FEATURES - Single Isolated output - 1kVDC or 3kVDC option - Wide temperature performance at full 1 Watt load -40 C to 85C° - Industry Standard Pinout - 3.3V and 5V Inputs - 3.3V, 5V & 12V outputs - Pin Compatible with LME, MEE1, MEE3, NKE, NME, & NML series ## **PRODUCT OVERVIEW** The CME series are a cost effective 0.75W DC/DC converter series, in industry standard packages with industry standard pinout., Popular input and output voltages are available as a lower power alternative to a 1W DC/DC converter. The galvanic isolation allows the device to be configured to provide an isolated negative rail in systems where only positive rails exist. The wide temperature range guarantees startup from -40°C and full 0.75 watt output at 85°C. | SELECTION G | SELECTION GUIDE | | | | | | | | | | | | |-------------|--------------------------|-------------------|----------------|--------|----------------|-------|----------------|-----------------------------------|------------|------|--------------------------|------| | Order Code | Nominal Input
Voltage | Output
Voltage | Output Current | | соад кедијатоп | | Rippie & Noise | Input
Current at Rated
Load | Efficiency | | Isolation
Capacitance | MTTF | | | V | ٧ | mA | | % | | р-р | mA | % | | pF | kHrs | | | - | • | | Тур. | Max. | Typ. | Max. | | Min. | Тур. | P · | | | CME0505DC | 5 | 5 | 150 | 10 | 12 | 15 | 25 | 218 | 67 | 70 | 30 | 3400 | | CME0505SC | 5 | 5 | 150 | 10 | 12 | 15 | 25 | 218 | 67 | 70 | 30 | 3400 | | CME0512SC | 5 | 12 | 63 | 5 | 7 | 20 | 30 | 195 | 72 | 77 | 33 | 2200 | | | | | 3KVD | C isol | ation o | ption | IS | | | | | | | CME0303S3C | 3.3 | 3.3 | 227 | 9 | 12 | 15 | 25 | 300 | 68 | 73 | 30 | 1230 | | CME0305S3C | 3.3 | 5 | 150 | 9 | 12 | 15 | 25 | 300 | 68 | 73 | 35 | 630 | | CME0505S3C | 5 | 5 | 150 | 9 | 12 | 15 | 25 | 218 | 65 | 70 | 28 | 2400 | | CME0512S3C | 5 | 12 | 63 | 5 | 7 | 10 | 15 | 200 | 70 | 75 | 30 | 630 | | INPUT CHARACTERISTICS | | | | | | | | | |---------------------------|--|------|------|------|-------|--|--|--| | Parameter | Conditions | Min. | Typ. | Max. | Units | | | | | Voltage range | Continuous operation, 3.3V input types | 2.97 | 3.3 | 3.63 | V | | | | | | Continuous operation, 5V input types | 4.5 | 5.0 | 5.5 | V | | | | | Deficated simple assurant | 3.3V input types | | 1.5 | 2 | ^ | | | | | Reflected ripple current | 5V input types | | 2 | 2.5 | mA | | | | | OUTPUT CHARACTERISTICS | | | | | | | | | |----------------------------|---|------|------|------|-------|--|--|--| | Parameter | Conditions | Min. | Тур. | Max. | Units | | | | | Rated Power | T _A =-40°C to 120°C, see derating graphs | | | 0.75 | W | | | | | Voltage Set Point Accuracy | See tolerance envelope | | | | | | | | | Line regulation | High V _{IN} to low V _{IN} | | 1.0 | 1.2 | %/% | | | | | ISOLATION CHARACTERISTICS | | | | | | | | | |---------------------------|---------------------------------------|------|------|------|-------|--|--|--| | Parameter | Conditions | Min. | Тур. | Max. | Units | | | | | laslation to at walters | C Versions Flash tested for 1 second | 1000 | | | VDC | | | | | Isolation test voltage | 3C Versions Flash tested for 1 second | 3000 | | | VDC | | | | | Resistance | Viso= 1000VDC | | 10 | | GΩ | | | | | GENERAL CHARACTERIS | TICS | | | | | |---------------------|-----------------|------|------|------|-------| | Parameter | Conditions | Min. | Тур. | Max. | Units | | Cuitohing froquency | CME0505 | | 120 | | kHz | | Switching frequency | All other types | | 135 | | КПZ | | ABSOLUTE MAXIMUM RATINGS | | |---|-------| | Lead temperature 1.5mm from case for 10 seconds | 260°C | | Input voltage V _{IN} , 3.3V input | 5.5V | | Input voltage V _{IN} , 5V input | 7V | ^{1.} Calculated using MIL-HDBK-217F with nominal input voltage at full load. All specifications typical at Ta=25°C, nominal input voltage and rated output current unless otherwise specified. # **CME Series** ## Isolated 0.75W Single Output Isolated DC/DC Converters | TEMPERATURE CHARACTERISTICS | | | | | | | | |-----------------------------|------------------------|--|------|------|------|-------|--| | Parameter | Conditions | | Min. | Тур. | Max. | Units | | | Specification | All output types | | -40 | | 85 | | | | Storage | | | -50 | | 130 | °C | | | Case temperature rise above | 3.3V & 5V output types | | | | 41 | U | | | ambient | 12V output types | | | | 32 | | | | Cooling | Free air convection | | | | | | | ## **TECHNICAL NOTES** #### **ISOLATION VOLTAGE** 'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation. Murata Power Solutions CME series of DC/DC converters are all 100% production tested at their stated isolation voltage. This is 1kVDC for 1 second. A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?" For a part holding no specific agency approvals, such as the CME series, both input and output should normally be maintained within SELV limits i.e. less than 42.4V peak, or 60VDC. The isolation test voltage represents a measure of immunity to transient voltages and the part should never be used as an element of a safety isolation system. The part could be expected to function correctly with several hundred volts offset applied continuously across the isolation barrier; but then the circuitry on both sides of the barrier must be regarded as operating at an unsafe voltage and further isolation/insulation systems must form a barrier between these circuits and any user-accessible circuitry according to safety standard requirements. #### REPEATED HIGH-VOLTAGE ISOLATION TESTING It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. The CME series has toroidal isolation transformers, with no additional insulation between primary and secondary windings of enameled wire. While parts can be expected to withstand several times the stated test voltage, the isolation capability does depend on the wire insulation. Any material, including this enamel (typically polyurethane) is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. This consideration equally applies to agency recognized parts rated for better than functional isolation where the wire enamel insulation is always supplemented by a further insulation system of physical spacing or barriers. ## **APPLICATION NOTES** #### Minimum load The minimum load to meet datasheet specification is 10% of the full rated load across the specified input voltage range. Lower than 10% minimum loading will result in an increase in output voltage, which may rise to typically double the specified output voltage if the output load falls to less than 5%. #### Capacitive loading and start up Typical start up times for this series, with a typical input voltage rise time of $2.2\mu s$ and output capacitance of $10\mu F$, are shown in the table below. The product series will start into a capacitance of $47\mu F$ with an increased start time, however, the maximum recommended output capacitance is $10\mu F$. | | Start-up time | |------------|---------------| | | μs | | CME0505DC | 1000 | | CME0505SC | 1000 | | CME0512SC | 5600 | | CME0303S3C | 540 | | CME0305S3C | 1300 | | CME0505S3C | 1080 | | CME0512S3C | 5000 | #### Ripple & Noise Characterisation Method Ripple and noise measurements are performed with the following test configuration. | C1 | 1μF X7R multilayer ceramic capacitor, voltage rating to be a minimum of 3 times the output voltage of the DC/DC converter | |-------------|--| | C2 | $10\mu F$ tantalum capacitor, voltage rating to be a minimum of 1.5 times the output voltage of the DC/DC converter with an ESR of less than 100kHz | | C3 | 100nF multilayer ceramic capacitor, general purpose | | R1 | 450Ω resistor, carbon film, ±1% tolerance | | R2 | 50Ω BNC termination | | T1 | 3T of the coax cable through a ferrite toroid | | RLOAD | Resistive load to the maximum power rating of the DC/DC converter. Connections should be made via twisted wires | | Measured va | lues are multiplied by 10 to obtain the specified values. | ## Differential Mode Noise Test Schematic ## **APPLICATION NOTES (continued)** #### Output Ripple Reduction By using the values of inductance and capacitance stated, the output ripple at the rated load is lowered to 5mV p-p max. #### Component selection Capacitor: It is required that the ESR (Equivalent Series Resistance) should be as low as possible, ceramic types are recommended. The voltage rating should be at least twice (except for 15V output), the rated output voltage of the DC/DC converter. Inductor: The rated current of the inductor should not be less than that of the output of the DC/DC converter. At the rated current, the DC resistance of the inductor should be such that the voltage drop across the inductor is <2% of the rated voltage of the DC/DC converter. The SRF (Self Resonant Frequency) should be >20MHz | | | | | Capacitor | | | | |------------|-------|----------|--------------|-----------|--|--|--| | | | Inductor | | | | | | | | L, µH | SMD | Through Hole | C, µF | | | | | CME0505DC | 47 | 82473C | 11R473C | 4.7 | | | | | CME0505SC | 47 | 82473C | 11R473C | 4.7 | | | | | CME0512SC | 68 | 82683C | 11R683C | 1 | | | | | CME0303S3C | 10 | 82103C | 11R103C | 4.7 | | | | | CME0305S3C | 47 | 82473C | 11R473C | 4.7 | | | | | CME0505S3C | 10 | 82103C | 11R103C | 4.7 | | | | | CME0512S3C | 68 | 82683C | 11R683C | 0.68 | | | | $-V_{\text{OUT}}$ 4 **+V**out 7 # ## Rohs Compliance Information This series is compatible with RoHS soldering systems with a peak wave solder temperature of 260°C for 10 seconds. The pin termination finish on the SIP package type is Tin Plate, Hot Dipped over Matte Tin with Nickel Preplate. The DIP types are Matte Tin over Nickel Preplate. Both types in this series are backward compatible with Sn/Pb soldering systems. For further information, please visit www.murata-ps.com/rohs $\,$ Murata Power Solutions, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A. ISO 9001 and 14001 REGISTERED This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>: Refer to: http://www.murata-ps.com/requirements/ Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject unange without notice. Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! ## Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов; - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.