o -] o ® T 0| 9ng3g
© o« oS cQ o0 OO0+
o < (i w<n| ox®3
3 1 | 1 | 256 words 4 0x0000 - Ox3EFF 0x3F00 - 0x3FFF Ox3EFF 0x3F00
% 1 512 words 8 0x0000 - Ox3DFF 0x3E00 - Ox3FFF 0x3DFF 0x3EO00
()]
g 0 | 1 | 1024 words | 16 | 0x0000 - Ox3BFF 0x3CO00 - Ox3FFF | Ox3BFF 0x3C00
|_
< |0 |0 |2048words | 32 | 0x0000 - Ox37FF 0x3800 - Ox3FFF 0x37FF 0x3800
3 1 | 1 | 256 words 4 0x0000 - Ox1EFF 0x1F00 - Ox1FFF Ox1EFF 0x1F00
% 1|0 | 512 words 8 0x0000 - Ox1DFF 0x1EQ0 - OX1FFF Ox1DFF 0x1E00
(@]
g 0 | 1 | 1024 words 16 | 0x0000 - Ox1BFF 0x1CO00 - Ox1FFF Ox1BFF 0x1C00
'_
< |0 |0 |2048words | 32 | 0x0000 - Ox17FF 0x1800 - Ox1FFF Ox17FF 0x1800
Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 27-2
Table 27-9. Read-While-Write Limit (Word Addresses)")
Device Section Pages Address
Read-While-Write section (RWW) 224 0x0000 - Ox37FF
ATmega32U4
No Read-While-Write section (NRWW) 32 0x3800 - Ox3FFF
Read-While-Write section (RWW) 97 0x0000 - Ox17FF
ATmega16U4
No Read-While-Write section (NRWW) 32 0x1800 - Ox1FFF
Note: 1. For details about these two section, see “NRWW — No Read-While-Write Section” on page

331 and “RWW — Read-While-Write Section” on page 331.

7766F-AVR-11/10

ATMEL

344

EEEes————————————————————— A TMmega16/32U4

Table 27-10. Explanation of different variables used in Figure 27-4 and the mapping to the Z-

pointer
Corresponding
Variable Z-value!” Description
Most significant bit in the Program Counter. (The
PCMSB 13 Program Counter is 14 bits PC[13:0])
Most significant bit which is used to address the
PAGEMSB 6 words within one page (64 words in a page requires
six bits PC [5:0]).
Bit in Z-pointer that is mapped to PCMSB. Because
ZPCMSB Z14 20 is not used, the ZPCMSB equals PCMSB + 1.
Bit in Z-pointer that is mapped to PCMSB. Because
ZPAGEMSB Z7 Z0 is not used, the ZPAGEMSB equals PAGEMSB +
1.
PCPAGE PC[13:6] 714:77 Program Counter page agdress: Page select, for
Page Erase and Page Write
Program Counter word address: Word select, for
PCWORD PC[5:0] 26:21 filling temporary buffer (must be zero during Page
Write operation)

Note: 1. Z0: should be zero for all SPM commands, byte select for the (E)LPM instruction.

Note: See “Addressing the Flash During Self-Programming” on page 337 for details about the use of Z-
pointer during Self-Programming.

7766F-AVR-11/10

ATMEL

345

EEEes————————————————————— A TMmega16/32U4

28. Memory Programming

28.1 Program And Data Memory Lock Bits
The ATmega16U4/ATmega32U4 provides six Lock bits which can be left unprogrammed (“1”) or

can be programmed (“0”) to obtain the additional features listed in Table 28-2. The Lock bits can
only be erased to “1” with the Chip Erase command.

Table 28-1. Lock Bit Byte(")

Lock Bit Byte Bit No | Description Default Value
ATmega16U4/32U4 | ATmega16U4RC/32U4RC

7 - 1

6 - 1
BLB12 5 Boot Lock bit 1
BLB11 4 Boot Lock bit | 0 1
BLB02 3 Boot Lock bit 1
BLBO1 2 Boot Lock bit 1
LB2 1 Lock bit 0 1
LB1 0 Lock bit 0 1

Note: 1. “1”. unprogrammed, “0”: programmed

Table 28-2. Lock Bit Protection Modes"®

Memory Lock Bits Protection Type
LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

Further programming of the Flash and EEPROM is disabled in
2 1 0 Parallel and Serial Programming mode. The Fuse bits are locked in
both Serial and Parallel Programming mode."

Further programming and verification of the Flash and EEPROM is
disabled in Parallel and Serial Programming mode. The Boot Lock
bits and Fuse bits are locked in both Serial and Parallel
Programming mode."

BLBO Mode | BLB02 | BLBO1

No restrictions for SPM or (E)LPM accessing the Application

1 1 1 .
section.

2 1 0 SPM is not allowed to write to the Application section.

SPM is not allowed to write to the Application section, and (E)LPM
executing from the Boot Loader section is not allowed to read from
3 0 0 the Application section. If Interrupt Vectors are placed in the Boot
Loader section, interrupts are disabled while executing from the
Application section.

(E)LPM executing from the Boot Loader section is not allowed to
read from the Application section. If Interrupt Vectors are placed in
the Boot Loader section, interrupts are disabled while executing
from the Application section.

AI“"E',® 346

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 28-2. Lock Bit Protection Modes"® (Continued)

Memory Lock Bits

Protection Type

BLB1 Mode | BLB12

BLB11

1 1

1

No restrictions for SPM or (E)LPM accessing the Boot Loader
section.

2 1

0

SPM is not allowed to write to the Boot Loader section.

SPM is not allowed to write to the Boot Loader section, and (E)LPM
executing from the Application section is not allowed to read from
the Boot Loader section. If Interrupt Vectors are placed in the
Application section, interrupts are disabled while executing from the
Boot Loader section.

(E)LPM executing from the Application section is not allowed to
read from the Boot Loader section. If Interrupt Vectors are placed in
the Application section, interrupts are disabled while executing from
the Boot Loader section.

Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.

2. “1” means unprogrammed, “0” means programmed

28.2 Fuse Bits

The ATmega16U4/ATmega32U4 has three bytes. Table 28-3 - Table 28-5 describe briefly the
functionality of all the fuses and how they are mapped into the Fuse bytes. Note that the fuses
are read as logical zero, “0”, if they are programmed.

Table 28-3. Extended Fuse Byte®

Fuse Low Byte | Bit No

Description Default Value

ATmega16/32U4 | ATmegai6/32U4RC

- 7 - 1
- 6 - 1

- 5 - 1

- 4 - 1

HWBE 3 Hardware Boot Enable 0 (programmed) 1 (unprogrammed)
BODLEVEL2() | 2 Brown-out Detector trigger level 0 (programmed)
BODLEVEL1™" | 1 Brown-out Detector trigger level 1 (unprogrammed)
BODLEVELO®" | 0 Brown-out Detector trigger level 1 (unprogrammed)

Notes: 1. See Table 8-2 on page 52 for BODLEVEL Fuse decoding.
2. “1” means unprogrammed, “0” means programmed

7766F-AVR-11/10

AIMEL 347

EEEes————————————————————— A TMmega16/32U4

Table 28-4. Fuse High Byte

Fuse High Byte Bit No Description Default Value
OCDEN® 7 Enable OCD 1 (unprogrammed, OCD
disabled)
JTAGEN 6 Enable JTAG 0 (programmed, JTAG
enabled)
) Enable Serial Program and Data | O (programmed, SPI prog.
SPIEN 5 :
Downloading enabled)
WDTON®) 4 Watchdog Timer always on 1 (unprogrammed)
EESAVE 3 EEPROM memory is preserved 1 (unprogrammed, EEPROM
through the Chip Erase preserved)
BOOTSZ1 5 Select Boot Size (see Table 28-7 0 (programmed)®
for details)
BOOTSZ0 1 Select Bpot Size (see Table 28-7 0 (programmed)?
for details)
Select Bootloader Address as 1 (unprogrammed, Reset
BOOTRST 0 Reset Vector vector @0x0000)

Note: 1. The SPIEN Fuse is not accessible in serial programming mode.

2. The default value of BOOTSZ1..0 results in maximum Boot Size. See Table 27-8 on page 344
for details.

3. See “Watchdog Timer” on page 55 for details.

4. Never ship a product with the OCDEN Fuse programmed regardless of the setting of Lock bits
and JTAGEN Fuse. A programmed OCDEN Fuse enables some parts of the clock system to
be running in all sleep modes. This may increase the power consumption.

Table 28-5. Fuse Low Byte

Fuse Low Byte Bit Nr | Description Default Value
ATmega16U4/32U4 ATmega16U4RC/32U4RC

CKDIv8® 7 Divide clock by 8 0 (programmed)

CKOUT® 6 Clock output 1 (unprogrammed)

SUTH 5 Select start-up time 0 (programmed)

SUTO 4 Select start-up time 1 (unprogrammed)

CKSEL3 3 Select Clock source | 1 (unprogrammed)™ | 0 (programmed)

CKSEL2 2 Select Clock source | 1 (unprogrammed)!” | 0 (programmed)!"

CKSELA1 1 Select Clock source | 1 (unprogrammed)” | 1 (unprogrammed)!"

CKSELO 0 Select Clock source | 0 (programmed)(") 0 (programmed)(")

Note: 1. The default setting of CKSELS..0 results in Low Power Crystal Oscillator for ATmegai16U4 and
ATmega32U4, and Internal RC oscillator for ATmega16U4RC and ATmega32U4RC. See
Table 6-1 on page 28 for details.

2. The CKOUT Fuse allow the system clock to be output on PORTC7. See “Clock Output Buffer”
on page 37 for details.

3. See “System Clock Prescaler” on page 37 for details.

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if
Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the Lock bits.

AI“"E',® 348

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

28.2.1 Latching of Fuses

The fuse values are latched when the device enters programming mode and changes of the
fuse values will have no effect until the part leaves Programming mode. This does not apply to
the EESAVE Fuse which will take effect once it is programmed. The fuses are also latched on
Power-up in Normal mode.

28.3 Signature Bytes

All ATMEL microcontrollers have a three-byte signature code which identifies the device. This
code can be read in both serial and parallel mode, also when the device is locked. The three
bytes reside in a separate address space.

ATmega16U4 Signature Bytes:

1. 0x000: Ox1E (indicates manufactured by ATMEL).
2. 0x001: 0x94 (indicates 16KB Flash memory).
3. 0x002: 0x88 (indicates ATmega16U4 device).

ATmega32U4 Signature Bytes:

1. 0x000: Ox1E (indicates manufactured by ATMEL).
2. 0x001: 0x95 (indicates 32KB Flash memory).
3. 0x002: 0x87 (indicates ATmega32U4 device).

28.4 Calibration Byte

The ATmega16U4/ATmega32U4 has a byte calibration value for the internal RC Oscillator. This
byte resides in the high byte of address 0x000 in the signature address space. During reset, this
byte is automatically written into the OSCCAL Register to ensure correct frequency of the cali-
brated RC Oscillator.

28.5 Parallel Programming Parameters, Pin Mapping, and Commands
This section describes how to parallel program and verify Flash Program memory, EEPROM
Data memory, Memory Lock bits, and Fuse bits in the ATmega16U4/ATmega32U4. Pulses are
assumed to be at least 250 ns unless otherwise noted.

28.5.1 Signal Names
In this section, some pins of the ATmega16U4/ATmega32U4 are referenced by signal names
describing their functionality during parallel programming, see Figure 28-1 and Table 28-6. Pins
not described in the following table are referenced by pin names.

The XA1/XAO0 pins determine the action executed when the XTAL1 pin is given a positive pulse.
The bit coding is shown in Table 28-9.

When pulsing WR or OE, the command loaded determines the action executed. The different
commands are shown in Table 28-10.

AI“"E',® 349

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 28-1. Parallel Programming"
+5V

RDY/BSY «<— PD1
vCcC

OE ——»{ PD2 45V

WR — > PD3 AVCC

BS1 ——>»| PD4

XAO PD5 PB7 - PBO j[«—>» DATA
XA1 ———>»{ PD6

PAGEL ——»{ PD7

+12V ——] RESET
BS2 ——»| PE6

—>» XTAL1

I -

7766F-AVR-11/10

Note: 1. Unused Pins should be left floating.
Table 28-6. Pin Name Mapping
Signal Name in
Programming Mode | Pin Name | I/O | Function
RDY/BSY PO O | oty tornew command,
OE PD2 | | Output Enable (Active low).
WR PD3 | | Write Pulse (Active low).
BS1 PD4 | Byte Select 1.
XAO0 PD5 I XTAL Action Bit 0
XA1 PD6 I XTAL Action Bit 1
PAGEL PD7 | Program Memory and EEPROM data Page Load.
BS2 PE6 | Byte Select 2.
DATA PB7-0 I/O | Bi-directional Data bus (Output when OE is low).
Table 28-7. BS2 and BS1 Encoding
Flash / Flash Data
EEPROM Loading / Fuse Reading Fuse
BS2 BS1 Address Reading Programming and Lock Bits
0 0 Low Byte Low Byte Low Byte Fuse Low Byte
0 1 High Byte High Byte High Byte Lock bits
1 0 E;:gnded High Reserved Extended Byte E;:aned Fuse
1 1 Reserved Reserved Reserved Fuse High Byte

ATMEL

350

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

Table 28-8. Pin Values Used to Enter Programming Mode
Pin Symbol Value
PAGEL Prog_enable[3] 0
XA1 Prog_enable[2] 0
XAO0 Prog_enable[1] 0
BSH1 Prog_enable[0] 0
Table 28-9. XA1 and XAO Enoding
XA1 XA0 Action when XTAL1 is Pulsed
0 0 Load F!ash or EEPROM Address (High or low address byte
determined by BS2 and BS1).
0 1 Load Data (High or Low data byte for Flash determined by BS1).
1 0 Load Command
1 1 No Action, Idle

Table 28-10. Command Byte Bit Encoding

Command Byte

Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse bits

0010 0000 Write Lock bits

0001 0000 Write Flash

0001 0001 Write EEPROM

0000 1000 Read Signature Bytes and Calibration byte
0000 0100 Read Fuse and Lock bits

0000 0010 Read Flash

0000 0011 Read EEPROM

Table 28-11. No. of Words in a Page and No. of Pages in the Flash

No. of
Flash Size Page Size | PCWORD Pages PCPAGE PCMSB
16K words (32K bytes) 128 words PCI[6:0] 128 PC[13:7] 13

ATMEL

351

EEEes————————————————————— A TMmega16/32U4

Table 28-12. No. of Words in a Page and No. of Pages in the EEPROM

No. of
EEPROM Size Page Size | PCWORD Pages PCPAGE EEAMSB
1K bytes 8 bytes EEA[2:0] 128 EEA[9:3] 9

28.6 Parallel Programming

28.6.1 Enter Programming Mode
The following algorithm puts the device in parallel programming mode:

1. Apply 4.5 - 5.5V between V; and GND.
2. Set RESET to “0” and toggle XTAL1 at least six times.

3. Set the Prog_enable pins listed in Table 28-8 on page 351 to “0000” and wait at least
100 ns.

4. Apply 11.5 - 12.5V to RESET. Any activity on Prog_enable pins within 100 ns after
+12V has been applied to RESET, will cause the device to fail entering programming
mode.

5. Wait at least 50 ps before sending a new command.

28.6.2 Considerations for Efficient Programming

The loaded command and address are retained in the device during programming. For efficient
programming, the following should be considered.

* The command needs only be loaded once when writing or reading multiple memory
locations.

* Skip writing the data value OxFF, that is the contents of the entire EEPROM (unless the
EESAVE Fuse is programmed) and Flash after a Chip Erase.

» Address high byte needs only be loaded before programming or reading a new 256 word
window in Flash or 256 byte EEPROM. This consideration also applies to Signature bytes
reading.

28.6.3 Chip Erase

The Chip Erase will erase the Flash and EEPROM(" memories plus Lock bits. The Lock bits are
not reset until the program memory has been completely erased. The Fuse bits are not
changed. A Chip Erase must be performed before the Flash and/or EEPROM are
reprogrammed.

Note: 1. The EEPRPOM memory is preserved during Chip Erase if the EESAVE Fuse is programmed.
Load Command “Chip Erase”

Set XA1, XAO to “10”. This enables command loading.

Set BS1 to “0”.

Set DATA to “1000 0000”. This is the command for Chip Erase.

Give XTAL1 a positive pulse. This loads the command.

Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.
Wait until RDY/BSY goes high before loading a new command.

ook wh =

AImEl@ 352

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

28.6.4 Programming the Flash

The Flash is organized in pages, see Table 28-11 on page 351. When programming the Flash,
the program data is latched into a page buffer. This allows one page of program data to be pro-
grammed simultaneously. The following procedure describes how to program the entire Flash
memory:

A. Load Command “Write Flash”

1. Set XA1, XAO to “10”. This enables command loading.
2. SetBS1to “0".
3. Set DATA to “0001 0000”. This is the command for Write Flash.
4. Give XTAL1 a positive pulse. This loads the command.
B. Load Address Low byte (Address bits 7..0)

1. Set XA1, XAO0 to “00”. This enables address loading.

2. SetBS2, BS1 to “00”. This selects the address low byte.

3. Set DATA = Address low byte (0x00 - OxFF).

4. Give XTAL1 a positive pulse. This loads the address low byte.
C. Load Data Low Byte

1. Set XA1, XAO to “01”. This enables data loading.

2. Set DATA = Data low byte (0x00 - OxFF).

3. Give XTAL1 a positive pulse. This loads the data byte.
D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XAO to “01”. This enables data loading.

3. Set DATA = Data high byte (0x00 - OxFF).

4. Give XTAL1 a positive pulse. This loads the data byte.
E. Latch Data

1. SetBS1 to “1”. This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 28-3 for signal
waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.
While the lower bits in the address are mapped to words within the page, the higher bits address
the pages within the FLASH. This is illustrated in Figure 28-2 on page 354. Note that if less than

eight bits are required to address words in the page (pagesize < 256), the most significant bit(s)
in the address low byte are used to address the page when performing a Page Write.

G. Load Address High byte (Address bits15..8)

1. Set XA1, XAO0 to “00”. This enables address loading.

2. SetBS2, BS1 to “01”. This selects the address high byte.

3. Set DATA = Address high byte (0x00 - OxFF).

4. Give XTAL1 a positive pulse. This loads the address high byte.
H. Load Address Extended High byte (Address bits 23..16)

1. Set XA1, XAO0 to “00”. This enables address loading.
2. SetBS2, BS1 to “10”. This selects the address extended high byte.

AI“"E',® 353

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

3. Set DATA = Address extended high byte (0x00 - OxFF).

4. Give XTAL1 a positive pulse. This loads the address high byte.
I. Program Page

1. SetBS2, BS1 to “00”

2. Give WR a negative pulse. This starts programming of the entire page of data.
RDY/BSY goes low.

3. Wait until RDY/BSY goes high (See Figure 28-3 for signal waveforms).

J. Repeat B through | until the entire Flash is programmed or until all data has been
programmed.

K. End Page Programming

1. 1. Set XA1, XAO to “10”. This enables command loading.
2. Set DATA to “0000 0000”. This is the command for No Operation.

3. Give XTALT1 a positive pulse. This loads the command, and the internal write signals
are reset.

Figure 28-2. Addressing the Flash Which is Organized in Pages'"

PCMSB PAGEMSB
PROGRAM
COUNTER PCPAGE | PCWORD |
PAGE ADDRESS WORD ADDRESS
WITHIN THE FLASH WITHIN A PAGE
PROGRAM MEMORY PAGE PCWORD[PAGEMSB:0]:
PAGE N I INSTRUCTION WORD 00
\
. o1
\
\ 02
\ 1
< \ > !
\ 1
\ 1
1
\ 1
\ 1
\ :
\ 1
\ :
\ 1
\ '
. PAGEEND

Note: 1. PCPAGE and PCWORD are listed in Table 28-11 on page 351.

AImEl@ 354

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 28-3. Programming the Flash Waveforms("

F

/—H
A B Cc D E B Cc D E G H I
DATA :X 0x10_ X(ADDR. Low X DATALOW X DATA HIGH ADDR. LOWY DATALOW X DATAHIGH X xx X 'ADDR. HIGHYADDR. EXTHX XX
XA1 _/_\
XAO —/ _/ \
BS1 /—\—/—\
BS2 / \
o /NN /SN T\
R \/
RDY/BSY \—/_
RESET +12V
OE
PAGEL /\ /\

Note: 1. “XX”is don’t care. The letters refer to the programming description above.

28.6.5 Programming the EEPROM
The EEPROM is organized in pages, see Table 28-12 on page 352. When programming the
EEPROM, the program data is latched into a page buffer. This allows one page of data to be
programmed simultaneously. The programming algorithm for the EEPROM data memory is as
follows (refer to “Programming the Flash” on page 353 for details on Command, Address and
Data loading):

A: Load Command “0001 0001”.

G: Load Address High Byte (0x00 - OxFF).

B: Load Address Low Byte (0x00 - OxFF).

C: Load Data (0x00 - OxFF).

E: Latch data (give PAGEL a positive pulse).

K: Repeat 3 through 5 until the entire buffer is filled.

L: Program EEPROM page

1. SetBS2, BS1 to “00”.

2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY
goes low.

3. Wait until to RDY/BSY goes high before programming the next page (See Figure 28-4
for signal waveforms).

ok wnp =

AImEl@ 355

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 28-4. Programming the EEPROM Waveforms

K

/_/H
A G B Cc E B [E L
DATA :X ox11__ XADDR. HIGH X ADDR.LowX DATA X" xx__ X ADDR.LowX DATA X XX
XA1 _/—\
x40 / —/ \
BS1 / \
o /N / ___/ _/\
A _/
RDY/BSY \—/—
RESET +12v
OE
PAGEL /\ /\

BS2

28.6.6 Reading the Flash
The algorithm for reading the Flash memory is as follows (refer to “Programming the Flash” on
page 353 for details on Command and Address loading):

A: Load Command “0000 0010”.

H: Load Address Extended Byte (0x00- OxFF).

G: Load Address High Byte (0x00 - OxFF).

B: Load Address Low Byte (0x00 - OxFF).

Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.

Set BS to “1”. The Flash word high byte can now be read at DATA.

Set OE to “1”.

N o~ =

28.6.7 Reading the EEPROM
The algorithm for reading the EEPROM memory is as follows (refer to “Programming the Flash”
on page 353 for details on Command and Address loading):

A: Load Command “0000 0011”.

G: Load Address High Byte (0x00 - OxFF).

B: Load Address Low Byte (0x00 - OxFF).

Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.

Set OE to “1”.

ok wbd=

28.6.8 Programming the Fuse Low Bits
The algorithm for programming the Fuse Low bits is as follows (refer to “Programming the Flash”
on page 353 for details on Command and Data loading):
1. A: Load Command “0100 0000”.
2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. Give WR a negative pulse and wait for RDY/BSY to go high.

AI“"E',® 356

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

28.6.9 Programming the Fuse High Bits
The algorithm for programming the Fuse High bits is as follows (refer to “Programming the
Flash” on page 353 for details on Command and Data loading):
1. A: Load Command “0100 0000”.
2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. SetBS2, BS1 to “01”. This selects high data byte.
4. Give WR a negative pulse and wait for RDY/BSY to go high.
5. SetBS2, BS1 to “00”. This selects low data byte.

28.6.10 Programming the Extended Fuse Bits
The algorithm for programming the Extended Fuse bits is as follows (refer to “Programming the
Flash” on page 353 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS2, BS1 to “10”. This selects extended data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS2, BS1 to “00”. This selects low data byte.

ok wn =

Figure 28-5. Programming the FUSES Waveforms

Write Fuse Low byte Write Fuse high byte Write Extended Fuse byte

A C/—H A CK—H A CK—H

D D S N N N N
w0\ /[/[
Bt [\
52 /L
i [[\ /A
WA \/ \/ \/

ROYBSY / -/ -/

RESET +12V

OE

PAGEL

28.6.11 Programming the Lock Bits
The algorithm for programming the Lock bits is as follows (refer to “Programming the Flash” on
page 353 for details on Command and Data loading):
1. A: Load Command “0010 0000”.

2. C:Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is programmed

(LB1 and LB2 is programmed), it is not possible to program the Boot Lock bits by any
External Programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.
The Lock bits can only be cleared by executing Chip Erase.

AIMEL 357

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

28.6.12 Reading the Fuse and Lock Bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming the Flash”
on page 353 for details on Command loading):

A: Load Command “0000 0100”.

2. Set OE to “0”, and BS2, BS1 to “00”. The status of the Fuse Low bits can now be read
at DATA (“0” means programmed).

3. Set OE to “0”, and BS2, BS1 to “11”. The status of the Fuse High bits can now be read
at DATA (“0” means programmed).

4. Set OE to “0”, and BS2, BS1 to “10”. The status of the Extended Fuse bits can now be
read at DATA (“0” means programmed).

5. Set OE to “0”, and BS2, BS1 to “01”. The status of the Lock bits can now be read at
DATA (“0” means programmed).

6. Set OE to“1”.

—_

Figure 28-6. Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read

I Fuse Low Byte 0

||
/

I Extended Fuse Byte

DATA
BS2 >

I Lock Bits

1

BS1
1

| |

I Fuse High Byte

BS2

28.6.13 Reading the Signature Bytes
The algorithm for reading the Signature bytes is as follows (refer to “Programming the Flash” on
page 353 for details on Command and Address loading):

A: Load Command “0000 1000”.

B: Load Address Low Byte (0x00 - 0x02).

Set OE to “0”, and BS to “0”. The selected Signature byte can now be read at DATA.

Set OE to “1”.

Ao b -

28.6.14 Reading the Calibration Byte
The algorithm for reading the Calibration byte is as follows (refer to “Programming the Flash” on
page 353 for details on Command and Address loading):

A: Load Command “0000 1000”.

B: Load Address Low Byte, 0x00.

Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.

Set OE to “1”.

PoODbd -

AIMEL 358

7766F-AVR-11/10 I ©

EEEes————————————————————— A TMmega16/32U4

28.6.15 Parallel Programming Characteristics

Figure 28-7. Parallel Programming Timing, Including some General Timing Requirements

ELBX

TxLwL
XTAL1 IxHxcy
tbvxH I Dx
Data & Contol
(DATA, XA0/1, BS1, BS2)
tevPH tpLex | tBvwL
PAGEL tpppL !
o twiwh
WR tPLwL ~———
WLRL
RDY/BSY

N

tWLHH

Figure 28-8. Parallel Programming Timing, Loading Sequence with Timing Requirements(")

LOAD ADDRESS LOAD DATA
(LOW BYTE) (LOW BYTE)
— —

—
XTAL1 / N\ / I\ /I |:

BS1

ExixH

LOAD DATA LOAD DATA
(HIGH BYTE)

— —

tXLF’H

LOAD ADDRESS
(LOW BYTE)

—

tpLxH h

PAGEL

DATA

X ADDRO (Low Byte) ><

DATA (Low Byte) ><

DATA (High Byte)

X

ADDRT1 (Low Byte)

XA0

XA1

Note: 1.

ing operation.

The timing requirements shown in Figure 28-7 (i.e., tpyxn, txhxe, and ty px) also apply to load-

Figure 28-9. Parallel Programming Timing, Reading Sequence (within the Same Page) with

Timing Requirements!"
LOAD ADDRESS
(LOW BYTE)
K_H

oL

-
XTAL1

READ DATA
(LOW BYTE)

READ DATA
(HIGH BYTE)

LOAD ADDRESS
(LOW BYTE)

K_H

BS1

tavpv
—

toLpv
—

tonpz
—

DATA ADDRO (Low Byte)

_<

DATA (Low Byte)

DATA (High Byte)

ADDRT1 (Low Byte)

XAO

XA1

7766F-AVR-11/10

ATMEL

359

EEEes————————————————————— A TMmega16/32U4

Note: 1. The timing requirements shown in Figure 28-7 (i.e., tpyxn, txHxL @nd ty px) also apply to read-
ing operation.

Table 28-13. Parallel Programming Characteristics, Vg = 5V + 10%

Symbol Parameter Min | Typ | Max | Units
Vpp Programming Enable Voltage 11.5 12.5 \
lpp Programming Enable Current 250 pA
tovxH Data and Control Valid before XTAL1 High 67 ns
tyixH XTAL1 Low to XTAL1 High 200 ns
tyHxe XTAL1 Pulse Width High 150 ns
txLpx Data and Control Hold after XTAL1 Low 67 ns
tywL XTAL1 Low to WR Low 0 ns
tyLPH XTAL1 Low to PAGEL high 0 ns
tpLxH PAGEL low to XTAL1 high 150 ns
tgvpH BS1 Valid before PAGEL High 67 ns
tppL PAGEL Pulse Width High 150 ns
tpLBX BS1 Hold after PAGEL Low 67 ns
twiex BS2/1 Hold after WR Low 67 ns
terwL PAGEL Low to WR Low 67 ns
tevwL BS2/1 Valid to WR Low 67 ns
twiwH WR Pulse Width Low 150 ns
twiRL WR Low to RDY/BSY Low 0 1 us
twLRH WR Low to RDY/BSY High(") 3.7 4.5 ms
twirn ce | WR Low to RDY/BSY High for Chip Erase® 7.5 9 ms
tyLoL XTAL1 Low to OE Low 0 ns
tgvpv BS1 Valid to DATA valid 0 250 ns
toLpv OE Low to DATA Valid 250 ns
toHDz OE High to DATA Tri-stated 250 ns

Notes: 1. ty Ry is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits
commands.

2. twipH_ceis valid for the Chip Erase command.

28.7 Serial Downloading
Both the Flash and EEPROM memory arrays can be programmed using a serial programming
bus while RESET is pulled to GND. The serial programming interface consists of pins SCK, PDI
(input) and PDO (output). After RESET is set low, the Programming Enable instruction needs to
be executed first before program/erase operations can be executed. NOTE, in Table 28-14 on
page 361, the pin mapping for serial programming is listed. Not all packages use the SPI pins
dedicated for the internal Serial Peripheral Interface - SPI.

AI“"E',® 360

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

28.8 Serial Programming Pin Mapping

Table 28-14. Pin Mapping Serial Programming

Pins
Symbol (TQFP-64) /0 Description
PDI PB2 | Serial Data in
PDO PB3 O Serial Data out
SCK PB1 I Serial Clock

Figure 28-10. Serial Programming and Verify(")

+1.8-5.5V

VCC

+1.8-5.5V®

PDI ———>»|
AVCC
PDO «—

SCK ———»|

— | XTAL1

——— | RESET

I =

Notes: 1. If the device is clocked by the internal Oscillator, it is no need to connect a clock source to the
XTAL1 pin.

2. Vg - 0.3V < AVCC < V¢ + 0.3V, however, AVCC should always be within 1.8 - 5.5V
When programming the EEPROM, an auto-erase cycle is built into the self-timed programming
operation (in the Serial mode ONLY) and there is no need to first execute the Chip Erase
instruction. The Chip Erase operation turns the content of every memory location in both the
Program and EEPROM arrays into OxFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high periods
for the serial clock (SCK) input are defined as follows:

Low: >2 CPU clock cycles for f, < 12 MHz, 3 CPU clock cycles for f,, >= 12 MHz
High: > 2 CPU clock cycles for f, < 12 MHz, 3 CPU clock cycles for fy >= 12 MHz
28.8.1 Serial Programming Algorithm

When writing serial data to the ATmega16U4/ATmega32U4, data is clocked on the rising edge
of SCK.

When reading data from the ATmega16U4/ATmega32U4, data is clocked on the falling edge of
SCK. See Figure 28-11 for timing details.

To program and verify the ATmega16U4/ATmega32U4 in the serial programming mode, the fol-
lowing sequence is recommended (See four byte instruction formats in Table 28-16):

AI“"E',® 361

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

1. Power-up sequence:
Apply power between V. and GND while RESET and SCK are set to “0”. In some sys-
tems, the programmer can not guarantee that SCK is held low during power-up. In this
case, RESET must be given a positive pulse of at least two CPU clock cycles duration
after SCK has been set to “0".

2. Wait for at least 20 ms and enable serial programming by sending the Programming
Enable serial instruction to pin PDI.

3. The serial programming instructions will not work if the communication is out of syn-
chronization. When in sync. the second byte (0x53), will echo back when issuing the
third byte of the Programming Enable instruction. Whether the echo is correct or not, all
four bytes of the instruction must be transmitted. If the 0x53 did not echo back, give
RESET a positive pulse and issue a new Programming Enable command.

4. The Flash is programmed one page at a time. The memory page is loaded one byte at
a time by supplying the 7 LSB of the address and data together with the Load Program
Memory Page instruction. To ensure correct loading of the page, the data low byte must
be loaded before data high byte is applied for a given address. The Program Memory
Page is stored by loading the Write Program Memory Page instruction with the address
lines 15..8. Before issuing this command, make sure the instruction Load Extended
Address Byte has been used to define the MSB of the address. The extended address
byte is stored until the command is re-issued, i.e., the command needs only be issued
for the first page, and when crossing the 64KWord boundary. If polling (RDY/BSY) is not
used, the user must wait at least t,p f asy before issuing the next page. (See Table 28-
15.) Accessing the serial programming interface before the Flash write operation com-
pletes can result in incorrect programming.

5. The EEPROM array is programmed one byte at a time by supplying the address and
data together with the appropriate Write instruction. An EEPROM memory location is
first automatically erased before new data is written. If polling is not used, the user must
wait at least typ eeprom PEfOre issuing the next byte. (See Table 28-15.) In a chip
erased device, no 0xFFs in the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns the
content at the selected address at serial output PDO. When reading the Flash memory,
use the instruction Load Extended Address Byte to define the upper address byte,
which is not included in the Read Program Memory instruction. The extended address
byte is stored until the command is re-issued, i.e., the command needs only be issued
for the first page, and when crossing the 64KWord boundary.

7. Atthe end of the programming session, RESET can be set high to commence normal
operation.

8. Power-off sequence (if needed):
Set RESET to “1”.
Turn Vg power off.

Table 28-15. Minimum Wait Delay Before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay
twp_FLASH 4.5 ms
twp_eEPrOM 9.0 ms
twp_Erase 9.0 ms

AI“"E',® 362

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 28-11. Serial Programming Waveforms

senmomped _/wse X XX
sernLowTa outeuT />< Y
ooy LML LML

S N N N N R A

LSB

XX X\
XX XN\

LSB

AI“IEL@ 363

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 28-16. Serial Programming Instruction Set

Instruction Format

Read Fuse High bits

Instruction Byte 1 Byte 2 Byte 3 Byte4 Operation
. 1010 1100 | 0101 0011 | xxxx xxxx | xxxx xxxx | Enable Serial Programming after
Programming Enable
RESET goes low.
Chip Erase 1010 1100 | 100x xxxx | xxxx xxxx | xxxx xxxx | Chip Erase EEPROM and Flash.
0100 1101 | 0000 0000 | cccc ccce | xxxx xxxx | Defines Extended Address Byte for
Load Extended Address Byte Read Program Memory and Write
Program Memory Page.
0010 HOOO | aaaa aaaa | bbbb bbbb | oooo oocoo | Read H (high or low) data o from
Read Program Memory Program memory at word address
c:a:b.
0100 HO00 | xxxx xxxx | xxbb bbbb | iiii iiii | Write H (high or low) data i to Program
Memory page at word address b. Data
Load Program Memory Page low byte must be loaded before Data
high byte is applied within the same
address.
Write Program Memory Page 0100 1100 | aaaa aaaa | bbxx xxxx | xxxx xxxx | Write Prog.;rrilm Memory Page at
address c:a:b.
Read EEPROM Memory 1010 0000 | 0000 aaaa | bbbb bbbb | oooo oooo | Read data.ofrom EEPROM memory at
address a:b.
Write EEPROM Memory 1100 0000 | 0000 aaaa | bbbb bbbb | iiii iiii | Write data. i to EEPROM memory at
address a:b.
Load EEPROM Memory 1100 0001 | O0O0O 0000 | OOOO0 OObb | Wiii ¥iii | Loaddataito EEPROM memory page
Page (page access) buffer. After data is loaded, program
EEPROM page.
Write EEPROM Memory 1100 0010 | 0000 aaaa | bbbb bb00 | XXxXX XXXX Write EEPROM page at address a:b.
Page (page access)
0101 1000 | 0000 0000 | xxxx xxxx | xx00 oooo | Read Lock bits. “0” = programmed, “1”
Read Lock bits = unprogrammed. See Table 28-1 on
page 346 for details.
1010 1100 | 111x xxxx | xxxx xxxx | 11ii iiii | Write Lock bits. Set bits = “0” to
Write Lock bits program Lock bits. See Table 28-1 on
page 346 for details.
Read Signature Byte 0011 0000 | 000x xxxx | xxxx xxbb | oooo oooo | Read Signature Byte o at address b.
Write Fuse bits 1010 1100 | 1010 0000 | xxxx xxxx | iiii iiii | Set bits = “0” to program, “1” to
unprogram.
Write Fuse High bits 1010 1100 | 1010 1000 | xxxx xxxx | iiii iiii | Set bits = “0” to program, “1” to
unprogram.
1010 1100 | 1010 0100 | xxxx xxxx | iiid #iii | Set bits =“0"to program, “1” to
Write Extended Fuse Bits unprogram. See Table 28-3 on page
347 for details.
. 0101 0000 | 0000 0000 | xxxx xxxx | oooo oooo | Read Fuse bits. “0” = programmed, “1”
Read Fuse bits
= unprogrammed.
0101 1000 | 0000 1000 | xxxx xxxx | oooo oooo | Read Fuse High bits. “0” = pro-

grammed, “1” = unprogrammed.

7766F-AVR-11/10

ATMEL

364

EEEes————————————————————— A TMmega16/32U4

Table 28-16. Serial Programming Instruction Set (Continued)

Instruction Format

Instruction Byte 1 Byte 2 Byte 3 Byte4 Operation

0101 0000 | 0000 1000 | xxxx xXxxx | 0000 0000 | Read Extended Fuse bits. “0” = pro-
Read Extended Fuse Bits grammed, “1” = unprogrammed. See
Table 28-3 on page 347 for details.

Read Calibration Byte 0011 1000 | 000x xxxx | 0000 0000 | oooo oooo | Read Calibration Byte

1111 0000 | 0000 0000 | XXXX XXXX | XXXX xXxx0 | If o =“1", a programming operation is
Poll RDY/BSY still busy. Wait until this bit returns to
“0” before applying another command.

Note: a = address high bits, b = address low bits, ¢ = address extended bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in,
x = don’t care

28.8.2 Serial Programming Characteristics

For characteristics of the Serial Programming module see “SPI Timing Characteristics” on page
383.

28.9 Programming via the JTAG Interface

Programming through the JTAG interface requires control of the four JTAG specific pins: TCK,
TMS, TDI, and TDO. Control of the reset and clock pins is not required.

To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The device is
default shipped with the fuse programmed. In addition, the JTD bit in MCUCSR must be cleared.
Alternatively, if the JTD bit is set, the external reset can be forced low. Then, the JTD bit will be
cleared after two chip clocks, and the JTAG pins are available for programming. This provides a
means of using the JTAG pins as normal port pins in Running mode while still allowing In-Sys-
tem Programming via the JTAG interface. Note that this technique can not be used when using
the JTAG pins for Boundary-scan or On-chip Debug. In these cases the JTAG pins must be ded-
icated for this purpose.

During programming the clock frequency of the TCK Input must be less than the maximum fre-
quency of the chip. The System Clock Prescaler can not be used to divide the TCK Clock Input
into a sufficiently low frequency.

As a definition in this datasheet, the LSB is shifted in and out first of all Shift Registers.

28.9.1 Programming Specific JTAG Instructions

The Instruction Register is 4-bit wide, supporting up to 16 instructions. The JTAG instructions
useful for programming are listed below.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text
describes which Data Register is selected as path between TDI and TDO for each instruction.

The Run-Test/Idle state of the TAP controller is used to generate internal clocks. It can also be
used as an idle state between JTAG sequences. The state machine sequence for changing the
instruction word is shown in Figure 28-12.

AI“"E',® 365

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 28-12. State Machine Sequence for Changing the Instruction Word

1 ;Test-Logic-ResetEA --
io
v .
OC Run-Test/Idle ! - $| Select-DR Scan ! »| Select-IR Scan BN
‘o 0
____________ . A v
1 Capture-DR i Capture-IR
‘o 0
............ b A A
-------- » Shift-DR 0 > Shift-IR :) 0
1 1

28.9.2 AVR_RESET (0xC)

The AVR specific public JTAG instruction for setting the AVR device in the Reset mode or taking
the device out from the Reset mode. The TAP controller is not reset by this instruction. The one
bit Reset Register is selected as Data Register. Note that the reset will be active as long as there
is a logic “one” in the Reset Chain. The output from this chain is not latched.

The active states are:

» Shift-DR: The Reset Register is shifted by the TCK input.

28.9.3 PROG_ENABLE (0x4)

The AVR specific public JTAG instruction for enabling programming via the JTAG port. The 16-
bit Programming Enable Register is selected as Data Register. The active states are the

following:
» Shift-DR: The programming enable signature is shifted into the Data Register.

* Update-DR: The programming enable signature is compared to the correct value, and
Programming mode is entered if the signature is valid.

AI“"E',® 366

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

28.9.4 PROG_COMMANDS (0x5)
The AVR specific public JTAG instruction for entering programming commands via the JTAG
port. The 15-bit Programming Command Register is selected as Data Register. The active
states are the following:

» Capture-DR: The result of the previous command is loaded into the Data Register.

» Shift-DR: The Data Register is shifted by the TCK input, shifting out the result of the previous
command and shifting in the new command.

* Update-DR: The programming command is applied to the Flash inputs
* Run-Test/Idle: One clock cycle is generated, executing the applied command

28.9.5 PROG_PAGELOAD (0x6)
The AVR specific public JTAG instruction to directly load the Flash data page via the JTAG port.
An 8-bit Flash Data Byte Register is selected as the Data Register. This is physically the 8 LSBs
of the Programming Command Register. The active states are the following:

* Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

* Update-DR: The content of the Flash Data Byte Register is copied into a temporary register.
A write sequence is initiated that within 11 TCK cycles loads the content of the temporary
register into the Flash page buffer. The AVR automatically alternates between writing the low
and the high byte for each new Update-DR state, starting with the low byte for the first
Update-DR encountered after entering the PROG_PAGELOAD command. The Program
Counter is pre-incremented before writing the low byte, except for the first written byte. This
ensures that the first data is written to the address set up by PROG_COMMANDS, and
loading the last location in the page buffer does not make the program counter increment into
the next page.

28.9.6 PROG_PAGEREAD (0x7)
The AVR specific public JTAG instruction to directly capture the Flash content via the JTAG port.
An 8-bit Flash Data Byte Register is selected as the Data Register. This is physically the 8 LSBs
of the Programming Command Register. The active states are the following:

» Capture-DR: The content of the selected Flash byte is captured into the Flash Data Byte
Register. The AVR automatically alternates between reading the low and the high byte for
each new Capture-DR state, starting with the low byte for the first Capture-DR encountered
after entering the PROG_PAGEREAD command. The Program Counter is post-incremented
after reading each high byte, including the first read byte. This ensures that the first data is
captured from the first address set up by PROG_COMMANDS, and reading the last location
in the page makes the program counter increment into the next page.

 Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

28.9.7 Data Registers

The Data Registers are selected by the JTAG instruction registers described in section “Pro-
gramming Specific JTAG Instructions” on page 365. The Data Registers relevant for
programming operations are:

* Reset Register

* Programming Enable Register

* Programming Command Register

* Flash Data Byte Register

AI“"E',® 367

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

28.9.8 Reset Register

The Reset Register is a Test Data Register used to reset the part during programming. It is
required to reset the part before entering Programming mode.

A high value in the Reset Register corresponds to pulling the external reset low. The part is reset
as long as there is a high value present in the Reset Register. Depending on the Fuse settings
for the clock options, the part will remain reset for a Reset Time-out period (refer to “Clock
Sources” on page 28) after releasing the Reset Register. The output from this Data Register is
not latched, so the reset will take place immediately, as shown in Figure 8-1 on page 50.

28.9.9 Programming Enable Register

The Programming Enable Register is a 16-bit register. The contents of this register is compared
to the programming enable signature, binary code 0b1010_0011_0111_0000. When the con-
tents of the register is equal to the programming enable signature, programming via the JTAG
port is enabled. The register is reset to 0 on Power-on Reset, and should always be reset when
leaving Programming mode.

Figure 28-13. Programming Enable Register

TDI

|

0xA370
—>
== D Q—» Programming Enable

> -4 >0

ClockDR & PROG_ENABLE

TDO

28.9.10 Programming Command Register

7766F-AVR-11/10

The Programming Command Register is a 15-bit register. This register is used to serially shift in
programming commands, and to serially shift out the result of the previous command, if any. The
JTAG Programming Instruction Set is shown in Table 28-17. The state sequence when shifting
in the programming commands is illustrated in Figure 28-15.

AI“"E',® 368

7766F-AVR-11/10

Figure 28-14. Programming Command Register

TDI

1

>4>0-00OmMIOO>

TDO

ATMEL

OCMWODH®

Flash
EEPROM
Fuses
Lock Bits

ATmegal6/32U4

369

EEEes————————————————————— A TMmega16/32U4

Table 28-17. JTAG Programming Instruction

Set a = address high bits, b = address low bits, ¢ = address extended bits, H = 0 - Low byte, 1 - High Byte, o = data out,

i =data in, x = don’t care

0110011_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

Instruction TDI Sequence TDO Sequence Notes
0100011_10000000 XXXXXXX_ XXXXXXXX
1a. Chib Erase 0110001_10000000 XXXXXXX_XXXXXXXX
' P 0110011_10000000 XXXXXXX_XXXXXXXX
0110011_10000000 XXXXXXX_XXXXXXXX
1b. Poll for Chip Erase Complete 0110011_10000000 XXXXXOX_XXXXXXXX (2)
2a. Enter Flash Write 0100011_00010000 XXXXXXX_XXXXXXXX
2b. Load Address Extended High Byte 0001011_cccceccce XXXXXXX_XXXXXXXX (10)
2c. Load Address High Byte 0000111_aaaaaaaa XXXXXXX_XXXXXXXX
2d. Load Address Low Byte 0000011_bbbbbbbb XXXXXXX_XXXXXXXX
2e. Load Data Low Byte 0010011 _iiiiiiii XXXXXXX_XXXXXXXX
2f. Load Data High Byte 0010111 _iiiiiii XXXXXXX_XXXXXXXX
0110111_00000000 XXXXXXX_XXXXXXXX
2g. Latch Data 1110111_00000000 XXXXXXX_XXXXXXXX (1)
0110111_00000000 XXXXXXX_XXXXXXXX
0110111_00000000 XXXXXXX_XXXXXXXX
. 0110101_00000000 XXXXXXX_XXXXXXXX
2h. Write Flash Page 0110111_00000000 XXXXXXX_XXXXXXXX (1)
0110111_00000000 XXXXXXX_ XXXXXXXX
2i. Poll for Page Write Complete 0110111_00000000 XXXXXOX_XXXXXXXX @)
3a. Enter Flash Read 0100011_00000010 XXXXXXX_XXXXXXXX
3b. Load Address Extended High Byte 0001011_ccccccce XXXXXXX_XXXXXXXX (10)
3c. Load Address High Byte 0000111_aaaaaaaa XXXXXXX_XXXXXXXX
3d. Load Address Low Byte 0000011_bbbbbbbb XXXXXXX_XXXXXXXX
0110010_00000000 XXXXXXX_ XXXXXXXX
3e. Read Data Low and High Byte 0110110_00000000 XXXXXXX_00000000 Low byte
0110111_00000000 XXXXXXX_00000000 High byte
4a. Enter EEPROM Write 0100011_00010001 XXXXXXX_XXXXXXXX
4b. Load Address High Byte 0000111_aaaaaaaa XXXXXXX_XXXXXXXX (10)
4c. Load Address Low Byte 0000011_bbbbbbbb XXXXXXX_XXXXXXXX
4d. Load Data Byte 0010011 _iiiiiiii XXXXXXX_XXXXXXXX
0110111_00000000 XXXXXXX_XXXXXXXX
4e. Latch Data 1110111_00000000 XXXXXXX_XXXXXXXX (1)
0110111_00000000 XXXXXXX_ XXXXXXXX
0110011_00000000 XXXXXXX_XXXXXXXX
0110001_00000000
4f. Write EEPROM Page - HOOOOOCI00000X (1)

7766

F-AVR-11/10

ATMEL

370

EEEes————————————————————— A TMmega16/32U4

Table 28-17. JTAG Programming Instruction (Continued)
Set (Continued) a = address high bits, b = address low bits, ¢ = address extended bits, H = 0 - Low byte, 1 - High Byte,
o = data out, i = data in, x = don’t care

Instruction

TDI Sequence

TDO Sequence

Notes

4q. Poll for Page Write Complete

0110011_00000000

XXXXXOX_XXXXXXXX

(2)

5a. Enter EEPROM Read

0100011_00000011

XXXXXXX _XXXXXXXX

5b. Load Address High Byte

0000111_aaaaaaaa

XXXXXXX _XXXXXXXX

(10)

5c¢. Load Address Low Byte

0000011_bbbbbbbb

XXXXXXX _XXXXXXXX

5d. Read Data Byte

0110011_bbbbbbbb
0110010_00000000
0110011_00000000

XXXXXXX _XXXXXXXX
XXXXXXX _XXXXXXXX
XXXXXXX_00000000

6a. Enter Fuse Write

0100011_01000000

XXXXXXX_XXXXXXXX

6b. Load Data Low Byte®

XXXXXXX _XXXXXXXX

®)

6c¢. Write Fuse Extended Byte

0111011_00000000
0111001_00000000
0111011_00000000
0111011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX _XXXXXXXX

(1)

6d. Poll for Fuse Write Complete

0110111_00000000

XXXXXOX_XXXXXXXX

)

6e. Load Data Low Byte!”

XXXXXXX _XXXXXXXX

®)

6f. Write Fuse High Byte

0110111_00000000
0110101_00000000
0110111_00000000
0110111_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX _XXXXXXXX

(1)

69. Poll for Fuse Write Complete

0110111_00000000

XXXXXOX_XXXXXXXX

)

6h. Load Data Low Byte(”

XXXXXXX _XXXXXXXX

®)

6i. Write Fuse Low Byte

0110011_00000000
0110001_00000000
0110011_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX _XXXXXXXX

(1)

6j. Poll for Fuse Write Complete

0110011_00000000

XXXXXOX_XXXXXXXX

(2)

7a. Enter Lock Bit Write

0100011_00100000

XXXXXXX_XXXXXXXX

7b. Load Data Byte®

XXXXXXX_XXXXXXXX

(4)

7c¢. Write Lock Bits

0110011_00000000
0110001_00000000
0110011_00000000
0110011_00000000

XXXXXXX _XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

(1

7d. Poll for Lock Bit Write complete

0110011_00000000

XXXXXOX_XXXXXXXX

(2)

8a. Enter Fuse/Lock Bit Read

0100011_00000100

XXXXXXX _XXXXXXXX

8b. Read Extended Fuse Byte®

0111010_00000000
0111011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

8c. Read Fuse High Byte(”

0111110_00000000
0111111_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

7766F-AVR-11/10

ATMEL

371

EEEes————————————————————— A TMmega16/32U4

Table 28-17. JTAG Programming Instruction (Continued)
Set (Continued) a = address high bits, b = address low bits, ¢ = address extended bits, H = 0 - Low byte, 1 - High Byte,
o = data out, i = data in, x = don’t care

Instruction

TDI Sequence

TDO Sequence

Notes

8d. Read Fuse Low Byte®

0110010_00000000
0110011_00000000

XXXXXXX _XXXXXXXX
XXXXXXX_00000000

8e. Read Lock Bits®

0110110_00000000
0110111_00000000

XXXXXXX _XXXXXXXX
XXXXXXX_XX000000

(5)

8f. Read Fuses and Lock Bits

0111010_00000000
0111110_00000000
0110010_00000000
0110110_00000000
0110111_00000000

XXXXXXX _XXXXXXXX

XXXXXXX_00000000
XXXXXXX_00000000
XXXXXXX_00000000
XXXXXXX_00000000

(5)

Fuse Ext. byte
Fuse High byte
Fuse Low byte
Lock bits

9a. Enter Signature Byte Read

0100011_00001000

XXXXXXX_XXXXXXXX

9b. Load Address Byte

0000011_bbbbbbbb

XXXXXXX _XXXXXXXX

9c. Read Signature Byte

0110010_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

10a. Enter Calibration Byte Read

0100011_00001000

XXXXXXX _XXXXXXXX

10b. Load Address Byte

0000011_bbbbbbbb

XXXXXXX _XXXXXXXX

10c. Read Calibration Byte

0110110_00000000
0110111_00000000

XXXXXXX _XXXXXXXX
XXXXXXX_00000000

11a. Load No Operation Command

0100011_00000000
0110011_00000000

XXXXXXX _XXXXXXXX
XXXXXXX _XXXXXXXX

Notes: 1. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is

normally the case).
Repeat until o = “1”.

Set bits to “0” to program the corresponding Fuse, “1” to unprogram the Fuse.

Set bits to “0” to program the corresponding Lock bit, “1” to leave the Lock bit unchanged.
“0” = programmed, “1” = unprogrammed.

The bit mapping for Fuses Extended byte is listed in Table 28-3 on page 347

The bit mapping for Fuses High byte is listed in Table 28-4 on page 348

© N kDD

The bit mapping for Fuses Low byte is listed in Table 28-5 on page 348

9. The bit mapping for Lock bits byte is listed in Table 28-1 on page 346

10. Address bits exceeding PCMSB and EEAMSB (Table 28-11 and Table 28-12) are don’t care
11. All TDI and TDO sequences are represented by binary digits (0b...).

AIMEL a72

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 28-15. State Machine Sequence for Changing/Reading the Data Word

1 ;Test-Logic-Reset 4 --
i o
A ———— :
OC Run-Test/Idle L X P Select-DR Scan S } Select-IR Scan 1
0 io
Y b AR
] Capture-DR | - Capture-IR
0 io
¥) AU
. i H 4‘
> Shift-DR 0 e » Shift-IR 0
1 i1
A4 S), ANS—
L » Exitt-DR | S N TS| J L
0 ‘o
v O, b SRR
: : <,
Pause-DR 0 : H Pause-IR i 20
\ 4 L e b A
Ol Exit2DR | | e %f Exite-R
1 i1
vy |) AN
Update-DR 4 Update-IR L EECERRH
1 0 TR 0

28.9.11 Flash Data Byte Register
The Flash Data Byte Register provides an efficient way to load the entire Flash page buffer
before executing Page Write, or to read out/verify the content of the Flash. A state machine sets
up the control signals to the Flash and senses the strobe signals from the Flash, thus only the
data words need to be shifted in/out.

The Flash Data Byte Register actually consists of the 8-bit scan chain and a 8-bit temporary reg-
ister. During page load, the Update-DR state copies the content of the scan chain over to the
temporary register and initiates a write sequence that within 11 TCK cycles loads the content of
the temporary register into the Flash page buffer. The AVR automatically alternates between
writing the low and the high byte for each new Update-DR state, starting with the low byte for the
first Update-DR encountered after entering the PROG_PAGELOAD command. The Program
Counter is pre-incremented before writing the low byte, except for the first written byte. This
ensures that the first data is written to the address set up by PROG_COMMANDS, and loading
the last location in the page buffer does not make the Program Counter increment into the next

page.
During Page Read, the content of the selected Flash byte is captured into the Flash Data Byte

Register during the Capture-DR state. The AVR automatically alternates between reading the
low and the high byte for each new Capture-DR state, starting with the low byte for the first Cap-

AI“"E',® 373

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

ture-DR encountered after entering the PROG_PAGEREAD command. The Program Counter is
post-incremented after reading each high byte, including the first read byte. This ensures that
the first data is captured from the first address set up by PROG_COMMANDS, and reading the
last location in the page makes the program counter increment into the next page.

Figure 28-16. Flash Data Byte Register

STROBES

State

Machine
TD
ADDRESS .

Flash
EEPROM
Fuses
Lock Bits

> -4 >» 0

!
The state machine controlling the Flash Data Byte Register is clocked by TCK. During normal
operation in which eight bits are shifted for each Flash byte, the clock cycles needed to navigate
through the TAP controller automatically feeds the state machine for the Flash Data Byte Regis-
ter with sufficient number of clock pulses to complete its operation transparently for the user.
However, if too few bits are shifted between each Update-DR state during page load, the TAP

controller should stay in the Run-Test/Idle state for some TCK cycles to ensure that there are at
least 11 TCK cycles between each Update-DR state.

28.9.12 Programming Algorithm
All references below of type “1a”, “1b”, and so on, refer to Table 28-17.

28.9.13 Entering Programming Mode
1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.

2. Enterinstruction PROG_ENABLE and shift 0b1010_0011_0111_0000 in the Program-
ming Enable Register.

28.9.14 Leaving Programming Mode
1. Enter JTAG instruction PROG_COMMANDS.
2. Disable all programming instructions by using no operation instruction 11a.

3. Enter instruction PROG_ENABLE and shift 0b0000_0000_0000_0000 in the program-
ming Enable Register.

4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

AIMEL a7a

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

28.9.15 Performing Chip Erase
1. Enter JTAG instruction PROG_COMMANDS.
2. Start Chip Erase using programming instruction 1a.

3. Poll for Chip Erase complete using programming instruction 1b, or wait for ty, ryy ce
(refer to Table 28-13 on page 360).

28.9.16 Programming the Flash
Before programming the Flash a Chip Erase must be performed, see “Performing Chip Erase”
on page 375.

Enter JTAG instruction PROG_COMMANDS.

Enable Flash write using programming instruction 2a.

Load address Extended High byte using programming instruction 2b.
Load address High byte using programming instruction 2c.

Load address Low byte using programming instruction 2d.

Load data using programming instructions 2e, 2f and 2g.

Repeat steps 5 and 6 for all instruction words in the page.

Write the page using programming instruction 2h.

Poll for Flash write complete using programming instruction 2i, or wait for t, gy (refer to
Table 28-13 on page 360).

10. Repeat steps 3 to 9 until all data have been programmed.
A more efficient data transfer can be achieved using the PROG_PAGELOAD instruction:

1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Flash write using programming instruction 2a.

3. Load the page address using programming instructions 2b, 2c and 2d. PCWORD (refer
to Table 28-11 on page 351) is used to address within one page and must be written as
0.

4. Enter JTAG instruction PROG_PAGELOAD.

5. Load the entire page by shifting in all instruction words in the page byte-by-byte, start-
ing with the LSB of the first instruction in the page and ending with the MSB of the last
instruction in the page. Use Update-DR to copy the contents of the Flash Data Byte
Register into the Flash page location and to auto-increment the Program Counter
before each new word.

6. Enter JTAG instruction PROG_COMMANDS.
7. Write the page using programming instruction 2h.

8. Poll for Flash write complete using programming instruction 2i, or wait for t,,, gy (refer to
Table 28-13 on page 360).

9. Repeat steps 3 to 8 until all data have been programmed.

© o N Dd =

28.9.17 Reading the Flash

Enter JTAG instruction PROG_COMMANDS.

Enable Flash read using programming instruction 3a.

Load address using programming instructions 3b, 3c and 3d.

Read data using programming instruction 3e.

Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD instruction:

AImEl@ 375

ok~ wp =

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

6.
7.

Enter JTAG instruction PROG_COMMANDS.
Enable Flash read using programming instruction 3a.

Load the page address using programming instructions 3b, 3¢ and 3d. PCWORD (refer
to Table 28-11 on page 351) is used to address within one page and must be written as
0.

Enter JTAG instruction PROG_PAGEREAD.

Read the entire page (or Flash) by shifting out all instruction words in the page (or
Flash), starting with the LSB of the first instruction in the page (Flash) and ending with
the MSB of the last instruction in the page (Flash). The Capture-DR state both captures
the data from the Flash, and also auto-increments the program counter after each word
is read. Note that Capture-DR comes before the shift-DR state. Hence, the first byte
which is shifted out contains valid data.

Enter JTAG instruction PROG_COMMANDS.
Repeat steps 3 to 6 until all data have been read.

28.9.18 Programming the EEPROM
Before programming the EEPROM a Chip Erase must be performed, see “Performing Chip
Erase” on page 375.

© N Ok DND=

9.

Enter JTAG instruction PROG_COMMANDS.

Enable EEPROM write using programming instruction 4a.
Load address High byte using programming instruction 4b.
Load address Low byte using programming instruction 4c.
Load data using programming instructions 4d and 4e.
Repeat steps 4 and 5 for all data bytes in the page.

Write the data using programming instruction 4f.

Poll for EEPROM write complete using programming instruction 4g, or wait for ty, gy
(refer to Table 28-13 on page 360).

Repeat steps 3 to 8 until all data have been programmed.

Note that the PROG_PAGELOAD instruction can not be used when programming the EEPROM.

28.9.19 Reading the EEPROM

w0 Dbd -

5.

Enter JTAG instruction PROG_COMMANDS.

Enable EEPROM read using programming instruction 5a.
Load address using programming instructions 5b and 5c.
Read data using programming instruction 5d.

Repeat steps 3 and 4 until all data have been read.

Note that the PROG_PAGEREAD instruction can not be used when reading the EEPROM.

28.9.20 Programming the Fuses

1.
2.
3.

7766F-AVR-11/10

Enter JTAG instruction PROG_COMMANDS.
Enable Fuse write using programming instruction 6a.

Load data high byte using programming instructions 6b. A bit value of “0” will program
the corresponding fuse, a “1” will unprogram the fuse.

Write Fuse High byte using programming instruction 6c¢.

Poll for Fuse write complete using programming instruction 6d, or wait for t,y, gy (refer to
Table 28-13 on page 360).

AI“"E',® 376

EEEes————————————————————— A TMmega16/32U4

Load data low byte using programming instructions 6e. A “0” will program the fuse, a “1”
will unprogram the fuse.

Write Fuse low byte using programming instruction 6f.

Poll for Fuse write complete using programming instruction 6g, or wait for t,y, gy (refer to
Table 28-13 on page 360).

28.9.21 Programming the Lock Bits

1.
2.
3.

Enter JTAG instruction PROG_COMMANDS.
Enable Lock bit write using programming instruction 7a.

Load data using programming instructions 7b. A bit value of “0” will program the corre-
sponding lock bit, a “1” will leave the lock bit unchanged.

Write Lock bits using programming instruction 7c.

Poll for Lock bit write complete using programming instruction 7d, or wait for ty, gy (refer
to Table 28-13 on page 360).

28.9.22 Reading the Fuses and Lock Bits

1.
2.
3.

Enter JTAG instruction PROG_COMMANDS.

Enable Fuse/Lock bit read using programming instruction 8a.

To read all Fuses and Lock bits, use programming instruction 8e.
To only read Fuse High byte, use programming instruction 8b.

To only read Fuse Low byte, use programming instruction 8c.
To only read Lock bits, use programming instruction 8d.

28.9.23 Reading the Signature Bytes

1.

ok wpn

Enter JTAG instruction PROG_COMMANDS.

Enable Signature byte read using programming instruction 9a.
Load address 0x00 using programming instruction 9b.

Read first signature byte using programming instruction 9c.

Repeat steps 3 and 4 with address 0x01 and address 0x02 to read the second and third
signature bytes, respectively.

28.9.24 Reading the Calibration Byte

1.

2.
3.
4

7766F-AVR-11/10

Enter JTAG instruction PROG_COMMANDS.

Enable Calibration byte read using programming instruction 10a.
Load address 0x00 using programming instruction 10b.

Read the calibration byte using programming instruction 10c.

AImEl@ 377

EEEes————————————————————— A TMmega16/32U4

29. Electrical Characteristics

29.1

Absolute Maximum Ratings*

Operating Temperature

Storage Temperature

Maximum Operating Voltage

DC Current per I/O Pin
DC Current V¢ and GND Pins

............. -40°C to +85°C
........... -65°C to +150°C

Voltage on any Pin except RESET and VBUS
with respect to Ground®cccooevrinnnn. -0.5V to Vg +0.5V
Voltage on RESET with respect to Ground......-0.5V to +13.0V

Voltage on VBUS with respect to Ground.......... -0.5V to +6.0V

29.2 DC Characteristics

T, =-40°C to 85°C, Vo = 2.7V to 5.5V (unless otherwise noted)

*NOTICE:

Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.

7766F-AVR-11/10

Symbol | Parameter Condition Min.® Typ. Max.® Units
Input Low 0.2V¢e-
Vi Voltage,Except XTAL1 Veg =2.7V - 5.5V -0.5 0.1v() v
and Reset pin (LVTTL)
Input Low Voltage, _)))
VL4 XTALT pin Ve =2.7V - 5.5V 0.5 0.1Vec \
Input Low Voltage, _)))
Vi RESET pin Vee =27V -5.5V 0.5 0.1Vc \Y
Input High Voltage, 0.2V c+0.9V!
Vig Except XTAL1 and Voo = 2.7V - 5.5V & Vge + 0.5 Vv
RESET pins (LVTTL)
Input High Voltage,
Vi TALS an 9 Voo =27V -55V 0.7Vec? Voo + 0.5 Vv
Vi 'F?EgtEFT"%?nVO"age' Voo = 2.7V - 5.5V 0.9Veo? Voo + 0.5 v
loL = 10mMA, Voo =5V 0.7
®) oL » Voo
VoL Output Low Voltage', loL. = 5MA, Vg = 3V 05 \Y
. log =-10mA, Ve =5V 4.2
) OH » Voo
Vou Output High Voltage'”, loy = -5MA, Vg = 3V 53 \
| Input Leakage Ve = 5.5V, pin low 1 A
IL Current I/0 Pin (absolute value) H
| Input Leakage Ve =5.5Y, pin high 1 A
H Current I/O Pin (absolute value) H
Rrst Reset Pull-up Resistor 30 60 kQ
Rpy I/O Pin Pull-up Resistor 20 50 kQ
AIMEL 378
I)

EEEes————————————————————— A TMmega16/32U4

T, =-40°C to 85°C, Vo = 2.7V to 5.5V (unless otherwise noted) (Continued)

Symbol

Parameter

Condition

Min.®

Typ.

Max.®

Units

Power Supply Current®

Active 4AMHz, V¢ = 3V
(ATmega16U4/ATmega32U4)

mA

Active 8MHz, Vi =5V
(ATmega16U4/ATmega32U4)

10

15

mA

Idle 4AMHz, V¢ = 3V
(ATmega16U4/ATmega32U4)

mA

Idle 8MHz, V¢ = 5V
(ATmega16U4/ATmega32U4)

mA

Power-down mode

WDT enabled, Vo =3V,
Regulator Disabled

<10

12

pHA

WDT disabled, V¢ =
3V,Regulator Disabled

HA

Vacio

Analog Comparator
Input Offset Voltage

VCC = 5V
Vin = Vec/2

<10

40

mV

IACLK

Analog Comparator
Input Leakage Current

VCC = 5V
Vin = Voc/2

50

nA

tacip

Analog Comparator
Propagation Delay

750
500

ns

Rusb

USB Series resistor

0O,
(external) 2245% Q

Vreg

Cucap = 1HF£20%,
Regulator Output UVcce > 4.0V, I<80mA(),
Voltage or

UVcce > 3.4V, I<55mA?

3.0 3.3 3.6 \'%

Note: 1.

7766F-AVR-11/10

"Max" means the highest value where the pin is guaranteed to be read as low
"Min" means the lowest value where the pin is guaranteed to be read as high

Although each 1/O port can sink more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady state
conditions (non-transient), the following must be observed:

ATmega16U4/ATmega32U4:

1.)The sum of all IOL, for ports A0-A7, G2, C4-C7 should not exceed 100 mA.

2.)The sum of all IOL, for ports C0-C3, GO-G1, D0O-D7 should not exceed 100 mA.

3.)The sum of all IOL, for ports G3-G5, B0-B7, EO-E7 should not exceed 100 mA.

4.)The sum of all IOL, for ports FO-F7 should not exceed 100 mA.

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

Although each 1/0O port can source more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady
state conditions (non-transient), the following must be observed:

ATmega16U4/ATmega32U4:

1)The sum of all IOH, for ports A0-A7, G2, C4-C7 should not exceed 100 mA.

2)The sum of all IOH, for ports C0-C3, GO-G1, D0-D7 should not exceed 100 mA.

3)The sum of all IOH, for ports G3-G5, B0-B7, EO-E7 should not exceed 100 mA.

4)The sum of all IOH, for ports FO-F7 should not exceed 100 mA.

All DC Characteristics contained in this datasheet are based on simulation and characterization of other AVR microcon-
trollers manufactured in the same process technology. These values are preliminary values representing design targets, and
will be updated after characterization of actual silicon

Values with “Power Reduction Register 1 - PRR1” disabled (0x00).

AI“"E',® 379

EEEes————————————————————— A TMmega16/32U4

7. Maximum regulator output current should be reduced by the USB buffer current required when USB is active (about 25mA).

The remaining regulator output current can be used for the external application.

8. As specified on the USB Electrical chapter, the D+/D- pads can withstand voltages down to -1V applied through a 39 Ohms

resistor

29.3 External Clock Drive Waveforms

Figure 29-1. External Clock Drive Waveforms
le t N
) ferox d tercn — o [+ tenet
Vini
ViL1 N 7 N
—— to ox —
« teloL >
29.4 External Clock Drive
Table 29-1. External Clock Drive
Vee=1.8-5.5V | Ve=2.7-55V | Vc=4.5-5.5V
Symbol | Parameter Min. Max. Min. Max. Min. Max. | Units
gL Srzc(;ﬂaet:éy 0 2 0 8 0 16 | MHz
tcic. | Clock Period 500 125 62.5 ns
tchex | High Time 200 50 25 ns
toLex Low Time 200 50 25 ns
teLcH Rise Time 2.0 1.6 0.5 us
topcl | Fall Time 2.0 1.6 0.5 us
Change in period
Atc o | from one clock 2 2 2 %
cycle to the next
Note: All DC Characteristics contained in this datasheet are based on simulation and characterization of

other AVR microcontrollers manufactured in the same process technology. These values are pre-
liminary values representing design targets, and will be updated after characterization of actual
silicon.

29.5 Maximum speed vs. V¢
Maximum frequency is depending on V; As shown in Figure 29-2, the Maximum Frequency vs.
V¢ curve is linear between 2.7V < Vg < 5.5V.

7766F-AVR-11/10

ATMEL

380

EEEes————————————————————— A TMmega16/32U4

Figure 29-2. Maximum Frequency vs. Vc, ATmegal6U4/ATmega32U4

16 MHz

8 MHz

/

N

Safe Operating Area

2.7V

29.6 2-wire Serial Interface Characteristics

Table 29-2 describes the requirements for devices connected to the 2-wire Serial Bus. The ATmega16U4/ATmega32U4 2-
wire Serial Interface meets or exceeds these requirements under the noted conditions.

4.5V

v

5.5V

Timing symbols refer to Figure 29-3.
Table 29-2. 2-wire Serial Bus Requirements
Symbol | Parameter Condition Min Max Units
VIL Input Low-voltage -0.5 0.3 Ve \
Viys'? Hysteresis of Schmitt Trigger Inputs 0.05 V@ - %
voL” Output Low-voltage 3 mA sink current 0 0.4 %
o Rise Time for both SDA and SCL 20 + 0.1C, 0@ 300 ns
o Output Fall Time from Vymin 10 Vi max 10 pF < C, < 400 pF® 20 +0.1C,0@ 250 ns
s Spikes Suppressed by Input Filter 0 501 ns
l; Input Current each 1/O Pin 0.1Vge < V< 0.9V¢ -10 10 pA
c” Capacitance for each 1/O Pin - 10 pF
fooL SCL Clock Frequency fox® > max(16fgg , 250kHz)® 0 400 kHz
fsoL < 100 kHz Voo - 0,4V 1000ns
— SRl Q
3mA Cy
Rp Value of Pull-up resistor
fscL > 100 kHz Ve —0,4V 300ns o
3mA Cp
thp:sTA Hold Time (repeated) START Condition
fscL > 100 kHz 0.6 - ps
fscL < 100 kHz®) 4.7 - us
tLow Low Period of the SCL Clock
fseL > 100 kHZ" 1.3 - Hs
M'nm 381
I)

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 29-2. 2-wire Serial Bus Requirements (Continued)
Symbol | Parameter Condition Min Max Units
fscL < 100 kHz 4.0 - ps
thigh High period of the SCL clock
fgoL > 100 kHz 0.6 - ps
fgoL <100 kHz 4.7 - ps
tsu.sTa Set-up time for a repeated START condition
fgoL > 100 kHz 0.6 - ps
fgoL < 100 kHz 0 3.45 ps
tp:paT Data hold time
fscL < 100 kHz 250 - ns
tsu.par Data setup time
fgoL > 100 kHz 100 - ns
fgoL <100 kHz 4.0 - ps
tsu.sto Setup time for STOP condition
fgoL > 100 kHz 0.6 - ps
; Bus free time between a STOP and START fsoL <100 kHz 4.7 - s
BoF condition fsor > 100 kHz 13 - us
Notes: 1. In ATmegal6U4/ATmega32U4, this parameter is characterized and not 100% tested.
2. Required only for fgc, > 100 kHz.
3. C, = capacitance of one bus line in pF.
4. fok = CPU clock frequency
5. This requirement applies to all ATmega16U4/ATmega32U4 2-wire Serial Interface operation. Other devices connected to the
2-wire Serial Bus need only obey the general fgc, requirement.
6. The actual low period generated by the ATmega16U4/ATmega32U4 2-wire Serial Interface is (1/fgg - 2/fck), thus fo must
be greater than 6 MHz for the low time requirement to be strictly met at g, = 100 kHz.
7. The actual low period generated by the ATmega16U4/ATmega32U4 2-wire Serial Interface is (1/fg¢ - 2/fc), thus the low

7766F-AVR-11/10

time requirement will not be strictly met for fg > 308 kHz when fo = 8 MHz. Still, ATmega16U4/ATmega32U4 devices con-
nected to the bus may communicate at full speed (400 kHz) with other ATmega16U4/ATmega32U4 devices, as well as any
other device with a proper t, oy acceptance margin.

Figure 29-3. 2-wire Serial Bus Timing

Ly ety tHIGH O

fLow tLow N
scL 44 o
ISUSTA |esje— 5| tHD;STA HD;DAT| ¢ | > | tgy.par Ao >
SDA —# 7777777 tsu;sTo

[tgur

AI“"E',® 382

EEEes————————————————————— A TMmega16/32U4

29.7 SPI Timing Characteristics
See Figure 29-4 and Figure 29-5 for details.

Table 29-3. SPI Timing Parameters

Description Mode Min Typ Max
1 SCK period Master See Table 17-4
2 SCK high/low Master 50% duty cycle
3 Rise/Fall time Master TBD
4 Setup Master 10
5 Hold Master 10
6 Out to SCK Master 0.5ty
7 SCKto out Master 10
8 SCK to out high Master 10
9 SS low to out Slave 15
10 SCK period Slave 4oty "
11 SCK high/low(") Slave 2ty
12 Rise/Fall time Slave TBD
13 Setup Slave 10
14 Hold Slave tek
15 SCK to out Slave 15
16 SCK to SS high Slave 20
17 SS high to tri-state Slave 10
18 SS low to SCK Slave 20

Note: 1. In SPI Programming mode the minimum SCK high/low period is:
-2 tCLCL for fCK <12 MHz
-3 tCLCL for fCK > 12 MHz

Figure 29-4. SPI Interface Timing Requirements (Master Mode)

SS

SCK £
(CPOL = 0) Y

SCK R '
(CPOL = 1) 3

MISO
, N

\

N

(Data Input)

MOSI

MSB
(Data Output) X S

A
X LsB

AI“"E',® 383

7766F-AVR-11/10

Figure 29-5. SPI Interface Timing Requirements (Slave Mode)

SS

SCK

(CPOL = 0)

SCK

(CPOL = 1)

MOSI
(Data Input)

MISO

(Data Output)

29.8 Hardware Boot EntranceTiming Characteristics

ATmega16/32U4

z Y

o _
bl \ \ \
| S
11 11
— | =
\ S |
N
13 14 12| |
15 17
—
MSB LSB >< X

Figure 29-6. Hardware Boot Timing Requirements

RESET
tSHRH [T " tHHRH
ALE/HWB — — — — — L - -
Table 29-4. Hardware Boot Timings
Symbol | Parameter Min Max
{SHRH HWB low Setup before Reset High 0
StartUpTime(
HHEH HWB low Hold after Reset High SUT)OJLtT ime
Delay(TOUT)
Table 29-5. ADC Characteristics
Symbol | Parameter Condition Min Typ Max Units
Single Ended Conversion 10
Resolution Differential conversion, gain = 1x/10x/40x 8 Bits
Differential conversion, gain = 200x 8
Viger = 4V, Ve = 4V, ADC clock = 200 kHz 2.0 3.0
Gain = 1x/10x/40%, Vgeg = 4V, Voo = 5V, 20 30
TUE Absolute accuracy ADC clock = 200 kHz LSB
Gain = 200X, Vger = 4V, Voo = 5V, 20 40
ADC clock = 200 kHz
ATMEL 384
I)

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table 29-5. ADC Characteristics
Symbol | Parameter Condition Min Typ Max Units
Vigee = 4V, Ve =4V, ADC clock = 200 kHz 0.5 1.5
Galn = 1X/1 OX/4OX, VREF = 4V, VCC = 5V, 0 3 1 5
INL Integral Non-Linearity ADC clock = 200 kHz ') LSB
Gain = 200X, Vggg = 4V, Vo =5V, 05 15
ADC clock = 200 kHz ' '
VREF = 4V, VCC = 4V, ADC CIOCk = 200 kHZ 04 07
Ga|n = 1X/1 0X/40X, VREF = 4V, VCC = 5V, 0 3 1 O
DNL Differential Non-Linearity ADC clock = 200 kHz)) LSB
Gain = 200x, Vgegg =4V, Vo =5V, 06 10
ADC clock = 200 kHz ')
Vger = 4V, Ve = 4V,ADC clock = 200 kHz -2.5 -1.0 25
Galn = 1X/1 0X/4OX, VREF = 4V, VCC = 5V, 0 0 _1 5 _2 5
Gain Error ADC clock = 200 kHz) ' ' LSB
Ga|n = 200X, VREF = 4V, VCC = 5V, _ _
ADC clock = 200 kHz 0.0 18 3.0
Vger = 4V, Ve = 4V, ADC clock = 200 kHz -2.5 1.5 25
Offset Error Viger= 4V, Vg = 5V, ADC clock = 200 kHz, LSB
- . -2.0 0.0 2.0
Differential mode
Single Ended Conversion 2.56 AVCC
VRer Reference Voltage \
Differential Conversion 2.56 AVCC-0.5
AVCC Analog Supply Voltage Vee - 0.3 Ve + 0.3 \Y
Single ended channels GND ViRer
Vin Input Voltage \
Differential Conversion 0 AVCC
Single Ended Channels 38.5
Input Bandwidth kHz
Differential Channels 4
VinT Internal Voltage Reference 2.56V 2.4 2.56 2.8 \
RRer Reference Input Resistance 32 kQ
Rain Analog Input Resistance 100 MQ
ATMEL 385
I)

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

30. Typical Characteristics

The following charts show typical behavior. These figures are not tested during manufacturing.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock
source.

All Active- and Idle current consumption measurements are done with all bits in the PRR regis-
ters set and thus, the corresponding 1/0O modules are turned off. Also the Analog Comparator is
disabled during these measurements. See “Power Reduction Register’ on page 45 for details.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating
frequency, loading of I/O pins, switching rate of 1/O pins, code executed and ambient tempera-
ture. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as C *V*f
whereC, = load capacitance, Vs = operating voltage and f = average switching frequency of I/O

pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to
function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer
enabled and Power-down mode with Watchdog Timer disabled represents the differential cur-
rent drawn by the Watchdog Timer.

30.1 Active Supply Current

7766F-AVR-11/10

Figure 30-1. Active Supply Current vs. Low Frequency (1MHz) and T= 25°C

1.6
1.4 < 55V
] _— 45V
’
—_ 40V
E 0.8 /// — | 3.6V
- 0.6 ///// 27V
. —— }
0.4
—
0.2 é/
0 ‘
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

AI“"E',® 386

EEEes————————————————————— A TMmega16/32U4

Figure 30-2. Active Supply Current vs. Low Frequency (1MHz) and T= 85°C

2.3 -
55V
2.1 |
— | 50V
1.9 -
17 | 45V
—_ /
E s — | — ﬁ] = ggg
o | — | — | _—1
_(.) /
13 — — ;;//
L —T 1 —1 1 e7v
1.1
T
I —
0.9
07 ‘
0 01 02 03 04 05 06 07 08 09 1

Frequency (MHz)

Figure 30-3. Active Supply Current vs. Frequency (1-16 MHz) and T= -40°C

18 +

16 5.5V

14 5.0V

12 4.5V
Eo °] — 140V
= : — — sev

, —— | 2.7v

2 — | —

0 i

2 4 6 8 10 12 14 16

Frequency (MHz)

AImEl@ 387

7766F-AVR-11/10

ATmega16/32U4

Figure 30-4. Active Supply Current vs. Frequency (1-16 MHz) and T = 25°C

14 5.5V
12 // —] 5.0V
/ 4.5V
10 L L
%\ 8 ///, 4.0V
F —
T — ; L s
, P //
— 2.7V
2 ///
/
O 1
2 4 6 8 10 12 14 16
Frequency (MHz)
Figure 30-5. Active Supply Current vs. Frequency (1-16 MHz) and T = 85°C
16
5.5V
14
5.0V
12
4.5V
10
:‘é 8 / // 4.0V
: 6 — — 1 —1 s3ev
4 ///
0 1
2 4 6 8 10 12 14 16

Frequency (MHz)

AI“"E',® 388

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

30.2 Idle Supply Current

Figure 30-6.

0.5
0.45
0.4
0.35
0.3
0.25

Icc (MA)

0.2
0.15
0.1

0.05

Figure 30-7.
0.5

0.45

0.4

0.35

0.25

Icc (MA)

7766F-AVR-11/10

Idle Supply Current vs. Low Frequency (1 MHz) and T = 25°C

//
/
_— ——] —T1 |
é////
—
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

Idle Supply Current vs. Low Frequency (1 MHz) and T = 85°C

/
_— _—
/// ||
=
—
0.1 02 03 04 05 06 07 08 09 1

Frequency (MHz)

ATMEL

55V

50V

45V

40V
3.6V

27V

55V

5.0V

45V

40V
3.6V

2.7V

389

ATmega16/32U4

Figure 30-8. Idle Supply Current vs. Frequency (1-16 MHz) T = 25°C

7,

5.5V
6 —
5.0V
5 //? 4.5V
—]
< 4 4.0V
£ // | _— [36V
L— .
. L e
3.3V
1 / —1 v
= ——
%/
0 |
2 4 6 8 10 12 14 16
Frequency (MHz)
Figure 30-9. Idle Supply Current vs. Frequency (1-16 MHz) T = 85°C
7 .
5.5V
® 5.0V
= 4
£ — 1 4.0V
o 3.6V
) /// .
/ —— | o7v
4
——
0 1
2 4 6 8 10 12 14 16

Frequency (MHz)

AI“"E',® 390

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

30.3 Power-down Supply Current

Figure 30-10. Power-Down Supply Current vs. V¢ (WDT Disabled)
35

85 °C
/

25 —

Icc (UA)
\

1.5

L 25°C

0 -40°C

0
2.5 2.8 3.1 3.4 3.7 4 4.3 4.6 4.9 5.2 5.5

Vee (V)

Figure 30-11. Power-Down Supply Current vs. V¢ (WDT Enabled)

24

22 /

20 7

18 /

16

/ 85 oC

25°C

14

12 -40°C
_—

10

Icc (uA)

8

6 e

4
25 2.8 3.1 3.4 3.7 4 4.3 4.6 4.9 5.2 55

Ve (V)

‘I“"E',® 391

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 30-12. Power-Down Supply Current vs. V¢ (WDT Enabled, BOD EN)

48 85 °C
45

42

39 25 °C

/
/
36 /
N AV re:
-

30
27 T | /

Icc (UA)

24 —
21

25 28 31 34 37 4 43 486 49 52 55
Vee (V)

30.4 Power-save Supply Current

Figure 30-13. Power-Save Supply Current vs. V¢ (WDT Disabled)

200
-40 °C

25 °C
170 85 °C
155

185

140

125

Icc (uA)

110

95

80

\\

65

50

25 28 31 34 37 4 43 46 49 52 55
Vee (V)

‘I“"E',® 392

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

30.5 Pin Pull-Up

7766F-AVR-11/10

Figure 30-14. I/O Pin Pull-up Resistor Current vs. Input Voltage (Vc =2.7 V)

lop (UA)

80

70

60

50

40

30

20

0.5 1

.
15 2 25
Vor (V)

Figure 30-15. I/O Pin Pull-up Resistor Current vs. Input Voltage (Voc =5 V)

lop (UA)

140

120

100

80

60

40

20

25°C
-40 °C
85°C

25°C

85 °C
-40 °C

ATMEL

Vor (V)

393

ATmega16/32U4

Figure 30-16. Reset Pull-up Resistor Current vs. Reset Pin Voltage (Vc=5V)

120 -
100 N

RN
. N

40

IreseT (UA)

N 25 °C

20
\ 85 °C
N -40 °C

Vreser (V)

30.6 Pin Driver Strength

Figure 30-17. I/O Pin Output Voltage vs. Sink Current (Vg =3 V)

4,
| 85°C

- /
|
/

2

VoL (V)

1.5
25 °C

1]
// | _— -40 °C

0.5
Lt |

loL (MA)

AI“"E',® 394

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 30-18. I/O Pin Output Voltage vs. Sink Current (Voc =5 V)

14
85°C
0.9

0.8
07 25 °C

0.6

-40 °C

0.5

Vou (V)

0.4

/
1

0.3

0.2

0.1

0 \
0 2 4 6 8 10 12 14 16 18 20

loL (MA)

Figure 30-19. I/0 Pin Output Voltage vs. Source Current (Vcc =3 V)

3.5 1

3

\§

2.5

2 ~~— -40 °C

25°C
1 N

Vo (V)

0 \ 85°C

lon (MA)

AImEl@ 395

7766F-AVR-11/10

ATmega16/32U4

Figure 30-20. I/O Pin Output Voltage vs. Source Current (Vc =5 V)

5.1

4.9 —\>=sf
T~

4.7

/]
/

//
/
/

4.5

Vor (V)

\
[~ -40°C
S~ 25 °C

4.1 ~ 85 °C

4.3

3.9 !
0 2 4 6 8 10 12 14 16 18 20

lon (MA)

Figure 30-21. USB DP LO Pull-Up Resistor Current vs. USB Pin Voltage

2800 -

2400

2000

1600

luss (UA)

1200

800
NN 85 °C
400 \ 25°C

o & _40 OC
0 0.5 1 15 2 2.5 3 3.5
Vuse (V)

AImEl@ 396

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

30.7 Pin Threshold and Hysteresis

Figure 30-22. I/O Pin Input Threshold Voltage vs. V¢ (Vy, 10 Pin read as ‘1°)

1.8 -
-40 °C
| _— 25°C
1.6 // 85 OC
1.4 /%
% . ///
3 ' /
£ =
1 1
0.8
0.6 |
25 2.8 3.1 3.4 37 4 4.3 4.6 4.9 5.2 5.5
Vee (V)
Figure 30-23. I/O Pin Input Threshold Voltage vs. V¢ (V, 10 Pin read as ‘0)
e 40 °C
|—"] 25°C
1.6 // 85°C
% . ///
g . — /
1 —1
0.8
0.6 |

25 28 3.1 34 37 4 43 46 49 52 55
Ve (V)

AI“"E',® 397

7766F-AVR-11/10

ATmega16/32U4

Figure 30-24. USB Pin Input Threshold Voltage vs. V¢ (Vy, 10 Pin read as ‘1)

2 85 °C
o _——125°C
/

1.8 //
//

-40 °C
1.7

16 ——
15 = =]

1.4

Threshold (V)

1.3

1.2

27 28 29 3 31 32 33 34 35 36 37 38
Vee (V)

Figure 30-25. USB Pin Input Threshold Voltage vs. V¢ (V/;, I/O Pin read as ‘0’)

16
-40 °C
15 85 °g
===
14 = =
/;‘;1.3 //
: =
8 12
= 5z
11 %/
=
;
0.9

27 28 29 3 31 32 33 34 35 36 37 38
Ve (V)

‘I“"E',® 398

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 30-26. Vbus Pin Input Threshold Voltage vs. V¢ (Vyy, 10 Pin read as ‘17)
4.6

4.58 85 °C

4.56 25 °C
454

452

45
4.48
4.46 N
4.44 \
4.42

4.4
4.38

Threshold (V)

-40 °C

25 28 31 34 37 4 43 46 49 52 55
Ve (V)

Figure 30-27. Vbus Pin Input Threshold Voltage vs. V¢ (V,, I/O Pin read as ‘0’)
1.52

85 °C
25 °C
1.51
15
S
S I
g 1.49 \\
(0]
= BN
1.48
\
1.47
—1——-40°C
1.46

25 28 31 34 37 4 43 46 49 52 55
Vee (V)

‘I“"E',® 399

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

30.8 BOD Threshold

Figure 30-28. BOD Thresholds vs. Temperature (BODLEVEL is 2.6 V)

2.8 1

Rising Vcg |
278 —

2.76 —

2.74

Falling Vicc
2.72 —

Threshold (V)

2.7

2.68

2.66

2.64

-50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 80 90

Temperature (°C)

Figure 30-29. BOD Thresholds vs. Temperature (BODLEVEL is 3.5 V)

3.73 1

ny)

sing|Vcc | +—T 1

—

/ Falling Vee

3.69

3.65

3.61

3.57

Threshold (V)

3.53

3.49 /

3.45

-50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 80 90

Temperature (°C)

AImEl@ 400

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 30-30. BOD Thresholds vs. Temperature (BODLEVEL is 4.3 V)
4.6 - T

455 _
Rising Vc/ Falling|Vcc
45 -

4.45

4.4

4.35 >

4.3 /

4.25

Threshold (V)

4.2

4.15

4.1

-50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 80 90

Temperature (°C)

Figure 30-31. Bandgap Voltage vs. Vcc

1.11

1.1

1.09

I
—_— \ 85 °C
— °
o — | 25 °C

1.07 ™~

\
1.06 AN 0ec

Bandgap Voltage (V)

1.05

Vee (V)

AImEl@ 401

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 30-32. Bandgap Voltage vs. Temperature

1.1
» 1.9V
' ———1 | — [[|30V
— /%/// D e 45V
2 1.09 50V
//
g”] /// // 55V
2 108
o / /
g /
5 1.07 /
1.06 /
1.05
40 -30 -20 -10 O 10 20 30 40 50 60 70 80 90

Temperature (°C)

30.9 Internal Oscilllator Speed

Figure 30-33. Watchdog Oscillator Frequency vs. Temperature

124
\\
120 N —
—_— [\
S — ———
= BNl
—_]
. D
=< 118 \ \
- AN ~ |19V
116
§ ™~ |30V
114
40V
S 45V
112 55V
40 30 20 -10 O 10 20 30 40 50 60 70 80 90

Temperature (°C)

AI“IE'.@ 402

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 30-34. Watchdog Oscillator Frequency vs. Vg

124 -
- —
\
122 E— 40°C
\\ -
120 E—
\
——T——Ff 1 25°C
T 118
=
o ~
£ 116
114
—
— |])
——— 85 °C
112
110 ‘
15 2 25 3 35 4 45 5 55
Vee (V)

Figure 30-35. Calibrated 8 MHz RC Oscillator Frequency vs. Osccal Value

147 85 °C
25 °C
2 40°C
|~
10 = A
N 8 /%
= ==
s /
/
4 /
2
0 i

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
OSCCAL (X1)

AImEl@ 403

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 30-36. Calibrated 8 MHz RC Oscillator Frequency vs. Temperature

8.4 |27V
~ |40V
8.3 — 155V

1

| %

8.1

N\
\

o

7.9
//
78 === f%
/
7.7

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90
Temperature (°C)

Figure 30-37. Calibrated 8 MHz RC Oscillator Frequency vs. Operating Voltage

8.4

83 85 °C

8.2

8.1

8 25 °C
7.9

Frc (MHZ)

7.8

-40 °C

7.7

7.6
2.5 2.8 3.1 3.4 3.7 4 4.3 4.6 4.9 5.2 5.5

Ve (V)

AI“IE'.@ 404

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Figure 30-38. OSCCAL VALUE STEP SIZE IN % (Base frequency = 0.0 MHz)

1.4

1.2

1 |

o
o

o
)

Frc change (%)

©
»~

85 °C
-40 °C
25°C

o
o

0 1
0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

OSCCAL (X1)

30.10 Current Consumption of Peripheral Units

Figure 30-39. USB Regulator Level vs. V¢

3.5 1

| _4 o
- / T T—— = 58-G

33 7 25 °C
3.2 /
3.1 /'

3

2.9

ICC (UA)

2.8 /

2.7 i
27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

Vee (V)

AImEl@ 405

7766F-AVR-11/10

Figure 30-40. USB Regulator Level with load 75 Q vs. V¢

3.4 +

ATmega16/32U4

-40 °C

3.3

T

85 °C

——— 25°C

3.2

3.1

I/

3

2.9

VA

Current (uA)

2.8

i/

2.7

NI

2.6

25

2.8 3.1

3.4 3.7

Figure 30-41. ADC Internal Vref vs. Vcc

2.54

Ve (V)

4.6

4.9

5.2

5.5

2.53

2.52

2.51

2.5

85 °C
25°C

2.49

2.48

Voltage VIntRef (V)

2.47

2.46

N -40 °C

2.45
2.6 2.9

7766F-AVR-11/10

3.2 3.5 3.8

ATMEL

41
Voltage (V)

4.4

4.7 5

5.3

5.6

406

EEEes————————————————————— A TMmega16/32U4

Figure 30-42. Internal Reference Voltage vs. Sink Current

2.52

2.51

2.5

V)

2.49

2.48

2.47

Voltage VIntRef

2.46

2.45

2.44

2.43

Sink current (mA)

30.11 Current Consumption in Reset and Reset Pulsewidth

7766F-AVR-11/10

Figure 30-43. Reset Supply Current vs. Frequency (1 - 20 MHz)

3.5

2.5

Icc (MA)

1.5

0.5

85 °C
— 25°C
/
//
e
-40 °C
I
[
-5 -4 -3 -2 1 0

5.0V
4.5V

ATMEL

Frequency (MHz)

P
—
1 T —
/ // ﬁ%.ov
L L
— | tew
6 g 0 2 "

16

407

EEEes————————————————————— A TMmega16/32U4

31. Register Summary
—

Address Name Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0 Page
(OxFF) Reserved - - - - - - - -
(OXFE) Reserved - - - - - - - -
(OxFD) Reserved - - - - - - - -
(0xFC) Reserved - - - - - - - -
(OxFB) Reserved - - - - - - - -
(OxFA) Reserved - - - - - - - -
(0xF9) Reserved - - - -
(0xF8) Reserved - - - - - - - -
(0xF7) Reserved - - - - - - - -
(0xF6) Reserved - - - - - - - -
(0xF5) Reserved - - - - - - - -
(OxF4) UEINT - EPINT6:0
(OxF3) UEBCHX - - - - - BYCT10:8
(OxF2) UEBCLX BYCT7:0
(OxF1) UEDATX DAT7:0
(OxFO) UEIENX FLERRE NAKINE - NAKOUTE RXSTPE RXOUTE STALLEDE TXINE
(OXEF) UESTA1X - - - - - CTRLDIR CURRBK1:0
(OXEE) UESTAOX CFGOK OVERFI UNDERFI - DTSEQ1:0 NBUSYBK1:0
(OXED) UECFG1X EPSIZE2:0 EPBK1:0 ALLOC -
(OxEC) UECFGOX EPTYPE1:0 - - - - - EPDIR
(OXEB) UECONX - - STALLRQ STALLRQC RSTDT - - EPEN
(OXEA) UERST - EPRST6:0
(OXE9) UENUM - - - - - EPNUM2:0
(OXE8) UEINTX FIFOCON NAKINI RWAL NAKOUTI RXSTPI RXOUTI STALLEDI TXINI
(0xE7) Reserved - - - -

(OXEB) UDMFN - - - FNCERR - - - -
(OxE5) UDFNUMH - - - - - FNUM10:8

(OxE4) UDFNUML FNUM7:0

(OxE3) UDADDR ADDEN UADDG6:0

(OxE2) UDIEN - UPRSME EORSME WAKEUPE EORSTE SOFE MSOFE SUSPE
(OxE1) UDINT - UPRSMI EORSMI WAKEUPI EORSTI SOFI MSOFI SUSPI
(OxEQ) UDCON - - - - RSTCPU LSM RMWKUP DETACH
(0OxDF) Reserved

(0OxDE) Reserved

(0xDD) Reserved

(0xDC) Reserved

(0xDB) Reserved

(0xDA) USBINT - - - - - - - VBUSTI
(0xD9) USBSTA - - - - - - ID VBUS
(0xD8) USBCON USBE - FRZCLK OTGPADE - - - VBUSTE
(0xD7) UHWCON - - - - - - - UVREGE
(0xD6) Reserved

(0xD5) Reserved

(0xD4) DT4 DT4H3 DT4H2 DT4H1 DT4HO DT4L3 DT4L2 DT4L1 DT4LO
(0xD3) Reserved

(0xD2) OCR4D Timer/Counter4 - Output Compare Register D

(0xD1) OCR4C Timer/Counter4 - Output Compare Register C

(0xDO) OCR4B Timer/Counter4 - Output Compare Register B

(0OxCF) OCR4A Timer/Counter4 - Output Compare Register A

(0xCE) UDR1 USART1 I/O Data Register

(0xCD) UBRR1H - - - - USART1 Baud Rate Register High Byte

(0xCC) UBRR1L USART1 Baud Rate Register Low Byte

(0xCB) Reserved - - - - - - - -
(0xCA) UCSR1C UMSEL11 UMSEL10 UPM11 UPM10 USBS1 UCSZ11 UCSZ10 UCPOLA1
(0xC9) UCSR1B RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1 ucsz12 RXB81 TXB81
(0xC8) UCSR1A RXC1 TXC1 UDRET1 FE1 DOR1 PE1 u2x1 MPCM1
(0xC7) CLKSTA - - - - - - RCON EXTON
(0xC6) CLKSEL1 RCCKSEL3 RCCKSEL2 RCCKSEL1 RCCKSELO EXCKSEL3 EXCKSEL2 EXCKSEL1 EXCKSELO
(0xC5) CLKSELO RCSUT1 RCSUTO EXSUT1 EXSUTO RCE EXTE - CLKS
(0xC4) TCCR4E TLOCK4 ENHC4 OC40E5 OC40E4 OC40E3 OC40E2 OC40E1 OC40E0
(0xC3) TCCR4D FPIE4 FPEN4 FPNC4 FPES4 FPAC4 FPF4 WGM41 WGM40
(0xC2) TCCR4C COM4A1S COM4A0S COM4B1S COM4B0S COM4D1S COM4D0S FOC4D PWM4D
(0xC1) TCCR4B PWM4X PSR4 DTPS41 DTPS40 CS43 CS842 CS41 CS40
(0xC0) TCCR4A COMA4A1 COM4A0 COM4B1 COM4B0 FOC4A FOC4B PWM4A PWM4B
(OxBF) TC4H - - - - - Timer/Counter4 High Byte

7766F-AVR-11/10

ATMEL

408

EEEes————————————————————— A TMmega16/32U4

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 | Bit 1 | Bit 0 Page
(OxBE) TCNT4 Timer/Counter4 - Counter Register Low Byte
(0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAMO -
(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
(0xBB) TWDR 2-wire Serial Interface Data Register
(0xBA) TWAR TWAB TWA5 TWA4 TWAS3 TWA2 TWA1 TWAO TWGCE
(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 - TWPS1 TWPSO0
(0xB8) TWBR 2-wire Serial Interface Bit Rate Register
(0xB7) Reserved - - - - - - - -
(0xB6) Reserved -
(0xB5) Reserved - - - - - - - -
(0xB4) Reserved - - - - - - - -
(0xB3) Reserved - - - - - - - -
(0xB2) Reserved - - - - - - - -
(0xB1) Reserved - - - - - - - -
(0xB0) Reserved - - - - - - - -
(OXAF) Reserved - - - - - - - -
(OXAE) Reserved - - - - - - - -
(0xAD) Reserved - - - - - - - -
(0xAC) Reserved - - - - - - - -
(0xAB) Reserved - - - - - - - -
(OxAA) Reserved - - - - - - - -
(0xA9) Reserved - - - - - - - -
(0xA8) Reserved - - - - - - - -
(0xA7) Reserved - - - - - - - -
(0xAB) Reserved - - - - - - - -
(0xA5) Reserved - - - - - - - -
(0xA4) Reserved - - - - - - - -
(0xA3) Reserved - - - - - - - -
(0xA2) Reserved - - - - - - - -
(0xA1) Reserved - - - - - - - -
(0xA0) Reserved - - - - - - - -
(0x9F) Reserved - - - - - - - -
(Ox9E) Reserved - - - - - - - -
(0x9D) OCR3CH Timer/Counter3 - Output Compare Register C High Byte
(0x9C) OCR3CL Timer/Counter3 - Output Compare Register C Low Byte
(0x9B) OCR3BH Timer/Counter3 - Output Compare Register B High Byte
(0x9A) OCR3BL Timer/Counter3 - Output Compare Register B Low Byte
(0x99) OCR3AH Timer/Counter3 - Output Compare Register A High Byte
(0x98) OCRSAL Timer/Counter3 - Output Compare Register A Low Byte
(0x97) ICR3H Timer/Counter3 - Input Capture Register High Byte
(0x96) ICR3L Timer/Counter3 - Input Capture Register Low Byte
(0x95) TCNT3H Timer/Counter3 - Counter Register High Byte
(0x94) TCNT3L Timer/Counter3 - Counter Register Low Byte
(0x93) Reserved - - - - - - - -
(0x92) TCCR3C FOC3A - - - - - - -
(0x91) TCCR3B ICNC3 ICES3 - WGM33 WGM32 CS832 CS31 CS30
(0x90) TCCR3A COMB3A1 COMB3A0 COM3B1 COMB3B0 COMB3CH1 COMB3CO WGM31 WGM30
(Ox8F) Reserved - - - - - - - -
(Ox8E) Reserved - - - - - - - -
(0x8D) OCR1CH Timer/Counter1 - Output Compare Register C High Byte
(0x8C) OCR1CL Timer/Counter1 - Output Compare Register C Low Byte
(0x8B) OCR1BH Timer/Counter1 - Output Compare Register B High Byte
(Ox8A) OCR1BL Timer/Counter1 - Output Compare Register B Low Byte
(0x89) OCR1AH Timer/Counter1 - Output Compare Register A High Byte
(0x88) OCR1AL Timer/Counter1 - Output Compare Register A Low Byte
(0x87) ICR1H Timer/Counter1 - Input Capture Register High Byte
(0x86) ICR1L Timer/Counter1 - Input Capture Register Low Byte
(0x85) TCNT1H Timer/Counter1 - Counter Register High Byte
(0x84) TCNTI1L Timer/Counter1 - Counter Register Low Byte
(0x83) Reserved - - - - - - - -
(0x82) TCCR1C FOC1A FOC1B FOC1C - - - - -
(0x81) TCCR1B ICNCA ICESH - WGM13 WGM12 CSs12 CS11 CS10
(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0O COM1C1 COM1CO0 WGM11 WGM10
(OX7F) DIDR1 - - - - - - - AINOD
(OX7E) DIDRO ADC7D ADC6D ADC5D ADC4D - - ADC1D ADCOD
(0x7D) DIDR2 - - ADC13D ADC12D ADC11D ADC10D ADC9D ADC8D

AI“"E',® 409

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
(0x7C) ADMUX REFS1 REFSO ADLAR MUX4 MUX3 MUX2 MUX1 MUX0
(0x7B) ADCSRB ADHSM ACME MUX5 - ADTS3 ADTS2 ADTS1 ADTSO
(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPSO
(0x79) ADCH ADC Data Register High byte
(0x78) ADCL ADC Data Register Low byte
(0x77) Reserved - - - - - - - -
(0x76) Reserved - - - - - - - -
(0x75) Reserved - - - - - - - -
(0x74) Reserved - - - - - - - -
(0x73) Reserved - - - - - - - -
(0x72) TIMSK4 OCIE4D OCIE4A OCIE4B - - TOIE4 - -
(0x71) TIMSK3 - - ICIE3 - OCIE3C OCIE3B OCIE3A TOIE3
(0x70) Reserved - - - - - - - -
(Ox6F) TIMSK1 - - ICIE1 - OCIE1C OCIE1B OCIE1A TOIE1
(Ox6E) TIMSKO - - - - - OCIEOB OCIEOA TOIEO
(0x6D) Reserved - - - - - - - -
(0x6C) Reserved - - - - - - - -
(0x6B) PCMSKO PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINTO
(OxBA) EICRB - - 1SC61 1SC60 - - - -
(0x69) EICRA ISC31 1SC30 1SC21 1SC20 ISC11 ISC10 1SCO1 1ISC00
(0x68) PCICR - - - - - - - PCIEO
(0x67) RCCTRL - - - - - - - RCFREQ
(0x66) OSCCAL RC Oscillator Calibration Register
(0x65) PRR1 PRUSB - - PRTIM4 PRTIM3 - - PRUSART1
(0x64) PRRO PRTWI - PRTIMO - PRTIM1 PRSPI - PRADC
(0x63) Reserved - - - - - - - -
(0x62) Reserved - - - - - - - -
(0x61) CLKPR CLKPCE - - - CLKPS3 CLKPS2 CLKPS1 CLKPSO
(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDPO

0x3F (0x5F) SREG | T H S Vv N 4 C

Ox3E (0x5E) SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8

0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO

0x3C (0x5C) Reserved - - - - - - - -
0x3B (0x5B) RAMPZ - - - - - - RAMPZ1 RAMPZ0

O0x3A (0x5A) Reserved - - - - - - - -

0x39 (0x59) Reserved - - - - - - - -

0x38 (0x58) Reserved - - - - - - - -
0x37 (0x57) SPMCSR SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN
0x36 (0x56) Reserved - - - - - - - -
0x35 (0x55) MCUCR JTD - - PUD - - IVSEL IVCE
0x34 (0x54) MCUSR - - USBRF JTRF WDRF BORF EXTRF PORF
0x33 (0x53) SMCR - - - - SM2 SM1 SMO SE
0x32 (0x52) PLLFRQ PINMUX PLLUSB PLLTM1 PLLTMO PDIV3 PDIV2 PDIV1 PDIVO
0x31 (0x51) l\?gl\[l)gé{ OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDRH1 OCDRO
Monitor Data Register

0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACISO

O0x2F (0x4F) Reserved - - - - - - - -

O0x2E (Ox4E) SPDR SPI Data Register

0x2D (0x4D) SPSR SPIF WCOL - - - - - SPI2X

0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO

0x2B (0x4B) GPIOR2 General Purpose 1/0O Register 2

O0x2A (0x4A) GPIOR1 General Purpose 1/0O Register 1

0x29 (0x49) PLLCSR - - - PINDIV | - | - PLLE PLOCK

0x28 (0x48) OCROB Timer/Counter0 Output Compare Register B

0x27 (0x47) OCROA Timer/Counter0 Output Compare Register A

0x26 (0x46) TCNTO Timer/Counter0 (8 Bit)

0x25 (0x45) TCCROB FOCOA FOCO0B - - WGMO02 CS02 CSo01 CS00

0x24 (0x44) TCCROA COMOA1 COMOAOQ COMO0BH1 COMO0BO - - WGMO1 WGMO00

0x23 (0x43) GTCCR TSM - - - - - PSRASY PSRSYNC
0x22 (0x42) EEARH - - - - EEPROM Address Register High Byte

0x21 (0x41) EEARL EEPROM Address Register Low Byte

0x20 (0x40) EEDR EEPROM Data Register

0x1F (Ox3F) EECR - - EEPM1 EEPMO EERIE EEMPE EEPE EERE

Ox1E (Ox3E) GPIORO General Purpose 1/0O Register 0

0x1D (0x3D) EIMSK - INT6 - - INT3 INT2 INT1 INTO

0x1C (0x3C) EIFR - INTF6 - - INTF3 INTF2 INTF1 INTFO

AImEl@ 410

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Address Name Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0 Page
0x1B (0x3B) PCIFR - - - - - - - PCIFO
0x1A (0x3A) Reserved - - - - -
0x19 (0x39) TIFR4 OCF4D OCF4A OCF4B - - TOV4 - -
0x18 (0x38) TIFR3 - - ICF3 - OCF3C OCF3B OCF3A TOV3
0x17 (0x37) Reserved - - - - - - -
0x16 (0x36) TIFR1 - - ICF1 - OCF1C OCF1B OCF1A TOV1
0x15 (0x35) TIFRO - - - - - OCF0B OCF0A TOVO
0x14 (0x34) Reserved - - -
0x13 (0x33) Reserved - -
0x12 (0x32) Reserved - - - - - -
0x11 (0x31) PORTF PORTF7 PORTF6 PORTF5 PORTF4 - - PORTF1 PORTFO
0x10 (0x30) DDRF DDF7 DDF6 DDF5 DDF4 - - DDF1 DDFO
0xOF (Ox2F) PINF PINF7 PINF6 PINF5 PINF4 - PINF1 PINFO
OxOE (0x2E) PORTE - PORTEG6 - - - PORTE2
0x0D (0x2D) DDRE - DDE6 - - - DDE2
0x0C (0x2C) PINE - PINE6 - - - PINE2 - -
0x0B (0x2B) PORTD PORTD? PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTDO
O0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDDO
0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PINDO
0x08 (0x28) PORTC PORTC7 PORTC6 - - - - -
0x07 (0x27) DDRC DDC7 DDC6
0x06 (0x26) PINC PINC7 PINC6 - - - - - -
0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTBO
0x04 (0x24) DDRB DDB? DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDBO
0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO
0x02 (0x22) Reserved - - - - -
0x01 (0x21) Reserved = =
0x00 (0x20) Reserved - -

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved /0 memory addresses

should never be written.

2. 1/O registers within the address range $00 - $1F are directly bit-accessible using the SBI and CBI instructions. In these reg-
isters, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on
all bits in the 1/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers 0x00 to 0x1F only.

4. When using the 1/0 specific commands IN and OUT, the 1/0O addresses $00 - $3F must be used. When addressing 1/O regis-

7766F-AVR-11/10

ters as data space using LD and ST instructions, $20 must be added to these addresses. The ATmega16U4/ATmega32U4 is
a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for
the IN and OUT instructions. For the Extended 1/0O space from $60 - $1FF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.

AI“IE'.@ 411

EEEes————————————————————— A TMmega16/32U4

32. Instruction Set Summary

7766F-AVR-11/10

Mnemonics | Operands | Description Operation Flags #Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd, Rr Add two Registers Rd < Rd + Rr Z,C,N,V,H 1
ADC Rd, Rr Add with Carry two Registers Rd« Rd+Rr+C Z,CN,\V,H 1
ADIW Rdl,K Add Immediate to Word Rdh:Rdl «— Rdh:Rdl + K ZCN\V,S 2
SUB Rd, Rr Subtract two Registers Rd « Rd - Rr Z,C,N,V,H 1
SUBI Rd, K Subtract Constant from Register Rd < Rd - K Z,C,N,V,H 1
SBC Rd, Rr Subtract with Carry two Registers Rd« Rd-Rr-C Z,C,N,V,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd« Rd-K-C Z,CN,\V,H 1
SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl «- Rdh:Rdl - K ZCN\V,S 2
AND Rd, Rr Logical AND Registers Rd < Rd Rr ZN\V 1
ANDI Rd, K Logical AND Register and Constant Rd <~ Rd e K Z NV 1
OR Rd, Rr Logical OR Registers Rd < Rd v Rr ZN\V 1
ORI Rd, K Logical OR Register and Constant Rd <« Rdv K ZN,V 1
EOR Rd, Rr Exclusive OR Registers Rd <« Rd & Rr ZN,V 1
COM Rd One’s Complement Rd « OxFF — Rd Z,C,N,V 1
NEG Rd Two’s Complement Rd « 0x00 — Rd Z,C,N,V,H 1
SBR Rd,K Set Bit(s) in Register Rd « Rdv K ZN\V 1
CBR Rd,K Clear Bit(s) in Register Rd < Rd e (OXFF - K) Z N,V 1
INC Rd Increment Rd « Rd + 1 Z NNV 1
DEC Rd Decrement Rd < Rd -1 ZN\V 1
TST Rd Test for Zero or Minus Rd < Rd « Rd ZN\V 1
CLR Rd Clear Register Rd « Rd ® Rd ZN\V 1
SER Rd Set Register Rd < OxFF None 1
MUL Rd, Rr Multiply Unsigned R1:R0 «~ Rd x Rr ZC 2
MULS Rd, Rr Multiply Signed R1:R0 « Rd x Rr ZC 2
MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 « Rd x Rr Z,C 2
FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 « (Rd x Rr) << 1 Z,C 2
FMULS Rd, Rr Fractional Multiply Signed R1:R0 « (Rd x Rr) << 1 Z,C 2
FMULSU Rgi Rr Fractional Multielx Signed with Unsigned R1:R0 « (RE x Rr) << 1 EiC 2
BRANCH INSTRUCTIONS
RJMP k Relative Jump PC«PC+k +1 None 2
IJMP Indirect Jump to (Z) PC«Z None 2
EIJMP Extended Indirect Jump to (Z) PC «(EIND:2) None 2
JMP k Direct Jump PC « k None 3
RCALL k Relative Subroutine Call PC« PC+k+1 None 4
ICALL Indirect Call to (Z) PC«Z None 4
EICALL Extended Indirect Call to (Z) PC «(EIND:2) None 4
CALL k Direct Subroutine Call PC « k None 5
RET Subroutine Return PC « STACK None 5
RETI Interrupt Return PC « STACK | 5
CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC« PC +20r 3 None 1/2/3
CP Rd,Rr Compare Rd — Rr Z,N\V,C,H 1
CPC Rd,Rr Compare with Carry Rd - Rr-C Z,N\V,CH 1
CPI Rd,K Compare Register with Immediate Rd - K Z,N,V,CH 1
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC <~ PC +2 or 3 None 1/2/3
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC« PC +20r3 None 1/2/3
SBIC P,b Skip if Bit in 1/0 Register Cleared if (P(b)=0) PC« PC +20r3 None 1/2/3
SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC «~ PC +2 or 3 None 1/2/3
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC<«-PC+k + 1 None 1/2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC<«—PC+k + 1 None 1/2
BREQ k Branch if Equal if (Z=1)then PC« PC+k+1 None 1/2
BRNE k Branch if Not Equal if (Z=0) then PC <« PC +k + 1 None 1/2
BRCS k Branch if Carry Set if C=1)thenPC« PC+k+1 None 1/2
BRCC k Branch if Carry Cleared if (C=0)then PC« PC +k + 1 None 1/2
BRSH k Branch if Same or Higher if (C=0) then PC« PC +k + 1 None 1/2
BRLO k Branch if Lower if C=1)thenPC« PC+k+1 None 1/2
BRMI k Branch if Minus if (N=1)then PC« PC+k +1 None 1/2
BRPL k Branch if Plus if (N=0) then PC« PC+k + 1 None 1/2
BRGE k Branch if Greater or Equal, Signed if (N ® V=0) then PC <~ PC + k + 1 None 1/2
BRLT k Branch if Less Than Zero, Signed if (N® V=1) then PC « PC + k + 1 None 1/2
BRHS k Branch if Half Carry Flag Set if (H=1)thenPC« PC+k+1 None 1/2
BRHC k Branch if Half Carry Flag Cleared if (H=0) then PC« PC +k + 1 None 1/2
BRTS k Branch if T Flag Set if (T=1)then PC« PC+k +1 None 1/2
BRTC k Branch if T Flag Cleared if (T=0) then PC <« PC +k + 1 None 1/2
BRVS k Branch if Overflow Flag is Set if V=1)then PC« PC+k+1 None 1/2
ATMEL 412
Y 5

EEEes————————————————————— A TMmega16/32U4

Mnemonics Operands Description Operation Flags #Clocks
BRVC k Branch if Overflow Flag is Cleared if V=0)then PC« PC+k+1 None 1/2
BRIE k Branch if Interrupt Enabled if (I=1)then PC« PC +k+ 1 None 1/2
BRLD Kk Bra_nch if Interruet Disabled if (1=0)then PC <~ PC +k + 1 None 1/2

BIT AND BIT-TEST INSTRUCTIONS
SBI P,b Set Bit in I/O Register 1/0(P,b) < 1 None 2
CBI P,b Clear Bit in I/0 Register 1/0(P,b) < 0 None 2
LSL Rd Logical Shift Left Rd(n+1) < Rd(n), Rd(0) «- 0 ZCNV 1
LSR Rd Logical Shift Right Rd(n) <~ Rd(n+1), Rd(7) «- 0 ZCNV 1
ROL Rd Rotate Left Through Carry Rd(0)«-C,Rd(n+1)« Rd(n),C«-Rd(7) ZCNV 1
ROR Rd Rotate Right Through Carry Rd(7)«C,Rd(n)« Rd(n+1),C«-Rd(0) Z,CNV 1
ASR Rd Arithmetic Shift Right Rd(n) « Rd(n+1), n=0..6 Z,CN\V 1
SWAP Rd Swap Nibbles Rd(3..0)«-Rd(7..4),Rd(7..4)«Rd(3..0) None 1
BSET s Flag Set SREG(s) « 1 SREG(s) 1
BCLR s Flag Clear SREG(s) « 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T < Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) « T None 1
SEC Set Carry C«1 C 1
CLC Clear Carry C«0 C 1
SEN Set Negative Flag N« 1 N 1
CLN Clear Negative Flag N« 0 N 1
SEZ Set Zero Flag Z1 4 1
CLZ Clear Zero Flag Z<«0 V4 1
SEI Global Interrupt Enable | 1 | 1
CLI Gilobal Interrupt Disable <0 | 1
SES Set Signed Test Flag S« 1 S 1
CLS Clear Signed Test Flag S« 0 S 1
SEV Set Twos Complement Overflow. V1 \ 1
CLV Clear Twos Complement Overflow V<« 0 V 1
SET Set T in SREG T 1 T 1
CLT Clear T in SREG T<0 T 1
SEH Set Half Carry Flag in SREG He1 H 1
CLH Clear Half Carry Flag in SREG H<« 0 H 1
DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Move Between Registers Rd < Rr None 1
MOvw Rd, Rr Copy Register Word Rd+1:Rd « Rr+1:Rr None 1
LDI Rd, K Load Immediate Rd « K None 1
LD Rd, X Load Indirect Rd « (X) None 2
LD Rd, X+ Load Indirect and Post-Inc. Rd « (X), X « X+ 1 None 2
LD Rd, - X Load Indirect and Pre-Dec. X« X-1,Rd « (X) None 2
LD Rd, Y Load Indirect Rd « (Y) None 2
LD Rd, Y+ Load Indirect and Post-Inc. Rd < (Y),Y<«< Y+1 None 2
LD Rd, -Y Load Indirect and Pre-Dec. Y« Y-1,Rd«(Y) None 2
LDD Rd,Y+q Load Indirect with Displacement Rd « (Y + q) None 2
LD Rd, Z Load Indirect Rd « (2) None 2
LD Rd, Z+ Load Indirect and Post-Inc. Rd « (2), Z « Z+1 None 2
LD Rd, -Z Load Indirect and Pre-Dec. Z«Z-1,Rd« (2) None 2
LDD Rd, Z+q Load Indirect with Displacement Rd « (Z +q) None 2
LDS Rd, k Load Direct from SRAM Rd « (k) None 2
ST X, Rr Store Indirect (X) « Rr None 2
ST X+, Rr Store Indirect and Post-Inc. (X) < Rr, X« X+1 None 2
ST - X, Rr Store Indirect and Pre-Dec. X« X-1,(X) < Rr None 2
ST Y, Rr Store Indirect (Y) « Rr None 2
ST Y+, Rr Store Indirect and Post-Inc. (Y)<Rr,Y«<Y+1 None 2
ST -Y, Rr Store Indirect and Pre-Dec. Y<Y-1,(Y)«<Rr None 2
STD Y+q,Rr Store Indirect with Displacement (Y+q) <« Rr None 2
ST Z, Rr Store Indirect (Z) < Rr None 2
ST Z+, Rr Store Indirect and Post-Inc. (Z)«Rr,Z«Z+1 None 2
ST -Z, Rr Store Indirect and Pre-Dec. Z«Z-1,(Z)« Rr None 2
STD Z+q,Rr Store Indirect with Displacement (Z+q) < Rr None 2
STS k, Rr Store Direct to SRAM (k) « Rr None 2
LPM Load Program Memory RO « (2) None 3
LPM Rd, Z Load Program Memory Rd « (2) None 3
LPM Rd, Z+ Load Program Memory and Post-Inc Rd < (2), Z « Z+1 None 3
ELPM Extended Load Program Memory RO « (RAMPZ:2) None 3
ELPM Rd, Z Extended Load Program Memory Rd « (2) None 3
ELPM Rd, Z+ Extended Load Program Memory Rd <« (RAMPZ:Z), RAMPZ:Z <« RAMPZ:Z+1 None 3

7766F-AVR-11/10

ATMEL

413

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

ATMEL

Mnemonics Operands Description Operation Flags #Clocks
SPM Store Program Memory (Z) < R1:RO None -

IN Rd, P In Port Rd « P None 1
ouT P, Rr Out Port P < Rr None 1
PUSH Rr Push Register on Stack STACK « Rr None 2
POP Rd Pop Reg_ister from Stgck Rd <~ STACK None 2

MCU CONTROL INSTRUCTIONS
NOP No Operation None 1
SLEEP Sleep (see specific description for Sleep function) None 1
WDR Watchdog Reset (see specific description for WDR/timer) None 1
BREAK Break For On-chip Debug Only None N/A
414

EEEes————————————————————— A TMmega16/32U4

33. Ordering Information

33.1 ATmega1 6U4

Speed (MHz) | Power Supply | Ordering Code Default Oscillator Package Operation Range
ATmega16U4-AU External XTAL 44ML
ATmega16U4RC-AU Internal Calib. RC
16 2.7-5.5V Industrial (-40° to +85°C)
ATmega16U4-MU External XTAL 24PW
ATmega16U4RC-MU Internal Calib. RC
Package Type
ML, 44 - Lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness
44ML 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
PW, 44 - Lead 7.0 x 7.0 mm Body, 0.50 mm Pitch
44PW Quad Flat No Lead Package (QFN)

7766F-AVR-11/10

ATMEL

415

EEEes————————————————————— A TMmega16/32U4

33.2 ATmeg_;a32U4

Speed (MHz) | Power Supply | Ordering Code Default Oscillator Package Operation Range
ATmega32U4-AU External XTAL AAML
ATmega32U4RC-AU Internal Calib. RC
16 27-55V Industrial (-40° to +85°C)
ATmega32U4-MU External XTAL A4PW
ATmega32U4RC-MU Internal Calib. RC
Package Type
ML, 44 - Lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness
44ML 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
PW, 44 - Lead 7.0 x 7.0 mm Body, 0.50 mm Pitch
44PW Quad Flat No Lead Package (QFN)

7766F-AVR-11/10

ATMEL

416

EEEes————————————————————— A TMmega16/32U4

34. Packaging Information

34.1 TQFP44

0 to 7

~
IS
I

COMMON DIMENSIONS IN MM

SYMBOL Min Ma x NOTES
A === 1. 20
Al 0. 95 1. 05

12 °
C 0. 09 0. 20 "‘/\

D 12. 00 BSC _A‘l_
D1 10. 00 BSC i

E 12. 00 BSC 0. 080
LEAD COPLANARITY
El 10. 00 BSC
J 0. 05 0. 15
L 0. 45 0. 75
0. 80 BSC
0. 30 0. 45
07/27/07
Atrel Nantes S A TITLE DRAWING No. | REV.
‘iiii La Chanirerie - BP 70602 ML, 44 - Lead, 10x10 mm Body Size, 1.0 mm Body Thickness
ESSSm=D© 44306 Nantes Cedex 3-France | () 8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) ML G

AImEl@ 417

7766F-AVR-11/10

ATmegal6/32U4

34.2 QFN44
o |
L1
M
1
0,30
ola. TYP
[E]]
SEATING PLAKE
JOF WIEW
DEAWIMGE WOT SCALED
o2
comMmoM DIMEMZI0ON= IM MM
IR IRVETY d] IRYRVRYEY, SYMBOL| WIN. | NOM. | WAk |WOTES
— — B fl. &0 . 85 . o0
— —]
= - J nao | -—- | o.os
= = I/E 7,00 BEC
= = pasEe | 510 | 520 | 530
= =—fp . 4
:.H'J C
#; — e 0.50 BSC
s — L D45 | 0.S5 | O &5
= i = b D18 | o.es | ooao
A -
A DN NN
_l b Oofion & Ootios B Oofion £
Brr
e
BOTTOM VIEW e
= — — fTiaHPa Pin 1% Ulenfer Pin TF Thatch Fir 1H
- 0 [a.20 = Triargle
Compliant JEIEC Ttondord MO-220 wvorlation WEED-L
IO A0 0
TITLE DAAWING MO, AEY.
Emﬂm PWY, it - Lamed 7007 . rrrm Bhcchy, L) ram Plich
SAI0N Nt Deler 3 - M mmmmwm 2) a

AImEl@ 418

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

35. Errata

The revision letter in this section refers to the revision of the ATmega16U4/ATmega32U4
device.

35.1 ATmegal16U4/ATmega32U4 Rev E
¢ Spike on TWI pins when TWI is enabled
* High current consumption in sleep mode
* MSB of OCR4A/B/D is write only in 11-bits enhanced PWM mode

1. Spike on TWI pins when TWI is enabled
100 ns negative spike occurs on SDA and SCL pins when TWI is enabled.

Problem Fix/work around
Enable ATmega16U4/ATmega32U4 TWI before the other nodes of the TWI network.

2. High current consumption in sleep mode
If a pending interrupt cannot wake the part up from the selected mode, the current consump-
tion will increase during sleep when executing the SLEEP instruction directly after a SEI
instruction.

Problem Fix/work around

Before entering sleep, interrupts not used to wake up the part from the sleep mode should
be disabled.

3. MSB of OCR4A/B/D is write only in 11-bits enhanced PWM mode
In the 11-bits enhanced PWM mode the MSB of OCR4A/B/D is write only. A read of
OCR4A/B/D will always return zero in the MSB position.

Problem Fix/work around
None.

35.2 ATmega16U4/ATmega32U4 Rev D
¢ Spike on TWI pins when TWI is enabled
¢ High current consumption in sleep mode
¢ Timer 4 11-bits enhanced PWM mode

1. Spike on TWI pins when TWI is enabled
100 ns negative spike occurs on SDA and SCL pins when TWI is enabled.

Problem Fix/work around
Enable ATmega16U4/ATmega32U4 TWI before the other nodes of the TWI network.

2. High current consumption in sleep mode
If a pending interrupt cannot wake the part up from the selected mode, the current consump-
tion will increase during sleep when executing the SLEEP instruction directly after a SEI
instruction.

Problem Fix/work around

Before entering sleep, interrupts not used to wake up the part from the sleep mode should
be disabled.

AImEl@ 419

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

3. Timer 4 11-bits enhanced PWM mode
Timer 4 11-bits enhanced mode is not functional.

Problem Fix/work around
None.

35.3 ATmegal16U4/ATmega32U4 Rev C
Not sampled

35.4 ATmegal6U4/ATmega32U4 Rev B
* Spike on TWI pins when TWI is enabled
¢ High current consumption in sleep mode
* Incorrect execution of VBUSTI interrupt
¢ Timer 4 11-bits enhanced PWM mode

1. Spike on TWI pins when TWI is enabled
100 ns negative spike occurs on SDA and SCL pins when TWI is enabled.

Problem Fix/work around
Enable ATmega16U4/ATmega32U4 TWI before the other nodes of the TWI network.

2. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected mode, the current consump-
tion will increase during sleep when executing the SLEEP instruction directly after a SEI
instruction.

Problem Fix/work around

Before entering sleep, interrupts not used to wake up the part from the sleep mode should
be disabled.

3. Incorrect execution of VBUSTI interrupt
The CPU may incorrectly execute the interrupt vector related to the VBUSTI interrupt flag.

Problem fix/work around
Do not enable this interrupt. Firmware must process this USB event by polling VBUSTI.

4. Timer 4 11-bits enhanced PWM mode
Timer 4 11-bits enhanced mode is not functional.

Problem Fix/work around
None.

AImEl@ 420

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

35.5 ATmega16U4/ATmega32U4 Rev A
* Spike on TWI pins when TWI is enabled
* High current consumption in sleep mode
* Increased power consumption in power-down mode
¢ Internal RC oscillator start up may fail
¢ Internal RC oscillator calibration
* Incorrect execution of VBUSTI interrupt
* Timer 4 enhanced mode issue

1. Spike on TWI pins when TWI is enabled
100 ns negative spike occurs on SDA and SCL pins when TWI is enabled.

Problem Fix/work around
Enable ATmega16U4/ATmega32U4 TWI before the other nodes of the TWI network.

2. High current consumption in sleep mode
If a pending interrupt cannot wake the part up from the selected mode, the current consump-
tion will increase during sleep when executing the SLEEP instruction directly after a SEI
instruction.
Problem Fix/work around

Before entering sleep, interrupts not used to wake up the part from the sleep mode should
be disabled.

3. Increased power comsumption in power-down mode
The typical power consumption is increased by about 30 pA in power-down mode.

Problem Fix/work around
None.

4. Internal RC oscillator start up may fail
When the part is configured to start on internal RC oscillator, the oscillator may not start
properly after power-on.
Problem Fix/work around
Do not configure the part to start on internal RC oscillator.

5. Internal RC oscillator calibration
8 MHz frequency can be impossible to reach with internal RC even when using maximal
OSCAL value.
Problem Fix/work around
None.

6. Incorrect execution of VBUSTI interrupt
The CPU may incorrectly execute the interrupt vector related to the VBUSTI interrupt flag.

Problem fix/work around
Do not enable this interrupt. Firmware must process this USB event by polling VBUSTI.

AImEl@ 421

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

7. Timer 4 11-bits enhanced PWM mode
Timer 4 11-bits enhanced mode is not functional.

Problem Fix/work around
None.

AImEl@ 422

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

36. Datasheet Revision History for ATmega16U4/ATmega32U4

Please note that the referring page numbers in this section are referred to this document. The
referring revision in this section are referring to the document revision.

36.1 Rev. 7766F —11/10

36.2 Rev. 7766E - 04/10

—_

© © N o o »~ 0 DN

—_
- O

12.
13.

36.3 Rev. 7766D —01/09

A w0Dd

36.4 Rev. 7766C —11/08

7766F-AVR-11/10

Replaced the “QFN44” on page 418 by an updated drawing.

Updated “ADC Control and Status Register B— ADCSRB” on page 289. Defined the
ADCSRB register as in “ADC Control and Status Register B— ADCSRB” on page 312.

Updated the last page according to Atmel new Brand Style Guide.

Updated “Features” on page 1.

Updated “Features” on page 253.

Updated Figure 21-9 on page 258.

Updated Section 21.8 on page 260.

Updated “Features” on page 292.

Updated “ATmega16U4/ATmega32U4 Boundary-scan Order” on page 327.
Updated “Program And Data Memory Lock Bits” on page 346.
Updated Table 28-5 on page 348.

Updated “Electrical Characteristics” on page 378.

Updated Figure 29-2 on page 381.

Added “Typical Characteristics” on page 386.

Updated “Ordering Information” on page 415.

Updated “Errata” on page 419.

Updated Memory section in “Features” on page 1.
Added section “Resources” on page 8.
Added section “Data Retention” on page 8.

Updated “Ordering Information” on page 415.

Updated Memory section in “Features” on page 1.

AImEl@ 423

EEEes————————————————————— A TMmega16/32U4

36.5 Rev.7766B —11/08

1. Added ATmega16U4 device.
2. Created errata section and added ATmega16U4.
3. Updated High Speed Timer, asynchronous description Section 15. on page 139

36.6 Rev. 7766A —07/08

1. Initial revision

AImEl@ 424

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

Table of Contents

7766F-AVR-11/10

Pin CONfiQUIALIONSceeeeiecciisemeesicssssssseenssssssssssn e e ssssssssss s e s snsssssssnensssssssan 3
(0= V- U 3
2.1BIOCK DIQIAIMeieiieiiiee ettt e e e e e e e e s rr e et e e e e e e s e nreeeeeeaeeas 4
P22 e T I L= g o] i) 1= 5
1 o Lo 17 1 8
T = Tor =] =T PSPPSRI 8
B.2RESOUICES ...ttt e e e e e e e e eee e 8
BTG @70 o [T b= U 4] o] T PR 8
3.4Data Retentionoooo i 8
AVR CPU COXE ...t 9
o [11 foTo 18] 1o o TSP 9

4. 2ArChIteCtUral OVEIVIEBWcoceiiiieiie ittt 9
4.3ALU — Arithmetic LOGIC UNitooiiiiiiiiiiiii e 10
4.4S1atUS REQISIET ..eeiiiiieiie e 11
4.5General Purpose Register File ... 12
4.8SEACK POINTEE .. 13
4.7Instruction EXeCUtioN TiMINGeeiiiiiiiiiiiiiii e 14
4.8Reset and Interrupt HaNAliNgoeooiiiiiiiiiii e 15
5 AVR ATmegal6U4/ATmega32U4 MemOLi€scccccceevssmemmmssssssssnnnnnnns 18
5.1In-System Reprogrammable Flash Program Memorycccccovviieieniiiieeneenineenn. 18
5.2SRAM Data MEMOIYueiiiiiiiiiiie ettt sn e enr e 19
5.3EEPROM Data MEMOIY ...ccuiiiiiiiieiiiee ettt ettt ettt 21
@V 1= 4o To TP PP PRPPP 26
System Clock and CIOCK OPLiONSccccecemmmmmmmmmemmmmsmmmmmssssssssssssssssssas 27
6.1Clock Systems and their Distributioncccoociiiiiiiiii e, 27
B.2CI0CK SOUIMCESeiiiiieiiieie ettt ettt ettt e st s b e e e nn e s nr e e e snn e e e snneas 28
6.3Low Power Crystal OSCIlIAtOrcccueiiiiiiiieie e 29
6.4Low Frequency Crystal OSCillatorcccooiuiiiiiiiieiiie e 31
6.5Calibrated Internal RC OSCillatorc.ccoiiiiiiiiiiiiee e 32
B.BEXIEINAI CIOCKeiiieiiiiiiie et ne e e 33
B.7CI0CK SWILCI ...t e 34
6.8Clock SWItch AIGOITNM ..o e 35
6.9CI0CK OULPUL BUFFEI .. e 37

ATMEL |

L0 1 0] I PP USPRPP 39

7 Power Management and Sleep MOAESooceeeveemmmmmrrvvisnmmennnicssssannns 43
T AIAIE MOAE ... 44
7.2ADC Noise ReduCtion MOGEccccueiiiiiiiiiieeiiete ettt 44
7.3PoWEr-doWn MOEoooiiiiiiiiie it 44

7. 4POWEr-SaVe MOEoooiiiiiiiiiie ettt 44
7.5StandbY MOGEooieiiieiie e 45
7.6Extended Standby MOdEcccuoiiiiiiiiii s 45

7. 7Power Reduction REGISTENooiiiiiiiii it 45
7.8Minimizing Power CONSUMPLIONoiiiiiiiiiie et 47

8 System Control and RESEeloecceeevemeeeiivcisemmesssssssssemeennssssssssnnennns 49
8.1Internal Voltage Reference ... 54
8.2WatChdOg TIMET ...ciiiiiiieie it e s e e s e e e s snnne s 55

L 1101 4 7] o £ N 61
9.1Interrupt Vectors in ATmegal16U4/ATmegal2U4ccccvviiieeiiiieniiee et 61

L 0 T oo T o 65
1O TINTFOAUCTION .o 65
10.2Ports as General Digital 1/Oooiiiiiiiiiiee e 66
10.3Alternate Port FUNCLIONSooiiiiiieeiie e 70
10.4Register Description for I/O-POrSccoi i 82

11 External INterrupPtseeeeeeecceiiieieineeeeemessssssssssss s s s s s e e e e e mmmmssssssssns 85
12 Timer/Counter0, Timer/Counter1, and Timer/Counter3 Prescalers ... 89
12.1INternal ClIOCK SOUICEcoiiiiiiiiiiie ittt 89
12.2Prescaler RESEt ..o 89
12.3EXternal ClOCK SOUICEccuuiiiiiieiiiie et 89
12.4General Timer/Counter Control Register — GTCCRcooociiiiiiieiiieceeee e 90

13 8-bit Timer/CounterQ With PWIM ... e s 91
TB.TOVEIVIEW .ottt e e it e e s b et e st e e e sb b e e e abeeesbee e e snneeennee 91
13.2Timer/Counter CIOCK SOUICEScuiiiiiiiiiiiie ettt 92
13.3C0UNTET UNIE o 92
13.40utput ComPAre UNitoooiiiiiiiiiiiiiie et e e e anee e e e e s 93
13.5Compare Match OUPUL UNitoooiiiiiiiiiie e 95
RCTG 1Y ToTe [oT o] @ o =1 = 1o) o ISR 96
13.7Timer/Counter Timing Diagramsocceoiiieiiiie e 100

i ATmega16/32U4 m——

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

13.88-bit Timer/Counter Register Descriptionccccooeiiiiiiiniiiiiiee e 102
14 16-bit Timers/Counters (Timer/Counter1 and Timer/Counter3) 108
TATOVEIVIEW ..ottt ettt h e e st e e e st e e e sabeeesbeeesbeeesanneeaas 108
14.2Accessing 16-bit RegiSters ... 110
14.3Timer/Counter CIOCK SOUICESccueiiiiiiiiiiie ettt 113
14.4C0UNTET UNIE oo sne e snne e 114
14.5INPUt Capture UNItooocuiiiiiieeiiie ettt s 115
14.60utput ComPare UNILSccueiiiiiiiiiiee et e e e 117
14.7Compare Match Output Unitcooiiiiiiiii e 119
RV ToTe L=T) @ o =1 = 1 o] o [N SRR 120
14.9Timer/Counter Timing Diagramsc..oceioiiiieiiiie e 127
14.1016-bit Timer/Counter Register Descriptionccccceeiiiiiiiiiiiiee e 129
15 10-bit High Speed Timer/CoUNterd ... eeeeeeeeeeeccieeeeeesscccssnneenes 138
T AF@ALIUIES .. 138
TB.20VEIVIEW ...ttt ettt ettt e e bt e e st e e e st e e e sb e e e sne e e s be e e e anneeea 138
15.3C0UNTEI UNIE o s s 142
15.40utput CompPare UNitocuiiiiiiiiiiee et 143
15.5Dead Time GENEIATONoiiiuiiiiiiee ittt ettt re e snne e 145
15.6Compare Match Output Unitoocviiiiiiiiiee e 146
15.7SYNChroN0US UPAAteeoiiiuiiiiiiiiiiie ettt 149
15.8MOdES Of OPEIALIONeviiiiiiiiiiiee e e e e e e e e e e e 149
15.9Timer/Counter Timing Diagramsoceooiiiieiiiieiie e 156
15.10Fault Protection UNitcoeiiiiiiie e 157
15.11Accessing 10-Bit REQISIErSoocviiiiiiee e 159
15.12Register DESCHPONcoiiiiiiiii i 162
16 Output Compare Modulator (OCMTCOA)coeveeevevvicisisssssssnnnnnnnnnns 175
TB.TOVEIVIEW ..ttt ettt e ek e e st e e e e e e e sabe e e sbeeesbeeesnnneeans 175
16.2DESCHIPLION ittt ettt e e e e e e e e e st e e e e e e e e e e e 175
17 Serial Peripheral INnterface — SPIoeeeeeeeeeiieicicvccississsssssssssnnnnnnnnnns 177
17.1SS Pin FUNCHONAIMYvoueiiieictctcecceeeeee e 181
17.2DAta MOAES ...ttt e s e e s e e e e 184
T8 US AR ettt s s s s s s s s s s s s s s s s s e n e s nmnmmmmsssssssssssssssssssssnsnsnnnnnnnnnnn 186
TB.TOVEIVIEW ..ottt b e st e e st e e sab e e e sne e e sbeeesanneean 186
18.2C10CK GENETALIONeeiiiiiieii ettt s esnreeeae 187

AImEl@ i

7766F-AVR-11/10

18.3Frame FOIMALSoooiiiiiiiie e 190
18.4USART INItialiZationcooouiiiiiiie e 192
18.5Data Transmission — The USART TransSmittercccccceviiiiiiiiniieeeieee e 193
18.6Data Reception — The USART RECEIVETccccvveveeiiiiiiee e 195
18.7Asynchronous Data ReCeplionccooiciiiiiiiiiiiiei e 199
18.8Multi-processor Communication MOdEcoocieveeiiiiiiiie i 202
18.9Hardware FIOW CONrOloiiiiiiiiiie et 203
18.10USART Register DeSCriplionccceoiiiiiiiieiiiiie et 205
18.11Examples of Baud Rate Settingc.cccooiiiiiiiii e 209
19 USART iNn SPIMOAEeeeeeeeeeeeeeeeeeeeeeeeeemmmeeeessssssssssssssssssssnnnnnnnnnnen 214
TO.TOVEIVIEW .ottt e ek e e st e e e et e e e sabe e e sbeeesbeeesnnneeaa 214
19.2C10CK GENETALIONeiiiiiiiee ettt e e e sneeeenes 214
19.3SPI Data Modes and TiMIiNgGc.coooiieiiiiieiiie e 215
19.4Frame FOIMALScooiiiiiiiiie e 215
19.5Data TrANSTEIeiiiiiiie it be e s ene e e nnne e 217
19.6USART MSPIM Register DeSCrPoNccceiiiieiiiieiiiee e 219
19.7AVR USART MSPIM vS. AVR SPI ..ot 221
20 2-wire Serial INtEIfACEeueeeeveeeieeeeeiecccie et s s s s neean 223
20.TFEALUIES ...eiiiiiieee e e e e 223
20.22-wire Serial Interface Bus Definitionccocviiiiiiiiie e 223
20.3Data Transfer and Frame FOrmatccooceiiiiiiiiiiieiee e 224
20.4Multi-master Bus Systems, Arbitration and Synchronizationccccceeiieennee 227
20.50verview of the TWIMOAUIEceeiiiiiiiieieiee e 228
20.6TWI Register DesCrPHONcoiiuiiiiiiiiieeee e e 231
20.7USING the TWI ... e 234
20.8TransmiSSION MOESc.uuiiiiiiiiiie et 238
20.9Multi-master Systems and Arbitrationccoceeiii i 251
b2 B 0157 = oo Ty 1 - N 253
P2 I = 110 (= PSR PP PPSRP 253
P2 2] =] (o To (Q DI = o | = 1o [P SEP TSP 253
21.3Typical Application Implementationccuueiiiiiiiie 254
21.4Crystal-1eSS OPEratioNccceeiiieiiiiieiiiee ettt e 256
21.5DesigN GUIAEIINESoeiiiiiiiieiee e 256
21.6General Operating MOAESooiiiiiiiiiiiiee e 257
P2 B o= o g To e =T PP PP P RPN 259

ATmega16/32U4 m——

EEEes————————————————————— A TMmega16/32U4

7766F-AVR-11/10

P2 I 1] 0 T=Y =Y o] o1 (o SRR 260
21.9Memory ManAgEMENTccuiiiieiieiie e 260
271.T0PAD SUSPENA ...eeiiiiiiiiieeieee ettt a e e et e e e e e e e e e e e e 261
21 11PIUG-IN ELECHION ... e 262
21.12Registers desCriPliONeeiiiiiiiie e 263
21.13USB Software Operating MOGESc.coiiiiiiiiiiiiiee e 265
22 USB Device Operating MOAESceeeeceeescummmmmsisssssmmenssssssssssnnnsssssssas 266
221 INTFOAUCTION ...t e e s e e e e s e e e e e e 266
22.2POWET-0N @NG FESELeiiiiiiiiieie et e e e s e e nreeas 266
22.3ENAPOINT FESET ...t e e 266
22.4USB FESEL ...eeiiiiie ittt snreeeae 267
22.5ENdPOiNt SEIECHON ...coooiiiiie e 267
22.6ENdPOoint aCtiVatioNcooiiieiiiee e 267
P22 e [0 [ST (T o SRR 268
22.8Suspend, Wake-up and RESUMEcccuuiiieiiiiiieee ettt 269
22.9DEIACKH ... e 269
22.10REMOtE WAKE-UD .ooeiiiiiiiieeee et 270
22 T1STALL FEQUEST oottt et eee e e e e e e et ee e e e e nneeeeeennnees 270
22.12CONTROL endpoint managementccocueeeiiieniieee e 271
22.130UT endpoint Managementcccoceieiieie e 272
22.14IN endpoint MaNAgEMENTciiiiiiiiiiiiiiiee e 274
22.151SOCNIONOUS MOTEeiiiiiiiiiie ettt e s e e 275
22.1B0VEIMIOW ..ottt e et b e e e e s be e sb e e e snreeeae 276
P22 A [01 (Y ¢ 1] o] £ PP PP PRSPPI 276
22.18BREGISIEIS .t 277
23 Analog COMPAratorcccoeecccesssmmmemsssssssmeesssssssssssnesssssssssssssssssssssss 289
23.1Analog Comparator Multiplexed INPULtcooiiiiiiiiiie e 291
24 Analog to Digital Converter - ADCmmeericcciemeeesscsssssmensnsseaas 292
24 TF@ALUIES ...eiiiieieee et 292
P2 2@ o 1= = 1[0) o [SRS 294
24.3Starting @ CONVEISIONcocuiiiiiiieiiiee ettt s e e s b e e snne e 294
24.4Prescaling and Conversion TiMINGc.eooceeeiirereiee e 295
24.5Changing Channel or Reference Selectioncccciciiiiiiiic e 298
24 . BTEMPETAUIE SENSOT ...eiiiiiiiiiieeiiiiteeeeeeee e e s tree e e s steee e e e snbeeeeeesnteeeeeeanneeeeeeannees 299
24.7ADC NOISE CANCEIEToiiiiiiiiiie et 301

ATMEL v

ATMEL

24.8ADC Conversion RESUIEc.eiiiiiiiiiiie e 305
24.9ADC Register DeSCHPHONc.uiiiiiieiiiie et 307

25 JTAG Interface and On-chip Debug SyStemcccmeeevveiscemennsscncans 314
25.TOVEIVIEW ...ttt ettt et et e e st et e st e e sab e e e enr e e sab e e e s anneeennee 314
25.2Test ACCESS POt — TAP ... e e 314
25.3TAP CONIOIET .ttt sr e s s e 316
25.4Using the Boundary-scan Chaincccoociiiiiiieiiiee e 317
25.5Using the On-chip Debug SYStemc.coiiiiiiiiiieieeeee e 317
25.60n-chip Debug Specific JTAG INStrUCtioNScoocvviiiiiiiiiiicee e 318
25.70n-chip Debug Related Register in I/O MemOryccccovieiiiiiiiiiiee e 319
25.8Using the JTAG Programming Capabilitiescccceiieiiiiiiiiiiic e 319
25.9BIDlIOGraphyoeeiiiiiiie e 319

26 IEEE 1149.1 (JTAG) Boundary-SCanccoeeeemmmmemmeemmmsssssssmsssssssssas 320
26.TFEALUIES ..ot 320
26.2SYSIEM OVEIVIEBW ..eiiiiiiiiiiee et ee et iee ettt s et st e st esbe e e anreesbee e e snneeenee 320
26.3Data REJISIEIScoiiiiiiiieiie et 320
26.4Boundary-scan Specific JTAG INStructionsccceeviiiiii i 322
26.5Boundary-scan Related Register in I/O MemOrycccooveiiiiiieiiieenee e 323
26.6Boundary-sCan Chaincccooiiiiiiiiiiiie e e 324
26.7ATmega16U4/ATmega32U4 Boundary-scan Ordercccocveeeriieeesiineessineennnes 327
26.8Boundary-scan Description Language Filescccocoiiiiiiiii i 329

27 Boot Loader Support — Read-While-Write Self-Programming 330
27.1B00t Loader FEAUIESeviiiiiiiiie ettt 330
27.2Application and Boot Loader Flash SecCtionscccocoviiiiiiiiiie i 330
27.3Read-While-Write and No Read-While-Write Flash Sectionscccccceviieenee 330
27.4B0o0t Loader LOCK BitSeeeiiiiiiiiiieiiieee et 333
27.5Entering the Boot Loader Programccccoiiiiiiiiiiiin i 334
27.6Addressing the Flash During Self-Programmingccccooceeiiiiiniiieeniiee e 337
27.7Self-Programming the FIash ..o 338

28 Memory Programmingeeeeeemmmmmmmmmmssssssssssssssssssssssssssssssssssssmmmmns 346
28.1Program And Data Memory LOCK BitScccccoiiiiiiiiiii 346
28.2FUSE BIS ..oiiiiiieiie i e 347
28.3SIgNAture BYLESeiiiiiiiiiie et 349
28.4Calibration BYLeooocuiiiiiiiiiiiie e e 349
28.5Parallel Programming Parameters, Pin Mapping, and Commands 349

vi ATmega16/32U4 m——

7766F-AVR-11/10

EEEes————————————————————— A TMmega16/32U4

28.6Parallel Programmingceeooiieieeiiiiieee e 352
28.7Serial DOWNIOAAINGeeieiieieiiiee ettt s b e e 360
28.8Serial Programming Pin Mappingccccueeeieeeriiieenieee e 361
28.9Programming via the JTAG Interfacecccocoiiiiiienii e 365
29 Electrical CharacCteriStiCsccouuvoommemrcvrsssmmenssssssssssmenssssssssssnnnsssssssas 378
29.1Absolute Maximum RatingS™ooiiiiiiiii e 378
29.2DC CharacCteriStiCSeieiiuiiiiiiiie ittt s 378
29.3External Clock Drive Waveformsc.ooiiiiiiiiieiiiee e 380
29.4EXIernal ClOCK DIVociiuiiiiiiee ittt s 380
29.5Maximum speed vs. Voo e 380
29.62-wire Serial Interface CharacterisStiCsccoucveiriiiiiiiee e 381
29.7SPI Timing CharacteriStiCscoiiiiiiiiieiiee e e 383
29.8Hardware Boot EntranceTiming CharacteristiCsccccoiveeiiieeiiieenniee e 384
30 Typical CharacCteriStiCscccceoouemmeerisssummenssisissssnmnenssssssssmnensssssssssnnnnns 386
30.TACtIVE SUPPIY CUITENT .o e 386
L0 2] (o 11 I S 10T o] o]V O8] (=Y o | RS 389
30.3Power-down SUPPIlY CUITENTc..eeiiieeiiiiii e 391
30.4Power-save SUPPlY CUITENTcc.uuiiiiiiiiiiie et e e e 392
BT T T o TSP 393
30.6PiIN Driver Strengthcooiiiii e e 394
30.7Pin Threshold and HYSIEresis ..o 397
30.8BOD THreShOIdcoiiiiiiiiii et e e e eaes 400
30.9Internal OSCIlllator SPEEAcciueiiiiie e 402
30.10Current Consumption of Peripheral Unitscccoocciieiiiiiini e 405
30.11Current Consumption in Reset and Reset Pulsewidthccccceeiiiiiinennnee. 407
31 RegiSter SUMMEAIYccoveeeeivsssenmissssnssissssmnsssssssssmsssssssssssssssssssssnssssssens 408
32 Instruction Set SUMMArYeemeeeeceiiiemeeesicccssmeee e s scsssssmse s sssssssmneeees 412
33 Ordering INFOrMALION ... ssmne e 415
33 TATMEGATOUS .. 415
33.2ATMEGAB2UA ... e 416
34 Packaging INfOrMatioNcocovveuemmmmmeeennnennssssssssssssssssssssssssssssnnnnnnnes 417
BAATQIFPA4 ...ttt e et e e e ettt e e e et e e e e e e ntee e e e e nrreee e e annees 417
BA.2QFNA4 ..o e e e e e e nree e e e nraee e e e annees 418
LI = 1 - 1 - 419

7766F-AVR-11/10

AImEl@ vii

35.1ATmegal16U4/ATmegald2U4 ReV E ... 419

35.2ATmega16U4/ATmega32U4 ReV Dcoociiiiiiiiiiiie e 419
35.3ATmega16U4/ATmega32U4 ReV Cooociiiiiiiiiiiieeiee et 420
35.4ATmegal16U4/ATmega32U4 ReV B ..o 420
35.5ATmega16U4/ATmega32U4 ReV A ... e 421
36 Datasheet Revision History for ATmegal6U4/ATmega32U4 423
BB.TREV. 7766F — 11/10 ..eeeiiieiiiiie et e e e e e e e e 423
B6.2REV. 7766E — D4/10 ...ttt e 423
36.3REV. 7766D — 01/09 ..oiiieiiiiiie ettt e e e e e e neaeas 423
36.4REV. 7766C — 11/08 ..oeieeiiiiiie ettt e e e e sn e e e e et ae e e e e nreeas 424
B6.5REV. 7766B — 11/08ooiieiiiiiie ettt e e e 424

36.6REV. 7766A — 07/08 ...ttt s 424

AIMEL

Y (5

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA

Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

Atmel Asia Limited

Unit 1-5 & 16, 19/F

BEA Tower, Millennium City 5
418 Kwun Tong Road

Kwun Tong, Kowloon

HONG KONG

Tel: (+852) 2245-6100

Atmel Munich GmbH
Business Campus

Parkring 4

D-85748 Garching b. Munich
GERMANY

Tel: (+49) 89-31970-0

Fax: (+49) 89-3194621

Atmel Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033
JAPAN

Tel: (+81)(3) 3523-3551
Fax: (+81)(3) 3523-7581

Fax: (+852) 2722-1369

© 2010 Atmel Corporation. All rights reserved. / Rev. CORP072610

Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries.
Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY
EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROF-
ITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or com-
pleteness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.
Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suit-
able for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applica-
tions intended to support or sustain life.

7766F-AVR-11/10

@Iasﬂ U

KomnaHus ((3J'IeKTpO|_|J'|aCT» npeanaraeT 3akKn4vyeHmne onrocpoYHbIX OTHOLLIEHUN npu
NOoCTaBKaxX MMMNOPTHbIX 3NTEKTPOHHbIX KOMMOHEHTOB Ha B3aMMOBbLIFO4HbIX yCJ'IOBI/lFlX!

Hawwn npeumyuiectsa:

e OnepaTuBHbIE NOCTABKM LUMPOKOrO CMeKTpa 3NeKTPOHHbIX KOMMNOHEHTOB OTEYECTBEHHOIO U
MMMOPTHOrO NPON3BOACTBA HANPAMYO OT MPOM3BOAMTENEN U C KPYNMHENLLNX MUPOBbLIX
CKNaaos.;

MocTaBka 6onee 17-TM MUNIIMOHOB HAMMEHOBAHWUIN 3NEKTPOHHbLIX KOMMNOHEHTOB;

MocTaBka CNoXHbIX, AeULNTHBIX, MMOO CHATLIX C MPOM3BOACTBA NO3ULIUIA;

OnepaTtunBHbIE CPOKM NOCTABKM Nof 3aka3 (0T 5 pabounx gHewn);

OKcnpecc goctaska B Nnobyto Touky Poccuu;

TexHnyeckas nogaepkka npoekTa, NomMoLLlb B nogdope aHanoros, NocTaBka NPOTOTUMOB;

Cuctema MeHeXMeHTa KavyecTBa cepTuduumnposaHa no MexayHapogHomy ctaHgapTty 1ISO

9001;

o JlnueHausa ®CH Ha ocyulecTBneHne paboT ¢ NCNONb30BaHWEM CBEOEHUIN, COCTABAOLLINX
rocygapCTBEHHYIO TalHy;

o [locTaBka cneumnanmampoBaHHbIX KOMNoHeHToB (Xilinx, Altera, Analog Devices, Intersil,
Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq,
Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics v gp.);

MoMMMO 3TOro, O4HMM M3 HanpaBnNeHU koMnaHum «AnekTpollnacT» ABNseTca HanpaBneHne

«UcTouHmkn nutaHua». Mel npeanaraem Bam nomoub KoHCTpyKTOpCKOro otaena:

e [logGop onTuManeHOro peleHus, TexHn4eckoe 060CHOBaHME Npu BbIOOpPE KOMMOHEHTA;
Monbop aHanoros.;
KoHcynbTaumm no NpUMEHEHMIO KOMMOHEHTA;
MocTaBka 06pa3yoB M NPOTOTUMNOB;
TexHn4veckasn noaaepka npoekTa;
3awmTa OT CHATMSA KOMMOHEHTA C NPON3BOACTBA.

Kak c Hamu cBfizaTbCcA

TenedoH: 8 (812) 309 58 32 (MHOrokaHanbHbIN)
Pakc: 8 (812) 320-02-42

OnekTpoHHas nouTta: org@eplastl.ru

Aapec: 198099, r. Cankt-INeTepbypr, yn. KannHuHa,
Oom 2, kopnyc 4, nutepa A.

mailto:org@eplast1.ru

