Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED ### **Typical Applications** The HMC814 is ideal for: - Clock Generation Applications: SONET OC-192 & SDH STM-64 - Point-to-Point & VSAT Radios - Test Instrumentation - Military & Space - Sensors ### **Functional Diagram** #### **Features** High Output Power: +17 dBm Low Input Power Drive: 0 to +6 dBm Fo Isolation: >20 dBc @ Fout = 19 GHz 100 kHz SSB Phase Noise: -136 dBc/Hz Single Supply: +5V @ 88mA Die Size: 1.2 x 1.23 x 0.1 mm ### **General Description** The HMC814 is a x2 active broadband frequency multiplier chip utilizing GaAs PHEMT technology. When driven by a +4 dBm signal, the multiplier provides +17 dBm typical output power from 13 to 24.6 GHz. The Fo, 3Fo and 4Fo isolations are >20 dBc at 19 GHz. The HMC814 is ideal for use in LO multiplier chains for Pt-to-Pt & VSAT Radios yielding reduced parts count vs. traditional approaches. The low additive SSB Phase Noise of -136 dBc/Hz at 100 kHz offset helps maintain good system noise performance. All data is taken with the chip connected via two 0.025mm (1 mil) wire bonds of minimal length 0.31 mm (12 mils). # Electrical Specifications, $T_A = +25$ °C, Vdd1, Vdd2 = +5V, +4 dBm Drive Level | Parameter | Min. | Тур. | Max. | Units | |---|-------------|------|------|--------| | Frequency Range, Input | 6.5 - 12.3 | | | GHz | | Frequency Range, Output | 13.0 - 24.6 | | | GHz | | Output Power 14 17 | | | | | | Fo Isolation (with respect to output level) | | 25 | | dBc | | 3Fo Isolation (with respect to output level) | | 25 | | dBc | | Input Return Loss | | 7 | | dB | | Output Return Loss | | 7 | | dB | | SSB Phase Noise (100 kHz Offset @ Input Frequency = 19 GHz) | | -136 | | dBc/Hz | | Supply Current (Idd1 & Idd2) | 70 | 88 | 100 | mA | # Output Power vs. Temperature @ +4 dBm Drive Level ### **Output Power vs. Drive Level** # Output Power vs. Supply Voltage @ +4 dBm Drive Level #### Isolation @ +4 dBm Drive Level ### **Output Power vs. Input Power** # Input Return Loss vs. Temperature ### Output Return Loss vs. Temperature #### Phase Noise @ 19 GHz # **Absolute Maximum Ratings** | RF Input (Vdd = +5V) | +10 dBm | | | |---|----------------|--|--| | Supply Voltage (Vdd1, Vdd2) | +5.5 Vdc | | | | Channel Temperature | 175 °C | | | | Continuous Pdiss (T= 85 °C)
(derate 8.7 mW/°C above 85 °C) | 782 mW | | | | Thermal Resistance (channel to die bottom) | 115 °C/W | | | | Storage Temperature | -65 to +150 °C | | | | Operating Temperature | -55 to +85 °C | | | # Typical Supply Current vs. Vdd | Vdd (Vdc) | Idd (mA) | |-----------|----------| | 4.5 | 87 | | 5.0 | 88 | | 5.5 | 89 | Note: Multiplier will operate over full voltage range shown above. # **Outline Drawing** #### NOTES: - 1. ALL DIMENSIONS ARE IN INCHES [MM] - 2. DIE THICKNESS IS .004" - 3. TYPICAL BOND PAD IS .004" SQUARE - 4. BOND PAD METALIZATION: GOLD - 5. BACKSIDE METALIZATION: GOLD - 6. BACKSIDE METAL IS GROUND - 7. NO CONNECTION REQUIRED FOR UNLABELED BOND PADS - 8. OVERALL DIE SIZE ±.002" # **Pin Description** | Pin Number | Function | Description | Interface Schematic | |------------|------------|--|---------------------| | 1 | RFIN | Pin is AC coupled and matched to 50 Ohms. | RFIN ○── ├── | | 2, 3 | Vdd1, Vdd2 | Supply voltage 5V ± 0.5V. External bypass capacitors of 100 pF, 1,000 pF and 2.2 μF are recommended. | Vdd1,
Vdd2 | | 4 | RFOUT | Pin is AC coupled and matched to 50 Ohms. | — —○ RFOUT | # **Assembly Diagram** ### Mounting & Bonding Techniques for Millimeterwave GaAs MMICs The die should be attached directly to the ground plane eutectically or with conductive epoxy (see HMC general Handling, Mounting, Bonding Note). 50 Ohm Microstrip transmission lines on 0.127mm (5 mil) thick alumina thin film substrates are recommended for bringing RF to and from the chip (Figure 1). If 0.254mm (10 mil) thick alumina thin film substrates must be used, the die should be raised 0.150mm (6 mils) so that the surface of the die is coplanar with the surface of the substrate. One way to accomplish this is to attach the 0.102mm (4 mil) thick die to a 0.150mm (6 mil) thick molybdenum heat spreader (moly-tab) which is then attached to the ground plane (Figure 2). Microstrip substrates should be brought as close to the die as possible in order to minimize ribbon bond length. Typical die-to-substrate spacing is 0.076mm (3 mils). Gold ribbon of 0.075 mm (3 mil) width and minimal length <0.31 mm (<12 mils) is recommended to minimize inductance on RF, LO & IF ports. An RF bypass capacitor should be used on the Vdd input. A 100 pF single layer capacitor (mounted eutectically or by conductive epoxy) placed no further than 0.762mm (30 Mils) from the chip is recommended. #### **Handling Precautions** Follow these precautions to avoid permanent damage. **Storage:** All bare die are placed in either Waffle or Gel based ESD protective containers, and then sealed in an ESD protective bag for shipment. Once the sealed ESD protective bag has been opened, all die should be stored in a dry nitrogen environment. **Cleanliness:** Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems. **Storage:** All bare die are placed in either Waffle or Gel based ESD protective containers, and then sealed in an ESD protective bag for shipment. Once the sealed ESD protective bag has been opened, all die should be stored in a dry nitrogen environment. Static Sensitivity: Follow ESD precautions to protect against $> \pm 250 \text{V}$ ESD strikes. **General Handling:** Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip may have fragile air bridges and should not be touched with vacuum collet, tweezers, or fingers. #### Mounting The chip is back-metallized and can be die mounted with AuSn eutectic preforms or with electrically conductive epoxy. The mounting surface should be clean and flat. **Eutectic Die Attach:** A 80/20 gold tin preform is recommended with a work surface temperature of 255 deg. C and a tool temperature of 265 deg. C. When hot 90/10 nitrogen/hydrogen gas is applied, tool tip temperature should be 290 deg. C. DO NOT expose the chip to a temperature greater than 320 deg. C for more than 20 seconds. No more than 3 seconds of scrubbing should be required for attachment. **Epoxy Die Attach:** Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position. Cure epoxy per the manufacturer's schedule. #### Wire Bonding Ball or wedge bond with 0.025mm (1 mil) diameter pure gold wire. Thermosonic wirebonding with a nominal stage temperature of 150 deg. C and a ball bonding force of 40 to 50 grams or wedge bonding force of 18 to 22 grams is recommended. Use the minimum level of ultrasonic energy to achieve reliable wirebonds. Wirebonds should be started on the chip and terminated on the package or substrate. All bonds should be as short as possible <0.31mm (12 mils). Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов; - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.