2A, 23V Synchronous Rectified Step-Down Converter ### DESCRIPTION The MP2305 is a monolithic synchronous buck regulator. The device integrates $130m\Omega$ MOSFETS that provide 2A continuous load current over a wide operating input voltage of 4.75V to 23V. Current mode control provides fast transient response and cycle-by-cycle current limit. An adjustable soft-start prevents inrush current at turn-on. Shutdown mode drops the supply current to $1\mu A$. This device, available in an 8-pin SOIC package, provides a very compact system solution with minimal reliance on external components. ### **EVALUATION BOARD REFERENCE** | Board Number | Dimensions | | |--------------|-----------------------|--| | EV2305DS-00A | 2.0"X x 1.5"Y x 0.5"Z | | ### **FEATURES** - 2A Output Current - Wide 4.75V to 23V Operating Input Range - Integrated 130mΩ Power MOSFET Switches - Output Adjustable from 0.923V to 20V - Up to 93% Efficiency - Programmable Soft-Start - Stable with Low ESR Ceramic Output Capacitors - Fixed 340kHz Frequency - Cycle-by-Cycle Over Current Protection - Input Under Voltage Lockout ### **APPLICATIONS** - Distributed Power Systems - Networking Systems - FPGA, DSP, ASIC Power Supplies - Green Electronics/ Appliances - Notebook Computers All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit MPS website under Products, Quality Assurance page. "MPS" and "The Future of Analog IC Technology" are registered trademarks of Monolithic Power Systems, Inc. ### TYPICAL APPLICATION ### ORDERING INFORMATION | Part Number* | Package | Top Marking | Free Air Temperature (T _A) | |--------------|---------|-------------|--| | MP2305DS | SOIC8 | MP2305DS | -40°C to +85°C | * For Tape & Reel, add suffix –Z (e.g. MP2305DS–Z); For RoHS compliant packaging, add suffix –LF (e.g. MP2305DS–LF–Z) ### **PACKAGE REFERENCE** # ABSOLUTE MAXIMUM RATINGS (1) | Supply Voltage V _{IN} | –0.3V to +26V | |---|-------------------------------| | Switch Voltage V _{SW} | | | -1V (-5V for <10ns) to 26.3 | | | Boost Voltage V _{BS} V _{SW} – | \cdot 0.3V to V_{SW} + 6V | | All Other Pins | 0.3V to +6V | | Continuous Power Dissipation | $(T_A = +25^{\circ}C)^{(2)}$ | | | 1.39W | | Junction Temperature | 150°C | | Lead Temperature | 260°C | | Storage Temperature | –65°C to +150°C | | | | # Recommended Operating Conditions (3) | Thermal Resistance (4) | $oldsymbol{ heta}_{JA}$ | $oldsymbol{ heta}_{JC}$ | | |------------------------|-------------------------|-------------------------|------| | SOIC8 | 90 | 45 | °C/W | ### Notes: - 1) Exceeding these ratings may damage the device. - 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J(MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D(MAX)=(T_J(MAX)-T_A)/θ_{JA}. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage. - The device is not guaranteed to function outside of its operating conditions. - 4) Measured on JESD51-7 4-layer PCB. ## **ELECTRICAL CHARACTERISTICS** V_{IN} = 12V, T_A = +25°C, unless otherwise noted. | Parameter | Symbol | Condition | Min | Тур | Max | Units | |--|----------------------|--------------------------------|-------|-------|-------|-------| | Shutdown Supply Current | | V _{EN} = 0V | | 1 | 3.0 | μA | | Supply Current | | $V_{EN} = 2.0V; V_{FB} = 1.0V$ | | 1.3 | 1.5 | mA | | Feedback Voltage | V_{FB} | $4.75 V \leq V_{IN} \leq 23 V$ | 0.900 | 0.923 | 0.946 | V | | Feedback Overvoltage Threshold | | | | 1.1 | | V | | Error Amplifier Voltage Gain (5) | A _{EA} | | | 400 | | V/V | | Error Amplifier Transconductance | G _{EA} | $\Delta I_C = \pm 10 \mu A$ | | 800 | | μΑ/V | | High-Side Switch On Resistance (5) | R _{DS(ON)1} | | | 130 | | mΩ | | Low-Side Switch On Resistance (5) | R _{DS(ON)2} | | | 130 | | mΩ | | High-Side Switch Leakage Current | | $V_{EN} = 0V$, $V_{SW} = 0V$ | | | 10 | μΑ | | Upper Switch Current Limit | | Minimum Duty Cycle | 2.4 | 3.4 | 5.3 | Α | | Lower Switch Current Limit | | From Drain to Source | | 1.1 | | Α | | COMP to Current Sense
Transconductance | G _{CS} | | | 3.5 | | A/V | | Oscillation Frequency | F _{osc1} | | | 340 | | kHz | | Short Circuit Oscillation Frequency | F _{osc2} | V _{FB} = 0V | | 100 | | kHz | | Maximum Duty Cycle | D_{MAX} | V _{FB} = 1.0V | | 90 | | % | | Minimum On Time (5) | | | | 220 | | ns | | EN Shutdown Threshold Voltage | | V _{EN} Rising | 1.1 | 1.5 | 2.0 | V | | EN Shutdown Threshold Voltage Hysteresis | | | | 210 | | mV | | EN Lockout Threshold Voltage | | | 2.2 | 2.5 | 2.7 | V | | EN Lockout Hysterisis | | | | 210 | | mV | | Input Under Voltage Lockout Threshold | | V _{IN} Rising | 3.80 | 4.10 | 4.40 | V | | Input Under Voltage Lockout Threshold Hysteresis | | | | 210 | | mV | | Soft-Start Current | | V _{SS} = 0V | | 6 | _ | μA | | Soft-Start Period | | $C_{SS} = 0.1 \mu F$ | | 15 | | ms | | Thermal Shutdown (5) | | | | 160 | | °C | ### Note: ⁵⁾ Guaranteed by design, not tested. # **PIN FUNCTIONS** | Pin# | Name | Description | | |------|------|---|--| | 1 | BS | High-Side Gate Drive Boost Input. BS supplies the drive for the high-side N-Channel MOSFET switch. Connect a 0.01µF or greater capacitor from SW to BS to power the high side switch. | | | 2 | IN | Power Input. IN supplies the power to the IC, as well as the step-down converter switches. Drive IN with a 4.75V to 23V power source. Bypass IN to GND with a suitably large capacitor to eliminate noise on the input to the IC. See Input Capacitor. | | | 3 | SW | Power Switching Output. SW is the switching node that supplies power to the output. Connect the output LC filter from SW to the output load. Note that a capacitor is required from SW to BS to power the high-side switch. | | | 4 | GND | Ground. | | | 5 | FB | Feedback Input. FB senses the output voltage to regulate that voltage. Drive FB with a resistive voltage divider from the output voltage. The feedback threshold is 0.923V. See Setting the Output Voltage. | | | 6 | COMP | Compensation Node. COMP is used to compensate the regulation control loop. Connect series RC network from COMP to GND to compensate the regulation control loop. In som cases, an additional capacitor from COMP to GND is required. See Compensation Components. | | | 7 | EN | Enable Input. EN is a digital input that turns the regulator on or off. Drive EN high to turn on the regulator, drive it low to turn it off. Pull up with $100k\Omega$ resistor for automatic startup. | | | 8 | SS | Soft-Start Control Input. SS controls the soft start period. Connect a capacitor from SS to GND to set the soft-start period. A 0.1µF capacitor sets the soft-start period to 15ms. To disable the soft-start feature, leave SS unconnected. | | ### TYPICAL PERFORMANCE CHARACTERISTICS $V_{IN} = 12V$, $V_O = 3.3V$, L = $10\mu H$, C1 = $10\mu F$, C2 = $22\mu F$, $T_A = +25$ °C, unless otherwise noted. **Heavy Load Operation** 2A Load $V_{IN, AC}$ 200mV/div. V_{O. AC} 20mV/div. 1A/div V_{SW} 10V/div. 2ms/div. **Load Transient** # **OPERATION** ### **FUNCTIONAL DESCRIPTION** The MP2305 is a synchronous rectified, current-mode, step-down regulator. It regulates input voltages from 4.75V to 23V down to an output voltage as low as 0.923V, and supplies up to 2A of load current. The MP2305 uses current-mode control to regulate the output voltage. The output voltage is measured at FB through a resistive voltage divider and amplified through the internal transconductance error amplifier. The voltage at the COMP pin is compared to the switch current measured internally to control the output voltage. The converter uses internal N-Channel MOSFET switches to step-down the input voltage to the regulated output voltage. Since the high side MOSFET requires a gate voltage greater than the input voltage, a boost capacitor connected between SW and BS is needed to drive the high side gate. The boost capacitor is charged from the internal 5V rail when SW is low. When the MP2305 FB pin exceeds 20% of the nominal regulation voltage of 0.923V, the over voltage comparator is tripped and the COMP pin and the SS pin are discharged to GND, forcing the high-side switch off. Figure 1—Functional Block Diagram # APPLICATIONS INFORMATION COMPONENT SELECTION ### **Setting the Output Voltage** The output voltage is set using a resistive voltage divider from the output voltage to FB pin. The voltage divider divides the output voltage down to the feedback voltage by the ratio: $$V_{FB} = V_{OUT} \frac{R2}{R1 + R2}$$ Where V_{FB} is the feedback voltage and V_{OUT} is the output voltage. Thus the output voltage is: $$V_{OUT}=0.923\times\frac{R1+R2}{R2}$$ R2 can be as high as $100k\Omega$, but a typical value is $10k\Omega$. Using the typical value for R2, R1 is determined by: $$R1 = 10.83 \times (V_{OUT} - 0.923) \text{ (k}\Omega)$$ For example, for a 3.3V output voltage, R2 is $10k\Omega$, and R1 is $26.1k\Omega$. #### Inductor The inductor is required to supply constant current to the output load while being driven by the switched input voltage. A larger value inductor will result in less ripple current that will result in lower output ripple voltage. However, the larger value inductor will have a larger physical size, higher series resistance, and/or lower saturation current. A good rule for determining the inductance to use is to allow the peak-to-peak ripple current in the inductor to be approximately 30% of the maximum switch current limit. Also, make sure that the peak inductor current is below the maximum switch current limit. The inductance value can be calculated by: $$L = \frac{V_{OUT}}{f_S \times \Delta I_L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$ Where V_{OUT} is the output voltage, V_{IN} is the input voltage, f_S is the switching frequency, and ΔI_L is the peak-to-peak inductor ripple current. Choose an inductor that will not saturate under the maximum inductor peak current. The peak inductor current can be calculated by: $$I_{LP} = I_{LOAD} + \frac{V_{OUT}}{2 \times f_S \times L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$ Where I_{LOAD} is the load current. The choice of which style inductor to use mainly depends on the price vs. size requirements and any EMI requirements. ### **Optional Schottky Diode** During the transition between high-side switch and low-side switch, the body diode of the low-side power MOSFET conducts the inductor current. The forward voltage of this body diode is high. An optional Schottky diode may be paralleled between the SW pin and GND pin to improve overall efficiency. Table 1 lists example Schottky diodes and their Manufacturers. Table 1—Diode Selection Guide | Part Number | Voltage/Current
Rating | Vendor | |-------------|---------------------------|----------------------------| | B130 | 30V, 1A | Diodes, Inc. | | SK13 | 30V, 1A | Diodes, Inc. | | MBRS130 | 30V, 1A | International
Rectifier | ### **Input Capacitor** The input current to the step-down converter is discontinuous, therefore a capacitor is required to supply the AC current to the step-down converter while maintaining the DC input voltage. Use low ESR capacitors for the best performance. Ceramic capacitors are preferred, but tantalum or low-ESR electrolytic capacitors may also suffice. Choose X5R or X7R dielectrics when using ceramic capacitors. Since the input capacitor (C1) absorbs the input switching current it requires an adequate ripple current rating. The RMS current in the input capacitor can be estimated by: $$I_{C1} = I_{LOAD} \times \sqrt{\frac{V_{OUT}}{V_{IN}}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$ © 2013 MPS. All Rights Reserved. The worst-case condition occurs at $V_{IN} = 2V_{OUT}$, where $I_{C1} = I_{LOAD}/2$. For simplification, choose the input capacitor whose RMS current rating greater than half of the maximum load current. The input capacitor can be electrolytic, tantalum or ceramic. When using electrolytic or tantalum capacitors, a small, high quality ceramic capacitor, i.e. 0.1µF, should be placed as close to the IC as possible. When using ceramic capacitors, make sure that they have enough capacitance to provide sufficient charge to prevent excessive voltage ripple at input. The input voltage ripple for low ESR capacitors can be estimated by: $$\Delta V_{\text{IN}} = \frac{I_{\text{LOAD}}}{\text{C1} \times f_{\text{S}}} \times \frac{V_{\text{OUT}}}{V_{\text{IN}}} \times \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right)$$ Where C1 is the input capacitance value. ### **Output Capacitor** The output capacitor is required to maintain the DC output voltage. Ceramic, tantalum, or low ESR electrolytic capacitors are recommended. Low ESR capacitors are preferred to keep the output voltage ripple low. The output voltage ripple can be estimated by: $$\Delta V_{OUT} = \frac{V_{OUT}}{f_S \times L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \times \left(R_{ESR} + \frac{1}{8 \times f_S \times C2}\right)$$ Where C2 is the output capacitance value and R_{ESR} is the equivalent series resistance (ESR) value of the output capacitor. In the case of ceramic capacitors, impedance at the switching frequency is dominated by the capacitance. The output voltage ripple is mainly caused by the capacitance. For simplification, the output voltage ripple can be estimated by: $$\Delta V_{OUT} = \frac{V_{OUT}}{8 \times {f_S}^2 \times L \times C2} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$ In the case of tantalum or electrolytic capacitors, the ESR dominates the impedance at the switching frequency. For simplification, the output ripple can be approximated to: $$\Delta V_{OUT} = \frac{V_{OUT}}{f_S \times L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \times R_{ESR}$$ The characteristics of the output capacitor also affect the stability of the regulation system. The MP2305 can be optimized for a wide range of capacitance and ESR values. ### **Compensation Components** MP2305 employs current mode control for easy compensation and fast transient response. The system stability and transient response are controlled through the COMP pin. COMP pin is the output of the internal transconductance error amplifier. A series capacitor-resistor combination sets a pole-zero combination to control the characteristics of the control system. The DC gain of the voltage feedback loop is given by: $$A_{VDC} = R_{LOAD} \times G_{CS} \times A_{EA} \times \frac{V_{FB}}{V_{OUT}}$$ Where A_{VEA} is the error amplifier voltage gain; G_{CS} is the current sense transconductance and R_{LOAD} is the load resistor value. The system has two poles of importance. One is due to the compensation capacitor (C3) and the output resistor of the error amplifier, and the other is due to the output capacitor and the load resistor. These poles are located at: $$f_{P1} = \frac{G_{EA}}{2\pi \times C3 \times A_{VEA}}$$ $$f_{P2} = \frac{1}{2\pi \times C2 \times R_{LOAD}}$$ Where G_{EA} is the error amplifier transconductance. The system has one zero of importance, due to the compensation capacitor (C3) and the compensation resistor (R3). This zero is located at: $$f_{Z1} = \frac{1}{2\pi \times C3 \times R3}$$ The system may have another zero importance, if the output capacitor has a large capacitance and/or a high ESR value. The zero. due to the ESR and capacitance of the output capacitor, is located at: $$f_{ESR} = \frac{1}{2\pi \times C2 \times R_{ESR}}$$ 8 In this case (as shown in Figure 2), a third pole set by the compensation capacitor (C6) and the compensation resistor (R3) is used to compensate the effect of the ESR zero on the loop gain. This pole is located at: $$f_{P3} = \frac{1}{2\pi \times C6 \times R3}$$ The goal of compensation design is to shape the converter transfer function to get a desired loop gain. The system crossover frequency where the feedback loop has the unity gain is important. Lower crossover frequencies result in slower line and load transient responses, while higher crossover frequencies could cause system instability. A good rule of thumb is to set the crossover frequency below one-tenth of the switching frequency. To optimize the compensation components, the following procedure can be used. 1. Choose the compensation resistor (R3) to set the desired crossover frequency. Determine the R3 value by the following equation: $$R3 = \frac{2\pi \times C2 \times f_C}{G_{EA} \times G_{CS}} \times \frac{V_{OUT}}{V_{FB}} < \frac{2\pi \times C2 \times 0.1 \times f_S}{G_{EA} \times G_{CS}} \times \frac{V_{OUT}}{V_{FB}}$$ Where f_C is the desired crossover frequency which is typically below one tenth of the switching frequency. 2. Choose the compensation capacitor (C3) to achieve the desired phase margin. For applications with typical inductor values, setting the compensation zero, f_{Z1} , below one-forth of the crossover frequency provides sufficient phase margin. Determine the C3 value by the following equation: $$C3 > \frac{4}{2\pi \times R3 \times f_C}$$ Where R3 is the compensation resistor. 3. Determine if the second compensation capacitor (C6) is required. It is required if the ESR zero of the output capacitor is located at less than half of the switching frequency, or the following relationship is valid: $$\frac{1}{2\pi \times C2 \times R_{ESR}} < \frac{f_S}{2}$$ If this is the case, then add the second compensation capacitor (C6) to set the pole f_{P3} at the location of the ESR zero. Determine the C6 value by the equation: $$C6 = \frac{C2 \times R_{ESR}}{R3}$$ ### **External Bootstrap Diode** An external bootstrap diode may enhance the efficiency of the regulator, and it will be a must if the applicable condition is: • V_{OUT} =5V or 3.3V; and duty cycle is high: $D = \frac{V_{OUT}}{V_{IN}} > 65\%$ In these cases, an external BST diode is recommended from the output of the voltage regulator to BST pin, as shown in Figure 2 Figure 2—Add Optional External Bootstrap Diode to Enhance Efficiency The recommended external BST diode is IN4148, and the BST cap is $0.1 \sim 1 \mu F$. ## TYPICAL APPLICATION CIRCUIT Figure 3—MP2305 with 3.3V Output, 22µF/6.3V Ceramic Output Capacitor ### PACKAGE INFORMATION ### SOIC8 **TOP VIEW** RECOMMENDED LAND PATTERN **FRONT VIEW** **SIDE VIEW** **DETAIL "A"** ### NOTE: - 1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN BRACKET IS IN MILLIMETERS. - 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. - 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. - 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.004" INCHES MAX. - 5) DRAWING CONFORMS TO JEDEC MS-012, VARIATION AA. - 6) DRAWING IS NOT TO SCALE. **NOTICE:** The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications. Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! ### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. ### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.