SN65C3221, SN75C3221 3-V TO 5.5-V SINGLE-CHANNEL RS-232 COMPATIBLE LINE DRIVER/RECEIVER SLLS351E - APRIL 2002 - REVISED OCTOBER 2004 - Operate With 3-V to 5.5-V V_{CC} Supply - Operate Up To 1 Mbit/s - **Low Standby Current . . . 1 μA Typ** - External Capacitors . . . $4 \times 0.1 \mu F$ - Accepts 5-V Logic Input With 3.3-V Supply - **RS-232 Bus-Pin ESD Protection Exceeds** ±15 kV Using Human-Body Model (HBM) - **Auto-Powerdown Feature Automatically Disables Drivers for Power Savings** - **Applications** - Battery-Powered, Hand-Held, and **Portable Equipment** - PDAs and Palmtop PCs - Notebooks, Sub-Notebooks, and Laptops - Digital Cameras - Mobile Phones and Wireless Devices #### **DB OR PW PACKAGE** (TOP VIEW) $\overline{\mathsf{EN}}$ 16 FORCEOFF 15 V_{CC} C1+ [2 14∏ GND V+ **[**]3 13**∏** DOUT C1- Π 4 12 FORCEON C2+ [5 11 DIN C2-V− **∏**7 10 NVALID 9∏ ROUT RIN 8 ### description/ordering information The SN65C3221 and SN75C3221 consist of one line driver, one line receiver, and a dual charge-pump circuit with ±15-kV ESD protection pin to pin (serial-port connection pins, including GND). These devices provide the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. These devices operate at data signaling rates up to 1 Mbit/s and a driver output slew rate of 24 V/μs to 150 V/μs. Flexible control options for power management are available when the serial port is inactive. The auto-powerdown feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the devices do not sense a valid RS-232 signal on the receiver input, the driver output is disabled. If FORCEOFF is set low and EN is high, both the driver and receiver are shut off, and the supply current is reduced to 1 μ A. Disconnecting the serial port or turning off the peripheral drivers causes the auto-powerdown condition to occur. Auto-powerdown can be disabled when FORCEON and FORCEOFF are high. With auto-powerdown enabled, the device is activated automatically when a valid signal is applied to the receiver input. The INVALID output notifies the user if an RS-232 signal is present at the receiver input. INVALID is high (valid data) if the receiver input voltage is greater than 2.7 V or less than -2.7 V, or has been between -0.3 V and 0.3 V for less than 30 μs. INVALID is low (invalid data) if the receiver input voltage is between –0.3 V and 0.3 V for more than 30 μs. Refer to Figure 5 for receiver input levels. #### ORDERING INFORMATION | TA | PACKAGE [†] | | PACKAGE [†] | | ORDERABLE
PART NUMBER | TOP-SIDE
MARKING | |---------------|----------------------|--------------|----------------------|--------|--------------------------|---------------------| | −0°C to 70°C | SSOP (DB) | Reel of 2000 | SN75C3221DBR | CA3221 | | | | | TOOOD (DIA)) | Tube of 90 | SN75C3221PW | 040004 | | | | | TSSOP (PW) | Reel of 2000 | SN75C3221PWR | CA3221 | | | | | SSOP (DB) | Reel of 2000 | SN65C3221DBR | CB3221 | | | | -40°C to 85°C | TCCOD (DIAN) | Tube of 90 | SN65C3221PW | CD2004 | | | | | TSSOP (PW) | Reel of 2000 | SN65C3221PWR | CB3221 | | | [†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. #### **Function Tables** #### **EACH DRIVER** | | | INPUTS | | OUTPUT | | |-----|---------|----------|---------------------------|--------|-------------------------| | DIN | FORCEON | FORCEOFF | VALID RIN
RS-232 LEVEL | DOUT | DRIVER STATUS | | Х | Χ | L | Х | Z | Powered off | | L | Н | Н | Х | Н | Normal operation with | | Н | Н | Н | X | L | auto-powerdown disabled | | L | L | Н | Yes | Н | Normal operation with | | Н | L | Н | Yes | L | auto-powerdown enabled | | L | L | Н | No | Z | Powered off by | | Н | L | Н | No | Z | auto-powerdown feature | H = high level, L = low level, X = irrelevant, Z = high impedance #### **EACH RECEIVER** | | INP | PUTS | OUTPUT | |------|-----|---------------------------|--------| | RIN | EN | VALID RIN
RS-232 LEVEL | ROUT | | L | L | Х | Н | | Н | L | X | L | | Х | Н | X | Z | | Open | L | No | Н | H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = disconnected input or connected driver off ## logic diagram (positive logic) ## SN65C3221, SN75C3221 3-V TO 5.5-V SINGLE-CHANNEL RS-232 COMPATIBLE LINE DRIVER/RECEIVER SLLS351E - APRIL 2002 - REVISED OCTOBER 2004 ## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V _{CC} (see Note 1) | –0.3 V to 6 V | |--|----------------------------------| | Positive output supply voltage range, V+ (see Note 1) | –0.3 V to 7 V | | Negative output supply voltage range, V– (see Note 1) | 0.3 V to –7 V | | Supply voltage difference, V+ – V– (see Note 1) | | | Input voltage range, V _I : Driver (FORCEOFF, FORCEON, EN) | 0.3 V to 6 V | | Receiver | –25 V to 25 V | | Output voltage range, VO: Driver | 13.2 V to 13.2 V | | Receiver (INVALID) | 0.3 V to V _{CC} + 0.3 V | | Package thermal impedance, θ_{JA} (see Notes 2 and 3): DB package | 82°C/W | | PW package | 108°C/W | | Operating virtual junction temperature, T _J | 150°C | | Storage temperature range, T _{sta} | | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - NOTES: 1. All voltages are with respect to network GND. - 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. - 3. The package thermal impedance is calculated in accordance with JESD 51-7. ### recommended operating conditions (see Note 4 and Figure 6) | | | | | MIN | NOM | MAX | UNIT | |----------------|---|----------------------------|--------------------------|-----|-----|-----|------| | | Supply voltage | | V _C C = 3.3 V | 3 | 3.3 | 3.6 | ., | | | | | V _{CC} = 5 V | 4.5 | 5 | 5.5 | V | | ., | V _{IH} Driver and control high-level input voltage | DIN FORCES FORCES IN | V _{CC} = 3.3 V | 2 | | | ., | | ۷IH | | DIN, FORCEOFF, FORCEON, EN | V _C C = 5 V | 2.4 | | | V | | V_{IL} | /IL Driver and control low-level input voltage DIN, FORCEOFF, FORCEON, EN | | | | | 8.0 | V | | ٧ _I | Driver and control input voltage DIN, FORCEOFF, FORCEON | | | 0 | | 5.5 | V | | ٧ı | Receiver input voltage | | | -25 | | 25 | V | | _ | | | SN65C3221 | -40 | | 85 | 00 | | TA | Operating free-air temperature | | SN75C3221 | 0 | | 70 | °C | NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. ## electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 6) | | PARAM | IETER | TEST CONDITIONS | MIN | TYP‡ | MAX | UNIT | |-----|--------------------------------------|-------------------------|---|-----|-------|-----|------| | Ц | Input leakage current | FORCEOFF, FORCEON, EN | | | ±0.01 | ±1 | μΑ | | | Auto-powerdown d | Auto-powerdown disabled | No load,
FORCEOFF and FORCEON at V _{CC} | | 0.3 | 1 | mA | | lcc | Supply current | Powered off | No load, FORCEOFF at GND | | 1 | 10 | | | Icc | Supply current $(T_A = 25^{\circ}C)$ | Auto-powerdown enabled | No load, FORCEOFF at V _{CC} ,
FORCEON at GND,
All RIN are open or grounded | | 1 | 10 | μА | [‡] All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^{\circ}\text{C}$. NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. #### **DRIVER SECTION** ## electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 6) | | PARAMETER | TEST | CONDITIONS | MIN | TYP† | MAX | UNIT | |-----------------|-------------------------------|--|---|-----|-------|-----|------| | Vон | High-level output voltage | DOUT at R _L = $3 \text{ k}\Omega$ to GND, | DIN = GND | 5 | 5.4 | | V | | VOL | Low-level output voltage | DOUT at R _L = $3 \text{ k}\Omega$ to GND, | DIN = V _{CC} | -5 | -5.4 | | V | | lн | High-level input current | VI = VCC | | | ±0.01 | ±1 | μΑ | | I _{IL} | Low-level input current | V _I at GND | | | ±0.01 | ±1 | μΑ | | | | $V_{CC} = 3.6 \text{ V},$ | V _O = 0 V | | ±35 | ±60 | • | | los | Short-circuit output current‡ | V _{CC} = 5.5 V, | VO = 0 V | | ±35 | ±90 | mA | | ro | Output resistance | V_{CC} , V+, and V- = 0 V, | V _O = ±2 V | 300 | 10M | | Ω | | | Output lookage current | FORCEOFF = GND | $V_O = \pm 12 \text{ V}, V_{CC} = 3 \text{ V to } 3.6 \text{ V}$ | | | ±25 | | | loff | Output leakage current | FURGEOFF = GND | $V_O = \pm 10 \text{ V}, V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ | | | ±25 | μΑ | [†] All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. ## switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 6) | | PARAMETER | - | TEST CONDITIONS | | | TYP | MAX | UNIT | |----------------------------------|---|--|--|--|------|-----|-----|--------| | | | | C _L = 1000 pF | | 250 | | | | | Maximum data rate (see Figure 1) | | $R_L = 3 \text{ k}\Omega$ | C _L = 250 pF, | $V_{CC} = 3 V \text{ to } 4.5 V$ | 1000 | | | kbit/s | | | | | C _L = 1000 pF, | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ | | | | | | t _{sk(p)} | Pulse skew§ | C _L = 150 pF to 2500 pF | $R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega,$ | See Figure 2 | | 100 | | ns | | SR(tr) | Slew rate,
transition region
(see Figure 1) | V_{CC} = 3.3 V,
R _L = 3 kΩ to 7 kΩ | C _L = 150 pF to 1000 | pF | 18 | | 150 | V/μs | [†] All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^{\circ}\text{C}$. ### **ESD** protection | TERMI | NAL | TECT COMPLETIONS | TVD | LINUT | |-------|-----|-------------------|-----|-------| | NAME | NO. | TEST CONDITIONS T | | UNIT | | DOUT | 13 | НВМ | ±15 | kV | ^{\$} Short-circuit durations should be controlled to prevent exceeding the device absolute power-dissipation ratings, and not more than one output should be shorted at a time. NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. [§] Pulse skew is defined as |tpLH - tpHL| of each channel of the same device. NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 $V \pm 0.3 V$; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 $V \pm 0.5 V$. SLLS351E - APRIL 2002 - REVISED OCTOBER 2004 #### RECEIVER SECTION ## electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 6) | | PARAMETER | TEST CONDITIONS | MIN | TYP [†] | MAX | UNIT | |-------------------|---|--|-------------------------|-------------------------|-----|------| | Vон | High-level output voltage | I _{OH} = -1 mA | V _{CC} – 0.6 V | V _{CC} – 0.1 V | | V | | VOL | Low-level output voltage | I _{OL} = 1.6 mA | | | 0.4 | V | | \/ | Decitive mains invest threehold valte as | V _{CC} = 3.3 V | | 1.6 | 2.4 | ., | | V _{IT+} | Positive-going input threshold voltage | V _{CC} = 5 V | | 1.9 | 2.4 | V | | ., | N. S. L. | V _{CC} = 3.3 V | 0.6 | 1.1 | | ., | | V _{IT} _ | Negative-going input threshold voltage | V _{CC} = 5 V | 0.8 | 1.4 | | V | | V _{hys} | Input hysteresis (V _{IT+} - V _{IT-}) | | | 0.5 | | V | | l _{off} | Output leakage current | FORCEOFF = 0 V | | ±0.05 | ±10 | μΑ | | rį | Input resistance | $V_1 = \pm 3 \text{ V to } \pm 25 \text{ V}$ | 3 | 5 | 7 | kΩ | [†] All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^{\circ}\text{C}$. NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. ## switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4) | | PARAMETER | TEST CONDITIONS | MIN TYP† MAX | UNIT | |-----------------|---|--|--------------|------| | tPLH | Propagation delay time, low- to high-level output | C _L = 150 pF, See Figure 3 | 150 | ns | | tPHL | Propagation delay time, high- to low-level output | C _L = 150 pF, See Figure 3 | 150 | ns | | t _{en} | Output enable time | $C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega, \text{See Figure 4}$ | 200 | ns | | tdis | Output disable time | C_L = 150 pF, R_L = 3 k Ω , See Figure 4 | 200 | ns | | tsk(p) | Pulse skew [‡] | See Figure 3 | 50 | ns | [†] All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^{\circ}\text{C}$. NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. #### **ESD** protection | TERMI | NAL | TEST COMPITIONS | TVD | LINUT | |----------|-----|-----------------|-----|-------| | NAME NO. | | TEST CONDITIONS | TYP | UNIT | | RIN | 8 | HBM | ±15 | kV | [‡] Pulse skew is defined as |tpLH - tpHL| of each channel of the same device. #### **AUTO-POWERDOWN SECTION** # electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5) | | PARAMETER | TEST (| CONDITIONS | MIN | MAX | UNIT | |--------------------------|--|---|----------------------------|----------------------|-----|------| | VT+(valid) | Receiver input threshold for INVALID high-level output voltage | FORCEON = GND, | FORCEOFF = V _{CC} | | 2.7 | V | | VT-(valid) | Receiver input threshold for INVALID high-level output voltage | FORCEON = GND, | FORCEOFF = V _{CC} | -2.7 | | V | | V _T (invalid) | Receiver input threshold for INVALID low-level output voltage | FORCEON = GND, | FORCEOFF = V _{CC} | -0.3 | 0.3 | V | | VOH | INVALID high-level output voltage | I _{OH} = -1 mA, FORCE
FORCEOFF = V _{CC} | EON = GND, | V _{CC} -0.6 | | V | | V _{OL} | INVALID low-level output voltage | I _{OL} = 1.6 mA, FORCE
FORCEOFF = V _{CC} | EON = GND, | | 0.4 | V | # switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5) | | PARAMETER | MIN 7 | түр† | MAX | UNIT | |-----------------|---|-------|------|-----|------| | tvalid | Propagation delay time, low- to high-level output | | 1 | | μs | | tinvalid | Propagation delay time, high- to low-level output | | 30 | | μs | | t _{en} | Supply enable time | | 100 | | μs | $[\]dagger$ All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. #### PARAMETER MEASUREMENT INFORMATION NOTES: A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_f \le 10$ ns. $t_f \le 10$ ns. Figure 1. Driver Slew Rate NOTES: A. C_L includes probe and jig capacitance. B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns. Figure 2. Driver Pulse Skew NOTES: A. C_L includes probe and jig capacitance. B. The pulse generator has the following characteristics: $Z_Q = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns. Figure 3. Receiver Propagation Delay Times #### PARAMETER MEASUREMENT INFORMATION NOTES: A. C_L includes probe and jig capacitance. - B. The pulse generator has the following characteristics: $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns. - C. tpLZ and tpHZ are the same as tdis. - D. tpzL and tpzH are the same as ten. Figure 4. Receiver Enable and Disable Times #### PARAMETER MEASUREMENT INFORMATION † Auto-powerdown disables drivers and reduces supply current to 1 $\mu\text{A}.$ NOTES: A. C_L includes probe and jig capacitance. B. The pulse generator has the following characteristics: PRR = 5 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_\Gamma \le 10$ ns. $t_f \le 10$ ns. Figure 5. INVALID Propagation Delay Times and Driver Enabling Time ### **APPLICATION INFORMATION** $\ensuremath{^{\dagger}}\xspace \text{C3}$ can be connected to VCC or GND. NOTE A: Resistor values shown are nominal. V_{CC} vs CAPACITOR VALUES | VCC | C1 | C2, C3, and C4 | | | |--|------------------------------|------------------------------|--|--| | $\begin{array}{c} \textbf{3.3 V} \pm \textbf{0.3 V} \\ \textbf{5 V} \pm \textbf{0.5 V} \\ \textbf{3 V to 5.5 V} \end{array}$ | 0.1 μF
0.047 μF
0.1 μF | 0.1 μF
0.33 μF
0.47 μF | | | Figure 6. Typical Operating Circuit and Capacitor Values 9-Jan-2012 ### **PACKAGING INFORMATION** | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples
(Requires Login) | |------------------|------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|-----------------------------| | SN65C3221DB | ACTIVE | SSOP | DB | 16 | 80 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN65C3221DBE4 | ACTIVE | SSOP | DB | 16 | 80 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN65C3221DBG4 | ACTIVE | SSOP | DB | 16 | 80 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN65C3221DBR | ACTIVE | SSOP | DB | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN65C3221DBRE4 | ACTIVE | SSOP | DB | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN65C3221DBRG4 | ACTIVE | SSOP | DB | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN65C3221PW | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN65C3221PWE4 | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN65C3221PWG4 | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN65C3221PWR | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN65C3221PWRE4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN65C3221PWRG4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN75C3221DBR | ACTIVE | SSOP | DB | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN75C3221DBRE4 | ACTIVE | SSOP | DB | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN75C3221DBRG4 | ACTIVE | SSOP | DB | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN75C3221DW | PREVIEW | SOIC | DW | 16 | 40 | TBD | Call TI | Call TI | | | SN75C3221PW | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | 9-.lan-2012 | Orderable Device | Status ⁽¹⁾ | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples
(Requires Login) | |------------------|-----------------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|-----------------------------| | SN75C3221PWE4 | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN75C3221PWG4 | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN75C3221PWR | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN75C3221PWRE4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | SN75C3221PWRG4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF SN65C3221: 9-Jan-2012 • Automotive: SN65C3221-Q1 NOTE: Qualified Version Definitions: • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects ## PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 ## TAPE AND REEL INFORMATION #### **REEL DIMENSIONS** #### **TAPE DIMENSIONS** | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### TAPE AND REEL INFORMATION *All dimensions are nominal | All dimensions are nominal | | | | | | | | | | | | | |----------------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | | SN65C3221DBR | SSOP | DB | 16 | 2000 | 330.0 | 16.4 | 8.2 | 6.6 | 2.5 | 12.0 | 16.0 | Q1 | | SN65C3221PWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | SN75C3221DBR | SSOP | DB | 16 | 2000 | 330.0 | 16.4 | 8.2 | 6.6 | 2.5 | 12.0 | 16.0 | Q1 | | SN75C3221PWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | www.ti.com 14-Jul-2012 *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |--------------|--------------|-----------------|------|------|-------------|------------|-------------| | SN65C3221DBR | SSOP | DB | 16 | 2000 | 367.0 | 367.0 | 38.0 | | SN65C3221PWR | TSSOP | PW | 16 | 2000 | 367.0 | 367.0 | 35.0 | | SN75C3221DBR | SSOP | DB | 16 | 2000 | 367.0 | 367.0 | 38.0 | | SN75C3221PWR | TSSOP | PW | 16 | 2000 | 367.0 | 367.0 | 35.0 | PW (R-PDSO-G16) ## PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 ## PW (R-PDSO-G16) ## PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. DW (R-PDSO-G16) ## PLASTIC SMALL OUTLINE NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-013 variation AA. ## DB (R-PDSO-G**) ## PLASTIC SMALL-OUTLINE #### **28 PINS SHOWN** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-150 #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. | roducts | | Applications | |---------|--------------|--------------| | | ti aaaa/adia | A | Pr Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio www.ti.com/communications **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u> www.ti-rfid.com Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.