B —
Atmet SAM4CP16C

Atmel | SMART Power Line Communications Device

DATASHEET

Description

Atmel SAM4CP16C belongs to Atmel® | SMART energy portfolio. It is based on SAM4C, a high
performance 32-bit, dual core ARM® Cortex®-M4 RISC processor embedding a G3 PLC
[Power Line Communication] modem. The two cores Cortex-M4 are able to operate at a maxi-
mum speed of 120 MHz, featuring 1 Mbyte of embedded Flash, 128 kBytes of SRAM and on-
chip cache for each core.

SAM4CP16C is a flexible, compact and high-efficient device for a wide range of Smart Grid
applications such as Smart Metering (Smart Meters and Data Concentrators), Lighting, Indus-
trial / Home Automation, Home and Building Energy Management Systems, Solar Energy and
Plug-in Hybrid Electric Vehicle (PHEV) Charging Stations.

The unique dual ARM Cortex-M4 architecture allows implementation of signal processing,
application and communications firmware in independent partitions, supported by a powerful
embedded PLC modem and an extensive set of embedded cryptographic features.
SAM4CP16C can be combined with external Atmel devices for metrology, representing a flexi-
ble and highly efficient platform for smart metering applications.

The peripheral set includes advanced cryptographic engine, anti-tamper, floating point unit
(FPU), 5x USARTS, 2x UARTSs, 2x TWIs, 6 x SPI, as well as 1 PWM timer, 2x three channel
general-purpose 16-bit timers, integrated true RTC, a 10-bit ADC, and a 46 x 5 Segmented
LCD controller.

SAM4CP16C operates from 1.62V to 3.6V and is available in 176-pin LQFP package.

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel S#ART

1. Features

e Application/Master Core (CM4P0)
e ARM Cortex-M4 running at up to 120 MHz"
Memory Protection Unit (MPU)
DSP Instruction
Thumb®-2 instruction set
Instruction and Data Cache Controller with 2 Kbytes Cache Memory
Memories

e 1024 Kbytes of Embedded Flash for Program Code (I-Code bus) and Program Data (D-Code bus)
with Built-in ECC (2-bit error detection and 1-bit correction per 128 bits)

128 Kbytes of Embedded SRAM (SRAMO) for Program Data (System bus)

8 Kbytes of ROM with embedded boot loader routines (UART) and In-Application Programming
(IAP) routines

e Co-processor (CM4P1), provides ability to separate application, communication or metrology functions
ARM Cortex-M4F running at up to 120 MHz'"

IEEE® 754 Compliant, Single-precision Floating-Point Unit (FPU)

DSP Instruction

Thumb-2 instruction set

Instruction and Data Cache Controller with 2 Kbytes of Cache Memory

Memories

e 16 Kbytes of Embedded SRAM (SRAM1) for Program Code (I-Code bus) and Program Data (D-
Code bus and System bus)

e 8 Kbytes of Embedded SRAM (SRAM2) for Program Data (System bus)

e Symmetrical/Asynchronous Dual Core Architecture

e Interrupt-based Interprocessor Communication

e Asynchronous Clocking

e One Interrupt Controller (NVIC) for each core

e Each Peripheral IRQ routed to each NVIC Input
e G3-PLC Modem

e Implements G3 CENELEC-A, FCC and ARIB profiles (ITU-T G.9903, June ’14)
Power Line Carrier Modem for 50 Hz and 60 Hz mains
G3-PLC coherent and differential modulation schemes available

Automatic Gain Control and continuous amplitude tracking in signal reception
Zero cross detection
Embedded PLC Analog Front End (AFE), requires only external discrete high efficient Class D Line
Driver for signal injection
e Cryptography
e High-performance AES 128 to 256 with various modes (GCM, CBC, ECB, CFB, CBC-MAC, CTR)
e TRNG (up to 38 Mbit/s stream, with tested Diehard and FIPS)
e Classical Public Key Crypto accelerator and associated ROM library for RSA, ECC, DSA, ECDSA
[

Integrity Check Module (ICM) based on Secure Hash Algorithm (SHA1, SHA224, SHA256), DMA-
assisted

e Safety

e Up to four Physical Anti-tamper Detection I/Os with Time Stamping and Immediate Clear of General
Backup Registers

e Security Bit for Device Protection from JTAG Accesses

2 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

e Shared System Controller
e Power Supply
e Embedded core and LCD voltage regulator for single-supply operation
e Power-on-Reset (POR), Brownout Detector (BOD) and Dual Watchdog for safe operation
e Ultra-low-power Backup mode (<0.5 yA Typical @ 25°C)
e Clock
e Optional 3 to 20 MHz quartz or ceramic resonator oscillators with clock failure detection
e Ultra-low-power 32.768 kHz crystal oscillator for RTC with frequency monitoring
e 24 MHz quartz or ceramic resonator for GPLC peripheral
e High-precision 4/8/12 MHz factory-trimmed internal RC oscillator with on-the-fly trimming
capability
e One high-frequency PLL up to 240 MHz, one 8 MHz PLL with internal 32 kHz input, as source for
high-frequency PLL
e Low-power slow clock internal RC oscillator as permanent clock

e Ultra low-power RTC with Gregorian and Persian Calendar, Waveform Generation in Backup mode and
Clock Calibration Circuitry for 32.768 kHz Crystal Frequency Compensation Circuitry

e Up to 23 Peripheral DMA (PDC) Channels
e Shared Peripherals

e One Low-power Segmented LCD Controller
e Display capacity of 46 Segments and 5 common terminals
e Software-selectable LCD output voltage (Contrast)
e Low current consumption in Low-power mode
e Can be used in Backup mode

e Up to five USARTSs with ISO7816, IrDA®, RS-485, SPI and Manchester Mode

Two 2-wire UARTs with one UART (UART1) supporting optical transceiver providing an electrically
isolated serial communication with hand-held equipment, such as calibrators, compliant with ANSI-
C12.18 or IEC62056-21 norms

Two 400 kHz Master/Slave and Multi-Master Two-wire Interfaces (IC compatible)

Up to six Serial Peripheral Interfaces (SPI)

Two 3-Channel 16-bit Timer/Counters with Capture, Waveform, Compare and PWM modes
Quadrature Decoder Logic and 2-bit Gray Up/Down Counter for Stepper Motor

4-channel 16-bit Pulse Width Modulator

32-bit Real-time Timer

e Analog Conversion Block

e 8-channel, 500 kS/s, Low-power 10-bit SAR ADC with Digital Averager providing 12-bit Resolution at 30
kS/s

e Software-controlled On-chip Reference ranging from 1.6V to 3.4V
e Temperature Sensor and Backup Battery Voltage Measurement Channel
e Debug
e Star Topology AHB-AP Debug Access Port Implementation with Common SW-DP / SWJ-DP Providing
Higher Performance than Daisy-chain Topology
e Debug Synchronization between both Cores (cross triggering to/from each core for Halt and Run Mode)
e |/O

e Up to 69 /O lines with External Interrupt Capability (edge or level sensitivity), Schmitt Trigger, Internal
Pull-up/pull-down, Debouncing, Glitch Filtering and On-die Series Resistor Termination

e Packages
e 176-lead LQFP, 24 x 24 mm, pitch 0.5 mm

Note: 1. 120 MHz: -40°C/+85°C, VDDCORE = 1.2V

Atmel SAM4CP16C [DATASHEET] 3

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

1.1 Configuration Summary
Table 1-1 summarizes the SAM4CP16C device configurations.

Table 1-1. Configuration Summary

Feature SAM4CP16C
Flash 1024 Kbytes
SRAM 128 + 16 + 8 Kbytes
Package LQFP 176
Number of PIOs 69
16-bit Timer 6 channels
16-bit PWM 4 channels
UART / USART 2/5
sp1™ 6
TWI 2
10-bit ADC Channels® 7
Cryptography AES, CPKCC, ICM (SHA), TRNG
Segmented LCD 46 segments x 5 commons
Anti-Tampering Inputs 4
Flash Page Size 512
Flash Pages 2048
Flash Lock Region Size 8192
Flash Lock Bits 128

Notes: 1. Using SPI mode of USARTs (1 SPI Controller + 5 USARTSs with SPI mode).
2. One channel is reserved for internal temperature sensor and one channel for VYDDBU measurement.

4 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

1.2 SAMACP application block diagram

Figure 1-1. Block diagram of example of SAM4CP application

Slow Clock
Crystal >
20MHz
Crystal —)
PLC Coupling &
MAINS 3v3
<mp| 115/230VAC | RECTIFIER | DC/DC |—)

Zero Crossing

RESET

FWUP & TMPO

BACK-UP BATTERY

2 kB EEPROM

5
=

SAMA4CP16C

SPI1 & USART1
I Xplained PRO |

JTAG

I JTAG |

RS485
Transceiver

RS485

I

I USARTO |

UARTO & UART1
l UARTs CMOS

UART
to
usB

B Micro USB Port

SEGs

COMs

LCD

GPIOs

Atmel

SAM4CP16C [DATASHEET]

I User LED’s |

5

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

2.

Block Diagram

Figure 2-1.

SAM4CP16C 176-pin Block Diagram

TWCKO

SAM4CP16C |

Serial Wire and JTAG Debug Port (SW-DP/SWJ-DP)

> TDI

JTAGSEL

|

AHB-AP : AHB-AP
Cortex-M4 Processor | Cortex-M4F Processor
cMcco (CM4P0) : (CM4P1) cmect
MPU |
2 KB Cache 2 KB Cache
Memon System bus | Memory
|
|
Asynchronous
AHB / AHB
M/S Bridge M/S
M M
AHB Multilayer Bus Matrix 0 é é AHB Multilayer Bus Matrix 1

Flash SBu
1024 KB
SRAMO
User Sign.
Unique Id. 128KB
ECC

ROM
(SAM-BA
CPKCL)

TWDO

TWCK1

TWD1

URXDO

UTXDO

RXD[0..4]

TXDI0..4]

SCK[0..4]

RTS[0.4]

CTs[0.4]
TCLK[0:2]

TIOA0:2]

TIOB[0:2]

TCLK[3:5]
TIOA[3:5]

TIOB[3:5]

ADTRG

AD[0..1]

AD[3.5]

ADVREF <—

COM[0..4] <—]
SEG[3..47] <]
SEG49

Powered by VDDLCD

D)

VDDIN
VDDOUT AN <4—{

Analog
Regulator

VDDIN PLC
VDDOUT PLC <4
VDDPLL PLC —

TXRX[0..1] <—

VDDPLL

Digttal Voltage

Regulator

g

90=-=-07~300 OF7 <Xx0-7

4

I T 3

)\

S-Bus 1/D-Bus
SRAM2 SRAM1
8KB 16KB

CLOCK GENERATOR

WKUP(0..15]

CLOCK SOURCES
]

PMC

Powered by VDDBU_SW/

SUB-SYSTEM 0 | SUB-SYSTEM 1

CORES & PERIPHERALS
- -~ | CLOCKS

T
YYVYY

SPI1_MISO
SPI1_MOSI

UTXD1

3
v

4

URXD1

> PWM[0..3]

[VDDCORE

— VvDDIO
|— VDDBU

> VDDLCD
|— VDDIN

> VDDOUT

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

SPI1_SPCK

[TDO/TRACESWO
[—» TMS/SWDIO
> TCK/SWCLK

SPI1_NPCS[1.3]
SPI_NPCS0

Atmel

3. Signal Description

Table 3-1 provides details on signal names classified by peripheral.

Table 3-1. Signal Description List

Active Voltage
Signal Name Function Type Level reference Comments
Power Supplies
VDDIO Power 3.0V to 3.6V
VDDBU Power 1.6V to 3.6V
VDDIN Power 2.5V to 3.6V
VDDLCD Power 2.4V to 3.6V
VDDOUT Power 1.2V
VDDPLL Power 1.08V to 1.32V
VDDCORE Power 1.08V to 1.32V
See Table 5-1 on page 14
VDDPLL PLC Power 1.2V
VDDIN PLC Power 3.0V to 3.6V
VDDOUT PLC Power 1.2V
VDDIN AN Power 3.0V to 3.6V
VDDOUT AN Power 1.2V
GND Power
AGND Power
Clocks, Oscillators and PLLs

XIN Main Crystal Oscillator Input Analog VDDIO
XOouT Main Crystal Oscillator Output Digital
XIN32 Slow Clock Crystal Oscillator Input Analog VDDBU
X0OUT32 Slow Clock Crystal Oscillator Output Digital
PCKO - PCK2 Programmable Clock Output Output VDDIO
CLKEA PLC External Clock Input Input VDDIO
CLKEB PLC External Clock Input/Output I/O VDDIO
CLKOUT 12 MHz External Clock Output Output VDDIO

Supply Controller
FWUP Force Wake-up input Input Low VDDBU External Pull-up needed
TMPO Anti-tampering Input 0 Input VDDBU
TMP1 - TMP3 Anti-tampering Inputs 1 to 3 Input VDDIO

/ItmeL SAM4CP16C [DATASHEET] 7

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Table 3-1. Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level reference Comments
0:The device is in
SHDN Active Low Shutdown Control Output VDDBU .Backup .moc.ie .
1:The device is running
(not in Backup mode)
WKUPO Wake-up Input 0 Input VDDBU
WKUP1 - WKUP15 | Wake-up Inputs 1 to 15 Input VDDIO
Real Time Clock
To use this pin, the
RTCOUTO Programmable RTC waveform output Output VDDIO JTAG interface must be
used in SWD mode
Serial Wire/JTAG Debug Port - SWJ-DP
TCK/SWCLK Test Clock/Serial Wire Clock Input
TDI Test Data In Input
Test Data Out /
TDO/TRACESWO Output VDDIO
Trace Asynchronous Data Out
Test Mode Select Input /
TMS/SWDIO S P Input/
Serial Wire Input/Qutput I/0
JTAGSEL JTAG Selection Input | High VDDBU ggvann‘g?em Internal pull-
Flash Memory
Flash and NVM Configuration Bits -
ERASE 9 Input High VDDIO Perm(as?ent Internal pull
Erase Command down
Reset/Test
NRST Synchronous Microcontroller Reset I/0 Low VDDIO Esg)nanent Internal pull-
Permanent Internal pull-
TST Test Select Input VDDBU @)
down
ARST PLC Asynchronous Reset Input Low VDDIO Es(zr)nanent Internal pull-
SRST PLC Synchronous Reset Input Low VvVDDIO E;ZTa”e”t Internal pull-
PLL INIT PLC PLL Initialization Signal Input | Low VDDIO Eg&?ane”t Internal pull-
GPLC (G3 Power Line Communications) Transceiver
Different configurations
EMITO - EMIT11 PLC Transmission ports®) Output VDDIO allowed - depending on
external topology and
net behaviour

8

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

Table 3-1. Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level reference Comments
AGCO - AGC5 PLC Automatic Gain Control Output VDDIO
TXRXO0 - TXRX1 PLC Ext. coupling TxRx control Output VDDIO
VZ CROSS Mains Zero-Cross Detection Signal® Input VDDIO dPg\:Vr:ar)went Internal pull-
VIMA Negative Differential Voltage Input Input VDDOUT AN
VIPA Positive Differential Voltage Input Input VDDOUT AN
VRP Internal Reference “Plus” Voltage Output VDDOUT AN
VRM Internal Reference “Minus” Voltage Output VDDOUT AN
VRC Common-mode Voltage Output VDDOUT AN
Permanent Internal pull-
up®
INTESTO PLC Internal Test Input VDDIO This pin must be
connected to INTEST5
(pin 144)
Permanent Internal pull-
up®
INTEST1 PLC Internal Test Input VDDIO This pin must be
connected to INTEST6
(pin 45)
Permanent Internal pull-
up®
INTEST2 PLC Internal Test Input VDDIO This pin must be
connected to INTEST7
(pin 176)
This pin must be
INTEST3 PLC Internal Test Output VDDIO connected to INTEST8
(pin 111)
This pin must be
INTEST4 PLC Internal Test Output VDDIO connected to INTEST9
(pin 20)
This pin must be
INTEST5 PLC Internal Test Output VDDIO connected to INTESTO
(pin 94)
This pin must be
INTEST6 PLC Internal Test Output VDDIO connected to INTEST1
(pin 95)
This pin must be
INTEST7 PLC Internal Test Output VDDIO connected to INTEST2
(pin 97)
SAM4CP16C [DATASHEET 9
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Table 3-1. Signal Description List (Continued)

Active Voltage
Signal Name Function Type Level reference Comments
This pin must be
INTEST8 PLC Internal Test Input VDDIO connected to INTEST3
(pin 99)
This pin must be
INTEST9 PLC Internal Test Input VDDIO connected to INTEST4
(pin 4)
PIO Controller - PIOA - PIOB - PIOC
PAO - PA4,
Parallel 10 Controller A
PA9 - PA31
Digital
PBO - PB29, VDDIO
Parallel 10 Controller B I/0
PB31
PCO - PC9 Parallel 10 Controller C
Universal Asynchronous Receiver Transmitter - UARTx
URXDx UART Receive Data Input g“a"’.g Mode for Optical
VDDIO eceiver
UTXDx UART Transmit Data Output
Universal Synchronous Asynchronous Receiver Transmitter - USARTXx
SCKXx USARTXx Serial Clock I/0
TXDx USARTx Transmit Data I/O
RXDx USARTXx Receive Data Input VDDIO
RTSx USARTx Request To Send Output
CTSx USARTXx Clear To Send Input
Timer/Counter - TC
TCLKXx TC Channel x External Clock Input Input
TIOAX TC Channel x I/0O Line A I/0 VDDIO
TIOBXx TC Channel x I/O Line B I/O
Serial Peripheral Interface - SPI
SPI1_MISO Master In Slave Out I/0
SPI1_MOSI Master Out Slave In I/0
SPI1_SPCK SPI Serial Clock I/O
VbDIO NPCSO is also NSS f
SPI1_NPCS0 SPI Peripheral Chip Select 0 /0 Low IS also or
slave mode
SPI1_NPCS1 - .)
- SPI Peripheral Chip Select Output Low
SPI1_NPCS3

10 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

Table 3-1. Signal Description List (Continued)

Active Voltage
Signal Name Function Type Level reference Comments
Pulse Width Modulation Controller - PWMC
PWMx PWM Waveform Output for channel x Output VDDIO
Segmented LCD Controller - SLCDC
COM[4:0] Common Terminals Output
SEG49 vDDIO
Segment Terminals Output
SEG[47:3]
Two-Wire Interface - TWI
TWDx TWIx Two-wire Serial Data I/0
VDDIO
TWCKXx TWIx Two-wire Serial Clock I/0
Analog
Analog
ADVREF External Voltage Reference for ADC Inout
npu
10-bit Analog-to-Digital Converter - ADC
ADO - AD1 Analog ADC input range limited
Analog Inputs L
AD3 - AD5 Digital VDDIO to [0 - ADVREF]
ADTRG ADC Trigger Input
Fast Flash Programming Interface - FFPI
PGMENO- . .
Programming Enabling
PGMEN1 Input
PGMMO-PGMM3 Programming Mode
PGMDO0-PGMD15 Programming Data I/0
PGMRDY Programming Ready High VDDIO
Output
PGMNVALID Data Direction Low
PGMNOE Programming Read Low
Input
PGMNCMD Programming Command Low
Notes: 1. VDDLCD must be inferior or equals to (VDDIO/VDDIN - 100mv) if VDDLCD is powered externally.

. See “Typical Powering Schematics” Section for restrictions on voltage range of Analog Cells.
. See Table 45-5 on page 927.

. Different configurations allowed depending on external topology and net behavior.

1
2
3
4. See Table 45-11 on page 936.
5
6

. Depending on whether an isolated or a non-isolated power supply is being used, isolation of this pin should be
taken into account in the circuitry design. Please refer to the reference design of the evaluation board for further
information.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

11

4. Package and Pinout

41 SAMACP16C Package and Pinout

411 176-Lead LQFP Package Outline

The 176-lead LQFP package has a 0.5 mm pitch and respects Green standards.

Figure 4-1 shows the orientation of the 176-lead LQFP package. Refer to the section “Mechanical Characteristics” for
the 176-lead LQFP package mechanical drawing.

Figure 4-1. Orientation of the 176-lead LQFP Package

132 89
n M
133 1 88
176 45
\ |
O u
1 44
12 SAM4CP16C [DATASHEET)] /Itme[

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

41.2 176-lead LQFP Pinout
Table 4-1. SAM4CP16C 176-lead LQFP Pinout

1 VDDIO 45 INTEST6 89 PA30/XOUT 133 PA15
2 PA2 46 TDI/PBO 90 VDDIO 134 PA16
3 PB6 47 NC 91 NC 135 PA17
4 INTEST4 48 TCK/SWCLK/PB3 92 PA31/XIN 136 VDDIO
5 PB7 49 TMS/SWDIO/PB2 93 CLKOUT 137 ADVREF
6 PB18 50 ERASE/PC9 94 INTESTO 138 GND
7 GND 51 TDOITRACESWO! 95 INTEST1 139 VDDIO
PB1/RTCOUTO
8 PB19 52 PC1 96 GND 140 PB31/AD5
9 PB8 53 NC 97 INTEST2 141 PB23/AD4
10 AGND 54 NC 98 GND 142 PB13/AD3
1" VDDOUT AN 55 NC 99 INTEST3 143 GND
12 VIMA 56 ARST 100 VDDPLL 144 INTESTS
13 VIPA 57 PLL INIT 101 PC8 145 PA4/AD1
14 VDDOUT AN 58 PC6 102 PC5 146 EMIT8
15 AGND 59 VDDIO 103 PC4 147 PA12/ADO
16 VRP 60 GND 104 PC3 148 VDDIN
17 VRM 61 CLKEA 105 VDDIO 149 EMIT9
18 VRC 62 VDDIO 106 PC2 150 VDDIN
19 PB22 63 CLKEB 107 PA29 151 EMIT10
20 INTEST9 64 VDDIO 108 PA28 152 VDDOUT
21 PB25 65 VDDBU 109 GND 153 EMIT11
22 VDDIN AN 66 FWUP 110 PA27 154 PB21
23 PB24 67 JTAGSEL 11 INTEST8 155 PB20
24 VDDCORE 68 SHDN 112 VDDCORE 156 VDDIO
25 AGND 69 TST 113 EMITO 157 VDDCORE
26 PB29 70 VDDPLL PLC 114 PA3 158 PAO
27 PB9 71 TMPO/WKUPO 115 PA21 159 VDDOUT PLC
28 PB10 72 GND 116 PA22 160 TXRX0
29 PB11 73 XIN32 117 EMIT1 161 TXRX1
30 VDDIN AN 74 VDDIN PLC 118 EMIT2 162 AGC2
31 PB12 75 VDDIN PLC 119 EMIT3 163 PB27/TMP2
32 PB14 76 XOUT32 120 VDDIO 164 AGC5
33 PB15 77 GND 121 GND 165 VDDLCD
34 PA26 78 VDDOUT PLC 122 EMIT4 166 AGC1
35 GND 79 GND 123 EMITS 167 AGC4
36 PA25 80 NC 124 PA23 168 AGCO
37 VDDIO 81 PB4 125 EMIT6 169 AGC3
38 PA24 82 VDDCORE 126 PA9 170 PB26
39 VZ CROSS 83 PB5 127 PA10 171 VDDIO
40 PA20 84 SRST 128 PA11 172 PB28/TMP3
41 NC 85 PC7 129 EMIT7 173 PB16/TMP1
42 PA19 86 PCO 130 PA13 174 PA1
43 PA18 87 NRST 131 PA14 175 PB17
44 NC 88 VDDIO 132 GND 176 INTEST7
/ItmeL SAM4CP16C [DATASHEET] 13

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

5. Power Supply and Power Control

5.1 Power Supplies

The SAM4CP16C has several types of power supply pins. In most cases, a single supply scheme for all power
supplies (except VDDBU) is possible. Figure 5.1.1 below shows power domains according to the different power

supply pins.

Figure 5-1. Power Domains

VDDIN AN
VDDOUT AN

VDDIN PLC
VDDOUT PLC

VDDPLL PLC

VDDOUT

VDDIN

VDDBU

VDDIO VDDPLL VDDCORE

AUTOMATIC POWER
SWITCH

PLC Analog

[]
\4 ¢

XTAL OSC, PLLA, Fast RC Osc Cortex-M4 Cortex-M4F
3 -20 MHz PLLB 4/8/12 MHz (CM4P0) (CM4P1)

f—

PLC Digital

Peripherals
PLC PLL RTC, RTT, RSTC, (SPI, USART, ...

VDDBU_SW (VDDIO or VDDBU)

[o]

PIO Controller
Input / Output
Buffers

)
Backup, Reg, ...
Vol
|

LCD Analog Buffers
+ Switch Array

Lo

vDDLCD ADVREF VvDDIO

Table 5-1. Power Supply Voltage Ranges

Power Supplies Ranges Comments
Flash memory charge pumps supply for erase and program operations, and read
operation
VvDDIO 3.0V to 3.6V Input/Output buffers supply
Oscillator pads supply
Restrictions on range may apply. Refer to the section “Electrical Characteristics”
Backup area power supply
VDDBU 1.6V to 3.6V
° VDDBU is automatically disconnected when VDDIO is present (>1.9V)
Core Voltage Regulator supply
LCD Regulator supply
VDDIN 2.5V to 3.6V
© ADC and Programmable Voltage Reference supply
Restrictions on range may apply. Refer to the section “Electrical Characteristics”
LCD Voltage Regulator output
VDDLCD 2.4V to 3.6V External LCD power supply (LCD regulator not used)
VDDIO/VDDIN must be supplied when the LCD Controller is used
VDDOUT 1.2V Core Voltage Regulator Output. 120mA output current
VDDPLL 1.08V to 1.32V | PLLA and PLLB supply
VDDCORE 1.08V to 1.32V | Core logic, processors, memories and analog peripherals supply
VDDPLL PLC 1.2V PLC PLL

14 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

5.1.1

5.1.2

514

Atmel

Table 5-1. Power Supply Voltage Ranges (Continued)
Power Supplies Ranges Comments
VDDIN PLC 3.0V to 3.6V PLC Digital LDO Regulator input
VDDOUT PLC 1.2V PLC Digital LDO Regulator output
VDDIN AN 3.0V to 3.6V PLC Analog LDO Regulator input
VDDOUT AN 1.2V PLC Analog LDO Regulator output
GND - Digital Ground
AGND - Analog Ground

Separate pins are provided for GND and AGND grounds. Layout considerations should be taken into account to
reduce interference. Ground pins should be connected as shortly as possible to the system ground plane.

Core Voltage Regulator

The core voltage regulator is managed by the Supply Controller.

It features two operating modes:

e In Normal mode, the quiescent current of the voltage regulator is less than 500 pyA when sourcing maximum
load current, i.e., 120 mA. Internal adaptive biasing adjusts the regulator quiescent current depending on the
required load current. In Wait Mode, quiescent current is only 5 pA.

e In Backup mode, the voltage regulator consumes less than 100 nA while its output (VDDOUT) is driven
internally to GND.

The default output voltage is 1.20 V and the start-up time to reach Normal mode is less than 500 ps.
For further information, refer to “Core Voltage Regulator Characteristics” in the section “Electrical Characteristics”

LCD Voltage Regulator

The SAM4CP16C embeds an adjustable LCD voltage regulator that is managed by the Supply Controller.

This internal regulator is designed to supply the Segment LCD outputs. The LCD regulator output voltage is software
selectable with 16 levels to adjust the display contrast.

If not used, its output (VDDLCD) can be bypassed (Hi-z mode) and an external power supply can be provided onto the
VDDLCD pin. In this case, VDDIO still needs to be supplied.

The LCD voltage regulator can be used in all power modes (Backup, Wait, Sleep and Active).
For further information, refer to “LCD Voltage Regulator Characteristics” in the section “Electrical Characteristics”

PLC Voltage Regulators

The SAM4CP embeds two PLC-dedicated voltage regulators, PLC Analog Voltage Regulator (VDDIN AN) and PLC
Digital Voltage Regulator (VDDIN PLC). These internal regulators are designed to supply the PLC peripheral block in
an efficient way trying to minimize noise coupling in power supply.

Automatic Power Switch

The SAM4CP16C features an automatic power switch between VDDBU and VDDIO. When VDDIO is present, the
backup zone power supply is powered by VDDIO and current consumption on VDDBU is close to zero (around
100 nA, typ.). When VDDIO is removed, the backup area of the device is supplied from VDDBU. Switching between
VDDIO and VDDBU is transparent to the user.

Typical Powering Schematics

The SAM4CP supports 3.0V to 3.6V single-supply operation. Restrictions on this range may apply depending on
enabled features. Refer to the section Electrical Characteristics.

Figure 5-2, Figure 5-3 and Figure 5-4 show simplified schematics of the power section.

SAM4CP16C [DATASHEET] 15

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

5.1.5.1 Single Supply Operation

Figure 5-2 below shows a typical power supply scheme with a single power source. VDDIO, VDDIN, VDDBU, VDDIN
AN and VDDIN PLC are derived from the main power source (typically a 3.3V regulator output) while VDDCORE,
VDDPLL, VDDLCD and VDDPLL PLC are fed by the embedded regulator outputs.

Figure 5-2. Single Supply Operation

SAM4CP

VDDBU |—‘—| Backup Region
L

RC OSC 32 kHz
Automatic
Power Switch XTAL OSC 32 kHz

RTC, RTT, RSTC,
Backup, Reg, ...

T
I_;_I
L
m 1
-
[

Main Supply N out o VDDIO

Main Supply , L
Voltage (3.0V-3.6V) |I'

Regulator

PLC
Transceiver

=

J7 -\I:DDLCD
il

VDDIN

VDDOUT Y

LCD Analog Buffers
+

VDDCORE
—— > Switch Array

T

VDDPLL [~

]

VDDINAN
L PLC Analog
: Voltage
VDDOUT AN |—?—| Regulator
t, L
ADCPLC
VDDINPLC]
| PLC Digital
! Voltage
VDDOUT PLC [_E—| Regulator
L

'
‘I"[VDDPLL PLC m

Notes: 1. Internal LCD Voltage Regulator can be disabled to save its operating current. VDDLCD must then be pro-
vided externally.

16 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

5.1.5.2 Single Supply Operation with Backup Battery

Figure 5-3 shows the single-supply operation schematic from Figure 5-2, improved by adding a backup capability.
VDDBU is supplied with a separate backup battery while VDDIO, VDDIN, VDDIN AN and VDDIN PLC are still
connected to the main power source. Note that the TMP1 to TMP3 and RTCOUTO pins cannot be used in Backup
mode as they are referred to VDDIO, which is not powered in this application case. To keep using these pins in
Backup mode, VDDIO must be maintained.

Note that PLC transceiver is not functional when working in backup mode.

Figure 5-3. Single Supply Operation with Backup Battery

SAMA4CP

Backup Power Supply
Backup (1.6V-3.6V) _ VDDBU

Battery | + %,
’ E Automatic
! Power Switch XTAL OSC 32 kHz
e Supply —
Backup, Reg, ...

Backup Region

RCOSC 32 kHz

IN ouTt ®
Main Supply ,

Voltage (3.0V-3.6V) 'I' ;
Regulator ' PLC

Transceiver

="

J7 J\:DDLCD
Ij

VDDIN

VDDOUT

LCD Analog Buffers
+

VDDCORE
p—— > Switch Array

EHEIER- £

,I,.l._‘

VDDPLL

!

VDDINAN =]
L] PLC Analog
. Voltage
VDDOUT AN [—h Regulator
f L
|
VDDINPLC [
] PLC Digital
! Voltage
VDDOUT PLC] Regulator
L
L1 |
‘I' VDDPLL PLC E:I
I : | Shutdown (SHDN)(1)

Force Wake-Up (FWUP)
External Wake-Up Signal T

__

Notes: 1. Example with the SHDN pin used to control the main regulator enable pin. SHDN defaults to VDDBU at
startup and when the device wakes up from a wake-up event (external pin, RTC alarm, etc). When the
device is in Backup mode, SHDN defaults to 0.

Atmel SAM4CP16C [DATASHEET] 17

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

5.1.5.3 Single Power Supply using One Main Battery and LCD Controller in Backup Mode

18

Figure 5-4 below shows a typical power supply scheme that maintains VDDBU, VDDIO, and VDDLCD when entering
Backup mode. This is useful to enable the display and/or some supplementary wake-up sources in Backup mode
when the main voltage is not present.

In this power supply scheme, the SAM4CP can wake up both from an internal wake-up source, such as RTT, RTC
and VDDIO Supply Monitor, and from an external source, such as generic wake-up pins (WKUPX), anti-tamper inputs
(TMPx) or force wake-up (FWUP).

Note that PLC transceiver is not functional when working in backup mode.

Note: The VDDIO supply monitor only wakes up the device from Backup mode on a negative-going VDDIO supply
(as system alert). As a result, the supply monitor cannot be used to wake up the device when the VDDIO sup-
ply is rising at power cycle. See the section “Supply Controller (SUPC)” for more information on the VDDIO
supply monitor.

Figure 5-4. Single Power Supply using Battery and LCD Controller in Backup Mode

,,,

VDDINPLC SAMACP
! PLC Digital
VDDOUT PLC [+ Wliere
L
L1 ;
'I' VDDPLL PLC E]
VDDINAN 7
L PLC Analog

' Voltage
VDDOUT AN Regulator

VDDIO (1) PLC
Transceiver
VDDBU Backup Region
Automatic
Main Supply i
Main Supply (3.0V-3.6V) VDDIO (2) RTC, RTT, RSTC,
IN ouT | Backup, Reg, ...
(L]
Voltage
Regulator v Automatic
Power Switch
—>| EN
VDDLCD
J7 STATE
Battery | I’I Iy E
- VDDIN_ =

! '

VDDOUT
T LCD Analog Buffers
' +
|II VDDCORE E] Switch Array
VDDPLL Ej
ey T
—o o i I Generic Wake-Up pin (WKUPx)
I , Force Wake-Up (FWUP)(3)
STATE = 0 when main supply is OFF
I | shutdown (sHDN)
to PLLINIT 4—| NRST(4)

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

5.1.54

5.1.5.5

5.1.5.6

Notes: 1. VDDIO corresponds to the following pins: 37, 64, 90, 105, 120, 139, 156 and 171.
2. VDDIO corresponds to the following pins: 1, 59, 62, 88 and 136.
3. The STATE output of the automatic power switch indicates to the device that the main power is back and
forces its wake-up.
4. The NRST pin integrates a permanent pull-up resistor to VDDIO of typical 100 kQ2. When used to control
PLL INIT as in the example, external design should take into account minimizing leakage currents.

Wake-up, Anti-tamper and RTCOUTO Pins

In all power supply figures shown above, if generic wake-up pins other than WKUPO/TMPO are used either as a wake-
up or a fast startup input, or as anti-tamper inputs, VDDIO must be present. This also applies to the RTCOUTO pin.

General-purpose 10 (GPIO) State in Low-power Modes

In dual-power supply schemes shown in Figure 5-3 and Figure 5-4, where Backup or Wait mode must be used,
configuration of the GPIO lines is maintained in the same state as before entering Backup or Wait mode. Thus, to
avoid extra current consumption on the VDDIO power rail, the user must configure the GPIOs either as an input with
pull-up or pull-down enabled, or as an output with low or high level to comply with external components.

Default General-purpose 10s (GPIO) State after Reset

The reset state of the GPIO lines after reset is given in Table 11-5, “Multiplexing on PIO Controller A (PIOA)”,
Table 11-6, “Multiplexing on PIO Controller B (PIOB)” and Table 11-7, “Multiplexing on PIO Controller C (PIOC)”. For
further details about the GPIO and system lines, wake-up sources and wake-up time, and typical power consumption
in different low-power modes, refer to Table 5-2, “Low-power Mode Configuration Summary”.

Atmel SAM4CP16C [DATASHEET] 19

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Clock System

5.2

Figure 5-5 illustrates the SAM4CP16C clock system with single crystal operation:

The 32 kHz crystal oscillator can be the source clock of the 8 MHz digital PLL (PLLA).

The 8 MHz clock can feed the high frequency PLL (PLLB) input.

The output of the PLLB can be used as a main clock for both cores and the peripherals.

Figure 5-5. SAM4CP16C Global Clock System

v (waysAs PO Ld-#IND) L 210D

J13]j013u0)

320]) 10553201d

wu ———

< 01D

apopy das|s

sajlonuod [«

105592014

10 '
1e1skin Iul_u NIX
'

(43]]013u0) Ajddns)

H0) sRIseNsng Juswabeueyy
! Jossadoidoy K S ! 19Mod
H H
' '
H 3¥20]) Buluuny aaiy o H _ozcouk snjeis H
' H R AU S
' J0ssad0id0) X I ” ' m
' ! ' '
H 301 SPLSAS J40/NO =¥OW8dD ! H H
H ! < ¥ADS/HIDS DN H ' '
' «< H I~>_ijn_ '
" 10559201d0) MOILSASAD 8/42pa m H I H
' H
] N '
' N]
H apop daajs H ¢/49ping
: . u —— P : WoaTd pue g11d
' '
: }20|) J0ssed0ido) <€ oD sajonuoy [: PO gTd & "
' oD S3HddD [sso] ' H !
! 10ss3d01d0) 440/NO =XDdD H ' '
' $0D5/4305 W = ' !
H B ' '
H N L '
: [e+wipipydiad hd oLoiLAqapinp M8T1d H MOVT1d '
H 440/NO J13[3534d H POPVYId ! :
: < mfem ovid | ' '
' H '
' - SNV H !
' sjesayduad waysks (WD) H ' :
' 1055290103 31 10} 13]|013U0) %20|) JAISe A8 ! '
'
! o3eso |
" Jojeuosay 1
' Jlwes) '
" _. j— '
H
' ZHW 0T-€ '
' '
H ' ' '
i (waisks o)) 0d-v D) 0 2100 : H .
: : YONIVW 1038|1950 DY H
! [e+upp~yduad H »Pop 4 0 [« 1584 H
' 3H0INO . uew TSy |
: : : pappaqui3 | |
' ' ' '
H [L+uppyduad H H !
H 440/NO H H '
H sjesayduad waishs ' ' 13SDSOW '
' J1ossad0ud 3y 10 ' ' 1018|1550 '
H xapul uesiuasaym [upyp yduad H H [eiskid H
H 40O 4N H : |] HoOzE !
' ' H
' <--f--- 13]]013U0D ¥0[) ! '
H sjesayduag H H
H
: Y0 J2)5R) SNg m H H
: Jossanoiy & [s3ud] 59 : ; H
; OW P 1 : 1S H
'
! #0) Buluung saiy - - eTId ! ! PO MoIS 01250 DY | |
' <) '
. 105533014 g v — ' 0 fe— zmee !
' H H Pappaqui3 H
: #0]) pILSAS 8/19pING PNV ” :
H 105592014 (4D DWd) H H
' MOLLSAS 19]]0U0D Y0|D Ja)sey w15 H H H
H H H q
' ' H H
H ' ' H
' ' ' '
' ' '
' ' '
'
H '

T3SVLX

Atmel

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22.

20

-Sep-16

5.3 System State at Power-up
5.3.1 Device Configuration after the First Power-up
At the first power-up, the SAM4CP16C boots from the ROM. The device configuration is defined by SAM-BA® boot
program.
5.3.2 Device Configuration after a Power Cycle when Booting from Flash Memory
After a power cycle of all the power supply rails, the system peripherals, such as the Flash Controller, the Clock
Generator, the Power Management Controller and the Supply Controller, are in the following states:
e Slow Clock (SLCK) source is the internal 32 kHz RC Oscillator (32 kHz crystal oscillator is disabled).
e Main Clock (MAINCK) source is set to the 4 MHz internal RC Oscillator.
e 3 -20 MHz crystal oscillator and PLLs are disabled.
e Core Brownout Detector and Core Reset are enabled.
e Backup Power-on-reset is enabled.
e VDDIO Supply Monitor is disabled.
e Flash Wait State (FWS) bit in the EEFC Flash Mode Register is set to 0.
e Core 0 Cache Controller (CMCCQO) is enabled (only used if the application link address for the Core O is
0x11000000).
e Sub-system 1 is in the reset state and not clocked.
5.3.3 Device Configuration after a Reset
After a reset or a wake-up from Backup mode, the following system peripherals default to the same state as after a
power cycle:
e Main Clock (MAINCK) source is set to the 4 MHz internal RC oscillator.
e 3 -20 MHz crystal oscillator and PLLs are disabled.
e Flash Wait State (FWS) bit in the EEFC Flash Mode Register is set to 0.
e Core 0 Cache Controller (CMCCQO) is enabled (only used if the application link address for the Core 0 is
0x11000000).
e Sub-system 1 is in the reset state and not clocked.
The states of the other peripherals are saved in the backup area managed by the Supply Controller as long as
VDDBU is maintained during device reset:
e Slow Clock (SLCK) source selection is written in SUPC_CR.XTALSEL.
e Core Brownout Detector enable/disable is written in SUPC_MR.BODDIS.
e Backup Power-on-reset enable/disable is written in the SUPC_MR.BUPPOREN.
e VDDIO Supply Monitor mode is written in the SUPC_SMMR.
5.4 Active Mode
Active mode is the normal running mode, with the single core or the dual cores executing code. The system clock can
be the fast RC oscillator, the main crystal oscillator or the PLLs. The Power Management Controller (PMC) can be
used to adapt the frequency and to disable the peripheral clocks when unused.
SAM4CP16C [DATASHEET 21
Atmel : :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

5.5

5.5.1

5.5.1.1

22

Low-power Modes

The various low-power modes (Backup, Wait and Sleep modes) of the SAM4CP16C are described below. Note that

the Segmented LCD Controller can be used in all low-power modes.

Note: The Wait For Event instruction (WFE) of the Cortex-M4 core can be used to enter any of the low-power
modes, however this may add complexity to the design of application state machines. This is due to the fact
that the WFE instruction is associated with an event flag of the Cortex core that cannot be managed by the
software application. The event flag can be set by interrupts, a debug event or an event signal from another
processor. When an event occurs just before WFE execution, the processor takes it into account and does
not enter Low-power mode. Atmel has made provision to avoid using the WFE instruction. The workarounds
to ease application design, including the use of the WFE instruction, are given in the following description of
the low-power mode sequences.

Backup Mode

The purpose of Backup mode is to achieve the lowest possible power consumption in a system that executes periodic
wake-ups to perform tasks but which does not require fast start-up time. The total current consumption is 0.5 A
typical on VDDBU.

The Supply Controller, power-on reset, RTT, RTC, backup registers and the 32 kHz oscillator (RC or crystal oscillator
selected by software in the Supply Controller) are running. The regulator and the core supplies are off. The power-on-
reset on VDDBU can be deactivated by software.

Wake-up from Backup mode can be done through the Force Wake-up (FWUP) pin, WKUPO, WKUP1 to WKUP15
pins, the VDDIO Supply Monitor (SM) if VDDIO is supplied, or through an RTT or RTC wake-up event. Wake-up pins
multiplexed with anti-tampering functions are additional possible sources of a wake-up if an anti-tampering event is
detected. The TMPO pad is supplied by the backup power supply (VDDBU). Other anti-tamper input pads are supplied
by VDDIO.

The LCD Controller can be used in Backup mode. The purpose is to maintain the displayed message on the LCD
display after entering Backup mode. The current consumption on VDDIN to maintain the LCD is 10 pA typical.

Please refer to the section “Electrical Characteristics”.

In case the VDDIO power supply is maintained with VDDBU when entering Backup mode, it is up to the application to
configure all PIO lines in a stable and known state to avoid extra power consumption or possible current path with the
input/output lines of the external on-board devices.

Entering and Exiting Backup Mode

To enter Backup mode, follow the steps in the sequence below:
1. Depending on the application, set the PIO lines in the correct mode and configuration (input pull-up or pull-
down, output low or high levels).

2. Disable the Main Crystal Oscillator (enabled by SAM-BA boot if the device is booting from ROM).
3. Configure PA30/PA31 (XIN/XOUT) into PIO mode depending on their use.

4. Disable the JTAG lines using the SFR1 register in Matrix 0 (by default, internal pull-up or pull-down is disabled
on JTAG lines).

5. Enable the RTT in 1 Hz mode.
6. Disable Normal mode of the RTT (RTT will run in 1 Hz mode).
7. To reduce power consumption, disable the POR backup if not needed.

Note: If VDDBU is likely to go below the POR threshold but not completely down to GND, disabling the PORBU cre-
ates unexpected behavior of the VDDBU domain logic. PORBU can be disabled if VDDBU is known to be
stable above the PORBU threshold.

8. Disable the Core brownout detector.
9. Select one of the following methods to complete the sequence:
a. To enter Backup mode using the VROFF bit:
e Write a 1 to the VROFF bit of SUPC_CR.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

5.5.2

b. To enter Backup mode using the WFE instruction:
e Write a 1 to the SLEEPDEEP bit of the Cortex-M4 processor.
e Execute the WFE instruction of the processor.
After this step, the core voltage regulator is shut down and the SHDN pin goes low. The digital internal logic (cores,

peripherals and memories) is not powered. The LCD controller can be enabled if needed before entering Backup
mode.

Whether the VROFF bit or the WFE instruction was used to enter Backup mode, the system exits Backup mode if one
of the following enabled wake-up events occurs:
e WKUP[0-15] pins.
Force Wake-up pin.
VDDIO Supply Monitor (if VDDIO is present, and VDDIO supply falling).
Anti-tamper event detection.
RTC alarm.
e RTT alarm.

After exiting Backup mode, the device is in the reset state. Only the configuration of the backup area peripherals
remains unchanged.

Note that the device does not automatically enter Backup mode if VDDIN is disconnected, or if it falls below minimum
voltage. The Shutdown pin (SHDN) remains high in this case.

For current consumption in Backup mode, refer to the section “Electrical Characteristics”.

Wait Mode

The purpose of Wait mode is to achieve very low power consumption while maintaining the whole device in a powered
state for a start-up time of less than 10 ps. For current consumption in Wait mode, refer to the section “Electrical
Characteristics”.

In Wait mode, the bus and peripheral clocks of Sub-system 0 and Sub-system 1 (MCK/CPBMCK), the clocks of Core
0 and Core 1 (HCLK/CPHCLK) are stopped when Wait mode is entered (see Section 5.5.2.1). However, the power
supply of core, peripherals and memories are maintained using Standby mode of the core voltage regulator.

The SAM4CP16C is able to handle external and internal events in order to perform a wake-up. This is done by
configuring the external WKUPX lines as fast startup wake-up pins (refer to Section 5.7 “Fast Start-up”). RTC alarm,
RTT alarm and anti-tamper events can also wake up the device.

Wait mode can be used together with Flash in Read-Idle mode, Standby mode or Deep Power-down mode to further
reduce the current consumption. Flash in Read-Idle mode provides a faster start-up; Standby mode offers lower
power consumption. For power consumption details, see subsection “Power Supply Current Consumption” in
“Electrical Characteristics” section.

5.5.2.1 Entering and Exiting Wait Mode

1. Stop Sub-system 1.
2. Select the 4/8/12 MHz fast RC Oscillator as Main Clock.

3. Depending on the application, set the PIO lines in the correct mode and configuration (input pull-up or pull-
down, output low or high level).

4. Disable the Main Crystal Oscillator (enabled by SAM-BA boot if device is booting from ROM).
5. Configure PA30/PA31 (XIN/XOUT) into PIO mode according to their use.

6. Disable the JTAG lines using the SFR1 register in Matrix 0 (by default, internal pull-up or pull-down is disabled
on JTAG lines).

7. Setthe FLPM field in the PMC Fast Startup Mode Register (PMC_FSMR)®.
8. Set the Flash Wait State (FWS) bit in the EEFC Flash Mode Register to 0.
9. Select one of the following methods to complete the sequence:

Atmel SAM4CP16C [DATASHEET] 23

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

5.5.3

24

a. To enter Wait mode using the WAITMODE bit:
e Set the WAITMODE bit to 1 in the PMC Main Oscillator Register (CKGR_MOR).
e Wait for Master Clock Ready MCKRDY = 1 in the PMC Status Register (PMC_SR).
b. To enter Wait mode using the WFE instruction:
Select the 4/8/12 MHz fast RC Oscillator as Main Clock.
Set the FLPM field in the PMC Fast Startup Mode Register (PMC_FSMR).
Set Flash Wait State at 0.
Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR).
Write a 0 to the SLEEPDEEP bit of the Cortex-M4 processor.
Execute the Wait-For-Event (WFE) instruction of the processor.

Notes: 1. Any frequency can be chosen. The 12 MHz frequency will provide a faster start-up compared to the
4 MHz, but with the increased current consumption (in the pA range). See electrical characteristics of the
product.

2. Depending on the Flash Low-power Mode (FLPM) value, the Flash enters three different modes:
« If FLPM = 0, the Flash enters Stand-by mode (Low consumption).
« If FLPM = 1, the Flash enters Deep Power-down mode (Extra low consumption).
« If FLPM = 2, the Flash enters Idle mode. Memory is ready for Read access.
Whether the WAITMODE bit or the WFE instruction was used to enter Wait mode, the system exits Wait mode if one
of the following enabled wake-up events occurs:
e \WKUP[0-15] pins in Fast wake-up mode.
e Anti-tamper event detection.
e RTC alarm.
e RTT alarm.
After exiting Wait mode, the PIO controller has the same configuration state as before entering Wait mode. The
SAM4CP16C is clocked back to the RC oscillator frequency which was used before entering Wait mode. The core will

start fetching from Flash at this frequency. Depending on the configuration of the Flash Low-power Mode (FLPM) bits
used to enter Wait mode, the application has to reconfigure it back to Read-idle mode.

Sleep Mode

The purpose of Sleep mode is to optimize power consumption of the device versus response time. In this mode, only
the core clocks of CM4P0 and/or CM4P1 are stopped. Some of the peripheral clocks can be enabled depending on
the application needs. The current consumption in this mode is application dependent. This mode is entered using
Wait for Interrupt (WFI) or Wait for Event (WFE) instructions of the Cortex-M4.

The processor can be awakened from an interrupt if the WFI instruction of the Cortex-M4 is used to enter Sleep mode,
or from a wake-up event if the WFE instruction is used. The WFI instruction can also be used to enter Sleep mode
with the SLEEPONEXIT bit set to 1 in the System Control Register (SCB_SCR) of the Cortex-M. If the SLEEPONEXIT
bit of the SCB_SCR is set to 1, when the processor completes the execution of an exception handler it returns to
Thread mode and immediately enters Sleep mode. This mechanism can be used in applications that require the
processor to run only when an exception occurs. Setting the SLEEPONEXIT bit to 1 enables an interrupt-driven
application in order to avoid returning to an empty main application.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

5.54

Low-power Mode Summary Table

The modes detailed above are the main low-power modes. Table 5-2 below provides a configuration summary of the
low-power modes. For more information on power consumption, refer to the section “Electrical Characteristics”.

Table 5-2. Low-power Mode Configuration Summary
SUPC,
32 kHz
Oscillator,
RTC, RTT
Backup Core
Registers, | Regulator PIO State
POR / Core 0/1 Core in Low- | PIO State
(Backup LCD Memory Potential at power at Wake-up
Mode Region) | Regulator | Peripherals Mode Entry'" Wake-up Sources | Wake-up | Mode Wake-up Time®
VROFFbit=1 | CVVIZBzOPTS .
OFF/OFF |or : Vonor Previous
- Supply Monitor @] <
Backup Mode ON OFF/OFF (Not powered) | SLEEPDEEP = 1 N pr ‘ . Reset state saved Resetstate 1,5 ms
- Anti-tamper inputs
+ WFE - RTC or RTT alarm
VROFFbit=1 | [FUE P i Unchanged
Backup Mode OFF / OFF or : Previous |(LCD Pins)/
: ON OFF/ON _, |~ Supply Monitor Reset . <15ms
with LCD (Not powered) |SLEEPDEEP =1 |_ Anti-Tamper inputs® state saved ruﬁrltjzzvnh
+ WFE - RTC or RTT alarm
WAITMODE = 1 +
Wait Mode Core0and 1, |TLPM=0 Any Event from:
memories and | O - Fast start-up through i
Flash in ON ON/©® |peripherals: | SLEEPDEEP =0 |WKUPO-15 pins C'l;’:;fd stz;zvs'gsz 4| Unchanged | <10ps
Standby Powered, but |+ LPM =1 - Anti-Tamper inputs®®
Mode®) Not clocked +FLPM =0 -RTC or RTT alarm
+ WFE
WAITMODE = 1 +
Wait Mode Core0and 1, |TLPM=1 Any Event from:
memories and | OF - Fast start-up through)
Flash in Deep ON ON/©® |peripherals: | SLEEPDEEP =0 |WKUPO-15 pins C'l;’:;fd stz;zvs'gsz 4| Unchanged | <75ps
Power - down Powered, but |+ LPM = 1 - Anti-Tamper inputs®
Mode® Not clocked +FLPM = 1 -RTC or RTT alarm
+ WFE
Entry mode = WFI
Any enabled Interrupts;
Core 0 and/or _
. Core 1: SLEEPDEEP =0 Entry mode = WFE Clocked | Previous 8
Sleep Mode ON ON/® Any enabled events: Unchanged ®
Powered +LPM=0 Fast start-uo th h back state saved
Not clocked)”) - rast start-up throug
() | + WFE or WFI WKUPO-15 pins
- Anti-Tamper inputs®
- RTC or RTT alarm
Notes: 1. Refer to the note in Section 5.5 “Low-power Modes”.

2. When considering wake-up time, the time required to start the PLL is not taken into account. Once
started, the device works either from the 4, 8 or 12 MHz fast RC oscillator. The user has to add the PLL
start-up time if it is needed in the system. The wake-up time is defined as the time taken for wake-up until
the first instruction is fetched.

3. Referto Table 3-1, “Signal Description List”. Some anti-tamper pin pads are VDDIO powered.

4. See PIO Controller Multiplexing tables in Section 11.4 “Peripheral Signal Multiplexing on /O Lines”.

5. Fast RC Oscillator set to 4 MHz Frequency.

6. LCD voltage regulator can be OFF if VDDLCD is supplied externally thus saving current consumption of
the LCD voltage regulator.

7. In this mode, the core is supplied and not clocked but some peripherals can be clocked.

8. Depends on MCK frequency.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

25

5.6 Wake-up Sources

Wake-up events allow the device to exit Backup mode. When a wake-up event is detected, the Supply Controller
performs a sequence which automatically re-enables the core power supply and all digital logic.

5.7 Fast Start-up

The SAM4CP16C allows the processor to restart in a few microseconds while the processor is in Wait mode or in
Sleep mode. A fast start-up occurs upon detection of one of the wake-up inputs.

The fast restart circuitry is fully asynchronous and provides a fast start-up signal to the Power Management Controller.
As soon as the fast start-up signal is asserted, the PMC automatically restarts the embedded 4/8/12 MHz Fast RC
oscillator, switches the master clock on this 4 MHz clock and re-enables the processor clock.

26 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

6.1

6.2

Input/Output Lines

The SAM4CP16C has two types of input/output (I/0) lines: general-purpose 1/0Os (GPIO) and system 1/0Os. GPIOs
have alternate functionality due to multiplexing capabilities of the PIO controllers. The same PIO line can be used
whether in 1/0 mode or by the multiplexed peripheral. System I/Os include pins such as test pins, oscillators, erase or
analog inputs.

General-Purpose I/O Lines

General-purpose I/0 (GPIO) lines are managed by PIO Controllers. All I/Os have several input or output modes such
as pull-up or pull-down, input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input change
interrupt. Programming of these modes is performed independently for each 1/O line through the PIO controller user
interface. For more details, refer to the “Parallel Input/Output (P1O) Controller” section of this datasheet.

The input/output buffers of the PIO lines are supplied through VDDIO power supply rail when used as GPIOs. When
used as extra functions such as LCD or Analog modes, GPIO lines have either VDDLCD or VDDIN voltage range.

Each I/O line embeds an ODT (On-die Termination), shown in Figure 6-1 below. ODT consists of an internal series
resistor termination scheme for impedance matching between the driver output (SAM4CP16C) and the PCB trace
impedance preventing signal reflection. The series resistor helps to reduce 10s switching current (di/dt) thereby
reducing EMI. It also decreases overshoot and undershoot (ringing) due to inductance of interconnect between
devices or between boards. Finally, ODT helps diminish signal integrity issues.

Figure 6-1. On-die Termination
"""""""""""""""" 1 Z0 ~ Zout + Rodt

OoDT
36 Ohms Typ.

>0 [>

Receiver

PCB Trace

Zout ~ 10 Ohms Z0 ~ 50 Ohms

1
1
,
SAM4 Driver with :
1

System /O Lines
System /O lines are pins used by oscillators, test mode, reset, JTAG and other features. Table 6-1 describes the
SAM4CP16C system 1I/O lines shared with PIO lines.

These pins are software-configurable as general-purpose 1/O or system pins. At start-up, the default function of these
pins is always used.

Table 6-1. System /O Configuration Pin List

SYSTEM_IO Default Function Other Constraints
Bit Number after Reset Function for Normal Start Configuration

0 TDI PBO -
TDO/TRACESWO PB1 : In Matrix User Interface Registers

TMS/SWDIO PB2 N (Refer to the System 1/O
Configuration Register in the “Bus
TCK/SWCLK PB3 i} Matrix” section of this datasheet)
ERASE PC9 Low level at Start-up(")
- PA31 XIN -
- PA30 XOouT -

Al WIN|

@)

Notes: 1. If PC9is used as PIO input in user applications, a low level must be ensured at start-up to prevent Flash
erase before the user application sets PC9 into PIO mode.

2. Referto “3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator” in the section “Clock Generator”

Atmel SAM4CP16C [DATASHEET] 27

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

6.2.1

6.3

6.4

6.5

6.6

28

Serial Wire JTAG Debug Port (SWJ-DP) and Serial Wire Debug Port (SW-DP) Pins

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/TRACESWO, TDI and commonly provided on a standard 20-
pin JTAG connector defined by ARM. For more details about voltage reference and reset state, refer to Table 11-6,
“Multiplexing on PIO Controller B (PIOB)”.

At start-up, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging probe. Refer to the
section “Debug and Test” of this datasheet.

SWJ-DP pins can be used as standard I/Os to provide users with more general input/output pins when the debug port
is not needed in the end application. Mode selection between SWJ-DP mode (System 10 mode) and general IO mode
is performed through the AHB Matrix Special Function Registers (MATRIX_SFR). Configuration of the pad for pull-up,
triggers, debouncing and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It integrates a permanent
pull-down resistor of about 15 kQ to GND, so that it can be left unconnected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial Wire Debug Port, it must
provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables the JTAG-DP and enables the
SW-DP. When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be
used with SW-DP, not JTAG-DP. For more information about SW-DP and JTAG-DP switching, refer to the “Debug
and Test” section of this datasheet. The SW-DP/SWJ-DP pins are used for debug access to both cores.

TST Pin

The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming mode of the
SAM4CP16C series. For details on entering Fast Programming mode, see the “Fast Flash Programming Interface
(FFPI1)” section of this datasheet. For more information on the manufacturing and test modes, refer to the section
“Debug and Test” of this datasheet.

NRST Pin

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low to provide a reset
signal to the external components, or asserted low externally to reset the microcontroller. It resets the core and the
peripherals, with the exception of the GPLC peripheral and the Backup region (RTC, RTT and Supply Controller).
There is no constraint on the length of the reset pulse, and the Reset Controller can guarantee a minimum pulse
length. The NRST pin integrates a permanent pull-up resistor to VDDIO of about 100 kQ. By default, the NRST pin is
configured as an input.

TMPx Pins: Anti-tamper Pins

Anti-tamper pins detect intrusion, for example, into a smart meter case. Upon detection through a tamper switch,
automatic, asynchronous and immediate clear of registers in the backup area, and time stamping in the RTC are
performed. Anti-tamper pins can be used in all modes. Date and number of tampering events are stored
automatically. Anti-tampering events can be programmed so that half of the General-purpose Backup Registers
(GPBR) are erased automatically. TMP1 to TMP3 signals are shared with a PIO pin which requires that VDDIO is
supplied, whereas TMPO is in the VDDBU domain.

RTCOUTO Pin

The RTCOUTO pin shared in the PIO (supplied by VDDIO) can be used to generate waveforms from the RTC in order
to take advantage of the RTC inherent prescalers while the RTC is the only powered circuitry (Low-power mode,
Backup mode) or in any Active mode. Entering Backup or low-power operating modes does not affect the waveform
generation outputs (VDDIO still must be supplied). Anti-tampering pin detection can be synchronized with this signal.

Note: To use the RTCOUTO signal during application development using JTAG-ICE interface, the programmer must
use Serial Wire Debug (SWD) mode. In this case, the TDO pin is not used as a JTAG signal by the ICE
interface.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

6.7

6.8

6.9

Shutdown (SHDN) Pin

The SHDN pin designates the Backup mode of operation. When the device is in Backup mode, SHDN = 0. In any
other mode, SHDN = 1 (VDDBU). This pin is designed to control the enable pin of the main external voltage regulator.
When the device enters Backup mode, the SHDN pin disables the external voltage regulator and, upon the wake-up
event, it re-enables the voltage regulator.

The SHDN pin is asserted low when the VROFF bit in the Supply Controller Control Register (SUPC_CR) is set to 1.

Force Wake-up (FWUP) Pin

The FWUP pin can be used as a wake-up source in all low-power modes as it is supplied by VDDBU.

ERASE Pin
The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased state (all bits read as
logic level 1). The ERASE pin and the ROM code ensure an in-situ reprogrammability of the Flash content without the
use of a debug tool. When the security bit is activated, the ERASE pin provides the capability to reprogram the Flash
content. The ERASE pin integrates a pull-down resistor of about 100 kQ into GND, so that it can be left unconnected
for normal operations.
This pin is debounced by SLCK to improve the glitch tolerance. When the ERASE pin is tied high during less than
100 ms, it is not taken into account. The pin must be tied high during more than 220 ms to perform a Flash erase
operation.
The ERASE pin is a system I/O pin and can be used as a standard 1/O. At start-up, the ERASE pin is not configured
as a PIO pin. If the ERASE pin is used as a standard I/O, the start-up level of this pin must be low to prevent unwanted
erasing. Refer to Section 11.3 “APB/AHB Bridge”. If the ERASE pin is used as a standard I/O output, asserting the pin
to low does not erase the Flash.
To avoid unexpected erase at power-up, a minimum ERASE pin assertion time is required. This time is defined in the
AC Flash Characteristics in the section “Electrical Characteristics”.
The erase operation is not performed when the system is in Wait mode with the Flash in Deep Power-down mode.
To make sure that the erase operation is performed after power-up, the system must not reconfigure the ERASE pin
as GPIO or enter Wait mode with Flash in Deep Power-down mode before the ERASE pin assertion time has elapsed.
With the following sequence, in any case, the erase operation is performed:

1. Assert the ERASE pin (High).

2. Assert the NRST pin (Low).

3. Power cycle the device.

4. Maintain the ERASE pin high for at least the minimum assertion time.

Atmel SAM4CP16C [DATASHEET] 29

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

7.

30

Product Mapping and Peripheral Access

Figure 7-1 shows the default memory mapping of the ARM Cortex-M core.

Figure 7-1.

OXFFFFFFFF

0xE0000000
OXDFFFFFFF
0x60000000
OXSFFFFFFF
0x40000000
OX3FFFFFFF
0x20000000
Ox1FFFFFFF
0x00000000

Cortex-M Memory Mapping

System level

Reserved

Peripherals

SRAM

CODE

Private peripherals including
build-in interrupt controller
(NVIC), MPU control registers,
and debug components

Mainly used as peripherals

Mainly used as static RAM

Mainly used for program
code. Also provides exception
vector table after power up

Figure 7-2. SAM4CP16C Memory Mapping of CODE and SRAM Area

0520000000 Internal SRAM .
SRAMO
0x20080000
SRAM1
0%20100000
SRAM2
0x20180000
CPKCC ROM
0%20190000
Reserved
0%20191000
CPKCC SRAM
0x20192000
Reserved K4
0x20200000 ;/
Undefined (Abort)
0x3FFFFFFF a
offset
blOCkperipheral
D
(+ : wired-or)
Notes: 1. Boot Memory for Core 0.

0x00000000

0%20000000

Address memory space

0x40000000,

,
.
’

’
g
’

05566000000
0xA0000000
0xE0000000
0xE0100000

OXFFFFFFFF

0x00000000
Code
0x01000000
\ 0x02000000
Internal SRAM Y
) 0x03000000
) \ 0x04000000
Peripherals \
5 0x05000000
N 0x06000000
Reserved .
\ 0x07000000
" 0x10000000
Reserved Y
% 0x11000000
4 0x12000000
Cortex-M R
Private Peripheral Bus
0%13000000
0x14000000
Reserved \
0x15000000
0%16000000
0x17000000
0x1FFFFFFF

2. Boot Memory for Core 1 at 0x00000000.

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-;

SAM4CP16C-Datasheet_22-Sep-16

Code

Boot Memory
(Code - Non Cached)

Internal Flash
(Code - Non Cached)

Internal ROM

Reserved

Reserved

Reserved

Reserved

Undefined (Abort)

Undefined (Abort)

Internal Flash
(Code - Cached)

Undefined (Abort)

Reserved

Reserved

Reserved

Reserved

Undefined (Abort)

Atmel

Figure 7-3. SAM4CP16C Memory Mapping of the Peripherals Area

Address memory space

0x00000000
Code
0x20000000
Internal SRAM
0x40000000
Peripherals
0x60000000
Reserved
0xA0000000
Reserved
0xE0000000
Cortex-M
Private Peripheral Bus
0xE0100000
Reserved
OxFFFFFFEFF

Atmel

I
i
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

0x480040D0
: UART1
0x48008000 38
PWM
0x4800C000 41
: PIOC
0x48010000 37
: MATRIX1
0x48014000
: IPC1
0x48018000 39
cMcct
0x4801C000:
Reserved
0x48020000]
Reserved
0xX5FFFFFFF

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Peripherals
0240000000 System Controller
o AES 0x400E0000
0x4quiooo 36 : Reserved
e Reserved 0x400E0200;
~"0x40008000 : MATRIXO0
GPLC 0x400E0400
0x4000C000 21 : PMC .
R 0x400E0600
0x40010000 : UARTO .
0 1co 0x400Eo7§0
+0x40 23 CHIPID
€0 e 0x400E0800
+0x80 24 : Reserved
e 0x400E0400
0x40014000 25 : EFC]
€L 1c3 0x400E0C00
+0x40 26 Reserved
€L 1ca 0x400E§Eoo
+0x80 27 ; PIOA
e o 0x400E1000 11
0x40018000 28 ; PIOB .
TWIO OX4OOE:1200
0x4001C000 19 ; Reserved
TWI1 Ox400'}31400 Svsc
0x40020000 20 : RSTC)
Reserved +0x10 Svoc
0%40024000 : SUPC
USARTO P
0x40028000 14 : RTT ,
USART1 x50
0x4002C000 15 : WDT \
USART2 i t0x60 TvoC
0x40030000 16 : RTC ,
USART3 [s
0x40034000 17 : GPBR
USART4 [H0x100p
0x40038000 18 i RSWDT
ADC 0x400E1600
0x4003C000 29 f reserved
sLebe 0£400E4000,
0x40040000 32 : :
CPKCC :
"l 0x40044000 35] !
; IcM
! 0x40048000 L ;
: TRNG :
i 0x4004C000 SEN I j
: IPCO P
| 0x40050000 sLpy
Reserved
! 0x4007C000 ; j
: CMCCO i
| 0x40080000 ;)
Reserved [
i 0x400E0000 f
System Controller |
: 0x400E4000]
Reserved
! 0x48000000
: SPI1 i,
- 0x48004000

In Figure 7-2, ‘Code’ means ‘Program Code over I-Code bus’ and ‘Program Data over D-Code bus’.

SRAM1 is at the address 0x20080000 (through S-bus) and the address 0x00000000 (through I/D Bus) for Core 1.
Instruction fetch from Core 1 to the SRAM address range is possible but leads to reduced performance due to the fact
that instructions and read/write data go through the System Bus (S-Bus). Maximum performance for Core 1 is
obtained by mapping the instruction code to the address 0x00000000 (SRAM1 through I/D-Code) and read/write data
from the address 0x20100000 (SRAM2 through S-Bus).

For Core 0 (Application Core), maximum performance is achieved when the instruction code is mapped to the Flash
address and read/write data is mapped into SRAMO.

Each core can access the following memories and peripherals:
e Core 0 (Application Core):
e All internal memories
e Allinternal peripherals
e Core 1 (Coprocessor Core):
e Allinternal memories
e Allinternal peripherals

Note that Peripheral DMA 0 on Matrix 0 cannot access SRAM1 or SRAM2, Peripheral DMA 1 on Matrix 1 cannot
access SRAMO, SRAM2 or SRAMO can be the Data RAM for Inter-core Communication.

If Core 1 is not to be used (clock stopped and reset active), all the peripherals, SRAM1 and SRAM2 of the Sub-system
1 can be used by the Application Core (Core 0) as long as the peripheral bus clock and reset are configured.

Detailed memory mapping and memory access versus Matrix masters/slaves are given in the “Bus Matrix (MATRIX)”
section of this datasheet.

32 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

8. Memories
The memory map shown in Figure 7-2, “SAM4CP16C Memory Mapping of CODE and SRAM Area” is common to
both Cortex-M4 processors with the exception of the “Boot Memory” block. For more information on Boot Memory,
refer to Section 8.1.5 “Boot Strategy” on page 37.
Each processor uses its own ARM Private Peripheral Bus (PPB) for the NVIC and other system functions.
8.1 Embedded Memories
8.1.1 Internal SRAM
The SAM4CP16C embeds a total of 152 Kbytes high-speed SRAM with zero wait state access time.
SRAMO on Matrix0 is 128 Kbytes. It is dedicated to the application processor (CM4P0) or other peripherals on Matrix0
but can be identified and used by masters on Matrix1.
SRAM1 on Matrix1 is 16 Kbytes. It is mainly dedicated to be the code region of the CM4P1 processor but can be
identified and used by MatrixO.
SRAM2 on Matrix1 is 8 Kbytes. It is mainly dedicated to be the data region of the CM4P1 processor or other
peripherals on Matrix1 but can be identified and used by masters on Matrix0.
Refer to the section “Bus Matrix (MATRIX)” of this datasheet for more details.
If the CM4P1 processor is in the reset state and not used, the application core may use it.
The SRAM is located in the bit band region. The bit band alias region is from 0x2200 0000 to 0x23FF_FFFF.
8.1.2 System ROM
The SAM4CP16C embeds an Internal ROM for the master processor (CM4P0), which contains the SAM Boot
Assistant (SAM-BA), In Application Programming routines (IAP), and Fast Flash Programming Interface (FFPI).
The ROM is always mapped at the address 0x02000000.
8.1.3 CPKCC ROM
The ROM contains a cryptographic library using the CPKCC cryptographic accelerator peripheral (CPKCC) to provide
support for Rivest Shamir Adleman (RSA), Elliptic Curve Cryptography (ECC), Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA).
8.1.4 Embedded Flash
8.1.4.1 Flash Overview
The embedded Flash is the boot memory for the Cortex-M4 Core 0 (CM4P0).
The flash memory can be accessed through the Cache Memory Controller (CMCCO) of the CM4P0 and can also be
identified by the Cortex-M4F Core 1 (CM4P1) through its Cache Memory Controller (CMCC1).
The memory plane is organized in sectors. Each sector has a size of 64 Kbytes. The first sector of 64 Kbytes is
divided into 3 smaller sectors.
The three smaller sectors are organized in 2 sectors of 8 Kbytes and 1 sector of 48 Kbytes. Refer to Figure 8-1 below.
The Flash memory has built-in error code correction providing 2-bit error detection and 1-bit correction per 128 bits.
SAM4CP16C [DATASHEET 33
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 8-1. Memory Plane Organization

Sector size Sector name
8 KBytes Small Sector 0
8 KBytes Small Sector 1 Sector 0
48 KBytes Larger Sector
64 KBytes Sector 1
64 KBytes Sectorn

Each sector is organized in pages of 512 bytes.

For sector 0:
e The small sector 0 has 16 pages of 512 bytes, 8 Kbytes in total.
e The small sector 1 has 16 pages of 512 bytes, 8 Kbytes in total.
e The larger sector has 96 pages of 512 bytes, 48 Kbytes in total.

From sector 1 to n:

The rest of the array is composed of 64-Kbyte sectors where each sector comprises 128 pages of 512 bytes. Refer to
Figure 8-2, “Flash Sector Organization” below.

Figure 8-2. Flash Sector Organization

A sector size is 64 Kbytes

16 pages of 512 Bytes Smaller sector 0
Sector 0 16 pages of 512 Bytes Smaller sector 1
96 pages of 512 Bytes Larger sector

Sector n 128 pages of 512 Bytes

In SAM4CP16C the flash size is 1024 Kbytes.

34 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 8-3 illustrates the organization of the Flash depending on its size.

Figure 8-3. Flash Size
Flash 1 MBytes

2 * 8 KBytes

1* 48 KBytes

15 * 64 KBytes

The following erase commands can be used depending on the sector size:

e 8 Kbyte small sector
e Erase and write page (EWP).
e Erase and write page and lock (EWPL).
e Erase sector (ES) with FARG set to a page number in the sector to erase.
e Erase pages (EPA) with FARG [1:0] = 0 to erase four pages or FARG [1:0] = 1 to erase eight pages.

FARG [1:0] = 2 and FARG [1:0] = 3 must not be used.

e 48 Kbyte and 64 Kbyte sectors
e One block of 8 pages inside any sector, with the command Erase pages (EPA) with FARG[1:0] = 1.
e One block of 16 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 2.
e One block of 32 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 3.
e One sector with the command Erase sector (ES) and FARG set to a page number in the sector to erase.

e Entire memory plane
e The entire Flash, with the command Erase all (EA).

8.1.4.2 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller manages accesses performed by masters of the system. It enables
reading the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block. It manages the programming,
erasing, locking and unlocking sequences of the Flash using the full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash
organization, thus making the software generic.
8.1.4.3 Flash Speed
The user must set the number of wait states depending on the frequency used on the SAM4CP16C.
For more details, refer to “Embedded Flash” in the section “Electrical Characteristics”.

Atmel SAM4CP16C [DATASHEET] 35

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

8.1.4.4 Lock Regions

Several lock bits are used to protect write and erase operations on lock regions. A lock region is composed of several
consecutive pages, and each lock region has its associated lock bit.

Table 8-1. Lock bit number

Product Number of Lock Bits Lock Region Size
SAM4CP16C 128 8 Kbytes

The lock bits are software programmable through the EEFC User Interface. The command “Set Lock Bit” enables the
protection. The command “Clear Lock Bit” unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

8.1.4.5 Security Bit

The SAM4CP16C features a security bit based on a specific General-purpose NVM bit (GPNVM bit 0). When the
security is enabled, any access to the Flash, SRAM, core registers and internal peripherals, either through the SW-
DP/JTAG-DP interface or through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality
of the code programmed in the Flash.

This security bit can only be enabled through the command “Set General-purpose NVM Bit 0” of the EEFC User
Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash erase
is performed. When the security bit is deactivated, all accesses to the Flash, SRAM, Core registers, Internal
Peripherals are permitted.

8.1.4.6 Unique Identifier
Each device integrates its own 128-bit unique identifier. These bits are factory-configured and cannot be changed by
the user. The ERASE pin has no effect on the unique identifier.

8.1.4.7 User Signature

The memory has one additional reprogrammable page that can be used as page signature by the user. It is
accessible through specific modes, for erase, write and read operations. Erase pin assertion will not erase the User
Signature page.

8.1.4.8 Fast Flash Programming Interface

The Fast Flash Programming Interface allows programming the device through either a serial JTAG interface or
through a multiplexed fully-handshaked parallel port. It allows gang programming with market-standard industrial
programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

8.1.4.9 SAM-BA Boot

The SAM-BA Boot is a default Boot Program for the master processor (CM4P0) which provides an easy way to
program in-situ the on-chip Flash memory.

The SAM-BA Boot Assistant supports serial communication via the UARTO.
The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).
The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set to 0.

8.1.4.10 GPNVM Bits

The SAM4CP16C features two GPNVM bits. These bits can be cleared or set respectively through the commands
“Clear GPNVM Bit” and “Set GPNVM Bit” of the EEFC User Interface (see the “EEFC Flash Command Register”
section of this datasheet).

Table 8-2. General-purpose Nonvolatile Memory Bits

GPNVMBit Function
0 Security bit
1 Boot mode selection
36 SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

8.1.5 Boot Strategy

Figure 8-4 below shows a load view of the memory at boot time.

Figure 8-4. Simplified Load View at Boot Time

AT MRen N

ICode / DCode Bus
Core 0 Core 1
ICode / DCode Bus Application COprOceSSOI’ Core
Core 0 Corel (Cortex-M4F)
Application Core Application
(Cortex-M4) (Binary Img.)
SRAM2

—P SRAMO] \)

&

—P Clock & Reset | T
Control I

| Sub-system 0 | | Sub-system 1 |

Note: Matrices, AHB and APB Bridges are not represented.

8.1.5.1 Application Core (Core 0) Boot Process

The application processor (CM4P0) always boots at the address 0x0. To ensure maximum boot possibilities, the
memory layout can be changed using a General-purpose NVM (GPNVM) bit. A GPNVM bit is used to boot either on
the ROM (default) or from the Flash. The GPNVM bit can be cleared or set through the commands “Clear General-
purpose NVM Bit” and “Set General-purpose NVM Bit” of the EEFC User Interface. Setting GPNVM Bit 1 selects the
boot from Flash, whereas clearing this bit selects the boot from ROM. Asserting ERASE clears the GPNVM Bit 1 and
thus selects the boot from the ROM by default.

8.1.5.2 Coprocessor Core (Core 1) Boot Process

After reset, the Sub-system 1 is hold in reset and with no clock. It is up to the Master Application (Core 0 Application)
running on the Core 0 to enable the Sub-system 1. Then the application code can be downloaded into the CM4P1
Boot memory (SRAM1), and CM4P0 can afterwards de-assert the CM4P1 reset line. The secondary processor
(CM4P1) always identifies SRAM1 as “Boot memory”.

8.1.5.3 Sub-system 1 Startup Sequence
After the Core 0 is booted from Flash, the Core 0 application must perform the following steps:

1. Enable Core 1 System Clock (Bus and peripherals).

Enable Core 1 Clock.

Release Core 1 System Reset (Bus and peripherals).

Enable SRAM1 and SRAM2 Clock.

Copy Core 1 Application from Flash into SRAM1.

o s~ b

6. Release Core 1 Reset.
After Step 6, the Core 1 boots from SRAM1 memory.

Atmel SAM4CP16C [DATASHEET] 37

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Pseudo-code
1- // Enable Coprocessor Bus Master Clock (PMC_SCER.CPBMCK).

2- // Enable Coprocessor Clocks (PMC_SCER.CPCK).
// Set Coprocessor Clock Prescaler and Source (PMC_MCKR.CPPRES).
// Choose coprocessor main clock source (PMC_MCKR.CPCSS).

3- // Release coprocessor peripheral reset (RSTC_CPMR.CPEREN).
4- // Enable Core 1 SRAM1 and SRAM2 Memories (PMC_PCER.PID42).
5- // Copy Core 1 application code from Flash into SRAM1.

6- // Release coprocessor reset (RSTC_CPMR.CPROCEN).

8.1.5.4 Sub-system 1 Start-up Time

Table 8-3 provides the start-up time of sub-system 1 in terms of the number of clock cycles for different CPU speeds.
The figures in this table take into account the time to copy 16 Kbytes of code from Flash into SRAM1 using the
‘memcopy’ function from the standard C library and to release Core 1 reset signal. The start-up time of the device from
power-up is not taken into account.

Table 8-3. Sub-system 1 Start-up Time

Core Clock (MHz) Flash Wait State Core Clock Cycles Time
21 0 44122 2.1 ms
42 1 45158 1.07 ms
63 2 46203 735 ps
85 3 47242 55 s
106 4 48284 455 ps
120 5 49329 411 ps

38 SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

8.1.5.5 Typical Execution View
Figure 8-5 provides the code execution view for both Cortex-M4 cores. AHB to APB, AHB to AHB and Matrices are

not represented in this view.

Figure 8-5. Execution View

Atmel

2

SRAMO

Core 0,

)
Flash

)

RW Data,
Stack, Heap

ICode / DCode Bus. A 4 Cache

Ctrl.
(CMCCO)

Core 0
Application

Core
(Cortex-M4)

S-Bus

-

S-Bus »

Core 0
Code,
RO Data

Core 1
Code,
RO Data

Core 1
Application

Binary
|

SRAM2

Core 1,
RW Data,
Stack, Heap

Core 0 <> Core 1
Msg. Buffer (1)

Sub-system 0

Note: 1. SRAMO can also be used as Message Buffer Exchange.
Note: Matrices, AHB and APB Bridges are not represented.

ICode / DCode Bus

Cache
Ctrl ICode / DCode Bus

(CMCC1)

Core 1
Coprocessor

Core
(Cortex-M4F)

S-Bus

N
Sub-system 1

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

39

9. Real-time Event Management

The events generated by peripherals are designed to be directly routed to peripherals managing/using these events
without processor intervention. Peripherals receiving events contain logic to select the required event.

9.1 Embedded Characteristics
e Timers generate event triggers which are directly routed to event managers, such as ADC, to start
measurement/conversion without processor intervention.

e UART, USART, SPI, TWI, and PIO generate event triggers directly connected to Peripheral DMA controller
(PDC) for data transfer without processor intervention.

e PMC Security Event (Clock Failure Detection) can be programmed to switch the MCK on reliable main RC
internal clock.

9.2 Real-time Event Mapping List

Table 9-1. Real-time Event Mapping List

Function Application Description Event Source Event Destination

Automatic switch to reliable main
Safety General-purpose RC oscillator in case of main
crystal clock failure!"

Power Management Controller

(PMC) PMC

Immediate (asynchronous) clear
Security General-purpose of first half of GPBR on tamper Anti-tamper Inputs (TMPx) GPBR
detection through pins®

10 (ADTRG)
TC Output 0
TC Output 1

Measurement) o
General-purpose | Trigger source selection in ADC®) TC Output 2 ADC

TC Output 3
TC Output 4
TC Output 5

trigger

Notes: 1. Refer to Section 30.13 “Main Clock Failure Detector”.

2. Refer to Section 20.4.9.3 “Low-power Debouncer Inputs (Tamper Detection Pins)” and Section 21.3.1 “General
Purpose Backup Register x”.

3. Refer to Section 40.7.2 “ADC Mode Register”.

40 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

10. System Controller
The System Controller comprises a set of peripherals. It handles key elements of the system, such as power, resets,
clocks, time, interrupts, watchdog, reinforced safety watchdog, etc.

10.1 System Controller and Peripheral Mapping
Refer to “SAM4CP16C Memory Mapping of CODE and SRAM Area” .
All the peripherals are in the bit band region and are mapped in the bit band alias region.

10.2 Power Supply Monitoring
The SAM4CP16C embeds Supply Monitor, Power-on-Reset and Brownout detectors for power supplies monitoring
allowing to warn and/or reset the chip.

10.2.1 Power-on-Reset on VDDCORE
The Power-on-Reset monitors VDDCORE. It is always activated and monitors voltage at start-up but also during
power-down. If VDDCORE goes below the threshold voltage, the entire chip (except VDDBU domain) is reset. For
more information, refer to the “Electrical Characteristics” section of the product datasheet.

10.2.2 Brownout Detector on VDDCORE
The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by software through the
Supply Controller (SUPC_MR).
If VDDCORE goes below the threshold voltage, the reset of the core is asserted.

10.2.3 Power-on-Reset on VDDIO
The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start-up but also during power-
down. If VDDIO goes below the threshold voltage, the 10s are reset but the core continues to run. Voltage detection is
fixed.

10.2.4 Supply Monitor on VDDIO
The supply monitor on VDDIO is fully programmable with 4 steps for the threshold (between 3.0V to 3.4V). It provides
the user the flexibility to set a voltage level detection higher then the power-on-reset on VDDIO. Either a reset or an
interrupt can be generated upon detection. It can be activated by software and it is controlled by the Supply Controller
(SUPC). A sample mode is possible. It divides the supply monitor power consumption by a factor of up to 2048.
The supply monitor is used as “system alert” in case VDDIO supply is falling. It can be used while the device is in
Backup mode to wake up the device if VDDIO is falling.

10.2.5 Power-on-Reset and Brownout Detector on VDDBU
The Power-on-Reset monitors VDDBU. It is active by default and monitors voltage at start-up but also during power-
down. It can be deactivated by software through the Supply Controller (SUPC_MR). If VDDBU goes below the
threshold voltage, the entire chip is reset.

SAM4CP16C [DATASHEET 41
Atmel : :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

10.3

10.4

42

Reset Controller

The Reset Controller uses the Power-on-Reset, supply monitor and brownout detector cells.

The Reset Controller returns the source of the last reset to the software. Refer to the description of the field RSTTYP
in the section “Reset Controller (RSTC)".

The Reset Controller controls the internal resets of the system (or independent reset of CM4P1 processor) and the
NRST pin input/output. It shapes a reset signal for the external devices, simplifying to a minimum connection of a
push-button on the NRST pin to implement a manual reset.

The configuration of the Reset Controller is saved during Backup mode as it is supplied by VDDBU.

Supply Controller (SUPC)

The Supply Controller controls the power supplies of each section of the processor.

The Supply Controller starts up the device by sequentially enabling the internal power switches and the Voltage
Regulator, then it generates the proper reset signals to the core power supply.

It also sets the system in different low-power modes, wakes it up from a wide range of events.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

11. Peripherals

11.1 Peripheral Identifiers

Table 11-1 defines the Peripheral Identifiers. A peripheral identifier is required for the control of the peripheral interrupt

with the Nested Vectored Interrupt Controller, and for the control of the peripheral clock with the Power Management

Controller.

The two ARM Cortex-M4 processors share the same interrupt mapping, and thus, they share all the interrupts of the

peripherals.

Note: Some peripherals are on the Bus Matrix 0/AHB to APB Bridge 0 and other peripherals are on the Bus Matrix
1/AHB to APB Bridge 1. If Core 0 needs to access a peripheral on the Bus Matrix 1/AHB to APB Bridge 1, the
Core 0 application must enable the Core 1 System Clock (Bus and peripherals) and release Core 1 System
Reset (Bus and peripherals). Peripherals on Sub-system 0 or Sub-system 1 are mentioned in the Instance
description table that follows.

Table 11-1. Peripheral Identifiers

Instance ID Instance Name NVIC Interrupt Cloc:hggntrol Instance Description
0 SUPC X - Supply Controller
1 RSTC X - Reset Controller
2 RTC X - Real-time Clock
3 RTT X - Real-time Timer
4 WDT X - Watchdog Timer
5 PMC X - Power Management Controller
6 EFC X - Enhanced Embedded Flash Controller 0
7 - - - Reserved
8 UARTO X X UART 0 (Sub-system 0 Clock)
9 - - - Reserved
10 - - - Reserved
11 PIOA X X Parallel I/O Controller A (Sub-system 0 Clock)
12 PIOB X X Parallel I/O Controller B (Sub-system 0 Clock)
13 - - - Reserved
14 USARTO X X USART 0 (Sub-system 0 Clock)
15 USART1 X X USART 1 (Sub-system 0 Clock)
16 USART2 X X USART 2 (Sub-system 0 Clock)
17 USART3 X X USART 3 (Sub-system 0 Clock)
18 USART4 X X USART 4 (Sub-system 0 Clock)
19 TWIO X X Two Wire Interface 0 (Sub-system 0 Clock)
20 TWH X X Two Wire Interface 1 (Sub-system 0 Clock)
21 GPLC X X Power Line Communication (Sub-system 0 Clock)
22 - - - Reserved
23 TCO X X Timer/Counter 0 (Sub-system 0 Clock)
24 TC1 X X Timer/Counter 1 (Sub-system 0 Clock)
25 TC2 X X Timer/Counter 2 (Sub-system 0 Clock)
AtmeL SAM4CP16C [DATASHEET] 43

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Table 11-1. Peripheral Identifiers (Continued)

Instance ID Instance Name NVIC Interrupt Cloc:n(n:gntrol Instance Description
26 TC3 X X Timer/Counter 3 (Sub-system 0 Clock)
27 TC4 X X Timer/Counter 4 (Sub-system 0 Clock)
28 TC5 X X Timer/Counter 5 (Sub-system 0 Clock)
29 ADC X X Analog To Digital Converter (Sub-system 0 Clock)
30 ARM X) FPU signals (only on CM4P1 core): FPIXC, FPOFC,
FPUFC, FPIOC, FPDZC, FPIDC, FPIXC
31 IPCO X X g\Itc?CrE;ocessor communication 0 (Sub-system 0
32 SLCDC X X Segment LCD Controller (Sub-system 0 Clock)
33 TRNG X X True Random Generator (Sub-system 0 Clock)
34 ICM X X Integrity Check Module (Sub-system 0 Clock)
35 CPKCC X X S)I/:ts:rlsa(\)l (I;Lcj)g::): Key Cryptography Controller (Sub-
36 AES X X Advanced Enhanced Standard (Sub-system 0 Clock)
37 PIOC X X Parallel I/O Controller C (Sub-system 1 Clock)
38 UART1 X X UART 1 (Sub-system 1 Clock)
39 IPC1 X X I(r;ltoegi;“ocessor communication 1 (Sub-system 1
40 SPI1 X X Serial Peripheral Interface 1 (Sub-system 1 Clock)
41 PWM X X Pulse Width Modulation (Sub-system 1 Clock)
o | s - | LD S b f), SRANS Sy
43 - - - Reserved

11.2 Peripheral DMA Controller (PDC)
Two Peripheral DMA Controllers (PDC) are available:
e PDCO: dedicated to peripherals on APBO
e PDCH1: dedicated to peripherals on APB1
Features of the PDC include:
e Data transfer handling between peripherals and memories
e Low bus arbitration overhead
e One master clock cycle needed for a transfer from memory to peripheral
e Two master clock cycles needed for a transfer from peripheral to memory
e Next Pointer management to reduce interrupt latency requirement

Note that Peripheral DMA 0 on Matrix 0 cannot access SRAM1 or SRAM2. Peripheral DMA 1 on Matrix 1 cannot
access SRAMO.

44 SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

11.3

11.4

Atmel

The PDC handles transfer requests from the channel according to the following priorities (Low to High priorities):

Table 11-2. Peripheral DMA Controller (PDCO0)

Instance name Channel T/R
AES Transmit
TWIO Transmit

UARTO Transmit
USART1 Transmit
USARTO Transmit
USART2 Transmit
USART3 Transmit
USART4 Transmit

GPLC Transmit

AES Receive
TWIO Receive

UARTO Receive
USART4 Receive
USART3 Receive
USART2 Receive
USART1 Receive
USARTO Receive

ADC Receive
GPLC Receive
Table 11-3. Peripheral DMA Controller (PDC1)

Instance name Channel T/R

UART1 Transmit

SPI1 Transmit
UART1 Receive
SPI1 Receive

APB/AHB Bridge

The SAM4CP16C embeds two peripheral bridges: one on each Matrix, with Matrix 0 for CM4P0 and Matrix 1 for
CM4P1.

The peripherals of the bridge corresponding to CM4P0 (APBO) are clocked by MCK, and the peripherals of the bridge
corresponding to CM4P1 (APB1) are clocked by CPBMCK.

Peripheral Signal Multiplexing on I/O Lines

The SAM4CP16C can multiplex the 1/O lines of the peripheral set.

The SAM4CP16C PIO Controllers control up to 32 lines. Each line can be assigned to one of two peripheral functions:
A or B. The multiplexing tables that follow define how the I/O lines of the peripherals A, B and C are multiplexed on the
P1O Controllers. The column “Comments” has been inserted in this table for the user's own comments; it may be used
to track how pins are defined in an application.

Note that some peripheral functions which are output only may be duplicated within the tables.

SAM4CP16C [DATASHEET] 45

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

11.4.1 Pad Features

In Table 11-5 to Table 11-7, the column “Feature” indicates whether the corresponding 1/O line has programmable
Pull-up, Pull-down and/or Schmitt Trigger. Table 11-4 provides the key to the abbreviations used.

Table 11-4. 1/O Line Features Abbreviations

Abbreviation Definition

PUP (P) Programmable Pull-up

PUP (NP) Non-programmable Pull-up

PDN (P) Programmable Pull-down

PDN (NP) Non-programmable Pull-down

ST (P) Programmable Schmitt Trigger

ST (NP) Non-programmable Schmitt Trigger
LDRYV (P) Programmable Low Drive

LDRV (NP) Non-programmable Low Drive
HDRYV (P) Programmable High Drive

HDRV (NP) Non-programmable High Drive
MaxDRV (NP) Non-programmable Maximum Drive

11.4.2 Reset State

In Table 11-5 to Table 11-7, the column “Reset State” indicates the reset state of the line.
e PIO or signal name: Indicates whether the PIO line resets in /O mode or in peripheral mode.
If “PIO” is mentioned, the PIO line is in general-purpose 1/0 (GPIO). If a signal name is mentioned in the “Reset
State” column, the PIO line is assigned to this function.

e | or O: Indicates whether the signal is input or output state.
PU or PD: Indicates whether Pull-up, Pull-down or nothing is enabled.
ST: Indicates that Schmitt Trigger is enabled.

46 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

11.4.3 PIO Controller A Multiplexing

Table 11-5. Multiplexing on PIO Controller A (PIOA)

Extra System
I/O Line | Peripheral A | Peripheral B | Peripheral C Function Function Feature Reset State Comments
- PUP(P) / PDN(P)
PAO RTS3 PCK2 - COMO WKUP5 - 8T(P)
- MaxDRV(NP)
PA1 CTS3 - - com1 -
PA2 SCK3 - - com2 — - PUP(P) / PDN(P)
- ST(P)
PA3 RXD3 - - COM3 WKUP6 - LDRV(P) / HDRV(P)
PA4 TXD3 - - COM4/AD1 -
PA9 RXD2 - - SEG3 WKUP2
PA10 TXD2 - - SEG4 -
PA11 RXD1 - - SEG5 WKUP9
PA12 TXD1 - - SEG6/ADO -
PA13 SCK2 TIOAQ - SEG7 -
PA14 RTS2 TIOBO - SEG8 WKUP3
PA15 CTS2 TIOA4 - SEG9 -
PA16 SCK1 TIOB4 - SEG10 -
PIO, I, PU
PA17 RTS1 TCLK4 - SEG11 WKUP7
PA18 CcTs1 TIOAS - SEG12 - - PUP(P)/ PDN(P)
- ST(P)
PA19 RTSO TCLK5 - SEG13 WKUP4 -LDRV(P)/ HDRV(P)
PA20 CTS0 TIOB5 - SEG14 -
PA21 - - - SEG15 -
PA22 - - - SEG16 -
PA23 - - - SEG17 -
PA24 TWDO - - SEG18 WKUP1
PA25 TWCKO - - SEG19 -
PA26 CTs4 - - SEG20 -
PA27 - - - SEG21 -
PA28 - - - SEG22 -
- PUP(P) / PDN(P)
PA29 PCK1 - - SEG23 - -ST(P)
- MaxDRV(NP)
- PUP(P) / PDN(P)
PA30 PCK1 - - - XOouT - ST(P) XouT
- LDRV(P) / HDRV(P)
- PUP(P) / PDN(P)
PA31 PCKO - - - XIN - ST(P) XIN
- LDRV(P) / HDRV(P)

Atmel SAM4CP16C [DATASHEET] 47

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

11.4.4 PIO Controller B Multiplexing

Table 11-6. Multiplexing on PIO Controller B (PIOB)

110 Extra System
Line Peripheral A | Peripheral B | Peripheral C Function Function Feature Reset State Comments
- PUP(P) / PDN(P)
PBO TWD1 - - - TDI - ST(P) JTAG, |
- LDRV(P) / HDRV(P)
TDO/ - PUP(P) / PDN(P)
PB1 TWCKA1 RTCOUTO TRACESWO - LDRV(NP) JTAG, O
PB2 - - - - TMS/SWDIO
JTAG, |
PB3 - - - - TCK/ISWCLK
PB4 URXDO TCLKO - - WKUP8
PB5 UTXDO - - - -
PB6 - - - SEG24 -
- PUP(P) / PDN(P)
PB7 TIOA1 - - SEG25 - -ST(P)
PB8 TIOB1 - - SEG26 - - LDRV(P) /HDRV(P)
PB9 TCLK1 - - SEG27 -
PB10 TIOA2 - - SEG28 - PIO, I, PU
PB11 TIOB2 - - SEG29 -
PB12 TCLK2 - - SEG30 -
- PUP(P) / PDN(P)
PB13 PCKO - - SEG31/AD3 - - ST(P)
- MaxDRV(NP)
PB14 - - - SEG32 -
PB15 - - - SEG33 -
WKUP10/
PB16 RXDO - - SEG34 T™P1
PB17 TXDO - - SEG35 -
PB18 SCKO PCK2 - SEG36 - PIO. I. PD
PB19 RXD4 - - SEG37 -
PB20 TXD4 - - SEG38 -
PB21 SCK4 - - SEG39 WKUP11 -PUP(P)/ PDN(P)
PB22 RTS4 - - SEG40 - - ST(P)
- LDRV(P) / HDRV(P)
PB23 ADTRG - - SEG41/AD4 -
PB24 TIOA3 - - SEG42 -
PB25 TIOB3 - - SEG43 -
PB26 TCLK3 - - SEG44 WKUP13
WKUP14/ FIo.1. PU
PB27 - - - SEG45 T™P2
WKUP15/
PB28 - - - SEG46 T™P3
PB29 - - - SEG47 -
PB31 - - - SEG49/AD5 -

48

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

11.4.5 PIO Controller C Multiplexing

Table 11-7. Multiplexing on PIO Controller C (PIOC)

110 Extra System

Line Peripheral A Peripheral B Peripheral C Function Function Feature Reset State Comments
- PUP(P)

PCO UTXD1 PWMO - MaxDRV(NP)

PC1 URXD1 PWM1 — - WKUP12

PC2 SPI1_NPCS0 PWM2 - - - - PUP(P) / PDN(P)
- ST(P)

PC3 SPI1_MISO PWM3 — - - - LDRV(P) / HDRV(P)

PC4 SPI1_MOSI - - - - PIO, I, PU
- PUP(P)

PC5 SPI1_SPCK - MaxDRV(NP)

PC6 PWMO SPI1_NPCS1 - - -

PC7 PWM1 SPI1_NPCS2 - - - - PUP(P) / PDN(P)
- ST(P)

PC8 PWM2 SPI1_NPCS3 - - - - LDRV(P) / HDRV(P)

PC9 PWM3 - - - ERASE ERASE, PD

/ltmeL SAM4CP16C [DATASHEET] 49

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.

12.1

1211

121.2

50

ARM Cortex-M4 Processor

Description

The Cortex-M4 processor is a high performance 32-bit processor designed for the microcontroller market. It offers
significant benefits to developers, including outstanding processing performance combined with fast interrupt han-
dling, enhanced system debug with extensive breakpoint and trace capabilities, efficient processor core, system and
memories, ultra-low power consumption with integrated sleep modes, and platform security robustness, with inte-
grated memory protection unit (MPU).

The Cortex-M4 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard architecture,
making it ideal for demanding embedded applications. The processor delivers exceptional power efficiency through an
efficient instruction set and extensively optimized design, providing high-end processing hardware including IEEE754-
compliant single-precision floating-point computation, a range of single-cycle and SIMD multiplication and multiply-
with-accumulate capabilities, saturating arithmetic and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M4 processor implements tightly-coupled system compo-
nents that reduce processor area while significantly improving interrupt handling and system debug capabilities. The
Cortex-M4 processor implements a version of the Thumb instruction set based on Thumb-2 technology, ensuring high
code density and reduced program memory requirements. The Cortex-M4 instruction set provides the exceptional
performance expected of a modern 32-bit architecture, with the high code density of 8-bit and 16-bit microcontrollers.

The Cortex-M4 processor closely integrates a configurable NVIC, to deliver industry-leading interrupt performance.
The NVIC includes a non-maskable interrupt (NMI), and provides up to 256 interrupt priority levels. The tight integra-
tion of the processor core and NVIC provides fast execution of interrupt service routines (ISRs), dramatically reducing
the interrupt latency. This is achieved through the hardware stacking of registers, and the ability to suspend load-mul-
tiple and store-multiple operations. Interrupt handlers do not require wrapping in assembler code, removing any code
overhead from the ISRs. A tail-chain optimization also significantly reduces the overhead when switching from one
ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that
enables the entire device to be rapidly powered down while still retaining program state.

System Level Interface

The Cortex-M4 processor provides multiple interfaces using AMBA® technology to provide high speed, low latency
memory accesses. It supports unaligned data accesses and implements atomic bit manipulation that enables faster
peripheral controls, system spinlocks and thread-safe Boolean data handling.

The Cortex-M4 processor has a Memory Protection Unit (MPU) that provides fine grain memory control, enabling
applications to utilize multiple privilege levels, separating and protecting code, data and stack on a task-by-task basis.
Such requirements are becoming critical in many embedded applications such as automotive.

Integrated Configurable Debug

The Cortex-M4 processor implements a complete hardware debug solution. This provides high system visibility of the
processor and memory through either a traditional JTAG port or a 2-pin Serial Wire Debug (SWD) port that is ideal for
microcontrollers and other small package devices.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside data watchpoints and
a profiling unit. To enable simple and cost-effective profiling of the system events these generate, a Serial Wire
Viewer (SWV) can export a stream of software-generated messages, data trace, and profiling information through a
single pin.

The Flash Patch and Breakpoint Unit (FPB) provides up to 8 hardware breakpoint comparators that debuggers can
use. The comparators in the FPB also provide remap functions of up to 8 words in the program code in the CODE
memory region. This enables applications stored on a non-erasable, ROM-based microcontroller to be patched if a
small programmable memory, for example flash, is available in the device. During initialization, the application in ROM
detects, from the programmable memory, whether a patch is required. If a patch is required, the application programs
the FPB to remap a number of addresses. When those addresses are accessed, the accesses are redirected to a
remap table specified in the FPB configuration, which means the program in the non-modifiable ROM can be patched.

SAM4CP16C [DATASHEET] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.2 Embedded Characteristics

Tight integration of system peripherals reduces area and development costs
Thumb instruction set combines high code density with 32-bit performance
IEEE754-compliant single-precision FPU
Code-patch ability for ROM system updates
Power control optimization of system components

Integrated sleep modes for low power consumption

Fast code execution permits slower processor clock or increases sleep mode time
Hardware division and fast digital-signal-processing oriented multiply accumulate
Saturating arithmetic for signal processing

Deterministic, high-performance interrupt handling for time-critical applications
Memory Protection Unit (MPU) for safety-critical applications
Extensive debug and trace capabilities:

e Serial Wire Debug and Serial Wire Trace reduce the number of pins required for debugging, tracing, and

code profiling.

12.3 Block Diagram

Figure 12-1. Typical Cortex-M4F Implementation

Atmel

Cortex-M4F
Processor FPU
NVIC [P
Processor
Core
Debug Serial
——P| Access Proi{e‘i'?;r:nnit Wire +————P»
Port t ¢ Viewer
Flash Data
Patch Watchpoints
Bus Matrix
Code SRAM and
Interface Peripheral Interface
A A

v

v

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

51

12.4 Cortex-M4 Models

12.41 Programmers Model

This section describes the Cortex-M4 programmers model. In addition to the individual core register descriptions, it
contains information about the processor modes and privilege levels for software execution and stacks.

12.4.1.1 Processor Modes and Privilege Levels for Software Execution

The processor modes are:
e Thread mode
Used to execute application software. The processor enters the Thread mode when it comes out of reset.

e Handler mode
Used to handle exceptions. The processor returns to the Thread mode when it has finished exception
processing.

The privilege levels for software execution are:
e Unprivileged
The software:
e Has limited access to the MSR and MRS instructions, and cannot use the CPS instruction
e Cannot access the System Timer, NVIC, or System Control Block
e Might have a restricted access to memory or peripherals
Unprivileged software executes at the unprivileged level.
e Privileged
The software can use all the instructions and has access to all resources. Privileged software executes at the
privileged level.

In Thread mode, the Control Register controls whether the software execution is privileged or unprivileged, see “Con-
trol Register”. In Handler mode, software execution is always privileged.

Only privileged software can write to the Control Register to change the privilege level for software execution in
Thread mode. Unprivileged software can use the SVC instruction to make a supervisor call to transfer control to privi-
leged software.

12.4.1.2 Stacks

52

The processor uses a full descending stack. This means the stack pointer holds the address of the last stacked item in
memory When the processor pushes a new item onto the stack, it decrements the stack pointer and then writes the
item to the new memory location. The processor implements two stacks, the main stack and the process stack, with a
pointer for each held in independent registers, see “Stack Pointer”.

In Thread mode, the Control Register controls whether the processor uses the main stack or the process stack, see
“Control Register”.

In Handler mode, the processor always uses the main stack.
The options for processor operations are:

Table 12-1. Summary of processor mode, execution privilege level, and stack use options

Processor Mode Used to Execute Privilege Level for Software Execution | Stack Used
Thread Applications Privileged or unprivileged " Main stack or process stack!"
Handler Exception handlers | Always privileged Main stack

Note: 1. See “Control Register”.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.1.3 Core Registers

Figure 12-2. Processor Core Registers

R1
R2
R3
Low registers
R4
R5
R6 General-purpose registers
R7
>_
R8
R9
High registers R10
R11
R12
) N— p—
Stack Pointer SP (R13) PSP* ” MSP* *Banked version of SP
Link Register LR (R14)
Program Counter PC(R15)
PSR Program status register
PRIMASK
FAULTMASK Exception mask registers Special registers
BASEPRI
CONTROL CONTROL register
Table 12-2. Core Processor Registers
Register Name Access!" Required Reset
Privilege®
General-purpose registers R0O-R12 Read/Write Either Unknown
Stack Pointer MSP Read/Write Privileged See description
Stack Pointer PSP Read/Write Either Unknown
Link Register LR Read/Write Either OxFFFFFFFF
Program Counter PC Read/Write Either See description
Program Status Register PSR Read/Write Privileged 0x01000000
Application Program Status Register APSR Read/Write Either 0x00000000
Interrupt Program Status Register IPSR Read-only Privileged 0x00000000
Execution Program Status Register EPSR Read-only Privileged 0x01000000
Priority Mask Register PRIMASK Read/Write Privileged 0x00000000
Fault Mask Register FAULTMASK Read/Write Privileged 0x00000000
Base Priority Mask Register BASEPRI Read/Write Privileged 0x00000000
Control Register CONTROL Read/Write Privileged 0x00000000

Notes: 1. Describes access type during program execution in thread mode and Handler mode. Debug access can differ.
2. An entry of Either means privileged and unprivileged software can access the register.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.1.4 General-purpose Registers
RO - R12 are 32-bit general-purpose registers for data operations.

12.4.1.5 Stack Pointer
The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the Control Register indicates the stack pointer
to use:
e 0= Main Stack Pointer (MSP). This is the reset value
e 1= Process Stack Pointer (PSP)
On reset, the processor loads the MSP with the value from address 0x00000000.

12.4.1.6 Link Register

The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and exceptions.
On reset, the processor loads the LR value OxFFFFFFFF.

12.4.1.7 Program Counter

The Program Counter (PC) is register R15. It contains the current program address. On reset, the processor loads the
PC with the value of the reset vector, which is at address 0x00000004. Bit[0] of the value is loaded into the
EPSR T-bit at reset and must be 1.

54 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.1.8 Program Status Register

Name: PSR

Access: Read/Write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| N Z C v Q ICIIT T |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| ICIIT - ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

The Program Status Register (PSR) combines:

» Application Program Status Register (APSR).

* Interrupt Program Status Register (IPSR).

» Execution Program Status Register (EPSR).
These registers are mutually exclusive bitfields in the 32-bit PSR.

The PSR accesses these registers individually or as a combination of any two or all three registers, using the register name as
an argument to the MSR or MRS instructions. For example:

* Read of all the registers using PSR with the MRS instruction.
» Write to the APSR N, Z, C, V and Q bits using APSR_nzcvq with the MSR instruction.

The PSR combinations and attributes are:

Name Access Combination

PSR Read/Write!"? APSR, EPSR, and IPSR

IEPSR Read-only EPSR and IPSR

IAPSR Read/Write!" APSR and IPSR

EAPSR Read/Write® APSR and EPSR
Notes: 1. The processor ignores writes to the IPSR bits.

2. Reads of the EPSR bits return zero, and the processor ignores writes to these bits.

See the instruction descriptions “MRS” and “MSR” for more information about how to access the program status registers.

Atmel

SAM4CP16C [DATASHEET] 55

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.1.9 Application Program Status Register

Name: APSR

Access: Read/Write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| N Z C Y, | Q - |
23 22 21 20 19 18 17 16

| - | GE[3:0] |
15 14 13 12 1 10 9 8
7 6 5 4 3 2 1 0

The APSR contains the current state of the condition flags from previous instruction executions.

* N: Negative Flag
0: Operation result was positive, zero, greater than, or equal.

1: Operation result was negative or less than.

e Z: Zero Flag
0: Operation result was not zero.

1: Operation result was zero.

¢ C: Carry or Borrow Flag
Carry or borrow flag:

0: Add operation did not result in a carry bit or subtract operation resulted in a borrow bit.

1: Add operation resulted in a carry bit or subtract operation did not result in a borrow bit.

¢ V: Overflow Flag
0: Operation did not result in an overflow.

1: Operation resulted in an overflow.

* Q: DSP Overflow and Saturation Flag
Sticky saturation flag:

0: Indicates that saturation has not occurred since reset or since the bit was last cleared to zero.
1: Indicates when an SSAT or USAT instruction results in saturation.

This bit is cleared to zero by software using an MRS instruction.

¢ GE[19:16]: Greater Than or Equal Flags
See “SEL” for more information.

56 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

12.4.1.10 Interrupt Program Status Register

Name: IPSR
Access: Read/Write
Reset: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - ISR_NUMBER |
7 6 5 4 3 2 1 0
| ISR_NUMBER |

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR).

* ISR_NUMBER: Number of the Current Exception

0 = Thread mode

1 = Reserved

2 =NMmI

3 = Hard fault

4 = Memory management fault
5 = Bus fault

6 = Usage fault

7 - 10 = Reserved

11 = SVCall

12 = Reserved for Debug
13 = Reserved

14 = PendSV

15 = SysTick

16 = IRQO

56 = IRQ40

See “Exception Types” for more information.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

57

12.4.1.11 Execution Program Status Register

Name: EPSR

Access: Read/Write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| - ICUIT T |
23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8

| ICIIT - |
7 6 5 4 3 2 1 0

The EPSR contains the Thumb state bit, and the execution state bits for either the If~-Then (IT) instruction, or the Interruptible-
Continuable Instruction (ICl) field for an interrupted load multiple or store multiple instruction.

Attempts to read the EPSR directly through application software using the MSR instruction always return zero. Attempts to
write the EPSR using the MSR instruction in the application software are ignored. Fault handlers can examine the EPSR value
in the stacked PSR to indicate the operation that is at fault. See “Exception Entry and Return”.

¢ ICI: Interruptible-continuable Instruction
When an interrupt occurs during the execution of an LDM, STM, PUSH, POP, VLDM, VSTM, VPUSH, or VPOP instruction, the
processor:

— Stops the load multiple or store multiple instruction operation temporarily.
— Stores the next register operand in the multiple operation to EPSR bits[15:12].

After servicing the interrupt, the processor:

— Returns to the register pointed to by bits[15:12].
— Resumes the execution of the multiple load or store instruction.

When the EPSR holds the ICI execution state, bits[26:25,11:10] are zero.

e IT: If-Then Instruction
Indicates the execution state bits of the IT instruction.

The If-Then block contains up to four instructions following an IT instruction. Each instruction in the block is conditional. The
conditions for the instructions are either all the same, or some can be the inverse of others. See “IT” for more information.

¢ T: Thumb State
The Cortex-M4 processor only supports the execution of instructions in Thumb state. The following can clear the T bit to 0:
— Instructions BLX, BX and POP{PC}.

— Restoration from the stacked xPSR value on an exception return.
— Bit[0] of the vector value on an exception entry or reset.

Attempting to execute instructions when the T bit is O results in a fault or lockup. See “Lockup” for more information.

12.4.1.12 Exception Mask Registers

The exception mask registers disable the handling of exceptions by the processor. Disable exceptions where they
might impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruction to change the
value of PRIMASK or FAULTMASK. See “MRS”, “MSR”, and “CPS” for more information.

58 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.1.13 Priority Mask Register

Name: PRIMASK
Access: Read/Write
Reset: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8
7 6 5 4 3 2 1 0
| - PRIMASK |

The PRIMASK register prevents the activation of all exceptions with a configurable priority.

¢ PRIMASK
0: No effect.

1: Prevents the activation of all exceptions with a configurable priority.

Atmel

SAM4CP16C [DATASHEET] 59

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.1.14 Fault Mask Register

Name: FAULTMASK
Access: Read/Write
Reset: 0x00000000

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
| - | FAULTMASK |
The FAULTMASK register prevents the activation of all exceptions except for Non-Maskable Interrupt (NMI).
* FAULTMASK
0: No effect.
1: Prevents the activation of all exceptions except for NMI.
The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.
60 SAM4CP16C [DATASHEET

[] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.1.15 Base Priority Mask Register

Name: BASEPRI

Access: Read/Write

Reset: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8
7 6 5 4 3 2 1 0

| BASEPRI |

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a nonzero value, it
prevents the activation of all exceptions with same or lower priority level as the BASEPRI value.

*« BASEPRI
Priority mask bits:

0x0000: No effect.
Nonzero: Defines the base priority for exception processing.
The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this field,
bits[3:0] read as zero and ignore writes. See “Interrupt Priority Registers” for more information. Remember that higher priority
field values correspond to lower exception priorities.

Atmel SAM4CP16C [DATASHEET] 61

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.1.16 Control Register

Name: CONTROL

Access: Read/Write

Reset: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8
7 6 5 4 3 2 1 0

| - FPCA SPSEL nPRIV |

The Control Register controls the stack used and the privilege level for software execution when the processor is in Thread
mode and indicates whether the FPU state is active.

* FPCA: Floating-point Context Active
Indicates whether the floating-point context is currently active:

0: No floating-point context active.
1: Floating-point context active.

The Cortex-M4 uses this bit to determine whether to preserve the floating-point state when processing an exception.

e SPSEL: Active Stack Pointer
Defines the current stack:

0: MSP is the current stack pointer.
1: PSP is the current stack pointer.

In Handler mode, this bit reads as zero and ignores writes. The Cortex-M4 updates this bit automatically on exception return.

* nPRIV: Thread Mode Privilege Level
Defines the Thread mode privilege level:

0: Privileged.
1: Unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the Control
Register when in Handler mode. The exception entry and return mechanisms update the Control Register based on the
EXC_RETURN value.

In an OS environment, ARM recommends that threads running in Thread mode use the process stack, and the kernel and
exception handlers use the main stack.

By default, the Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, either:

» Use the MSR instruction to set the Active stack pointer bit to 1, see “MSR”, or
» Perform an exception return to Thread mode with the appropriate EXC_RETURN value, see Table 12-10.

Note: When changing the stack pointer, the software must use an ISB instruction immediately after the MSR instruction.
This ensures that instructions after the ISB execute using the new stack pointer. See “ISB”.

62 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.1.17 Exceptions and Interrupts

The Cortex-M4 processor supports interrupts and system exceptions. The processor and the Nested Vectored
Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software con-
trol. The processor uses the Handler mode to handle all exceptions except for reset. See “Exception Entry” and
“Exception Return” for more information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller (NVIC)” for more information.

12.4.1.18 Data Types
The processor supports the following data types:
e 32-bit words.
e 16-bit halfwords.
e 8-bit bytes.
e The processor manages all data memory accesses as little-endian. Instruction memory and Private Peripheral

Bus (PPB) accesses are always little-endian. See “Memory Regions, Types and Attributes” for more
information.

12.4.1.19 Cortex Microcontroller Software Interface Standard (CMSIS)
For a Cortex-M4 microcontroller system, the Cortex Microcontroller Software Interface Standard (CMSIS) defines:
e A common way to:
e Access peripheral registers.
e Define exception vectors.
e The names of:
e The registers of the core peripherals.
e The core exception vectors.
e A device-independent interface for RTOS kernels, including a debug channel.
The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M4 processor.
The CMSIS simplifies the software development by enabling the reuse of template code and the combination of

CMSIS-compliant software components from various middleware vendors. Software vendors can expand the CMSIS
to include their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS
functions that address the processor core and the core peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few cases, these differ from the
architectural short names that might be used in other documents.

The following sections give more information about the CMSIS:
e Section 12.5.3 "Power Management Programming Hints”
e Section 12.6.2 "CMSIS Functions”

e Section 12.8.2.1 "NVIC Programming Hints”

Atmel SAM4CP16C [DATASHEET] 63

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.2 Memory Model

This section describes the processor memory map, the behavior of memory accesses, and the bit-banding features.
The processor has a fixed memory map that provides up to 4 GB of addressable memory.

Figure 12-3. Memory Map

Ox43FFFFFF

0x42000000

Ox400FFFFF
0x40000000

32 MB Bit band alias

1 MB Bit Band region

Ox23FFFFFF

0x22000000

0x200FFFFF
0x20000000

32 MB Bit band alias

| 1 MB Bit Band region

OxFFFFFFFF
Vendor-specific 511MB
memory
0xE0100000
i i OxEOOFFFFF
Prlvateg)uesrlpheral 1.0MB
0xE000 0000
0x DFFFFFFF
External device 1.0GB
0xA0000000
Ox9FFFFFFF
External RAM 1.0GB
0x60000000
Ox5FFFFFFF
Peripheral 0.5GB
0x40000000
O0x3FFFFFFF
SRAM 0.5GB
0x20000000
O0x1FFFFFFF
Code 0.5GB
0x00000000

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic operations to bit data,

see “Bit-banding”.

The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral registers.

This memory mapping is generic to ARM Cortex-M4 products. To get the specific memory mapping of this product,
refer to section Memories.

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

12.4.2.1 Memory Regions, Types and Attributes

The memory map and the programming of the MPU split the memory map into regions. Each region has a defined
memory type, and some regions have additional memory attributes. The memory type and attributes determine the
behavior of accesses to the region.

Memory Types
e Normal
The processor can re-order transactions for efficiency, or perform speculative reads.
e Device

The processor preserves transaction order relative to other transactions to Device or Strongly-ordered memory.
e Strongly-ordered
The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the memory system can
buffer a write to Device memory, but must not buffer a write to Strongly-ordered memory.

Additional Memory Attributes

e Shareable
For a shareable memory region, the memory system provides data synchronization between bus masters in a
system with multiple bus masters, for example, a processor with a DMA controller.
Strongly-ordered memory is always shareable.
If multiple bus masters can access a non-shareable memory region, the software must ensure data coherency
between the bus masters.

e Execute Never (XN)
Means the processor prevents instruction accesses. A fault exception is generated only on execution of an
instruction executed from an XN region.

12.4.2.2 Memory System Ordering of Memory Accesses

For most memory accesses caused by explicit memory access instructions, the memory system does not guarantee
that the order in which the accesses complete matches the program order of the instructions, providing this does not
affect the behavior of the instruction sequence. Normally, if correct program execution depends on two memory
accesses completing in program order, the software must insert a memory barrier instruction between the memory
access instructions, see “Software Ordering of Memory Accesses”.

However, the memory system does guarantee some ordering of accesses to Device and Strongly-ordered memory.
For two memory access instructions A1 and A2, if A1 occurs before A2 in program order, the ordering of the memory
accesses is described below.

Table 12-3. Ordering of the Memory Accesses Caused by Two Instructions

A2 Normal Device Access

A1 Access Non-shareable Shareable Strongly-ordered Access
Normal Access - - - —
Device access, non-shareable - < - <
Device access, shareable - — < <
Strongly-ordered access - < < <

Where:

- Means that the memory system does not guarantee the ordering of the accesses.

< Means that accesses are observed in program order, that is, A1 is always observed before A2.

/ItmeL SAM4CP16C [DATASHEET] 65

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.2.3 Behavior of Memory Accesses

The following table describes the behavior of accesses to each region in the memory map.

Table 12-4. Memory Access Behavior

Address Range Memory Region Memory XN | Description
Type

0x00000000 - Ox1FFEFFEF Code Normal® | - Executable region for program code. Data can
also be put here.
Executable region for data. Code can also be
put here.

0x20000000 - 0x3FFFFFFF SRAM Normal™ | -) o , ,
This region includes bit band and bit band
alias areas, see Table 12-6.

0x40000000 - 0X5FFFFFFF | Peripheral Device() | xN | [T region includes bit band and bit band
alias areas, see Table 12-6.

0x60000000 - OX9FFFFFFF External RAM Normal") | - Executable region for data.

0xA0000000 - OXDFFFFFFF External device Device(" XN | External Device memory.

0XE0000000 - OXEQOFFFEF Private Peripheral Strongly(—ﬂ XN This region includes the NVIC, System timer,

Bus ordered and system control block.
0xE0100000 - OXFFFFFFFF | Reserved Device!” | XN | Reserved.

Note: 1.

See “Memory Regions, Types and Attributes” for more information.

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends that programs always
use the Code region. This is because the processor has separate buses that enable instruction fetches and data
accesses to occur simultaneously.

The MPU can override the default memory access behavior described in this section. For more information, see
“Memory Protection Unit (MPU)”.

Additional Memory Access Constraints For Shared Memory

When a system includes shared memory, some memory regions have additional access constraints, and some
regions are subdivided, as Table 12-5 shows:

Table 12-5. Memory Region Shareability Policies

Address Range Memory Region Memory Type Shareability
0x00000000 - Ox1FFFFFFF Code Normal (") -
0x20000000 - Ox3FFFFFFF SRAM Normal (") -
0x40000000 - 0X5FFFFFFF Peripheral Device(" -
0x60000000 - 0x7FFFFFFF
External RAM Normal (") -
0x80000000 - 0X9FFFFFFF
0xA0000000 - OxBFFFFFFF Shareable("
External device Device("
0xC0000000 - 0OXDFFFFFFF Non-shareable ("
0xE0000000 - OXEQOOFFFFF Private Peripheral Bus Strongly- ordered" Shareable!"
0xE0100000 - OXFFFFFFFF Vendor-specific device Device(" -

Notes: 1. See “Memory Regions, Types and Attributes” for more information.

66 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

Instruction Prefetch and Branch Prediction
The Cortex-M4 processor:

e Prefetches instructions ahead of execution.
e Speculatively prefetches from branch target addresses.

12.4.2.4 Software Ordering of Memory Accesses
The order of instructions in the program flow does not always guarantee the order of the corresponding memory
transactions. This is because:
e The processor can reorder some memory accesses to improve efficiency, providing this does not affect the
behavior of the instruction sequence.
e The processor has multiple bus interfaces.
e Memory or devices in the memory map have different wait states.
e Some memory accesses are buffered or speculative.

“Memory System Ordering of Memory Accesses” describes the cases where the memory system guarantees the
order of memory accesses. Otherwise, if the order of memory accesses is critical, the software must include memory
barrier instructions to force that ordering. The processor provides the following memory barrier instructions:

DMB

The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before subse-
quent memory transactions. See “DMB”.

DSB
The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete before
subsequent instructions execute. See “DSB”.

ISB
The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory transactions is
recognizable by subsequent instructions. See “ISB”.

MPU Programming

Use a DSB followed by an ISB instruction or exception return to ensure that the new MPU configuration is used by
subsequent instructions.

12.4.2.5 Bit-banding

A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region. The bit-band regions
occupy the lowest 1 MB of the SRAM and peripheral memory regions.

The memory map has two 32 MB alias regions that map to two 1 MB bit-band regions:

e Accesses to the 32 MB SRAM alias region map to the 1 MB SRAM bit-band region, as shown in Table 12-6.

e Accesses to the 32 MB peripheral alias region map to the 1 MB peripheral bit-band region, as shown in
Table 12-7.

Table 12-6. SRAM Memory Bit-banding Regions

Address Range Memory Region Instruction and Data Accesses

Direct accesses to this memory range behave as SRAM
0x20000000 - 0x200FFFFF SRAM bit-band region memory accesses, but this region is also bit-addressable
through bit-band alias.

Data accesses to this region are remapped to bit-band
0x22000000 - 0x23FFFFFF SRAM bit-band alias region. A write operation is performed as read-modify-
write. Instruction accesses are not remapped.

Atmel SAM4CP16C [DATASHEET] 67

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

68

Table 12-7. Peripheral Memory Bit-banding Regions

Address Range Memory Region Instruction and Data Accesses

Direct accesses to this memory range behave as
0x40000000 - 0x400FFFFF Peripheral bit-band alias peripheral memory accesses, but this region is also bit-
addressable through bit-band alias.

Data accesses to this region are remapped to bit-band
0x42000000 - Ox43FFFFFF Peripheral bit-band region | region. A write operation is performed as read-modify-
write. Instruction accesses are not permitted.

Notes: 1. A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the SRAM or
peripheral bit-band region.

2. Bit-band accesses can use byte, halfword, or word transfers. The bit-band transfer size matches the
transfer size of the instruction making the bit-band access.

The following formula shows how the alias region maps onto the bit-band region:
bit_word_offset = (byte_offset x 32) + (bit_number x 4)
bit_word_addr = bit_band_base + bit_word_offset
where:
e Bit_word_offset is the position of the target bit in the bit-band memory region.
Bit_word_addr is the address of the word in the alias memory region that maps to the targeted bit.
Bit_band_base is the starting address of the alias region.
Byte offset is the number of the byte in the bit-band region that contains the targeted bit.
Bit_number is the bit position, 0-7, of the targeted bit.

Figure 12-4 shows examples of bit-band mapping between the SRAM bit-band alias region and the SRAM bit-band
region:
e The alias word at 0x23FFFFEOQ maps to bit[0] of the bit-band byte at 0x200FFFFF: 0x23FFFFEQ = 0x22000000
+ (OXFFFFF*32) + (0*4).
e The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at 0x200FFFFF: 0x23FFFFFC = 0x22000000
+ (OXFFFFF*32) + (7*4).
e The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000: 0x22000000 = 0x22000000 +
(0*32) + (0*4).
e The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000: 0x2200001C = 0x22000000 +
(0*32) + (7*4).

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 12-4. Bit-band Mapping
32 MB alias region

I 0x23FFFFFC I 0x23FFFFF8 || 0x23FFFFF4 | 0x23FFFFFO | Ox23FFFFEC | Ox23FFFFE8 | Ox23FFFFE4 I 0x23FFFFEO I

°o o o

I 0x2200001C I 0x22000018 0x22000014 0x22000010 0x2200000C 0x22000008 0x22000004 I 0x22000000 I

1 MB SRAM bit-band region

‘76543210’765432107654321076543210

1 [I [[I [[I [[
I ‘ 0x200FFFFF ‘ ‘ I ‘ 0x200FFFFE ‘ ‘ I ‘ 0x200FFFFD ‘ ‘ I ‘ 0x200FFFFC ‘ ‘ I
[| | | | | | | | | |
°
°
°
765432107654321076543210‘76543210’
I 1 1 I 1 | I 1 1
I ‘ ‘ 0x20000003 ‘ ‘ I ‘ ‘ 0x20000002 ‘ ‘ I ‘ ‘ 0x20000001 ‘ ‘ I ‘ ‘ O%ZOOFOO‘#O ‘ ‘ I
[| | | | | [

Directly Accessing an Alias Region
Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the targeted bit in the bit-band
region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit, and writing a value with bit[0] set to O writes a 0
to the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as writing OxFF.
Writing 0x00 has the same effect as writing OxOE.

Reading a word in the alias region:

e (0x00000000 indicates that the targeted bit in the bit-band region is set to 0.
e (0x00000001 indicates that the targeted bit in the bit-band region is set to 1.
Directly Accessing a Bit-band Region
“Behavior of Memory Accesses” describes the behavior of direct byte, halfword, or word accesses to the bit-band
regions.

12.4.2.6 Memory Endianness

The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example,
bytes 0 - 3 hold the first stored word, and bytes 4 - 7 hold the second stored word. “Little-endian Format” describes
how words of data are stored in memory.

Little-endian Format

In little-endian format, the processor stores the least significant byte of a word at the lowest-numbered byte, and the
most significant byte at the highest-numbered byte. For example:

Figure 12-5. Little-endian Format

Memory Register
7 0
31 2423 1615 87
Address A BO |Isbyte B3 B2 B1 BO
A+1 B1
A+2 B2
A+3 B3 | msbyte

Atmel

SAM4CP16C [DATASHEET] 69

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.2.7 Synchronization Primitives

70

The Cortex-M4 instruction set includes pairs of synchronization primitives. These provide a non-blocking mechanism
that a thread or process can use to obtain exclusive access to a memory location. The software can use them to per-
form a guaranteed read-modify-write memory update sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

A Load-exclusive Instruction, used to read the value of a memory location, requesting exclusive access to that
location.

A Store-Exclusive instruction, used to attempt to write to the same memory location, returning a status bit to a
register. If this bit is:
e 0: Itindicates that the thread or process gained exclusive access to the memory, and the write succeeds.

e 1: It indicates that the thread or process did not gain exclusive access to the memory, and no write is
performed.

The pairs of Load-Exclusive and Store-Exclusive instructions are:

e The word instructions LDREX and STREX.
e The halfword instructions LDREXH and STREXH.
e The byte instructions LDREXB and STREXB.
The software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.

To perform an exclusive read-modify-write of a memory location, the software must:

1. Use a Load-Exclusive instruction to read the value of the location.

2. Update the value, as required.

3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory location.

4. Test the returned status bit. If this bit is:
0: The read-modify-write completed successfully.
1: No write was performed. This indicates that the value returned at step 1 might be out of date. The software
must retry the read-modify-write sequence.

The software can use the synchronization primitives to implement a semaphore as follows:
1. Use a Load-Exclusive instruction to read from the semaphore address to check whether the semaphore is free.
2. If the semaphore is free, use a Store-Exclusive instruction to write the claim value to the semaphore address.

3. If the returned status bit from step 2 indicates that the Store-Exclusive instruction succeeded then the software
has claimed the semaphore. However, if the Store-Exclusive instruction failed, another process might have
claimed the semaphore after the software performed the first step.

The Cortex-M4 includes an exclusive access monitor, that tags the fact that the processor has executed a Load-
Exclusive instruction. If the processor is part of a multiprocessor system, the system also globally tags the memory
locations addressed by exclusive accesses by each processor.

The processor removes its exclusive access tag if:

e |t executes a CLREX instruction.
e It executes a Store-Exclusive instruction, regardless of whether the write succeeds.

e An exception occurs. This means that the processor can resolve semaphore conflicts between different
threads.

In a multiprocessor implementation:

e Executing a CLREX instruction removes only the local exclusive access tag for the processor.

e Executing a Store-Exclusive instruction, or an exception, removes the local exclusive access tags, and all
global exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see “LDREX and STREX” and “CLREX".

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.2.8 Programming Hints for the Synchronization Primitives

ISO/IEC C cannot directly generate the exclusive access instructions. CMSIS provides intrinsic functions for genera-
tion of these instructions:

Table 12-8. CMSIS Functions for Exclusive Access Instructions

Instruction CMSIS Function

LDREX uint32_t _ LDREXW (uint32_t *addr)

LDREXH uint16_t _ LDREXH (uint16_t *addr)

LDREXB uint8_t _ LDREXB (uint8_t *addr)

STREX uint32_t _ STREXW (uint32_t value, uint32_t *addr)
STREXH uint32_t _ STREXH (uint16_t value, uint16_t *addr)
STREXB uint32_t _ STREXB (uint8_t value, uint8_t *addr)
CLREX void __ CLREX (void)

The actual exclusive access instruction generated depends on the data type of the pointer passed to the intrinsic
function. For example, the following C code generates the required LDREXB operation:

__Idrex((volatile char *) OxFF);

12.4.3 Exception Model
This section describes the exception model.
12.4.3.1 Exception States
Each exception is in one of the following states:
Inactive
The exception is not active and not pending.
Pending
The exception is waiting to be serviced by the processor.
An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to pending.
Active
An exception is being serviced by the processor but has not completed.

An exception handler can interrupt the execution of another exception handler. In this case, both exceptions are in the
active state.

Active and Pending
The exception is being serviced by the processor and there is a pending exception from the same source.
12.4.3.2 Exception Types
The exception types are:
Reset

Reset is invoked on power up or a warm reset. The exception model treats reset as a special form of exception. When
reset is asserted, the operation of the processor stops, potentially at any point in an instruction. When reset is
deasserted, execution restarts from the address provided by the reset entry in the vector table. Execution restarts as
privileged execution in Thread mode.

Atmel SAM4CP16C [DATASHEET] 71

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

72

Non Maskable Interrupt (NMI)

A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is the highest priority
exception other than reset. It is permanently enabled and has a fixed priority of -2.

NMls cannot be:
e Masked or prevented from activation by any other exception.

e Preempted by any exception other than Reset.
Hard Fault

A hard fault is an exception that occurs because of an error during exception processing, or because an exception
cannot be managed by any other exception mechanism. Hard Faults have a fixed priority of -1, meaning they have
higher priority than any exception with configurable priority.

Memory Management Fault (MemManage)

A Memory Management Fault is an exception that occurs because of a memory protection related fault. The MPU or
the fixed memory protection constraints determines this fault, for both instruction and data memory transactions. This
fault is used to abort instruction accesses to Execute Never (XN) memory regions, even if the MPU is disabled.

Bus Fault

A Bus Fault is an exception that occurs because of a memory related fault for an instruction or data memory
transaction. This might be from an error detected on a bus in the memory system.

Usage Fault
A Usage Fault is an exception that occurs because of a fault related to an instruction execution. This includes:
e An undefined instruction.
e Anillegal unaligned access.
e Aninvalid state on instruction execution.

® An error on exception return.
The following can cause a Usage Fault when the core is configured to report them:

e Anunaligned address on word and halfword memory access.
e Adivision by zero.
SVCall

A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment, applications
can use SVC instructions to access OS kernel functions and device drivers.

PendSV

PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for context
switching when no other exception is active.

SysTick

A SysTick exception is an exception the system timer generates when it reaches zero. Software can also generate a
SysTick exception. In an OS environment, the processor can use this exception as system tick.

Interrupt (IRQ)

A interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software request. All interrupts are
asynchronous to instruction execution. In the system, peripherals use interrupts to communicate with the processor.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Table 12-9. Properties of the Different Exception Types

Exception Irq Number(" | Exception Type Priority Vector Address | Activation
Number(" or Offset®

1 - Reset -3, the highest | 0x00000004 Asynchronous
2 -14 NMI -2 0x00000008 Asynchronous
3 -13 Hard fault -1 0x0000000C -

4 12 r'\r"lgnma‘gé’mem faut | Configurable® | 0x00000010 Synchronous
5 11 Bus fault Configurable® | 0x00000014 :;’;:;:‘r’;?:js W"‘r’]r;?]”img::;i:j
6 -10 Usage fault Configurable® | 0x00000018 Synchronous
7-10 - - - Reserved -

11 -5 Svcall Configurable® | 0x0000002C Synchronous
12-13 - - - Reserved -

14 -2 PendSV Configurable® | 0x00000038 Asynchronous
15 -1 SysTick Configurable® | 0x0000003C Asynchronous
16 and above 0 and above Interrupt (IRQ) Configurable® g’;goft?f\?e“(% Asynchronous

Notes: 1.

To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for excep-

tions other than interrupts. The IPSR returns the Exception number, see “Interrupt Program Status Register”.

ok wDd

See “Vector Table” for more information.
See “System Handler Priority Registers”.
See “Interrupt Priority Registers”.
Increasing in steps of 4.

For an asynchronous exception, other than reset, the processor can execute another instruction between when the
exception is triggered and when the processor enters the exception handler.

Privileged software can disable the exceptions that Table 12-9 shows as having configurable priority, see:

“System Handler Control and State Register”.
“Interrupt Clear-enable Registers”.

For more information about hard faults, memory management faults, bus faults, and usage faults, see “Fault
Handling”.

12.4.3.3 Exception Handlers
The processor handles exceptions using:

Atmel

Interrupt Service Routines (ISRs)
Interrupts IRQO to IRQ40 are the exceptions handled by ISRs.

Fault Handlers

Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by the fault handlers.

System Handlers

NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are handled by system

handlers.

SAM4CP16C [DATASHEET] 73

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.3.4 Vector Table

The vector table contains the reset value of the stack pointer, and the start addresses, also called exception vectors,
for all exception handlers. Figure 12-6 shows the order of the exception vectors in the vector table. The least-signifi-
cant bit of each vector must be 1, indicating that the exception handler is Thumb code.

Figure 12-6. Vector Table

Exception number IRQ number Offset Vector
255 239 IRQ239
0x03FC
0x004C
18 2 IRQ2
0x0048
17 1 IRQ1
0x0044
16 0 IRQO
0x0040
15 -1 SysTick
0x003C
14 -2 PendSV
0x0038
13 Reserved
12 Reserved for Debug
11 -5 SvCall
0x002C
10
9
Reserved
8
7
6 -10 Usage fault
0x0018
5 -1 Bus fault
0x0014
4 -12 Memory management fault
0x0010
3 -13 Hard fault
0x000C
2 -14 NMI
0x0008
1 Reset
0x0004
Initial SP value
0x0000

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to the SCB_VTOR to
relocate the vector table start address to a different memory location, in the range 0x00000080 to Ox3FFFFF80, see
“Vector Table Offset Register”.

12.4.3.5 Exception Priorities
As Table 12-9 shows, all exceptions have an associated priority, with:
e A lower priority value indicating a higher priority.
e Configurable priorities for all exceptions except Reset, Hard fault and NMI.

If the software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0. For
information about configuring exception priorities see “System Handler Priority Registers”, and “Interrupt Priority
Registers”.

Note: Configurable priority values are in the range 0 - 15. This means that the Reset, Hard fault, and NMI excep-
tions, with fixed negative priority values, always have higher priority than any other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has

higher priority than IRQ[O]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number takes
precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[O0] is processed
before IRQ[1].

74 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

When the processor is executing an exception handler, the exception handler is preempted if a higher priority excep-
tion occurs. If an exception occurs with the same priority as the exception being handled, the handler is not
preempted, irrespective of the exception number. However, the status of the new interrupt changes to pending.

12.4.3.6 Interrupt Priority Grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping. This divides each interrupt
priority register entry into two fields:

e An upper field that defines the group priority.
e Alower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor is executing an interrupt
exception handler, another interrupt with the same group priority as the interrupt being handled does not preempt the
handler.

If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they are
processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the lowest
IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see “Application Interrupt
and Reset Control Register”.

12.4.3.7 Exception Entry and Return

Descriptions of exception handling use the following terms:
Preemption

When the processor is executing an exception handler, an exception can preempt the exception handler if its priority
is higher than the priority of the exception being handled. See “Interrupt Priority Grouping” for more information about
preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See “Exception Entry” more
information.

Return
This occurs when the exception handler is completed, and:

e There is no pending exception with sufficient priority to be serviced.
e The completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the interrupt occurred. See
“Exception Return” for more information.

Tail-chaining

This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending excep-
tion that meets the requirements for exception entry, the stack pop is skipped and control transfers to the new
exception handler.

Late-arriving

This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous excep-
tion, the processor switches to handle the higher priority exception and initiates the vector fetch for that exception.
State saving is not affected by late arrival because the state saved is the same for both exceptions. Therefore the
state saving continues uninterrupted. The processor can accept a late arriving exception until the first instruction of
the exception handler of the original exception enters the execute stage of the processor. On return from the excep-
tion handler of the late-arriving exception, the normal tail-chaining rules apply.

Exception Entry

An Exception entry occurs when there is a pending exception with sufficient priority and either the processor is in
Thread mode, or the new exception is of a higher priority than the exception being handled, in which case the new
exception preempts the original exception.

Atmel SAM4CP16C [DATASHEET] 75

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

76

When one exception preempts another, the exceptions are nested.

Sufficient priority means that the exception has more priority than any limits set by the mask registers, see “Exception
Mask Registers”. An exception with less priority than this is pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the pro-
cessor pushes information onto the current stack. This operation is referred as stacking and the structure of eight data
words is referred to as stack frame.

When using floating-point routines, the Cortex-M4 processor automatically stacks the architected floating-point state
on exception entry. Figure 12-7 shows the Cortex-M4 stack frame layout when floating-point state is preserved on the
stack as the result of an interrupt or an exception.

Note: Where stack space for floating-point state is not allocated, the stack frame is the same as that of ARMv7-M
implementations without an FPU. Figure 12-7 shows this stack frame also.

Figure 12-7. Exception Stack Frame

{alig;.r;er} PR Pre-IRQ top of stack

FPSCR
S15
S14
S13
S12
S11
S10

S9
S8
S7
S6
S5
S4
S3
S2
o r < Pre-IRQ top of stack
SO {aligner} <
xPSR Decreasing xPSR
PC memory PC

LR address R

R12 R12

R3 R3

R2 v R2

R1 R1

RO [« IRQ top of stack RO -« IRQ top of stack

Exception frame with Exception frame without
floating-point storage floating-point storage

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The alignment of the
stack frame is controlled via the STKALIGN bit of the Configuration Control Register (CCR).

The stack frame includes the return address. This is the address of the next instruction in the interrupted program.
This value is restored to the PC at exception return so that the interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the exception handler start
address from the vector table. When stacking is complete, the processor starts executing the exception handler. At
the same time, the processor writes an EXC_RETURN value to the LR. This indicates which stack pointer
corresponds to the stack frame and what operation mode the processor was in before the entry occurred.

If no higher priority exception occurs during the exception entry, the processor starts executing the exception handler
and automatically changes the status of the corresponding pending interrupt to active.

If another higher priority exception occurs during the exception entry, the processor starts executing the exception
handler for this exception and does not change the pending status of the earlier exception. This is the late arrival case.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Exception Return

An Exception return occurs when the processor is in Handler mode and executes one of the following instructions to
load the EXC_RETURN value into the PC:

e An LDM or POP instruction that loads the PC.
e An LDR instruction with the PC as the destination.
e A BXinstruction using any register.

EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism relies on this value to
detect when the processor has completed an exception handler. The lowest five bits of this value provide information
on the return stack and processor mode. Table 12-10 shows the EXC_RETURN values with a description of the
exception return behavior.

All EXC_RETURN values have bits[31:5] set to one. When this value is loaded into the PC, it indicates to the
processor that the exception is complete, and the processor initiates the appropriate exception return sequence.

Table 12-10. Exception Return Behavior

EXC_RETURNI[31:0] | Description
Return to Handler mode, exception return uses non-floating-point state from the MSP and

OxFFFFFFF1 .
execution uses MSP after return.

OXFFFFFFF9 Return to Thread mode, exception return uses state from MSP and execution uses MSP after
return.

OXFEFFFEED Return to Thread mode, exception return uses state from the PSP and execution uses PSP after
return.

OXFFFFFFE1 Return to Handler mode, exception return uses floating-point-state from MSP and execution uses
MSP after return.

OXFEFFEEE9 Return to Thread mode, exception return uses floating-point state from MSP and execution uses
MSP after return.

OXFFFFEFED Return to Thread mode, exception return uses floating-point state from PSP and execution uses
PSP after return.

12.4.3.8 Fault Handling

Faults are a subset of the exceptions, see “Exception Model”. The following generate a fault:

e A bus error on:

e An instruction fetch or vector table load.

e A data access.

e Aninternally-detected error such as an undefined instruction.

e An attempt to execute an instruction from a memory region marked as Non-Executable (XN).

e A privilege violation or an attempt to access an unmanaged region causing an MPU fault.

Fault Types

Table 12-11 shows the types of fault, the handler used for the fault, the corresponding fault status register, and the
register bit that indicates that the fault has occurred. See “Configurable Fault Status Register” for more information
about the fault status registers.

Table 12-11. Faults

Fault Handler Bit Name Fault Status Register
Bus error on a vector read VECTTBL

Hard fault “Hard Fault Status Register”
Fault escalated to a hard fault FORCED

Atmel

SAM4CP16C [DATASHEET] 77

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

78

Table 12-11. Faults (Continued)

Fault Handler Bit Name Fault Status Register

MPU or default memory map mismatch: - -
on instruction access IACCVIOL™
on data access Memory DACCVIOL®)
during exception stacking ginagement MSTKERR thmfgtlziugﬂgzw;ggil;/{::’agement
during exception unstacking MUNSTKERR
during lazy floating-point state preservation MLSPERR®

Bus error: - -
during exception stacking STKERR
during exception unstacking UNSTKERR
during instruction prefetch Bus fault IBUSERR “BFSR: Bus Fault Status
during lazy floating-point state preservation LSPERR®) Subregister”

Precise data bus error PRECISERR

Imprecise data bus error IMPRECISERR

Attempt to access a coprocessor NOCP

Undefined instruction UNDEFINSTR

Attempt to enter an invalid instruction set state INVSTATE “UFSR: Usage Fault Status

: Usage fault e

Invalid EXC_RETURN value INVPC Subregister

lllegal unaligned load or store UNALIGNED

Divide By 0 DIVBYZERO

Notes: 1. Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is

disabled.

2. Attempt to use an instruction set other than the Thumb instruction set, or return to a non load/store-multi-
ple instruction with ICI continuation.

3. Only present in a Cortex-M4F device.

Fault Escalation and Hard Faults

All faults exceptions except for hard fault have configurable exception priority, see “System Handler Priority Regis-
ters”. The software can disable the execution of the handlers for these faults, see “System Handler Control and State
Register”.

Usually, the exception priority, together with the values of the exception mask registers, determines whether the
processor enters the fault handler, and whether a fault handler can preempt another fault handler, as described in
“Exception Model”.

In some situations, a fault with configurable priority is treated as a hard fault. This is called priority escalation, and the
fault is described as escalated to hard fault. Escalation to hard fault occurs when:

e A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard fault occurs
because a fault handler cannot preempt itself; it must have the same priority as the current priority level.

e A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is because the
handler for the new fault cannot preempt the currently executing fault handler.

e An exception handler causes a fault for which the priority is the same as or lower than the currently executing
exception.
e A fault occurs and the handler for that fault is not enabled.
If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not escalate to a hard

fault. This means that if a corrupted stack causes a fault, the fault handler executes even though the stack push for
the handler failed. The fault handler operates but the stack contents are corrupted.

Note: Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any exception other

than Reset, NMI, or another hard fault.

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

Fault Status Registers and Fault Address Registers

The fault status registers indicate the cause of a fault. For bus faults and memory management faults, the fault
address register indicates the address accessed by the operation that caused the fault, as shown in Table 12-12.

Table 12-12. Fault Status and Fault Address Registers

Handler Status Register | Address Register Description
Name Register Name
Hard fault SCB_HFSR - “Hard Fault Status Register”

‘MMFSR: Memory Management Fault
MMFSR SCB_MMFAR Status Subregister”
“MemManage Fault Address Register”

“BFSR: Bus Fault Status Subregister”
“Bus Fault Address Register”
Usage fault UFSR - “UFSR: Usage Fault Status Subregister”

Memory
management fault

Bus fault BFSR SCB_BFAR

Lockup

The processor enters a lockup state if a hard fault occurs when executing the NMI or hard fault handlers. When the
processor is in lockup state, it does not execute any instructions. The processor remains in lockup state until either:

e |tisreset.

e An NMI occurs.

e ltis halted by a debugger.

Note: If the lockup state occurs from the NMI handler, a subsequent NMI does not cause the processor to leave the
lockup state.

12.5 Power Management
The Cortex-M4 processor sleep modes reduce the power consumption:

e Sleep mode stops the processor clock.
e Deep sleep mode stops the system clock and switches off the PLL and flash memory.
The SLEEPDEEP bit of the SCR selects which sleep mode is used; see “System Control Register”.

This section describes the mechanisms for entering sleep mode, and the conditions for waking up from sleep mode.

12.5.1 Entering Sleep Mode
This section describes the mechanisms software can use to put the processor into sleep mode.
The system can generate spurious wakeup events, for example a debug operation wakes up the processor. There-

fore, the software must be able to put the processor back into sleep mode after such an event. A program might have
an idle loop to put the processor back to sleep mode.

12.5.1.1 Wait for Interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the processor executes a WFI
instruction it stops executing instructions and enters sleep mode. See “WFI” for more information.

12.5.1.2 Wait for Event
The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of an one-bit event register.
When the processor executes a WFE instruction, it checks this register:
e If the register is 0, the processor stops executing instructions and enters sleep mode.
e If the register is 1, the processor clears the register to 0 and continues executing instructions without entering
sleep mode.
See “WFE” for more information.

Atmel SAM4CP16C [DATASHEET] 79

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.5.1.3 Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1 when the processor completes the execution of an exception handler,
it returns to Thread mode and immediately enters sleep mode. Use this mechanism in applications that only require
the processor to run when an exception occurs.

12.5.2 Wakeup from Sleep Mode
The conditions for the processor to wake up depend on the mechanism that cause it to enter sleep mode.

12.5.2.1 Wakeup from WFI or Sleep-on-exit
Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception entry.
Some embedded systems might have to execute system restore tasks after the processor wakes up, and before it
executes an interrupt handler. To achieve this, set the PRIMASK bit to 1 and the FAULTMASK bit to O. If an interrupt
arrives that is enabled and has a higher priority than the current exception priority, the processor wakes up but does
not execute the interrupt handler until the processor sets PRIMASK to zero. For more information about PRIMASK
and FAULTMASK, see “Exception Mask Registers”.

12.5.2.2 Wakeup from WFE
The processor wakes up if:

e |t detects an exception with sufficient priority to cause an exception entry.
e |t detects an external event signal. See “External Event Input”.
e In a multiprocessor system, another processor in the system executes an SEV instruction.
In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event and wakes up
the processor, even if the interrupt is disabled or has insufficient priority to cause an exception entry. For more infor-
mation about the SCR, see “System Control Register”.
12.5.2.3 External Event Input

The processor provides an external event input signal. Peripherals can drive this signal, either to wake the processor
from WFE, or to set the internal WFE event register to 1 to indicate that the processor must not enter sleep mode on a
later WFE instruction. See “Wait for Event” for more information.

12.5.3 Power Management Programming Hints

ISO/IEC C cannot directly generate the WFI and WFE instructions. The CMSIS provides the following functions for
these instructions:

void _ WFE(void) // Wait for Event
void _ WFI(void) // Wait for Interrupt

80 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6 Cortex-M4 Instruction Set

12.6.1 Instruction Set Summary

The processor implements a version of the Thumb instruction set. Table 12-13 lists the supported instructions.
e Angle brackets, <>, enclose alternative forms of the operand.
e Braces, {}, enclose optional operands.
e The Operands column is not exhaustive.
e Op2is a flexible second operand that can be either a register or a constant.
e Most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 12-13. Cortex-M4 Instructions

Mnemonic Operands Description Flags
ADC, ADCS {Rd,} Rn, Op2 Add with Carry N,Z,C,V
ADD, ADDS {Rd,} Rn, Op2 Add N,Z,C.V
ADD, ADDW {Rd,} Rn, #imm12 Add N,Z,C.V
ADR Rd, label Load PC-relative address -

AND, ANDS {Rd,} Rn, Op2 Logical AND N,z,C
ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,Z,C

B label Branch -

BFC Rd, #lsb, #width Bit Field Clear -

BFI Rd, Rn, #Isb, #width Bit Field Insert -

BIC, BICS {Rd,} Rn, Op2 Bit Clear N,zZ,C
BKPT #imm Breakpoint -

BL label Branch with Link -

BLX Rm Branch indirect with Link -

BX Rm Branch indirect -

CBNz Rn, label Compare and Branch if Non Zero -

CBz Rn, label Compare and Branch if Zero -
CLREX - Clear Exclusive -

CLZ Rd, Rm Count leading zeros -

CMN Rn, Op2 Compare Negative N,Z,C,V
CMP Rn, Op2 Compare N,Z,CV
CPSID i Change Processor State, Disable Interrupts -
CPSIE i Change Processor State, Enable Interrupts -

DMB - Data Memory Barrier -

DSB - Data Synchronization Barrier -

EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C
ISB - Instruction Synchronization Barrier -

IT - If-Then condition block -

LDM Rn{!}, reglist Load Multiple registers, increment after -

/ItmeL SAM4CP16C [DATASHEET] 81

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
LDMDB, LDMEA Rn{!}, reglist Load Multiple registers, decrement before -
LDMFD, LDMIA Rn{!}, reglist Load Multiple registers, increment after -
LDR Rt, [Rn, #offset] Load Register with word -
LDRB, LDRBT Rt, [Rn, #offset] Load Register with byte -
LDRD Rt, Rt2, [Rn, #offset] Load Register with two bytes -
LDREX Rt, [Rn, #offset] Load Register Exclusive -
LDREXB Rt, [Rn] Load Register Exclusive with byte -
LDREXH Rt, [Rn] Load Register Exclusive with halfword -
LDRH, LDRHT Rt, [Rn, #offset] Load Register with halfword -
LDRSB, DRSBT Rt, [Rn, #offset] Load Register with signed byte -
LDRSH, LDRSHT Rt, [Rn, #offset] Load Register with signed halfword -
LDRT Rt, [Rn, #offset] Load Register with word -
LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,Z,C
LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result -
MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result -
MOV, MOVS Rd, Op2 Move N,Z,C
MOVT Rd, #imm16 Move Top -
MOVW, MOV Rd, #imm16 Move 16-bit constant N,Z,C
MRS Rd, spec_reg Move from special register to general register -
MSR spec_reg, Rm Move from general register to special register N,Z,CV
MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,z
MVN, MVNS Rd, Op2 Move NOT N,zZ,C
NOP - No Operation -
ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N,z,C
ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C
PKHTB, PKHBT {Rd,} Rn, Rm, Op2 Pack Halfword -
POP reglist Pop registers from stack -
PUSH reglist Push registers onto stack -
QADD {Rd,} Rn, Rm Saturating double and Add Q
QADD16 {Rd,} Rn, Rm Saturating Add 16 -
QADDS8 {Rd,} Rn, Rm Saturating Add 8 -
QASX {Rd,} Rn, Rm Saturating Add and Subtract with Exchange -
QDADD {Rd,} Rn, Rm Saturating Add Q
QDSUB {Rd,} Rn, Rm Saturating double and Subtract Q
QSAX {Rd,} Rn, Rm Saturating Subtract and Add with Exchange -
QSsuB {Rd,} Rn, Rm Saturating Subtract Q

82 SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
QSuUB16 {Rd,} Rn, Rm Saturating Subtract 16 -
QSUB8 {Rd,} Rn, Rm Saturating Subtract 8 -
RBIT Rd, Rn Reverse Bits -
REV Rd, Rn Reverse byte order in a word -
REV16 Rd, Rn Reverse byte order in each halfword -
REVSH Rd, Rn Reverse byte order in bottom halfword and sign extend -
ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,Z,C
RRX, RRXS Rd, Rm Rotate Right with Extend N,Z,C
RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,C\V
SADD16 {Rd,} Rn, Rm Signed Add 16 GE
SADDS8 {Rd,} Rn, Rm Signed Add 8 and Subtract with Exchange GE
SASX {Rd,} Rn, Rm Signed Add GE
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C,V
SBFX Rd, Rn, #Isb, #width Signed Bit Field Extract -
SDIV {Rd,} Rn, Rm Signed Divide -

SEL {Rd,} Rn, Rm Select bytes -
SEV - Send Event -
SHADD16 {Rd,} Rn, Rm Signed Halving Add 16 -
SHADDS8 {Rd,} Rn, Rm Signed Halving Add 8 -
SHASX {Rd,} Rn, Rm Signed Halving Add and Subtract with Exchange -
SHSAX {Rd,} Rn, Rm Signed Halving Subtract and Add with Exchange -
SHSUB16 {Rd,} Rn, Rm Signed Halving Subtract 16 -
SHSUBS {Rd,} Rn, Rm Signed Halving Subtract 8 -
gm::ﬁ_lig gmtﬁ_ﬂ— Rd, Rn, Rm, Ra Signed Multiply Accumulate Long (halfwords) Q
SMLAD, SMLADX Rd, Rn, Rm, Ra Signed Multiply Accumulate Dual Q
SMLAL RdLo, RdHi, Rn, Rm Signed Multiply with Accumulate (32 x 32 + 64), 64-bit result -
2mt2t$g gmtﬁtﬂ- RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long, halfwords -
SMLALD, SMLALDX RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long Dual -
SMLAWB, SMLAWT Rd, Rn, Rm, Ra Signed Multiply Accumulate, word by halfword Q
SMLSD Rd, Rn, Rm, Ra Signed Multiply Subtract Dual Q
SMLSLD RdLo, RdHi, Rn, Rm Signed Multiply Subtract Long Dual -
SMMLA Rd, Rn, Rm, Ra Signed Most significant word Multiply Accumulate -
SMMLS, SMMLR Rd, Rn, Rm, Ra Signed Most significant word Multiply Subtract -
SMMUL, SMMULR {Rd,} Rn, Rm Signed Most significant word Multiply -
SMUAD {Rd,} Rn, Rm Signed dual Multiply Add Q

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

83

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
gmgtﬂg gmgtﬂ: {Rd,} Rn, Rm Signed Multiply (halfwords) -
SMULL RdLo, RdHi, Rn, Rm Signed Multiply (32 x 32), 64-bit result -
SMULWB, SMULWT {Rd,} Rn, Rm Signed Multiply word by halfword -
SMUSD, SMUSDX {Rd,} Rn, Rm Signed dual Multiply Subtract -
SSAT Rd, #n, Rm {,shift #s} Signed Saturate Q
SSAT16 Rd, #n, Rm Signed Saturate 16 Q
SSAX {Rd,} Rn, Rm Signed Subtract and Add with Exchange GE
SSUB16 {Rd,} Rn, Rm Signed Subtract 16 -
SSUBS8 {Rd,} Rn, Rm Signed Subtract 8 -
STM Rn{!}, reglist Store Multiple registers, increment after -
STMDB, STMEA Rn{!}, reglist Store Multiple registers, decrement before -
STMFD, STMIA Rn{!}, reglist Store Multiple registers, increment after -
STR Rt, [Rn, #offset] Store Register word -
STRB, STRBT Rt, [Rn, #offset] Store Register byte -
STRD Rt, Rt2, [Rn, #offset] Store Register two words -
STREX Rd, Rt, [Rn, #offset] Store Register Exclusive -
STREXB Rd, Rt, [Rn] Store Register Exclusive byte -
STREXH Rd, Rt, [Rn] Store Register Exclusive halfword -
STRH, STRHT Rt, [Rn, #offset] Store Register halfword -
STRT Rt, [Rn, #offset] Store Register word -
SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C.V
SUB, SUBW {Rd,} Rn, #imm12 Subtract N,Z,C.V
svC #imm Supervisor Call -
SXTAB {Rd,} Rn, Rm,{,ROR #} | Extend 8 bits to 32 and add -
SXTAB16 {Rd,} Rn, Rm,{,ROR #} | Dual extend 8 bits to 16 and add -
SXTAH {Rd,} Rn, Rm,{,ROR #} | Extend 16 bits to 32 and add -
SXTB16 {Rd,} Rm {,ROR #n} Signed Extend Byte 16 -
SXTB {Rd,} Rm {,ROR #n} Sign extend a byte -
SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword -
TBB [Rn, Rm] Table Branch Byte -
TBH [Rn, Rm, LSL #1] Table Branch Halfword -
TEQ Rn, Op2 Test Equivalence N,Z,C
TST Rn, Op2 Test N,Z,C
UADD16 {Rd,} Rn, Rm Unsigned Add 16 GE
UADDS8 {Rd,} Rn, Rm Unsigned Add 8 GE
USAX {Rd,} Rn, Rm Unsigned Subtract and Add with Exchange GE
84 SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
UHADD16 {Rd,} Rn, Rm Unsigned Halving Add 16 -
UHADDS8 {Rd,} Rn, Rm Unsigned Halving Add 8 -
UHASX {Rd,} Rn, Rm Unsigned Halving Add and Subtract with Exchange -
UHSAX {Rd,} Rn, Rm Unsigned Halving Subtract and Add with Exchange -
UHSUB16 {Rd,} Rn, Rm Unsigned Halving Subtract 16 -
UHSUBS {Rd,} Rn, Rm Unsigned Halving Subtract 8 -
UBFX Rd, Rn, #Isb, #width Unsigned Bit Field Extract -
ubDIV {Rd,} Rn, Rm Unsigned Divide -
UMAAL RdLo, RdHi, Rn, Rm ;J;)S’igz_esitll/leuslﬂﬁly Accumulate Accumulate Long (32 x 32 + 32 + i
UMLAL RdLo, RdHi, Rn, Rm ggs)i(gggi“g:')t’i%'}"_‘é"iittﬁeéﬁ‘l’t”m”'ate -
UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply (32 x 32), 64-bit result -
UQADD16 {Rd,} Rn, Rm Unsigned Saturating Add 16 -
UQADDS8 {Rd,} Rn, Rm Unsigned Saturating Add 8 -
UQASX {Rd,} Rn, Rm Unsigned Saturating Add and Subtract with Exchange -
UQSAX {Rd,} Rn, Rm Unsigned Saturating Subtract and Add with Exchange -
UQSuUB16 {Rd,} Rn, Rm Unsigned Saturating Subtract 16 -
UQSUB8 {Rd,} Rn, Rm Unsigned Saturating Subtract 8 -
USADS8 {Rd,} Rn, Rm Unsigned Sum of Absolute Differences -
USADAS8 {Rd,} Rn, Rm, Ra Unsigned Sum of Absolute Differences and Accumulate -
USAT Rd, #n, Rm {,shift #s} Unsigned Saturate Q
USAT16 Rd, #n, Rm Unsigned Saturate 16 Q
UASX {Rd,} Rn, Rm Unsigned Add and Subtract with Exchange GE
UsSuB16 {Rd,} Rn, Rm Unsigned Subtract 16 GE
USuB8 {Rd,} Rn, Rm Unsigned Subtract 8 GE
UXTAB {Rd,} Rn, Rm,{,ROR #} | Rotate, extend 8 bits to 32 and Add -
UXTAB16 {Rd,} Rn, Rm,{,ROR #} | Rotate, dual extend 8 bits to 16 and Add -
UXTAH {Rd,} Rn, Rm,{,ROR #} | Rotate, unsigned extend and Add Halfword -
UXTB {Rd,} Rm {,ROR #n} Zero extend a byte -
UXTB16 {Rd,} Rm {,ROR #n} Unsigned Extend Byte 16 -
UXTH {Rd,} Rm {,ROR #n} Zero extend a halfword -
VABS.F32 Sd, Sm Floating-point Absolute -
VADD.F32 {Sd,} Sn, Sm Floating-point Add -
VCMP F32 Sd, <Sm | #0.0> gr:)cr’nzp:rroe two floating-point registers, or one floating-point register FPSCR
VCMPE F32 Sd, <Sm | #0.0> Compare tvyo floatipg-point r'egisters, or one floating-point register FPSCR
and zero with Invalid Operation check
/ItmeL SAM4CP16C [DATASHEET] 85

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
VCVT.S32.F32 Sd, Sm Convert between floating-point and integer -
VCVT.S16.F32 Sd, Sd, #fbits Convert between floating-point and fixed point -
VCVTR.S32.F32 Sd, Sm Convert between floating-point and integer with rounding -
VCVT<B|H>.F32.F16 Sd, Sm Converts half-precision value to single-precision -
VCVTT<B|T>.F32.F16 | Sd, Sm Converts single-precision register to half-precision -
VDIV.F32 {Sd,} Sn, Sm Floating-point Divide -
VFMA.F32 {Sd,} Sn, Sm Floating-point Fused Multiply Accumulate -
VFENMA.F32 {8d,} Sn, Sm Floating-point Fused Negate Multiply Accumulate -
VEMS.F32 {8d,} Sn, Sm Floating-point Fused Multiply Subtract -
VFNMS.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Subtract -
VLDM.F<32|64> Rn{!}, list Load Multiple extension registers -
VLDR.F<32|64> <Dd|Sd>, [Rn] Load an extension register from memory -
VLMA.F32 {Sd,} Sn, Sm Floating-point Multiply Accumulate -
VLMS.F32 {8d,} Sn, Sm Floating-point Multiply Subtract -
VMOV.F32 Sd, #imm Floating-point Move immediate -
VMOV Sd, Sm Floating-point Move register -
VMOV Sn, Rt Copy ARM core register to single precision -
VMOV Sm, Sm1, Rt, Rt2 Copy 2 ARM core registers to 2 single precision -
VMOV Dd[x], Rt Copy ARM core register to scalar -
VMOV Rt, Dn[x] Copy scalar to ARM core register -
VMRS Rt, FPSCR Move FPSCR to ARM core register or APSR N,Z,C,V
VMSR FPSCR, Rt Move to FPSCR from ARM Core register FPSCR
VMUL.F32 {Sd,} Sn, Sm Floating-point Multiply -
VNEG.F32 Sd, Sm Floating-point Negate -
VNMLA.F32 Sd, Sn, Sm Floating-point Multiply and Add -
VNMLS.F32 Sd, Sn, Sm Floating-point Multiply and Subtract -
VNMUL {Sd,} Sn, Sm Floating-point Multiply -
VPOP list Pop extension registers -
VPUSH list Push extension registers -
VSQRT.F32 Sd, Sm Calculates floating-point Square Root -
VSTM Rn{!}, list Floating-point register Store Multiple -
VSTR.F<32|64> Sd, [Rn] Stores an extension register to memory -
VSUB.F<32|64> {Sd,} Sn, Sm Floating-point Subtract -
WFE - Wait For Event -

WEFI - Wait For Interrupt -

86 SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.2 CMSIS Functions

ISO/IEC cannot directly access some Cortex-M4 instructions. This section describes intrinsic functions that can
generate these instructions, provided by the CMIS and that might be provided by a C compiler. If a C compiler does
not support an appropriate intrinsic function, the user might have to use inline assembler to access some instructions.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C code cannot directly

access:
Table 12-14. CMSIS Functions to Generate some Cortex-M4 Instructions
Instruction CMSIS Function
CPSIE | void __enable_irqg(void)
CPSID | void __disable_irg(void)
CPSIEF void __enable_fault_irg(void)
CPSID F void __disable_fault_irg(void)
ISB void __ISB(void)
DSB void __ DSB(void)
DMB void __ DMB(void)
REV uint32_t _ REV(uint32_t int value)
REV16 uint32_t _ REV16(uint32_t int value)
REVSH uint32_t _ REVSH(uint32_t int value)
RBIT uint32_t _ RBIT(uint32_t int value)
SEV void __SEV(void)
WFE void __ WFE(void)
WEFI void __ WFI(void)

The CMSIS also provides a number of functions for accessing the special registers using MRS and MSR instructions:

Table 12-15. CMSIS Intrinsic Functions to Access the Special Registers

Special Register Access | CMSIS Function
Read uint32_t __get PRIMASK (void)
PRIMASK
Write void __set PRIMASK (uint32_t value)
Read uint32_t _ get FAULTMASK (void)
FAULTMASK
Write void __set FAULTMASK (uint32_t value)
Read uint32_t _ get BASEPRI (void)
BASEPRI
Write void __set_ BASEPRI (uint32_t value)
Read uint32_t __get CONTROL (void)
CONTROL
Write void __set CONTROL (uint32_t value)
Read uint32_t _ get_ MSP (void)
MSP
Write void __set_ MSP (uint32_t TopOfMainStack)
Read uint32_t __get PSP (void)
PSP
Write void __set PSP (uint32_t TopOfProcStack)
SAM4CP16C [DATASHEET 87
Atmel : :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.3 Instruction Descriptions

12.6.3.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions act
on the operands and often store the result in a destination register. When there is a destination register in the instruc-
tion, it is usually specified before the operands.

Operands in some instructions are flexible, can either be a register or a constant. See “Flexible Second Operand”.

12.6.3.2 Restrictions when Using PC or SP

Many instructions have restrictions on whether the Program Counter (PC) or Stack Pointer (SP) for the operands or
destination register can be used. See instruction descriptions for more information.

Note: Bit[0] of any address written to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1 for correct
execution, because this bit indicates the required instruction set, and the Cortex-M4 processor only supports
Thumb instructions.

12.6.3.3 Flexible Second Operand

Many general data processing instructions have a flexible second operand. This is shown as Operand2 in the descrip-
tions of the syntax of each instruction.

Operand?2 can be a:
e “Constant”.
e “Register with Optional Shift”.

Constant
Specify an Operand2 constant in the form:
#constant

where constant can be:
e Any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-bit word.
e Any constant of the form 0x00XYO0O0XY.
e Any constant of the form 0xXY00XY0O.
e Any constant of the form OxXYXYXYXY.

Note: In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values. These are described in the
individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ
or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can be produced by
shifting an 8-bit value. These instructions do not affect the carry flag if Operand?2 is any other constant.

Instruction Substitution

The assembler might be able to produce an equivalent instruction in cases where the user specifies a constant that is
not permitted. For example, an assembler might assemble the instruction CMP Rd, #OxFFFFFFFE as the equivalent
instruction CMN Rd, #0x2.

Register with Optional Shift
Specify an Operand?2 register in the form:

Rm {, shift}
where:

Rm is the register holding the data for the second operand.
shift is an optional shift to be applied to Rm. It can be one of:
ASR #n arithmetic shift right n bits, 1 <n < 32.
LSL #n logical shift left n bits, 1 <n < 31.

88 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

LSR #n logical shift right n bits, 1 <n < 32.
ROR #n rotate right n bits, 1 <n < 31.
RRX rotate right one bit, with extend.

- if omitted, no shift occurs, equivalent to LSL #0.
If the user omits the shift, or specifies LSL #0, the instruction uses the value in Rm.

If the user specifies a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the instruc-
tion. However, the contents in the register Rm remains unchanged. Specifying a register with shift also updates the
carry flag when used with certain instructions. For information on the shift operations and how they affect the carry
flag, see “Flexible Second Operand”.

12.6.3.4 Shift Operations
Register shift operations move the bits in a register left or right by a specified number of bits, the shift length. Register
shift can be performed:
e Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination register.

e During the calculation of Operand?2 by the instructions that specify the second operand as a register with shift.
See “Flexible Second Operand”. The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction. If the shift length is 0, no shift occurs. Register
shift operations update the carry flag except when the specified shift length is 0. The following subsections describe
the various shift operations and how they affect the carry flag. In these descriptions, Rm is the register containing the
value to be shifted, and n is the shift length.

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register, Rm, to the right by n places, into the right-
hand 32-n bits of the result. And it copies the original bit[31] of the register into the left-hand n bits of the result. See
Figure 12-8.

The ASR #n operation can be used to divide the value in the register Rm by 2", with the result being rounded towards
negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the register
Rm.

e If nis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.

e If nis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 12-8. ASR #3
Carry

REEER o

31 5143|2(1]o0
LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand
32-n bits of the result. And it sets the left-hand n bits of the result to 0. See Figure 12-9.

The LSR #n operation can be used to divide the value in the register Rm by 2", if the value is regarded as an unsigned
integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the register
Rm.

e If nis 32 or more, then all the bits in the result are cleared to 0.
e Ifnis 33 or more and the carry flag is updated, it is updated to O.

Atmel SAM4CP16C [DATASHEET] 89

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 12-9. LSR #3

|
0 0 O Fl
YV °9

31 51413]2|1]0

LSL
Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the left-hand
32-n bits of the result; and it sets the right-hand n bits of the result to 0. See Figure 12-10.
The LSL #n operation can be used to multiply the value in the register Rm by 2", if the value is regarded as an
unsigned integer or a two’s complement signed integer. Overflow can occur without warning.
When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[32-n],
of the register Rm. These instructions do not affect the carry flag when used with LSL #0.
e If nis 32 or more, then all the bits in the result are cleared to 0.
e If nis 33 or more and the carry flag is updated, it is updated to O.
Figure 12-10. LSL #3
-———-q [
1 | 000
! A28 2 /
|j 31 5(4(3]2]1]0
Carry TEI:I—I L%I
Flag
ROR
Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand 32-
n bits of the result; and it moves the right-hand n bits of the register into the left-hand n bits of the result. See Figure
12-11.
When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of the register Rm.
e If nis 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is updated to
bit[31] of Rm.
e ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.
Figure 12-11. ROR #3
Carry
I Flag
IEE |
31 51413]2|1(0
A A AT A
[T11 (1
e |
90 SAM4CP16C [DATASHEET
[] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

RRX

Rotate right with extend moves the bits of the register Rm to the right by one bit; and it copies the carry flag into bit[31]
of the result. See Figure 12-12.

When the instruction is RRXS or when RRX is used in Operand?2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

Figure 12-12. RRX

Carry
Flag

31|30 1{0

FALALT L

12.6.3.5 Address Alignment
An aligned access is an operation where a word-aligned address is used for a word, dual word, or multiple word
access, or where a halfword-aligned address is used for a halfword access. Byte accesses are always aligned.
The Cortex-M4 processor supports unaligned access only for the following instructions:

e LDR, LDRT.

e LDRH, LDRHT.

e LDRSH, LDRSHT.

e STR, STRT.

e STRH, STRHT.
All other load and store instructions generate a usage fault exception if they perform an unaligned access, and there-
fore their accesses must be address-aligned. For more information about usage faults, see “Fault Handling”.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions might not support
unaligned accesses. Therefore, ARM recommends that programmers ensure that accesses are aligned. To avoid
accidental generation of unaligned accesses, use the UNALIGN_TRP bit in the Configuration and Control Register to
trap all unaligned accesses, see “Configuration and Control Register”.

12.6.3.6 PC-relative Expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or literal data. It is repre-
sented in the instruction as the PC value plus or minus a numeric offset. The assembler calculates the required offset
from the label and the address of the current instruction. If the offset is too big, the assembler produces an error.

e For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current instruction plus 4
bytes.

e For all other instructions that use labels, the value of the PC is the address of the current instruction plus 4
bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

® Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus a
number, or an expression of the form [PC, #number].

12.6.3.7 Conditional Execution

Most data processing instructions can optionally update the condition flags in the Application Program Status Register
(APSR) according to the result of the operation, see “Application Program Status Register”. Some instructions update
all flags, and some only update a subset. If a flag is not updated, the original value is preserved. See the instruction
descriptions for the flags they affect.

An instruction can be executed conditionally, based on the condition flags set in another instruction, either:

e Immediately after the instruction that updated the flags.
e After any number of intervening instructions that have not updated the flags.

Atmel SAM4CP16C [DATASHEET] 91

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

92

Conditional execution is available by using conditional branches or by adding condition code suffixes to instructions.
See Table 12-16 for a list of the suffixes to add to instructions to make them conditional instructions. The condition
code suffix enables the processor to test a condition based on the flags. If the condition test of a conditional instruction
fails, the instruction:

e Does not execute.

e Does not write any value to its destination register.
e Does not affect any of the flags.

e Does not generate any exception.

Conditional instructions, except for conditional branches, must be inside an If-Then instruction block. See “IT” for more
information and restrictions when using the IT instruction. Depending on the vendor, the assembler might automati-
cally insert an IT instruction if there are conditional instructions outside the IT block.

The CBZ and CBNZ instructions are used to compare the value of a register against zero and branch on the result.
This section describes:
e “Condition Flags”.
e “Condition Code Suffixes”.
Condition Flags
The APSR contains the following condition flags:
N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
Z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.
C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.
\ Set to 1 when the operation caused overflow, cleared to 0 otherwise.
For more information about the APSR, see “Program Status Register”.
A carry occurs:
e If the result of an addition is greater than or equal to 232,
e If the result of a subtraction is positive or zero.
e As the result of an inline barrel shifter operation in a move or logical instruction.
An overflow occurs when the sign of the result, in bit[31], does not match the sign of the result, had the operation been
performed at infinite precision, for example:
e If adding two negative values results in a positive value.
e |f adding two positive values results in a negative value.
e |f subtracting a positive value from a negative value generates a positive value.
e |f subtracting a negative value from a positive value generates a negative value.
The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is discarded.
See the instruction descriptions for more information.

Note: Most instructions update the status flags only if the S suffix is specified. See the instruction descriptions for
more information.

Condition Code Suffixes

The instructions that can be conditional have an optional condition code, shown in syntax descriptions as {cond}. Con-
ditional execution requires a preceding IT instruction. An instruction with a condition code is only executed if the
condition code flags in the APSR meet the specified condition. Table 12-16 shows the condition codes to use.

A conditional execution can be used with the IT instruction to reduce the number of branch instructions in code.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Table 12-16 also shows the relationship between condition code suffixes and the N, Z, C, and V flags.
Table 12-16. Condition Code Suffixes

Suffix Flags Meaning

EQ Z=1 Equal

NE Z=0 Not equal

CSorHS Cc=1 Higher or same, unsigned >
CCorlLO C=0 Lower, unsigned <

Mi N=1 Negative

PL N=0 Positive or zero

VS V=1 Overflow

VvC V=0 No overflow

HI C=1andZ=0 Higher, unsigned >

LS C=0o0rzZ= Lower or same, unsigned <

GE N=V Greater than or equal, signed >
LT N!=V Less than, signed <

GT Z=0andN=V Greater than, signed >

LE Z=1andN!=V Less than or equal, signed <
AL Can have any value Always. This is the default when no suffix is specified.

Absolute Value

The example below shows the use of a conditional instruction to find the absolute value of a number. RO = ABS(R1).

MOVS
IT
RSBMI

Compare and Update Value

RO, R1 ; RO = R1, setting flags
MI ; IT instruction for the negative condition
RO, R1, #0 ; IT negative, RO = -R1

The example below shows the use of conditional instructions to update the value of R4 if the signed values RO is
greater than R1 and R2 is greater than R3.

CMP
ITT
CMPGT
MOVGT

RO, R1 ; Compare RO and R1, setting flags

GT ; IT instruction for the two GT conditions

R2, R3 ; If “"greater than®, compare R2 and R3, setting flags
R4, R5 ; I still “greater than®, do R4 = R5

12.6.3.8 Instruction Width Selection
There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding depending on the
operands and destination register specified. For some of these instructions, the user can force a specific instruction
size by using an instruction width suffix. The .W suffix forces a 32-bit instruction encoding. The .N suffix forces a 16-bit

instruction encoding.

If the user specifies an instruction width suffix and the assembler cannot generate an instruction encoding of the
requested width, it generates an error.

Note: In some cases, it might be necessary to specify the .\W suffix, for example if the operand is the label of an
instruction or literal data, as in the case of branch instructions. This is because the assembler might not auto-
matically generate the right size encoding.

Atmel

SAM4CP16C [DATASHEET] 93

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any. The
example below shows instructions with the instruction width suffix.

BCS.W label

;creates a 32-bit instruction even for a short
:branch

ADDS.W RO, RO, R1 ;creates a 32-bit instruction even though the same
;operation can be done by a 16-bit instruction

12.6.4 Memory Access Instructions

The table below shows the memory access instructions:

Table 12-17. Memory Access Instructions

Mnemonic Description
ADR Load PC-relative address
CLREX Clear Exclusive
LDM{mode} Load Multiple registers
LDR{type} Load Register using immediate offset
LDR{type} Load Register using register offset
LDR{type}T Load Register with unprivileged access
LDR Load Register using PC-relative address
LDRD Load Register Dual
LDREX({type} Load Register Exclusive
POP Pop registers from stack
PUSH Push registers onto stack
STM{mode} Store Multiple registers
STR{type} Store Register using immediate offset
STR{type} Store Register using register offset
STR{type}T Store Register with unprivileged access
STREX{type} Store Register Exclusive
12.6.4.1 ADR
Load PC-relative address.
Syntax
ADR{cond} Rd, label

where:

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

label is a PC-relative expression. See “PC-relative Expressions”.

Operation

94

ADR determines the address by adding an immediate value to the PC, and writes the result to the destination register.

ADR produces position-independent code, because the address is PC-relative.

If ADR is used to generate a target address for a BX or BLX instruction, ensure that bit[0] of the address generated is

set to 1 for correct execution.

Values of label must be within the range of -4095 to +4095 from the address in the PC.

Note: The user might have to use the .W suffix to get the maximum offset range or to generate addresses that are

not word-aligned. See “Instruction Width Selection”.

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

Restrictions

Rd must not be SP and must not be PC.
Condition Flags

This instruction does not change the flags.

Examples

ADR

R1, TextMessage ; Write address value of a location labelled as
; TextMessage to R1

12.6.4.2 LDR and STR, Immediate Offset
Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

Syntax
op{type}{cond} Rt, [Rn {, #offset}] ; immediate offset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed
op{type}{cond} Rt, [Rn], #offset ; post-indexed
opD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, two words
opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, two words
where:
op is one of:
LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.
cond is an optional condition code, see “Conditional Execution”.
Rt is the register to load or store.
Rn is the register on which the memory address is based.
offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.
Rt2 is the additional register to load or store for two-word operations.
Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:
Offset Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access. The register Rn is unaltered. The assembly language syntax for this mode is:

[Rn, #offset]
Pre-indexed Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access and written back into the register Rn. The assembly language syntax for this mode is:

[Rn, #offset]!

Atmel

SAM4CP16C [DATASHEET] 95

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Post-indexed Addressing

The address obtained from the register Rn is used as the address for the memory access. The offset value is added to
or subtracted from the address, and written back into the register Rn. The assembly language syntax for this mode is:

[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can either be signed or
unsigned. See “Address Alignment”.

The table below shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 12-18. Offset Ranges

Instruction Type Immediate Offset Pre-indexed Post-indexed

Word, halfword, signed

halfword, byte, or signed byte -255 to 4095 -255 to 255 -255 to 255

multiple of 4 in the | multiple of 4 in the | multiple of 4 in the

Two words range -1020 to 1020 | range -1020 to 1020 | range -1020 to 1020

Restrictions

For load instructions:

Rt can be SP or PC for word loads only.
Rt must be different from Rt2 for two-word loads.
Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

When Rt is PC in a word load instruction:

Bit[0] of the loaded value must be 1 for correct execution.

A branch occurs to the address created by changing bit[0] of the loaded value to 0.

If the instruction is conditional, it must be the last instruction in the IT block.

For store instructions:

Rt can be SP for word stores only.

Rt must not be PC.

Rn must not be PC.

Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

Condition Flags

These instructions do not change the flags.

Examples

LDR R8, [R10] ; Loads R8 from the address in R10.

LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 from a word
; 960 bytes above the address in R5, and
; increments R5 by 960.

STR R2, [R9,#const-struc] ; const-struc is an expression evaluating
; to a constant in the range 0-4095.

STRH R3, [R4], #4 ; Store R3 as halfword data into address in
; R4, then increment R4 by 4

LDRD R8, R9, [R3, #0x20] ; Load R8 from a word 32 bytes above the
; address in R3, and load R9 from a word 36
; bytes above the address in R3

STRD RO, R1, [R8], #-16 ; Store RO to address in R8, and store R1 to
; a word 4 bytes above the address in R8,
; and then decrement R8 by 16.

96 SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.4.3 LDR and STR, Register Offset

Load and Store with register offset.

Syntax

op{type}{cond} Rt, [Rn, Rm {, LSL #n}]
where:
op is one of:

LDR Load Register.
STR Store Register.

type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional Execution”.
Rt is the register to load or store.

Rn is the register on which the memory address is based.
Rm is a register containing a value to be used as the offset.
LSL #n is an optional shift, with n in the range 0 to 3.

Operation

LDR instructions load a register with a value from memory.
STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is specified by the register
Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either be
signed or unsigned. See “Address Alignment”.

Restrictions
In these instructions:

e Rn must not be PC.
e Rm must not be SP and must not be PC.
e Rtcan be SP only for word loads and word stores.
e Rtcan be PC only for word loads.
When Rtis PC in a word load instruction:

e Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned address.
e [f the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags

These instructions do not change the flags.
Examples

STR RO, [R5, R1] ; Store value of RO into an address equal to
sum of R5 and R1

Read byte value from an address equal to
sum of R5 and two times R1, sign extended it
to a word value and put it in RO

Stores RO to an address equal to sum of R1

; and four times R2

LDRSB RO, [R5, R1, LSL #1]

STR RO, [R1, R2, LSL #2]

Atmel SAM4CP16C [DATASHEET] 97

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.4.4 LDR and STR, Unprivileged

Load and Store with unprivileged access.

Syntax

op{type}T{cond} Rt, [Rn {, #offset}] ; immediate offset
where:
op is one of:

LDR Load Register.
STR Store Register.

type is one of:

B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional Execution”.
Rt is the register to load or store.

Rn is the register on which the memory address is based.
offset is an offset from Rn and can be 0 to 255.

If offset is omitted, the address is the value in Rn.
Operation

These load and store instructions perform the same function as the memory access instructions with immediate offset,
see “LDR and STR, Immediate Offset”. The difference is that these instructions have only unprivileged access even
when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as normal memory access
instructions with immediate offset.

Restrictions
In these instructions:

e Rn must not be PC.
e Rt must not be SP and must not be PC.
Condition Flags

These instructions do not change the flags.

Examples
STRBTEQ R4, [R7] ; Conditionally store least significant byte in
; R4 to an address in R7, with unprivileged access
LDRHT R2, [R2, #8] ; Load halfword value from an address equal to
; sum of R2 and 8 into R2, with unprivileged access
SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.4.5 LDR, PC-relative
Load register from memory.

Syntax

LDR{type}{cond} Rt, label
LDRD{cond} Rt, Rt2, label ; Load two words
where:

type is one of:
B unsigned byte, zero extend to 32 bits.
SB signed byte, sign extend to 32 bits.
H unsigned halfword, zero extend to 32 bits.
SH signed halfword, sign extend to 32 bits.

- omit, for word.

cond is an optional condition code, see “Conditional Execution”.
Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a PC-relative expression. See “PC-relative Expressions”.
Operation

LDR loads a register with a value from a PC-relative memory address. The memory address is specified by a label or
by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either be
signed or unsigned. See “Address Alignment”.

label must be within a limited range of the current instruction. The table below shows the possible offsets between
label and the PC.

Table 12-19. Offset Ranges

Instruction Type Offset Range
Word, halfword, signed halfword, byte, signed byte -4095 to 4095
Two words -1020 to 1020

The user might have to use the .W suffix to get the maximum offset range. See “Instruction Width Selection”.
Restrictions
In these instructions:

e Rtcan be SP or PC only for word loads.
e Rt2 must not be SP and must not be PC.
e Rt must be different from Rf2.

When Rtis PC in a word load instruction:

e Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned address.
e If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags

These instructions do not change the flags.
Examples

LDR RO, LookUpTable ; Load RO with a word of data from an address
; labelled as LookUpTable

LDRSB R7, localdata ; Load a byte value from an address labelled
; as localdata, sign extend it to a word
; value, and put it in R7

Atmel SAM4CP16C [DATASHEET] 99

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.4.6 LDM and STM

Load and Store Multiple registers.

Syntax

op{addr_mode}{cond} Rn{!}, reglist
where:
op is one of:

LDM Load Multiple registers.
STM Store Multiple registers.
addr_mode is any one of the following:

1A Increment address After each access. This is the default.
DB Decrement address Before each access.
cond is an optional condition code, see “Conditional Execution”.
Rn is the register on which the memory addresses are based.

! is an optional writeback suffix.
If I is present, the final address, that is loaded from or stored to, is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It can contain register
ranges. It must be comma separated if it contains more than one register or register range, see
“Examples”.

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full Descending stacks.
LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty Ascending stacks.
STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks.

Operation

LDM instructions load the registers in reglist with word values from memory addresses based on Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-byte
intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses happens in
order of increasing register numbers, with the lowest numbered register using the lowest memory address and the
highest number register using the highest memory address. If the writeback suffix is specified, the value of
Rn + 4 * (n-1) is written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at 4-byte intervals
ranging from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist. The accesses happen in order of
decreasing register numbers, with the highest numbered register using the highest memory address and the lowest
number register using the lowest memory address. If the writeback suffix is specified, the value of Rn - 4 * (n-1) is
written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP” for details.
Restrictions
In these instructions:

e Rn must not be PC.

e reglist must not contain SP.
e Inany STM instruction, reglist must not contain PC.
e Inany LDM instruction, reglist must not contain PC if it contains LR.
e reglist must not contain Rn if the writeback suffix is specified.
SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

When PC is in reglist in an LDM instruction:
e Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-
aligned address.
e [f the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.
Examples

LDM R8,{RO,R2,R9} ; LDMIA is a synonym for LDM
STMDB R1!,{R3-R6,R11,R12}
Incorrect Examples

STM R51,{R5,R4,R9} ; Value stored for R5 is unpredictable
LDM R2, {} ; There must be at least one register in the list

12.6.4.7 PUSH and POP

Push registers onto, and pop registers off a full-descending stack.
Syntax

PUSH{cond} reglist
POP{cond} reglist

where:
cond is an optional condition code, see “Conditional Execution”.
reglist is a non-empty list of registers, enclosed in braces. It can contain register ranges. It must be comma

separated if it contains more than one register or register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access based on
SP, and with the final address for the access written back to the SP. PUSH and POP are the preferred mnemonics in
these cases.

Operation

PUSH stores registers on the stack in order of decreasing the register numbers, with the highest numbered register
using the highest memory address and the lowest numbered register using the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest numbered register using
the lowest memory address and the highest numbered register using the highest memory address.

See “LDM and STM” for more information.
Restrictions
In these instructions:

e reglist must not contain SP.
e Forthe PUSH instruction, reglist must not contain PC.
e For the POP instruction, reglist must not contain PC if it contains LR.
When PC is in reglist in a POP instruction:
e Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-
aligned address.
e |[f the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags

These instructions do not change the flags.

SAMA4CP16C [DATASHEET] 101
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Examples
PUSH {RO,R4-R7}

PUSH {R2,LR}
POP {RO,R10,PC}

12.6.4.8 LDREX and STREX

102

Load and Store Register Exclusive.
Syntax

LDREX{cond} Rt, [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{cond} Rt, [Rn]

STREXB{cond} Rd, Rt, [Rn]
LDREXH{cond} Rt, [Rn]

STREXH{cond} Rd, Rt, [Rn]

where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register for the returned status.
Rt is the register to load or store.
Rn is the register on which the memory address is based.
offset is an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.
Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory address. The
address used in any Store-Exclusive instruction must be the same as the address in the most recently executed Load-
exclusive instruction. The value stored by the Store-Exclusive instruction must also have the same data size as the
value loaded by the preceding Load-exclusive instruction. This means software must always use a Load-exclusive
instruction and a matching Store-Exclusive instruction to perform a synchronization operation, see “Synchronization
Primitives”.

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does not perform the
store, it writes 1 to its destination register. If the Store-Exclusive instruction writes 0 to the destination register, it is
guaranteed that no other process in the system has accessed the memory location between the Load-exclusive and
Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive and Store-
Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that used in the preceding
Load-Exclusive instruction is unpredictable.

Restrictions
In these instructions:

e Do notuse PC.

e Do not use SP for Rd and Rt.

e For STREX, Rd must be different from both Rt and Rn.

e The value of offset must be a multiple of four in the range 0-1020.
Condition Flags

These instructions do not change the flags.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Examples
MoV R1, #0x1 ; Initialize the “lock taken” value try
LDREX RO, [LockAddr] ; Load the lock value
CMP RO, #0 ; Is the lock free?
ITT EQ IT instruction for STREXEQ and CMPEQ

STREXEQ RO, R1, [LockAddr]
CMPEQ RO, #0 Did this succeed?

BNE try No — try again

; Yes — we have the lock

Try and claim the lock

12.6.4.9 CLREX

Clear Exclusive.

Syntax
CLREX{cond}
where:
cond is an optional condition code, see “Conditional Execution”.
Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write a 1 to its destination register and fail to
perform the store. It is useful in exception handler code to force the failure of the store exclusive if the exception
occurs between a load exclusive instruction and the matching store exclusive instruction in a synchronization
operation.

See “Synchronization Primitives” for more information.
Condition Flags

These instructions do not change the flags.

Examples

CLREX

SAMA4CP16C [DATASHEET] 103
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.5 General Data Processing Instructions

The table below shows the data processing instructions:

Table 12-20. Data Processing Instructions

Mnemonic | Description

ADC Add with Carry

ADD Add

ADDW Add

AND Logical AND

ASR Arithmetic Shift Right

BIC Bit Clear

CLz Count leading zeros

CMN Compare Negative

CMP Compare

EOR Exclusive OR

LSL Logical Shift Left

LSR Logical Shift Right

MOV Move

MOVT Move Top

MOVW Move 16-bit constant

MVN Move NOT

ORN Logical OR NOT

ORR Logical OR

RBIT Reverse Bits

REV Reverse byte order in a word

REV16 Reverse byte order in each halfword
REVSH Reverse byte order in bottom halfword and sign extend
ROR Rotate Right

RRX Rotate Right with Extend

RSB Reverse Subtract

SADD16 Signed Add 16

SADDS8 Signed Add 8

SASX Signed Add and Subtract with Exchange
SSAX Signed Subtract and Add with Exchange
SBC Subtract with Carry

SHADD16 | Signed Halving Add 16

SHADDS8 Signed Halving Add 8

SHASX Signed Halving Add and Subtract with Exchange
SHSAX Signed Halving Subtract and Add with Exchange
SHSUB16 | Signed Halving Subtract 16

104 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

Table 12-20. Data Processing Instructions (Continued)

Mnemonic | Description

SHSUBS8 Signed Halving Subtract 8

SSUB16 Signed Subtract 16

SSUBS8 Signed Subtract 8

SuB Subtract

SuBw Subtract

TEQ Test Equivalence

TST Test

UADD16 Unsigned Add 16

UADDS8 Unsigned Add 8

UASX Unsigned Add and Subtract with Exchange

USAX Unsigned Subtract and Add with Exchange
UHADD16 | Unsigned Halving Add 16

UHADDS8 Unsigned Halving Add 8

UHASX Unsigned Halving Add and Subtract with Exchange
UHSAX Unsigned Halving Subtract and Add with Exchange
UHSUB16 | Unsigned Halving Subtract 16

UHSUBS Unsigned Halving Subtract 8

USADS8 Unsigned Sum of Absolute Differences

USADAS Unsigned Sum of Absolute Differences and Accumulate
usuB16 Unsigned Subtract 16

UsuB8 Unsigned Subtract 8

12.6.5.1 ADD, ADC, SUB, SBC, and RSB

Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

Syntax

op{S}{cond} {Rd,} Rn, Operand2

op{cond} {Rd,} Rn, #imml2

where:
op is one of:
ADD Add.

ADC Add with Carry.

SUB Subtract.

; ADD and SUB only

SBC Subtract with Carry.
RSB Reverse Subtract.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the opera-
tion, see “Conditional Execution”.

cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the first operand.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

105

106

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the options.
imm12 is any value in the range 0 - 4095.
Operation

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.
The ADC instruction adds the values in Rn and Operand?2, together with the carry flag.
The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is clear, the result is
reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of the wide range of
options for Operand?.

Use ADC and SBC to synthesize multiword arithmetic, see Multiword arithmetic examples on.
See also “ADR”.

Note: ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the SUB syntax
that uses the imm12 operand.

Restrictions
In these instructions:

e Operand2 must not be SP and must not be PC.
® Rdcan be SP only in ADD and SUB, and only with the additional restrictions:
e Rn must also be SP.
e Any shift in Operand2 must be limited to a maximum of 3 bits using LSL.
Rn can be SP only in ADD and SUB.
Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:
e The user must not specify the S suffix.
e Rm must not be PC and must not be SP.
e [f the instruction is conditional, it must be the last instruction in the IT block.

e With the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and SUB, and only
with the additional restrictions:

e The user must not specify the S suffix.
e The second operand must be a constant in the range 0 to 4095.

e Note: When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded to 0b00 before
performing the calculation, making the base address for the calculation word-aligned.

e Note: To generate the address of an instruction, the constant based on the value of the PC must be
adjusted. ARM recommends to use the ADR instruction instead of ADD or SUB with Rn equal to the PC,
because the assembler automatically calculates the correct constant for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:

e Bit[0] of the value written to the PC is ignored.

e A branch occurs to the address created by forcing bit[0] of that value to 0.
Condition Flags

If S is specified, these instructions update the N, Z, C and V flags according to the result.

Examples
ADD R2, R1, R3 ; Sets the flags on the result
SUBS R8, R6, #240 ; Subtracts contents of R4 from 1280
RSB R4, R4, #1280 ; Only executed if C flag set and Z
ADCHI R11, RO, R3 ; flag clear.
SAM4CP16C [DATASHEET] AtmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Multiword Arithmetic Examples

The example below shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit integer
contained in RO and R1, and place the result in R4 and R5.

64-bit Addition Example

ADDS R4, RO, R2
ADC R5, R1, R3

; add the least significant words

; add the most significant words with carry
Multiword values do not have to use consecutive registers. The example below shows instructions that subtract a
96-bit integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The example stores the result
in R6, R9, and R2.

96-bit Subtraction Example

SUBS R6, R6, R9 ; subtract the least significant words
SBCS R9, R2, R1 ; Subtract the middle words with carry
SBC R2, R8, R11 ; subtract the most significant words with carry

12.6.5.2 AND, ORR, EOR, BIC, and ORN

Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

Syntax

op{S}{cond} {Rd,} Rn, Operand2
where:
op is one of:

AND logical AND.

ORR logical OR, or bit set.

EOR logical Exclusive OR.

BIC logical AND NOT, or bit clear.
ORN logical OR NOT.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the opera-
tion, see “Conditional Execution”.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the options.
Operation

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the values in Rn
and Operand?.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the corresponding bits in
the value of Operand?2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the corresponding bits in the
value of Operand?.

Restrictions

Do not use SP and do not use PC.

SAMA4CP16C [DATASHEET] 107
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Condition Flags

If S is specified, these instructions:

e Update the N and Z flags according to the result.
e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”.
e Do not affect the V flag.

Examples
AND R9, R2, #0OxFF0OO
ORREQ R2, RO, R5
ANDS R9, R8, #0x19
EORS R7, R11, #0x18181818
BIC RO, R1, #Oxab
ORN R7, R11, R14, ROR #4
ORNS R7, R11, R14, ASR #32

12.6.5.3 ASR, LSL, LSR, ROR, and RRX
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with Extend.

108

Syntax

op{S}{cond} Rd, Rm, Rs
op{S}{cond} Rd, Rm, #n
RRX{S}{cond} Rd, Rm

where:

op

Rd
Rm
Rs

is one of:

ASR Arithmetic Shift Right.
LSL Logical Shift Left.
LSR Logical Shift Right.
ROR Rotate Right.

is an optional suffix. If S is specified, the condition code flags are updated on the result of the opera-
tion, see “Conditional Execution”.

is the destination register.
is the register holding the value to be shifted.

is the register holding the shift length to apply to the value in Rm. Only the least significant byte is used
and can be in the range 0 to 255.

is the shift length. The range of shift length depends on the instruction:
ASR shift length from 1 to 32

LSL shift length from 0 to 31

LSR shift length from 1 to 32

ROR shift length from 0 to 31

MOVS Rd, Rm is the preferred syntax for LSLS Rd, Rm, #0.

Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places specified by
constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged. For details on
what result is generated by the different instructions, see “Shift Operations”.

SAM4CP16C

[DATASHEET]
Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16 A t m e L

Restrictions

Do not use SP and do not use PC.
Condition Flags

If S is specified:

e These instructions update the N and Z flags according to the result.

e The Cflag is updated to the last bit shifted out, except when the shift length is 0, see “Shift Operations”.

Examples

ASR R7, R8, #9 ; Arithmetic shift right by 9 bits

SLS R1, R2, #3 ; Logical shift left by 3 bits with flag update

LSR R4, R5, #6 ; Logical shift right by 6 bits

ROR R4, R5, R6 ; Rotate right by the value in the bottom byte of R6

RRX R4, R5 ; Rotate right with extend.
12.6.5.4CLZ
Count Leading Zeros.
Syntax
CLZ{cond} Rd, Rm
where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rm is the operand register.
Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd. The result

value is 32 if no bits are set and zero if bit[31] is set.
Restrictions

Do not use SP and do not use PC.

Condition Flags

This instruction does not change the flags.

Examples
CLz R4 ,R9
CLZNE R2,R3

12.6.5.5 CMP and CMN
Compare and Compare Negative.

Syntax

CMP{cond} Rn, Operand2
CMN{cond} Rn, Operand2

where:

cond is an optional condition code, see “Conditional Execution”.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the options.
Operation

These instructions compare the value in a register with Operand2. They update the condition flags on the result, but

do not write the result to a register.

Atmel SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

109

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS instruction,
except that the result is discarded.

The CMN instruction adds the value of Operand?2 to the value in Rn. This is the same as an ADDS instruction, except
that the result is discarded.

Restrictions
In these instructions:
e Do notuse PC.

e Operand2 must not be SP.
Condition Flags

These instructions update the N, Z, C and V flags according to the result.

Examples
CMP R2, R9
CMN RO, #6400
CMPGT SP, R7, LSL #2

12.6.5.6 MOV and MVN

110

Move and Move NOT.
Syntax

MOV{S}{cond} Rd, Operand2
MOV{cond} Rd, #imml6
MVN{S}{cond} Rd, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional Execution”.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the options.

imm16 is any value in the range 0-65535.

Operation

The MOV instruction copies the value of Operand?2 into Rd.

When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax is the
corresponding shift instruction:

e ASR{SHcond} Rd, Rm, #n is the preferred syntax for MOV{S}cond} Rd, Rm, ASR #n.

e LSL{S}cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL #nif n != 0.

e LSR{S}cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n.

e ROR({S}cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n.

e RRX{S}cond} Rd, Rm is the preferred syntax for MOV{S}{cond} Rd, Rm, RRX.
Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift instructions:

e MOV{S}cond} Rd, Rm, ASR Rs is a synonym for ASR{S}{cond} Rd, Rm, Rs.

e MOV{SHcond} Rd, Rm, LSL Rs is a synonym for LSL{S}{cond} Rd, Rm, Rs.

e MOV{S}cond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs.

e MOV{SHcond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs.
See “ASR, LSL, LSR, ROR, and RRX".

The MVN instruction takes the value of Operand?2, performs a bitwise logical NOT operation on the value, and places
the result into Rd.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16 operand.
Restrictions
SP and PC only can be used in the MOV instruction, with the following restrictions:
e The second operand must be a register without shift.
e The S suffix must not be specified.
When Rd is PC in a MOV instruction:
e Bit[0] of the value written to the PC is ignored.
e A branch occurs to the address created by forcing bit[0] of that value to 0.

Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of a BX or BLX instruc-
tion to branch for software portability to the ARM instruction set.

Condition Flags
If S is specified, these instructions:

e Update the N and Z flags according to the result.
e Can update the C flag during the calculation of Operand?2, see “Flexible Second Operand”.
e Do not affect the V flag.

Examples

MOVS R11, #0x000B
MOV~ R1, #OxFAO5
MOVS R10, R12

MOV ~ R3, #23

MOV ~ R8, SP

MVNS R2, #OxF

Write value of Ox000B to R11l, flags get updated
Write value of OxFAO5 to R1, flags are not updated
Write value in R12 to R10, flags get updated
Write value of 23 to R3

Write value of stack pointer to R8

Write value of OXFFFFFFFO (bitwise inverse of OxF)
; to the R2 and update flags.

12.6.5.7 MOVT

Move Top.
Syntax
MOVT{cond} Rd, #imml6
where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
imm16 is a 16-bit immediate constant.
Operation

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination register. The write
does not affect Rd[15:0].

The MOV, MOVT instruction pair enables to generate any 32-bit constant.
Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples

MOVT R3, #0xF123 ; Write OxF123 to upper halfword of R3, lower halfword
; and APSR are unchanged.

SAMA4CP16C [DATASHEET] 111
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.5.8 REV, REV16, REVSH, and RBIT

112

Reverse bytes and Reverse bits.

Syntax
op{cond} Rd, Rn
where:
op is any of:
REV Reverse byte order in a word.
REV16 Reverse byte order in each halfword independently.
REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.
RBIT Reverse the bit order in a 32-bit word.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the register holding the operand.
Operation

Use these instructions to change endianness of data:
REV converts either:

e 32-bit big-endian data into little-endian data.

e 32-bit little-endian data into big-endian data.
REV16 converts either:

e 16-bit big-endian data into little-endian data.
e 16-bit little-endian data into big-endian data.
REVSH converts either:
e 16-bit signed big-endian data into 32-bit signed little-endian data.
e 16-bit signed little-endian data into 32-bit signed big-endian data.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.
Examples

REV ~ R3, R7 ; Reverse byte order of value in R7 and write it to R3
REV16 RO, RO ; Reverse byte order of each 16-bit halfword in RO
REVSH RO, R5 ; Reverse Signed Halfword

REVHS R3, R7 ; Reverse with Higher or Same condition

RBIT R7, R8 ; Reverse bit order of value in R8 and write the result to R7.

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

12.6.5.9 SADD16 and SADD8

Signed Add 16 and Signed Add 8

Syntax
op{cond}{Rd,} Rn, Rm
where:
op is any of:
SADD16 Performs two 16-bit signed integer additions.
SADDS8 Performs four 8-bit signed integer additions.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

Use these instructions to perform a halfword or byte add in parallel:
The SADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the result in the corresponding halfwords of the destination register.
The SADDS instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.
Writes the result in the corresponding bytes of the destination register.

Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
SADD16 R1, RO ; Adds the halfwords in RO to the corresponding
; halfwords of R1 and writes to corresponding halfword
; of R1.

SADD8 R4, RO, R5 ; Adds bytes of RO to the corresponding byte in R5 and
; writes to the corresponding byte in R4.

12.6.5.10 SHADD16 and SHADD8

Signed Halving Add 16 and Signed Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:

SHADD16 Signed Halving Add 16.

SHADDS Signed Halving Add 8.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.

/ltmeL SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

113

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destina-
tion register:

The SHADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halfword results in the destination register.

The SHADDBS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
SHADD16 R1, RO ;Adds halfwords in RO to corresponding halfword of R1
;and writes halved result to corresponding halfword in
;R1

SHADD8 R4, RO, R5 ;Adds bytes of RO to corresponding byte in R5 and
;writes halved result to corresponding byte in R4.

12.6.5.11 SHASX and SHSAX

Signed Halving Add and Subtract with Exchange and Signed Halving Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is any of:

SHASX Add and Subtract with Exchange and Halving.

SHSAX Subtract and Add with Exchange and Halving.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.

2. Writes the halfword result of the addition to the top halfword of the destination register, shifted by one bit to the
right causing a divide by two, or halving.

3. Subtracts the top halfword of the second operand from the bottom highword of the first operand.

4. Writes the halfword result of the division in the bottom halfword of the destination register, shifted by one bit to
the right causing a divide by two, or halving.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

The SHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Writes the halfword result of the addition to the bottom halfword of the destination register, shifted by one bit to
the right causing a divide by two, or halving.
3. Adds the bottom halfword of the first operand with the top halfword of the second operand.
4. Writes the halfword result of the division in the top halfword of the destination register, shifted by one bit to the
right causing a divide by two, or halving.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.
Examples

SHASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2
; and writes halved result to top halfword of R7
; Subtracts top halfword of R2 from bottom halfword of
; R4 and writes halved result to bottom halfword of R7
SHSAX RO, R3, R5 ; Subtracts bottom halfword of R5 from top halfword
; of R3 and writes halved result to top halfword of RO
; Adds top halfword of R5 to bottom halfword of R3 and
; writes halved result to bottom halfword of RO.

12.6.5.12 SHSUB16 and SHSUBS8

Signed Halving Subtract 16 and Signed Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:

SHSUB16 Signed Halving Subtract 16.

SHSUBS8 Signed Halving Subtract 8.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destina-
tion register:

The SHSUB16 instruction:
1. Subtracts each halfword of the second operand from the corresponding halfwords of the first operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halved halfword results in the destination register.
The SHSUBS instruction:
1. Subtracts each byte of the second operand from the corresponding byte of the first operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the corresponding signed byte results in the destination register.

SAMA4CP16C [DATASHEET] 115
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.
Examples

SHSUB16 R1, RO ; Subtracts halfwords in RO from corresponding halfword
; of R1 and writes to corresponding halfword of R1

SHSUB8 R4, RO, R5 ; Subtracts bytes of RO from corresponding byte in R5,
; and writes to corresponding byte in R4.

12.6.5.13 SSUB16 and SSUB8

Signed Subtract 16 and Signed Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm
where:
op is any of:
SSUB16 Performs two 16-bit signed integer subtractions.
SSUBS8 Performs four 8-bit signed integer subtractions.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to change endianness of data:
The SSUB16 instruction:
1. Subtracts each halfword from the second operand from the corresponding halfword of the first operand.

2. Writes the difference result of two signed halfwords in the corresponding halfword of the destination register.
The SSUBS instruction:

1. Subtracts each byte of the second operand from the corresponding byte of the first operand.
2. Writes the difference result of four signed bytes in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.
Examples

SSUB16 R1, RO ; Subtracts halfwords in RO from corresponding halfword
; of R1 and writes to corresponding halfword of R1
SSUB8 R4, RO, R5 ; Subtracts bytes of R5 from corresponding byte in
; RO, and writes to corresponding byte of R4.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.5.14 SASX and SSAX
Signed Add and Subtract with Exchange and Signed Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rm, Rn

where:
op is any of:

SASX Signed Add and Subtract with Exchange.

SSAX Signed Subtract and Add with Exchange.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SASX instruction:

1. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
2. Writes the signed result of the addition to the top halfword of the destination register.
3. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first operand.
4. Writes the signed result of the subtraction to the bottom halfword of the destination register.
The SSAX instruction:

1. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first operand.
2. Writes the signed result of the addition to the bottom halfword of the destination register.
3. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
4. Writes the signed result of the subtraction to the top halfword of the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.
Examples

SASX RO, R4, R5 Adds top halfword of R4 to bottom halfword of R5 and
writes to top halfword of RO

Subtracts bottom halfword of R5 from top halfword of R4
and writes to bottom halfword of RO

Subtracts top halfword of R2 from bottom halfword of R3
and writes to bottom halfword of R7

Adds top halfword of R3 with bottom halfword of R2 and

writes to top halfword of R7.

SSAX R7, R3, R2

12.6.5.15 TST and TEQ
Test bits and Test Equivalence.

Syntax

TST{cond} Rn, Operand2
TEQ{cond} Rn, Operand2

where
cond is an optional condition code, see “Conditional Execution”.
Rn is the register holding the first operand.
Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the options.
SAM4CP16C [DATASHEET 117
Atmel : :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Operation

These instructions test the value in a register against Operand2. They update the condition flags based on the result,
but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand?2. This is the same
as the ANDS instruction, except that it discards the result.

To test whether a bit of Rnis 0 or 1, use the TST instruction with an Operand?2 constant that has that bit set to 1 and
all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of Operand2. This is
the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical Exclusive OR of the
sign bits of the two operands.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions:
e Update the N and Z flags according to the result.
e Can update the C flag during the calculation of Operand?2, see “Flexible Second Operand”.
e Do not affect the V flag.

Examples

TST RO, #O0x3F8 ; Perform bitwise AND of RO value to Ox3F8,
; APSR is updated but result is discarded
TEQEQ R10, R9 ; Conditionally test if value in R10 is equal to
; value in R9, APSR is updated but result is discarded.

12.6.5.16 UADD16 and UADDS8

118

Unsigned Add 16 and Unsigned Add 8
Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
UADD16 Performs two 16-bit unsigned integer additions.
UADDS8 Performs four 8-bit unsigned integer additions.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

Use these instructions to add 16- and 8-bit unsigned data:
The UADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the unsigned result in the corresponding halfwords of the destination register.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

The UADDS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Writes the unsigned result in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

UADD16 R1, RO ; Adds halfwords in RO to corresponding halfword of R1,
; writes to corresponding halfword of R1

UADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and
; writes to corresponding byte in R4.

12.6.5.17 UASX and USAX

Add and Subtract with Exchange and Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is one of:

UASX Add and Subtract with Exchange.

USAX Subtract and Add with Exchange.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UASX instruction:
1. Subtracts the top halfword of the second operand from the bottom halfword of the first operand.
2. Writes the unsigned result from the subtraction to the bottom halfword of the destination register.
3. Adds the top halfword of the first operand with the bottom halfword of the second operand.
4. Writes the unsigned result of the addition to the top halfword of the destination register.
The USAX instruction:
1. Adds the bottom halfword of the first operand with the top halfword of the second operand.
2. Writes the unsigned result of the addition to the bottom halfword of the destination register.
3. Subtracts the bottom halfword of the second operand from the top halfword of the first operand.
4. Writes the unsigned result from the subtraction to the top halfword of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the condition code flags.

SAMA4CP16C [DATASHEET] 119
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Examples

UASX RO, R4, R5 ; Adds top halfword of R4 to bottom halfword of R5 and
writes to top halfword of RO

Subtracts bottom halfword of R5 from top halfword of RO
and writes to bottom halfword of RO

Subtracts top halfword of R2 from bottom halfword of R3
and writes to bottom halfword of R7

Adds top halfword of R3 to bottom halfword of R2 and

writes to top halfword of R7.

USAX R7, R3, R2

12.6.5.18 UHADD16 and UHADDS

120

Unsigned Halving Add 16 and Unsigned Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:

UHADD16 Unsigned Halving Add 16.

UHADDS8 Unsigned Halving Add 8.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the register holding the first operand.
Rm is the register holding the second operand.
Operation

Use these instructions to add 16- and 8-bit data and then to halve the result before writing the result to the destination
register:

The UHADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the halfword result by one bit to the right, halving the data.
3. Writes the unsigned results to the corresponding halfword in the destination register.

The UHADDS instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Shuffles the byte result by one bit to the right, halving the data.

3. Writes the unsigned results in the corresponding byte in the destination register.
Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
UHADD16 R7, R3 ; Adds halfwords in R7 to corresponding halfword of R3
; and writes halved result to corresponding halfword
; Iin RY

UHADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and
; writes halved result to corresponding byte in R4.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.5.19 UHASX and UHSAX
Unsigned Halving Add and Subtract with Exchange and Unsigned Halving Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is one of:

UHASX Add and Subtract with Exchange and Halving.

UHSAX Subtract and Add with Exchange and Halving.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UHASX instruction:

1.

o~ 0D

6.

Adds the top halfword of the first operand with the bottom halfword of the second operand.
Shifts the result by one bit to the right causing a divide by two, or halving.

Writes the halfword result of the addition to the top halfword of the destination register.
Subtracts the top halfword of the second operand from the bottom highword of the first operand.
Shifts the result by one bit to the right causing a divide by two, or halving.

Writes the halfword result of the division in the bottom halfword of the destination register.

The UHSAX instruction:

Subtracts the bottom halfword of the second operand from the top highword of the first operand.

2. Shifts the result by one bit to the right causing a divide by two, or halving.

3. Writes the halfword result of the subtraction in the top halfword of the destination register.

4. Adds the bottom halfword of the first operand with the top halfword of the second operand.

5. Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the addition to the bottom halfword of the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

Atmel

UHASX R7, R4, R2 ; Adds top halfword of R4 with bottom halfword of R2
; and writes halved result to top halfword of R7
; Subtracts top halfword of R2 from bottom halfword of
; R7 and writes halved result to bottom halfword of R7
UHSAX RO, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of
; R3 and writes halved result to top halfword of RO
; Adds top halfword of R5 to bottom halfword of R3 and
; writes halved result to bottom halfword of RO.

SAM4CP16C [DATASHEET] 121

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.5.20 UHSUB16 and UHSUBS8
Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm
where:
op is any of:
UHSUB16 Performs two unsigned 16-bit integer additions, halves the results, and writes the results to
the destination register.
UHSUBS8 Performs four unsigned 8-bit integer additions, halves the results, and writes the results to
the destination register.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destina-
tion register:

The UHSUB16 instruction:

1. Subtracts each halfword of the second operand from the corresponding halfword of the first operand.
2. Shuffles each halfword result to the right by one bit, halving the data.
3. Writes each unsigned halfword result to the corresponding halfwords in the destination register.

The UHSUBS instruction:

1. Subtracts each byte of second operand from the corresponding byte of the first operand.
2. Shuffles each byte result by one bit to the right, halving the data.
3. Writes the unsigned byte results to the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.
Examples

UHSUB16 R1, RO Subtracts halfwords in RO from corresponding halfword of
R1 and writes halved result to corresponding halfword in R1
Subtracts bytes of R5 from corresponding byte in RO and

writes halved result to corresponding byte in R4.

UHSUB8 R4, RO, R5

122 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.5.21 SEL

Select Bytes. Selects each byte of its result from either its first operand or its second operand, according to the values
of the GE flags.

Syntax

SEL{<c>}{<g>} {<Rd>,} <Rn>, <Rm>
where:
c, q are standard assembler syntax fields.
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

The SEL instruction:

1. Reads the value of each bit of APSR.GE.

2. Depending on the value of APSR.GE, assigns the destination register the value of either the first or second
operand register.

Restrictions

None.

Condition Flags

These instructions do not change the flags.
Examples

SADD16 RO, R1, R2
SEL RO, RO, R3

Set GE bits based on result
Select bytes from RO or R3, based on GE.

12.6.5.22 USAD8

Unsigned Sum of Absolute Differences

Syntax
USAD8{cond}{Rd,} Rn, Rm
where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

The USADS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Adds the absolute values of the differences together.
3. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

SAMA4CP16C [DATASHEET] 123
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Examples

USAD8 R1, R4, RO ; Subtracts each byte in RO from corresponding byte of R4
; adds the differences and writes to R1

USAD8 RO, R5 ; Subtracts bytes of R5 from corresponding byte in RO
; adds the differences and writes to RO.

12.6.5.23 USADAS

Unsigned Sum of Absolute Differences and Accumulate

Syntax
USADA8{cond}{Rd,} Rn, Rm, Ra
where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Ra is the register that contains the accumulation value.
Operation

The USADAS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Adds the unsigned absolute differences together.

3. Adds the accumulation value to the sum of the absolute differences.

4. Writes the result to the destination register.

Restrictions
Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
USADA8 R1, RO, R6 ;

USADA8 R4, RO, R5, R2 ;

124 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Subtracts bytes in RO from corresponding halfword of R1
adds differences, adds value of R6, writes to R1
Subtracts bytes of R5 from corresponding byte in RO
adds differences, adds value of R2 writes to R4.

Atmel

12.6.5.24 USUB16 and USUBS8

Unsigned Subtract 16 and Unsigned Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where
op is any of:

USUB16 Unsigned Subtract 16.

USUBS8 Unsigned Subtract 8.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to subtract 16-bit and 8-bit data before writing the result to the destination register:

The USUB16 instruction:

1. Subtracts each halfword from the second operand register from the corresponding halfword of the first operand

register.

2. Writes the unsigned result in the corresponding halfwords of the destination register.

The USUBS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Writes the unsigned byte result in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
UsuB16 R1, RO ;

Atmel

Subtracts halfwords in RO from corresponding halfword of R1
and writes to corresponding halfword in R1USUB8 R4, RO, R5
Subtracts bytes of R5 from corresponding byte in RO and
writes to the corresponding byte in R4.

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

125

12.6.6 Multiply and Divide Instructions

126

The table below shows the multiply and divide instructions:

Table 12-21. Multiply and Divide Instructions

Mnemonic Description

MLA Multiply with Accumulate, 32-bit result
MLS Multiply and Subtract, 32-bit result
MUL Multiply, 32-bit result

SDIV Signed Divide

SMLA[B,T] Signed Multiply Accumulate (halfwords)

SMLAD, SMLADX

Signed Multiply Accumulate Dual

SMLAL

Signed Multiply with Accumulate (32 x 32 + 64), 64-bit result

SMLAL[B,T] Signed Multiply Accumulate Long (halfwords)
SMLALD, SMLALDX Signed Multiply Accumulate Long Dual
SMLAW[B|T] Signed Multiply Accumulate (word by halfword)
SMLSD Signed Multiply Subtract Dual

SMLSLD Signed Multiply Subtract Long Dual

SMMLA Signed Most Significant Word Multiply Accumulate

SMMLS, SMMLSR

Signed Most Significant Word Multiply Subtract

SMUAD, SMUADX

Signed Dual Multiply Add

SMUL[B,T] Signed Multiply (word by halfword)
SMMUL, SMMULR Signed Most Significant Word Multiply
SMULL Signed Multiply (32 x 32), 64-bit result

SMULWB, SMULWT

Signed Multiply (word by halfword)

SMUSD, SMUSDX

Signed Dual Multiply Subtract

ubIv

Unsigned Divide

UMAAL Unsigned Multiply Accumulate Accumulate Long (32 x 32 + 32 + 32), 64-bit result
UMLAL Unsigned Multiply with Accumulate (32 x 32 + 64), 64-bit result
UMULL Unsigned Multiply (32 x 32), 64-bit result

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

12.6.6.1 MUL, MLA, and MLS

Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and producing a 32-bit result.
Syntax

MUL{S}{cond} {Rd,} Rn, Rm ; Multiply
MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate
MLS{cond} Rd, Rn, Rm, Ra ; Multiply with subtract

where:

cond is an optional condition code, see “Conditional Execution”.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the opera-
tion, see “Conditional Execution”.

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of the result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the least significant 32
bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value from Ra, and places
the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or unsigned.
Restrictions

In these instructions, do not use SP and do not use PC.

If the S suffix is used with the MUL instruction:

® Rd, Rn, and Rm must all be in the range RO to R7.
® Rd must be the same as Rm.
e The cond suffix must not be used.

Condition Flags

If S is specified, the MUL instruction:

e Updates the N and Z flags according to the result.
e Does not affect the C and V flags.

Examples
MUL R10, R2, R5 ; Multiply, R10 = R2 x R5
MLA R10, R2, R1, R5 ; Multiply with accumulate, R10 = (R2 x R1) + R5
MULS RO, R2, R2 ; Multiply with flag update, RO = R2 x R2
MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 x R2

MLS R4, R5, R6, R7 ; Multiply with subtract, R4

R7 - (R5 x R6)

SAMA4CP16C [DATASHEET] 127
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.6.2 UMULL, UMAAL, UMLAL

Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.

Syntax
op{cond} RdLo, RdHi, Rn, Rm

where:
op is one of:

UMULL Unsigned Long Multiply.

UMAAL Unsigned Long Multiply with Accumulate Accumulate.

UMLAL Unsigned Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional Execution”.
RdHi, RdLo are the destination registers. For UMAAL, UMLAL and UMLAL they also hold the accumulating value.
Rn, Rm are registers holding the first and second operands.
Operation

These instructions interpret the values from Rn and Rm as unsigned 32-bit integers.
The UMULL instruction:
e Multiplies the two unsigned integers in the first and second operands.
e \Writes the least significant 32 bits of the result in RdLo.
e Writes the most significant 32 bits of the result in RdHi.
The UMAAL instruction:
e Multiplies the two unsigned 32-bit integers in the first and second operands.
e Adds the unsigned 32-bit integer in RdHi to the 64-bit result of the multiplication.
e Adds the unsigned 32-bit integer in RdLo to the 64-bit result of the addition.
e Writes the top 32-bits of the result to RdHi.
e Writes the lower 32-bits of the result to RdLo.
The UMLAL instruction:
e Multiplies the two unsigned integers in the first and second operands.
e Adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo.
e Writes the result back to RdHi and RdLo.
Restrictions
In these instructions:
e Do not use SP and do not use PC.
e RdHiand RdLo must be different registers.
Condition Flags
These instructions do not affect the condition code flags.
Examples

UMULL RO, R4, R5, R6 ; Multiplies R5 and R6, writes the top 32 bits to R4
; and the bottom 32 bits to RO

Multiplies R2 and R7, adds R6, adds R3, writes the
top 32 bits to R6, and the bottom 32 bits to R3
Multiplies R5 and R3, adds R1:R2, writes to R1:R2.

UMAAL R3, R6, R2, R7

UMLAL R2, R1, R3, R5

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.6.3 SMLA and SMLAW
Signed Multiply Accumulate (halfwords).

Syntax

op{XY}{cond} Rd, Rn, Rm
op{Y}{cond} Rd, Rn, Rm, Ra
where:

op is one of:
SMLA Signed Multiply Accumulate Long (halfwords).

X and Y specifies which half of the source registers Rn and Rm are used as the first and second multi-
ply operand.

If X'is B, then the bottom halfword, bits [15:0], of Rn is used.
If X'is T, then the top halfword, bits [31:16], of Rn is used.

If Yis B, then the bottom halfword, bits [15:0], of Rm is used.
If Yis T, then the top halfword, bits [31:16], of Rm is used.

SMLAW Signed Multiply Accumulate (word by halfword).
Y specifies which half of the source register Rm is used as the second multiply operand.
If Yis T, then the top halfword, bits [31:16] of Rm is used.
If Yis B, then the bottom halfword, bits [15:0] of Rm is used.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm are registers holding the values to be multiplied.
Ra is a register holding the value to be added or subtracted from.
Operation
The SMALBB, SMLABT, SMLATB, SMLATT instructions:

e Multiplies the specified signed halfword, top or bottom, values from Rn and Rm.
e Adds the value in Ra to the resulting 32-bit product.
e Writes the result of the multiplication and addition in Rd.
The non-specified halfwords of the source registers are ignored.
The SMLAWB and SMLAWT instructions:
e Multiply the 32-bit signed values in Rn with:
e The top signed halfword of Rm, T instruction suffix.
e The bottom signed halfword of Rm, B instruction suffix.
e Add the 32-bit signed value in Ra to the top 32 bits of the 48-bit product.
e Writes the result of the multiplication and addition in Rd.
The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR. No overflow
can occur during the multiplication.

Restrictions
In these instructions, do not use SP and do not use PC.
Condition Flags

If an overflow is detected, the Q flag is set.

SAMA4CP16C [DATASHEET] 129
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Examples

SMLABB R5, R6, R4, R1 Multiplies bottom halfwords of R6 and R4, adds

R1 and writes to R5

Multiplies top halfword of R6 with bottom halfword
of R4, adds R1 and writes to R5

Multiplies top halfwords of R6 and R4, adds

R1 and writes the sum to R5

Multiplies bottom halfword of R6 with top halfword
of R4, adds R1 and writes to R5

Multiplies bottom halfword of R4 with top halfword of
R3, adds R2 and writes to R4

Multiplies R2 with bottom halfword of R5, adds

R3 to the result and writes top 32-bits to R10
Multiplies R2 with top halfword of R1, adds R5

and writes top 32-bits to R10.

SMLATB R5, R6, R4, R1

SMLATT R5, R6, R4, R1

SMLABT R5, R6, R4, R1

SMLABT R4, R3, R2

SMLAWB R10, R2, R5, R3

SMLAWT R10, R2, R1, R5

12.6.6.4 SMLAD

130

Signed Multiply Accumulate Long Dual
Syntax
op{X}{cond} Rd, Rn, Rm, Ra ;
where:
op is one of:
SMLAD Signed Multiply Accumulate Dual.
SMLADX Signed Multiply Accumulate Dual Reverse.
X specifies which halfword of the source register Rn is used as the multiply operand.
If X is omitted, the multiplications are bottom x bottom and top x top.
If X is present, the multiplications are bottom x top and top x bottom.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register holding the values to be multiplied.
Rm the second operand register.
Ra is the accumulate value.
Operation

The SMLAD and SMLADX instructions regard the two operands as four halfword 16-bit values. The SMLAD and
SMLADX instructions:

e If X is not present, multiply the top signed halfword value in Rn with the top signed halfword of Rm and the
bottom signed halfword values in Rn with the bottom signed halfword of Rm.

e Orif Xis present, multiply the top signed halfword value in Rn with the bottom signed halfword of Rm and the
bottom signed halfword values in Rn with the top signed halfword of Rm.

e Add both multiplication results to the signed 32-bit value in Ra.
e Writes the 32-bit signed result of the multiplication and addition to Rd.
Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Examples

SMLAD R10, R2, R1, R5 ; Multiplies two halfword values in R2 with
; corresponding halfwords in R1, adds R5 and
; writes to R10

SMLALDX RO, R2, R4, R6 ; Multiplies top halfword of R2 with bottom
; halfword of R4, multiplies bottom halfword of R2
; with top halfword of R4, adds R6 and writes to
: RO.

12.6.6.5 SMLAL and SMLALD

Signed Multiply Accumulate Long, Signed Multiply Accumulate Long (halfwords) and Signed Multiply Accumulate
Long Dual.

Syntax

op{cond} RdLo, RdHi, Rn, Rm

op{XY}{cond} RdLo, RdHi, Rn, Rm

op{X}{cond} RdLo, RdHi, Rn, Rm
where:

op is one of:
MLAL Signed Multiply Accumulate Long.
SMLAL Signed Multiply Accumulate Long (halfwords, X and Y).

X and Y specify which halfword of the source registers Rn and Rm are used as the first and second
multiply operand:

If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X'is T, then the top halfword, bits [31:16], of Rn is used.

If Yis B, then the bottom halfword, bits [15:0], of Rm is used.
If Yis T, then the top halfword, bits [31:16], of Rm is used.

SMLALD Signed Multiply Accumulate Long Dual.

SMLALDX Signed Multiply Accumulate Long Dual Reversed.

If the X is omitted, the multiplications are bottom x bottom and top x top.

If X is present, the multiplications are bottom x top and top x bottom.
cond is an optional condition code, see “Conditional Execution”.

RdHi, RdLo are the destination registers.
RdLo is the lower 32 bits and RdHi is the upper 32 bits of the 64-bit integer.
For SMLAL, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD and SMLALDX, they also hold the
accumulating value.

Rn, Rm are registers holding the first and second operands.

Operation

The SMLAL instruction:
e Multiplies the two’s complement signed word values from Rn and Rm.
e Adds the 64-bit value in RdLo and RdHi to the resulting 64-bit product.
e Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The SMLALBB, SMLALBT, SMLALTB and SMLALTT instructions:
e Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.
e Adds the resulting sign-extended 32-bit product to the 64-bit value in RdLo and RdHi.
e Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The non-specified halfwords of the source registers are ignored.

SAMA4CP16C [DATASHEET] 131
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

The SMLALD and SMLALDX instructions interpret the values from Rn and Rm as four halfword two’s complement
signed 16-bit integers. These instructions:

e If X is not present, multiply the top signed halfword value of Rn with the top signed halfword of Rm and the
bottom signed halfword values of Rn with the bottom signed halfword of Rm.

e Orif Xis present, multiply the top signed halfword value of Rn with the bottom signed halfword of Rm and the
bottom signed halfword values of Rn with the top signed halfword of Rm.

e Add the two multiplication results to the signed 64-bit value in RdLo and RdHi to create the resulting 64-bit

product.
e Write the 64-bit product in RdLo and RdHi.
Restrictions

In these instructions:

e Do not use SP and do not use PC.
e RdHiand RdLo must be different registers.
Condition Flags

These instructions do not affect the condition code flags.
Examples

SMLAL R4, R5, R3, R8 ; Multiplies R3 and R8, adds R5:R4 and writes to
> R5:R4
SMLALBT R2, R1, R6, R7 ; Multiplies bottom halfword of R6 with top
; halfword of R7, sign extends to 32-bit, adds
; R1:R2 and writes to R1:R2
SMLALTB R2, R1, R6, R7 ; Multiplies top halfword of R6 with bottom
; halfword of R7,sign extends to 32-bit, adds R1:R2
; and writes to R1:R2
SMLALD R6, R8, R5, R1 ; Multiplies top halfwords in R5 and R1 and bottom
; halfwords of R5 and R1, adds R8:R6 and writes to
; R8:R6
SMLALDX R6, R8, R5, R1 ; Multiplies top halfword in R5 with bottom
; halfword of R1, and bottom halfword of R5 with
; top halfword of R1, adds R8:R6 and writes to
; R8:R6.

12.6.6.6 SMLSD and SMLSLD

132

Signed Multiply Subtract Dual and Signed Multiply Subtract Long Dual

Syntax
op{X}{cond} Rd, Rn, Rm, Ra
where:
op is one of:
SMLSD Signed Multiply Subtract Dual.
SMLSDX Signed Multiply Subtract Dual Reversed.
SMLSLD Signed Multiply Subtract Long Dual.
SMLSLDX Signed Multiply Subtract Long Dual Reversed.
SMLAW Signed Multiply Accumulate (word by halfword).
If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Ra is the register holding the accumulate value.
Operation

The SMLSD instruction interprets the values from the first and second operands as four signed halfwords. This
instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit halfword multiplications.

e Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.

e Adds the signed accumulate value to the result of the subtraction.

e Writes the result of the addition to the destination register.
The SMLSLD instruction interprets the values from Rn and Rm as four signed halfwords.

This instruction:

e Optionally rotates the halfwords of the second operand.
e Performs two signed 16 x 16-bit halfword multiplications.
e Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.
e Adds the 64-bit value in RdHi and RdLo to the result of the subtraction.
e Writes the 64-bit result of the addition to the RdHi and RdLo.
Restrictions

In these instructions:

e Do not use SP and do not use PC.
Condition Flags

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the multiplications
or subtraction.

For the Thumb instruction set, these instructions do not affect the condition code flags.
Examples

SMLSD RO, R4, R5, R6 ; Multiplies bottom halfword of R4 with bottom
; halfword of R5, multiplies top halfword of R4
; with top halfword of R5, subtracts second from
; First, adds R6, writes to RO
SMLSDX R1, R3, R2, RO ; Multiplies bottom halfword of R3 with top
; halfword of R2, multiplies top halfword of R3
; with bottom halfword of R2, subtracts second from
; First, adds RO, writes to R1
SMLSLD R3, R6, R2, R7 ; Multiplies bottom halfword of R6 with bottom
; halfword of R2, multiplies top halfword of R6
; with top halfword of R2, subtracts second from
; First, adds R6:R3, writes to R6:R3
SMLSLDX R3, R6, R2, R7 ; Multiplies bottom halfword of R6 with top
; halfword of R2, multiplies top halfword of R6
; with bottom halfword of R2, subtracts second from
; First, adds R6:R3, writes to R6:R3.

SAMA4CP16C [DATASHEET] 133
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.6.7 SMMLA and SMMLS
Signed Most Significant Word Multiply Accumulate and Signed Most Significant Word Multiply Subtract

Syntax
op{R}{cond} Rd, Rn, Rm, Ra
where:
op is one of:
SMMLA Signed Most Significant Word Multiply Accumulate.
SMMLS Signed Most Significant Word Multiply Subtract.
If the X is omitted, the multiplications are bottom x bottom and top x top.
R is a rounding error flag. If R is specified, the result is rounded instead of being truncated. In this case
the constant 0x80000000 is added to the product before the high word is extracted.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second multiply operands.
Ra is the register holding the accumulate value.
Operation

The SMMLA instruction interprets the values from Rn and Rm as signed 32-bit words.
The SMMLA instruction:

e Multiplies the values in Rn and Rm.
e Optionally rounds the result by adding 0x80000000.
e Extracts the most significant 32 bits of the result.
e Adds the value of Ra to the signed extracted value.
e Writes the result of the addition in Rd.
The SMMLS instruction interprets the values from Rn and Rm as signed 32-bit words.

The SMMLS instruction:

e Multiplies the values in Rn and Rm.
e Optionally rounds the result by adding 0x80000000.
e Extracts the most significant 32 bits of the result.
e Subtracts the extracted value of the result from the value in Ra.
e Writes the result of the subtraction in Rd.
Restrictions

In these instructions:

e Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the condition code flags.
Examples

SMMLA RO, R4, R5, R6 ; Multiplies R4 and R5, extracts top 32 bits, adds
: R6, truncates and writes to RO

SMMLAR R6, R2, R1, R4 ; Multiplies R2 and R1, extracts top 32 bits, adds
: R4, rounds and writes to R6

SMMLSR R3, R6, R2, R7 ; Multiplies R6 and R2, extracts top 32 bits,
; subtracts R7, rounds and writes to R3

SMMLS R4, R5, R3, R8 ; Multiplies R5 and R3, extracts top 32 bits,
; subtracts R8, truncates and writes to R4.

134 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.6.8 SMMUL
Signed Most Significant Word Multiply

Syntax
op{R}{cond} Rd, Rn, Rm
where:
op is one of:
SMMUL Signed Most Significant Word Multiply.
R is a rounding error flag. If R is specified, the result is rounded instead of being truncated. In this case
the constant 0x80000000 is added to the product before the high word is extracted.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SMMUL instruction interprets the values from Rn and Rm as two’s complement 32-bit signed integers. The
SMMUL instruction:

e Multiplies the values from Rn and Rm.

e Optionally rounds the result, otherwise truncates the result.

e Writes the most significant signed 32 bits of the result in Rd.
Restrictions

In this instruction:

e Do not use SP and do not use PC.
Condition Flags

This instruction does not affect the condition code flags.
Examples

SMULL RO, R4, R5 ; Multiplies R4 and R5, truncates top 32 bits
; and writes to RO

SMULLR R6, R2 ; Multiplies R6 and R2, rounds the top 32 bits
; and writes to R6.

12.6.6.9 SMUAD and SMUSD
Signed Dual Multiply Add and Signed Dual Multiply Subtract

Syntax
op{X}{cond} Rd, Rn, Rm
where:
op is one of:
SMUAD Signed Dual Multiply Add.
SMUADX Signed Dual Multiply Add Reversed.
SMUSD Signed Dual Multiply Subtract.
SMUSDX Signed Dual Multiply Subtract Reversed.
If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
/ItmeL SAM4CP16C [DATASHEET] 135

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Operation

The SMUAD instruction interprets the values from the first and second operands as two signed halfwords in each
operand. This instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit multiplications.

e Adds the two multiplication results together.

e Writes the result of the addition to the destination register.
The SMUSD instruction interprets the values from the first and second operands as two’s complement signed inte-
gers. This instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit multiplications.

e Subtracts the result of the top halfword multiplication from the result of the bottom halfword multiplication.

e Writes the result of the subtraction to the destination register.
Restrictions

In these instructions:

e Do not use SP and do not use PC.
Condition Flags

Sets the Q flag if the addition overflows. The multiplications cannot overflow.
Examples

SMUAD RO, R4, R5 Multiplies bottom halfword of R4 with the bottom
halfword of R5, adds multiplication of top halfword
of R4 with top halfword of R5, writes to RO
Multiplies bottom halfword of R7 with top halfword

of R4, adds multiplication of top halfword of R7

with bottom halfword of R4, writes to R3

Multiplies bottom halfword of R4 with bottom halfword
of R6, subtracts multiplication of top halfword of R6
with top halfword of R3, writes to R3

Multiplies bottom halfword of R5 with top halfword of
R3, subtracts multiplication of top halfword of R5
with bottom halfword of R3, writes to R4.

SMUADX R3, R7, R4
SMUSD R3, R6, R2

SMUSDX R4, R5, R3

12.6.6.10 SMUL and SMULW
Signed Multiply (halfwords) and Signed Multiply (word by halfword).

Syntax

op{XY}{cond} Rd, Rn, Rm
op{Y}{cond} Rd. Rn, Rm
For SMULXY only:

op is one of:
SMUL{XY} Signed Multiply (halfwords).
X and Y specify which halfword of the source registers Rn and Rm is used as the first and second mul-
tiply operand.
If X'is B, then the bottom halfword, bits [15:0] of Rn is used.
If Xis T, then the top halfword, bits [31:16] of Rnis used. If Yis B, then the bottom halfword, bits
[15:0], of Rmis used.
If Yis T, then the top halfword, bits [31:16], of Rm is used.

SMULW{Y} Signed Multiply (word by halfword).

136 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Y specifies which halfword of the source register Rm is used as the second multiply operand.
If Yis B, then the bottom halfword (bits [15:0]) of Rm is used.
If Yis T, then the top halfword (bits [31:16]) of Rm is used.

cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.

Rn, Rm are registers holding the first and second operands.
Operation

The SMULBB, SMULTB, SMULBT and SMULTT instructions interprets the values from Rn and Rm as four signed 16-
bit integers. These instructions:

e Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.
e Writes the 32-bit result of the multiplication in Rd.

The SMULWT and SMULWB instructions interprets the values from Rn as a 32-bit signed integer and Rm as two
halfword 16-bit signed integers. These instructions:

e Multiplies the first operand and the top, T suffix, or the bottom, B suffix, halfword of the second operand.
e Writes the signed most significant 32 bits of the 48-bit result in the destination register.
Restrictions
In these instructions:
e Do not use SP and do not use PC.
e RdHiand RdLo must be different registers.

Examples

SMULBT RO, R4, R5 ; Multiplies the bottom halfword of R4 with the
; top halfword of R5, multiplies results and
; writes to RO

SMULBB RO, R4, R5 ; Multiplies the bottom halfword of R4 with the
; bottom halfword of R5, multiplies results and
; writes to RO

SMULTT RO, R4, R5 ; Multiplies the top halfword of R4 with the top
; halfword of R5, multiplies results and writes
; to RO

SMULTB RO, R4, R5 ; Multiplies the top halfword of R4 with the
; bottom halfword of R5, multiplies results and
; and writes to RO

SMULWT R4, R5, R3 ; Multiplies R5 with the top halfword of R3,
; extracts top 32 bits and writes to R4

SMULWB R4, R5, R3 ; Multiplies R5 with the bottom halfword of R3,

extracts top 32 bits and writes to R4.

12.6.6.11 UMULL, UMLAL, SMULL, and SMLAL
Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.

Syntax
op{cond} RdLo, RdHi, Rn, Rm
where:
op is one of:
UMULL Unsigned Long Multiply.
UMLAL Unsigned Long Multiply, with Accumulate.
SMULL Signed Long Multiply.
SMLAL Signed Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional Execution”.
/ItmeL SAM4CP16C [DATASHEET] 137

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

RdHi, RdLo are the destination registers. For UMLAL and SMLAL they also hold the accumulating value.
Rn, Rm are registers holding the operands.
Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers and
places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers, adds
the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo, and writes the result back to RdHi and
RdlLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies these
integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in
RadHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies these
integers, adds the 64-bit result to the 64-bit signed integer contained in RdHi and RdLo, and writes the result back to
RdHi and RdLo.

Restrictions
In these instructions:

e Do not use SP and do not use PC.
e RdHiand RdLo must be different registers.
Condition Flags

These instructions do not affect the condition code flags.

Examples
UMULL RO, R4, R5, R6 ; Unsigned (R4,R0) = R5 x R6
SMLAL R4, R5, R3, R8 ; Signed (R5,R4) = (R5,R4) + R3 x R8

12.6.6.12 SDIV and UDIV

138

Signed Divide and Unsigned Divide.
Syntax

SDIV{cond} {Rd,} Rn, Rm
UDIV{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the value to be divided.

Rm is a register holding the divisor.

Operation

SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded towards zero.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
SDIV RO, R2, R4 ; Signed divide, RO = R2/R4
ubiv R8, R8, R1 ; Unsigned divide, R8 = R8/R1
SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.7 Saturating Instructions

The table below shows the saturating instructions:

Table 12-22. Saturating Instructions

Mnemonic | Description

SSAT Signed Saturate

SSAT16 Signed Saturate Halfword

USAT Unsigned Saturate

USAT16 Unsigned Saturate Halfword

QADD Saturating Add

QSuUB Saturating Subtract

QSUB16 Saturating Subtract 16

QASX Saturating Add and Subtract with Exchange
QSAX Saturating Subtract and Add with Exchange
QDADD Saturating Double and Add

QDSUB Saturating Double and Subtract

UQADD16 Unsigned Saturating Add 16

UQADDS8 Unsigned Saturating Add 8

UQASX Unsigned Saturating Add and Subtract with Exchange
UQSAX Unsigned Saturating Subtract and Add with Exchange
UQSuUB16 Unsigned Saturating Subtract 16

UQSuUB8 Unsigned Saturating Subtract 8

For signed n-bit saturation, this means that:

e If the value to be saturated is less than -2, the result returned is -2"".
e If the value to be saturated is greater than 2"'-1, the result returned is 2"'-1.
e Otherwise, the result returned is the same as the value to be saturated.

For unsigned n-bit saturation, this means that:

e If the value to be saturated is less than 0, the result returned is 0.
e If the value to be saturated is greater than 2"-1, the result returned is 2"-1.
e Otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the instruc-
tion sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. To clear the Q flag to 0, the MSR
instruction must be used; see “MSR”.

To read the state of the Q flag, the MRS instruction must be used; see “MRS”.

SAMA4CP16C [DATASHEET] 139
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.7.1 SSAT and USAT

Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

Syntax

op{cond} Rd, #n, Rm {, shift #s}

where:

op

cond

Rd

n

n ranges from 1
to 32 for SSAT
Rm

shift #s

ASR #s

LSL #s

Operation

is one of:

SSAT Saturates a signed value to a signed range.

USAT Saturates a signed value to an unsigned range.

is an optional condition code, see “Conditional Execution”.
is the destination register.

specifies the bit position to saturate to:

n ranges from 0 to 31 for USAT.

is the register containing the value to saturate.
is an optional shift applied to Rm before saturating. It must be one of the following:
where s is in the range 1 to 31.

where s is in the range 0 to 31.

These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range -2"' < x < 2™1-1.

The USAT instruction applies the specified shift, then saturates to the unsigned range 0 < x < 2"-1.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples
SSAT

USATNE RO, #7, R5

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

R7, #16, R7, LSL #4

Logical shift left value in R7 by 4, then
saturate it as a signed 16-bit value and

write it back to R7

Conditionally saturate value in R5 as an

unsigned 7 bit value and write it to RO.

Atmel

12.6.7.2 SSAT16 and USAT16

Signed Saturate and Unsigned Saturate to any bit position for two halfwords.

Syntax
op{cond} Rd, #n, Rm

where:

op is one of:
SSAT16 Saturates a signed halfword value to a signed range.
USAT16 Saturates a signed halfword value to an unsigned range.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

n specifies the bit position to saturate to:

n ranges from 1 n ranges from 0 to 15 for USAT.

to 16 for SSAT

Rm is the register containing the value to saturate.

Operation

The SSAT16 instruction:

Saturates two signed 16-bit halfword values of the register with the value to saturate from selected by the bit position
inn.

Writes the results as two signed 16-bit halfwords to the destination register.
The USAT16 instruction:

Saturates two unsigned 16-bit halfword values of the register with the value to saturate from selected by the bit posi-
tion in n.

Writes the results as two unsigned halfwords in the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

SSAT16 R7, #9, R2 ; Saturates the top and bottom highwords of R2
; as 9-bit values, writes to corresponding halfword
; of R7
USAT16NE RO, #13, R5 ; Conditionally saturates the top and bottom
; halfwords of R5 as 13-bit values, writes to
; corresponding halfword of RO.

SAMA4CP16C [DATASHEET] 141
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.7.3 QADD and QSUB

142

Saturating Add and Saturating Subtract, signed.
Syntax

op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:
op is one of:
QADD Saturating 32-bit add.
QADD8 Saturating four 8-bit integer additions.
QADD16 Saturating two 16-bit integer additions.
QSUB Saturating 32-bit subtraction.
QSUBS8 Saturating four 8-bit integer subtraction.
QSUB16 Saturating two 16-bit integer subtraction.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

These instructions add or subtract two, four or eight values from the first and second operands and then writes a
signed saturated value in the destination register.

The QADD and QSUB instructions apply the specified add or subtract, and then saturate the result to the signed
range -2™' < x <2™'-1, where x is given by the number of bits applied in the instruction, 32, 16 or 8.

If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the QADD
and QSUB instructions set the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. The 8-bit and
16-bit QADD and QSUB instructions always leave the Q flag unchanged.

To clear the Q flag to 0, the MSR instruction must be used; see “MSR".

To read the state of the Q flag, the MRS instruction must be used; see “MRS”.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

QADD16 R7, R4, R2 Adds halfwords of R4 with corresponding halfword of
R2, saturates to 16 bits and writes to
corresponding halfword of R7

Adds bytes of R1 to the corresponding bytes of R6,
saturates to 8 bits and writes to corresponding
byte of R3

Subtracts halfwords of R3 from corresponding
halfword of R2, saturates to 16 bits, writes to
corresponding halfword of R4

Subtracts bytes of R5 from the corresponding byte
in R2, saturates to 8 bits, writes to corresponding
byte of R4.

QADD8 R3, R1, R6

QSuUB16 R4, R2, R3

QSUB8 R4, R2, R5

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.7.4 QASX and QSAX
Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, signed.

Syntax
op{cond} {Rd}, Rm, Rn

where:
op is one of:

QASX Add and Subtract with Exchange and Saturate.

QSAX Subtract and Add with Exchange and Saturate.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The QASX instruction:

1.
2.
3.

Adds the top halfword of the source operand with the bottom halfword of the second operand.

Subtracts the top halfword of the second operand from the bottom highword of the first operand.

Saturates the result of the subtraction and writes a 16-bit signed integer in the range —2'° < x < 2% — 1, where x
equals 16, to the bottom halfword of the destination register.

Saturates the results of the sum and writes a 16-bit signed integer in the range —2'° < x < 2% — 1, where x
equals 16, to the top halfword of the destination register.

The QSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Adds the bottom halfword of the source operand with the top halfword of the second operand.
3. Saturates the results of the sum and writes a 16-bit signed integer in the range —2'% < x < 2% — 1, where x
equals 16, to the bottom halfword of the destination register.
4. Saturates the result of the subtraction and writes a 16-bit signed integer in the range —2'% < x < 2'® — 1, where x
equals 16, to the top halfword of the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

Atmel

QASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2,
; saturates to 16 bits, writes to top halfword of R7
; Subtracts top highword of R2 from bottom halfword of
; R4, saturates to 16 bits and writes to bottom halfword
; of R7
QSAX RO, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of
; R3, saturates to 16 bits, writes to top halfword of RO
; Adds bottom halfword of R3 to top halfword of R5,
; saturates to 16 bits, writes to bottom halfword of RO.

SAM4CP16C [DATASHEET] 143

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.7.5 QDADD and QDSUB

144

Saturating Double and Add and Saturating Double and Subtract, signed.

Syntax
op{cond} {Rd}, Rm, Rn

where:
op is one of:

QDADD Saturating Double and Add.

QDSUB Saturating Double and Subtract.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rm, Rn are registers holding the first and second operands.
Operation

The QDADD instruction:
e Doubles the second operand value.
e Adds the result of the doubling to the signed saturated value in the first operand.
e Writes the result to the destination register.

The QDSUB instruction:
e Doubles the second operand value.
e Subtracts the doubled value from the signed saturated value in the first operand.
e Writes the result to the destination register.

Both the doubling and the addition or subtraction have their results saturated to the 32-bit signed integer range
—23" < x < 237 1. If saturation occurs in either operation, it sets the Q flag in the APSR.

Restrictions
Do not use SP and do not use PC.
Condition Flags

If saturation occurs, these instructions set the Q flag to 1.

Examples
QDADD R7, R4, R2 ; Doubles and saturates R4 to 32 bits, adds R2,
; saturates to 32 bits, writes to R7
QDSsuB RO, R3, R5 ; Subtracts R3 doubled and saturated to 32 bits
; Ffrom R5, saturates to 32 bits, writes to RO.
SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.7.6 UQASX and UQSAX
Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, unsigned.

Syntax
op{cond} {Rd}, Rm, Rn

where:
type is one of:

UQASX Add and Subtract with Exchange and Saturate.

UQSAX Subtract and Add with Exchange and Saturate.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UQASX instruction:

1.
2.
3.

Adds the bottom halfword of the source operand with the top halfword of the second operand.

Subtracts the bottom halfword of the second operand from the top highword of the first operand.

Saturates the results of the sum and writes a 16-bit unsigned integer in the range 0 < x < 2'® — 1, where x
equals 16, to the top halfword of the destination register.

Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 < x < 2'® — 1, where x
equals 16, to the bottom halfword of the destination register.

The UQSAX instruction:

Subtracts the bottom halfword of the second operand from the top highword of the first operand.

2. Adds the bottom halfword of the first operand with the top halfword of the second operand.
3. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 < x < 2'® — 1, where x
equals 16, to the top halfword of the destination register.
4. Saturates the results of the addition and writes a 16-bit unsigned integer in the range 0 < x < 2'® — 1, where x
equals 16, to the bottom halfword of the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

Atmel

UQASX R7, R4, R2 Adds top halfword of R4 with bottom halfword of R2,
saturates to 16 bits, writes to top halfword of R7
Subtracts top halfword of R2 from bottom halfword of

R4, saturates to 16 bits, writes to bottom halfword of R7
Subtracts bottom halfword of R5 from top halfword of R3,
saturates to 16 bits, writes to top halfword of RO

Adds bottom halfword of R4 to top halfword of R5

saturates to 16 bits, writes to bottom halfword of RO.

UQSAX RO, R3, R5

SAM4CP16C [DATASHEET] 145

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.7.7 UQADD and UQSUB

Saturating Add and Saturating Subtract Unsigned.
Syntax

op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:

op is one of:
UQADDS8 Saturating four unsigned 8-bit integer additions.
UQADD16 Saturating two unsigned 16-bit integer additions.
UDSUBS8 Saturating four unsigned 8-bit integer subtractions.
UQSUB16 Saturating two unsigned 16-bit integer subtractions.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

These instructions add or subtract two or four values and then writes an unsigned saturated value in the destination
register.

The UQADD16 instruction:

e Adds the respective top and bottom halfwords of the first and second operands.

e Saturates the result of the additions for each halfword in the destination register to the unsigned range
0<x<2'%1 where xis 16.

The UQADDS instruction:

e Adds each respective byte of the first and second operands.

e Saturates the result of the addition for each byte in the destination register to the unsigned range 0 < x < 28-1,
where x is 8.

The UQSUB16 instruction:

e Subtracts both halfwords of the second operand from the respective halfwords of the first operand.

e Saturates the result of the differences in the destination register to the unsigned range 0 < x < 2'6-1, where x is
16.

The UQSUBS instructions:

e Subtracts the respective bytes of the second operand from the respective bytes of the first operand.
e Saturates the results of the differences for each byte in the destination register to the unsigned range
0 < x < 28-1, where x is 8.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.
Examples

UQADD16 R7,R4,R2 ; Adds halfwords in R4 to corresponding halfword in R2,
; saturates to 16 bits, writes to corresponding halfword of R7
UQADD8 R4,R2,R5 ; Adds bytes of R2 to corresponding byte of R5, saturates
; to 8 bits, writes to corresponding bytes of R4
UQsuB1l6 R6,R3,RO ; Subtracts halfwords in RO from corresponding halfword
; Iin R3, saturates to 16 bits, writes to corresponding
; halfword In R6
uQsuB8 R1,R5,R6 ; Subtracts bytes in R6 from corresponding byte of R5,
; saturates to 8 bits, writes to corresponding byte of R1.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.8 Packing and Unpacking Instructions

The table below shows the instructions that operate on packing and unpacking data.

Table 12-23. Packing and Unpacking Instructions

Mnemonic

Description

PKH

Pack Halfword

SXTAB

Extend 8 bits to 32 and add

SXTAB16

Dual extend 8 bits to 16 and add

SXTAH

Extend 16 bits to 32 and add

SXTB

Sign extend a byte

SXTB16

Dual extend 8 bits to 16 and add

SXTH

Sign extend a halfword

UXTAB

Extend 8 bits to 32 and add

UXTAB16

Dual extend 8 bits to 16 and add

UXTAH

Extend 16 bits to 32 and add

UXTB

Zero extend a byte

UXTB16

Dual zero extend 8 bits to 16 and add

UXTH

Zero extend a halfword

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.8.1 PKHBT and PKHTB

148

Pack Halfword
Syntax

op{cond} {Rd}, Rn, Rm {, LSL #imm}
op{cond} {Rd}, Rn, Rm {, ASR #imm}

where:
op is one of:
PKHBT Pack Halfword, bottom and top with shift.
PKHTB Pack Halfword, top and bottom with shift.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register holding the value to be optionally shifted.
imm is the shift length. The type of shift length depends on the instruction:
For PKHBT
LSL a left shift with a shift length from 1 to 31, 0 means no shift.
For PKHTB
ASR an arithmetic shift right with a shift length from 1 to 32, a shift of 32-bits is encoded as 0b00000.
Operation

The PKHBT instruction:

1. Writes the value of the bottom halfword of the first operand to the bottom halfword of the destination register.
2. If shifted, the shifted value of the second operand is written to the top halfword of the destination register.
The PKHTB instruction:

1. Writes the value of the top halfword of the first operand to the top halfword of the destination register.
2. If shifted, the shifted value of the second operand is written to the bottom halfword of the destination register.
Restrictions

Rd must not be SP and must not be PC.
Condition Flags

This instruction does not change the flags.
Examples

PKHBT R3, R4, R5 LSL #0 ; Writes bottom halfword of R4 to bottom halfword of
R3, writes top halfword of R5, unshifted, to top
halfword of R3

Writes R2 shifted right by 1 bit to bottom halfword
of R4, and writes top halfword of RO to top

halfword of R4.

PKHTB R4, RO, R2 ASR #1

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.8.2 SXT and UXT
Sign extend and Zero extend.

Syntax

op{cond} {Rd,} Rm {, ROR #n}
op{cond} {Rd}, Rm {, ROR #n}

where:
op is one of:
SXTB Sign extends an 8-bit value to a 32-bit value.
SXTH Sign extends a 16-bit value to a 32-bit value.
SXTB16 Sign extends two 8-bit values to two 16-bit values.
UXTB Zero extends an 8-bit value to a 32-bit value.
UXTH Zero extends a 16-bit value to a 32-bit value.
UXTB16 Zero extends two 8-bit values to two 16-bit values.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:
ROR #8 Value from Rm is rotated right 8 bits.
Operation

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:
e SXTB extracts bits[7:0] and sign extends to 32 bits.

bits.

UXTB extracts bits[7:0] and zero extends to 32 bits.

SXTH extracts bits[15:0] and sign extends to 32 bits.

UXTH extracts bits[15:0] and zero extends to 32 bits.

SXTB16 extracts bits[7:0] and sign extends to 16 bits, and extracts bits [23:16] and sign extends to 16

e UXTB16 extracts bits[7:0] and zero extends to 16 bits, and extracts bits [23:16] and zero extends to 16

bits.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples
SXTH R4, R6, ROR #16 ;

UXTB R3, R10 ;

Atmel

Rotates R6 right by 16 bits, obtains bottom halfword of
of result, sign extends to 32 bits and writes to R4
Extracts lowest byte of value in R10, zero extends, and
writes to R3.

SAM4CP16C [DATASHEET] 149

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.8.3 SXTA and UXTA
Signed and Unsigned Extend and Add

150

Syntax

op{cond} {Rd,} Rn, Rm {, ROR #n}
op{cond} {Rd,} Rn, Rm {, ROR #n}

where:
op

cond
Rd

Rn

Rm
ROR #n

Operation

is one of:

SXTAB Sign extends an 8-bit value to a 32-bit value and add.
SXTAH Sign extends a 16-bit value to a 32-bit value and add.
SXTAB16 Sign extends two 8-bit values to two 16-bit values and add.
UXTAB Zero extends an 8-bit value to a 32-bit value and add.
UXTAH Zero extends a 16-bit value to a 32-bit value and add.
UXTAB16 Zero extends two 8-bit values to two 16-bit values and add.

is an optional condition code, see “Conditional Execution”.

is the destination register.

is the first operand register.

is the register holding the value to rotate and extend.

is one of:

ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If ROR #n is omitted, no rotation is performed.

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:
SXTAB extracts bits[7:0] from Rm and sign extends to 32 bits.

UXTAB extracts bits[7:0] from Rm and zero extends to 32 bits.

SXTAH extracts bits[15:0] from Rm and sign extends to 32 bits.

UXTAH extracts bits[15:0] from Rm and zero extends to 32 bits.

SXTAB16 extracts bits[7:0] from Rm and sign extends to 16 bits, and extracts bits [23:16] from Rm and

sign extends to 16 bits.

UXTAB16 extracts bits[7:0] from Rm and zero extends to 16 bits, and extracts bits [23:16] from Rm and

zero extends to 16 bits.

3. Adds the signed or zero extended value to the word or corresponding halfword of Rn and writes the result in Rd.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples

SXTAH R4, R8, R6, ROR #16 ;

UXTAB R3, R4, R10

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Rotates R6 right by 16 bits, obtains bottom
halfword, sign extends to 32 bits, adds
R8,and writes to R4

Extracts bottom byte of R10 and zero extends
to 32 bits, adds R4, and writes to R3.

Atmel

12.6.9 Bitfield Instructions

The table below shows the instructions that operate on adjacent sets of bits in registers or bitfields.

Table 12-24. Packing and Unpacking Instructions

Mnemonic | Description

BFC Bit Field Clear

BFI Bit Field Insert

SBFX Signed Bit Field Extract
SXTB Sign extend a byte

SXTH Sign extend a halfword
UBFX Unsigned Bit Field Extract
UXTB Zero extend a byte

UXTH Zero extend a halfword

12.6.9.1 BFC and BFI
Bit Field Clear and Bit Field Insert.

Syntax
BFC{cond} Rd, #lIsb, #width

BFI{cond} Rd, Rn, #lIsb, #width

where:

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the source register.

Isb is the position of the least significant bit of the bitfield. /sb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-/sb.

Operation

BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position /sb. Other bits in Rd are

unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at the low bit position
Isb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.

Examples

BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to O

BFI R9, R2, #8, #12

; Replace bit 8 to bit 19 (12 bits) of R9 with

; bit 0 to bit 11 from R2.

Atmel

SAM4CP16C [DATASHEET] 151

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.9.2 SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

Syntax

SBFX{cond} Rd, Rn, #lIsb, #width
UBFX{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the source register.

Isb is the position of the least significant bit of the bitfield. /sb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-/sb.

Operation

SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the destination register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples

SBFX RO, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) from R1 and sign
; extend to 32 bits and then write the result to RO.
UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from R11l and zero
; extend to 32 bits and then write the result to RS.

12.6.9.3 SXT and UXT
Sign extend and Zero extend.

152

Syntax

SXTextend{cond} {Rd,} Rm {, ROR #n}
UXTextend{cond} {Rd}, Rm {, ROR #n}

where:
extend is one of:
B Extends an 8-bit value to a 32-bit value.
H Extends a 16-bit value to a 32-bit value.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If ROR #n is omitted, no rotation is performed.
SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Operation
These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:
e SXTB extracts bits[7:0] and sign extends to 32 bits.
e UXTB extracts bits[7:0] and zero extends to 32 bits.
e SXTH extracts bits[15:0] and sign extends to 32 bits.
e UXTH extracts bits[15:0] and zero extends to 32 bits.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not affect the flags.
Examples

SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the lower
; halfword of the result and then sign extend to
; 32 bits and write the result to R4.

UXTB R3, R10 ; Extract lowest byte of the value in R10 and zero
; extend it, and write the result to R3.

12.6.10 Branch and Control Instructions
The table below shows the branch and control instructions.

Table 12-25. Branch and Control Instructions

Mnemonic | Description

B Branch

BL Branch with Link

BLX Branch indirect with Link

BX Branch indirect

CBNz Compare and Branch if Non Zero

CBz Compare and Branch if Zero

IT If-Then

TBB Table Branch Byte

TBH Table Branch Halfword
/ItmeL SAM4CP16C [DATASHEET] 153

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.10.1 B, BL, BX, and BLX

154

Branch instructions.
Syntax

B{cond} label
BL{cond} label
BX{cond} Rm
BLX{cond} Rm

where:

B is branch (immediate).

BL is branch with link (immediate).

BX is branch indirect (register).

BLX is branch indirect with link (register).

cond is an optional condition code, see “Conditional Execution”.

label is a PC-relative expression. See “PC-relative Expressions”.

Rm is a register that indicates an address to branch to. Bit[0] of the value in Rm must be 1, but the address
to branch to is created by changing bit[0] to 0.

Operation

All these instructions cause a branch to /abel, or to the address indicated in Rm. In addition:

e The BL and BLX instructions write the address of the next instruction to LR (the link register, R14).
e The BX and BLX instructions result in a UsageFault exception if bit[0] of Rm is 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block. All other branch instruc-
tions must be conditional inside an IT block, and must be unconditional outside the IT block, see “IT”.

The table below shows the ranges for the various branch instructions.
Table 12-26. Branch Ranges

Instruction Branch Range

B label -16 MB to +16 MB
Bcond label (outside IT block) -1 MB to +1 MB
Bcond label (inside IT block) -16 MB to +16 MB
BL{cond} label -16 MB to +16 MB
BX{cond} Rm Any value in register
BLX{cond} Rm Any value in register

The .W suffix might be used to get the maximum branch range. See “Instruction Width Selection”.

Restrictions
The restrictions are:

e Do not use PC in the BLX instruction.
e For BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target address created
by changing bit[0] to 0.
e When any of these instructions is inside an IT block, it must be the last instruction of the IT block.
Bcond is the only conditional instruction that is not required to be inside an IT block. However, it has a longer branch
range when it is inside an IT block.
Condition Flags
These instructions do not change the flags.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Examples
B loopA Branch to loopA
BLE ng Conditionally branch to label ng

B.W target
BEQ target
BEQ.W target

Branch to target within 16MB range
Conditionally branch to target
Conditionally branch to target within 1MB

BL funC Branch with link (Call) to function funC, return address
stored in LR

BX LR Return from function call

BXNE RO Conditionally branch to address stored in RO

BLX RO Branch with link and exchange (Call) to a address stored in RO

12.6.10.2 CBZ and CBNZ

Compare and Branch on Zero, Compare and Branch on Non-Zero.
Syntax

CBZ Rn, label
CBNZ Rn, label

where:

Rn is the register holding the operand.
label is the branch destination.
Operation

Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the number of
instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0
BEQ label
CBNZ Rn, label does not change condition flags but is otherwise equivalent to:
CMP Rn, #0
BNE label

Restrictions

The restrictions are:
e Rnmust be in the range of RO to R7.
e The branch destination must be within 4 to 130 bytes after the instruction.
e These instructions must not be used inside an IT block.

Condition Flags

These instructions do not change the flags.

Examples

CBz R5, target ; Forward branch if R5 is zero
CBNz RO, target ; Forward branch if RO is not zero

SAMA4CP16C [DATASHEET] 155
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.10.3 1T

If-Then condition instruction.
Syntax
IT{x{y{z}}} cond
where:
X specifies the condition switch for the second instruction in the IT block.
y specifies the condition switch for the third instruction in the IT block.
z specifies the condition switch for the fourth instruction in the IT block.
cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:
T Then. Applies the condition cond to the instruction.
E Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of the instructions in the IT
block must be unconditional, and each of x, y, and z must be T or omitted but not E.

Operation

The IT instruction makes up to four following instructions conditional. The conditions can be all the same, or some of
them can be the logical inverse of the others. The conditional instructions following the IT instruction form the /T block.

The instructions in the IT block, including any branches, must specify the condition in the {cond} part of their syntax.

The assembler might be able to generate the required IT instructions for conditional instructions automatically, so that
the user does not have to write them. See the assembler documentation for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an IT block. Such an
exception results in entry to the appropriate exception handler, with suitable return information in LR and stacked
PSR.

Instructions designed for use for exception returns can be used as normal to return from the exception, and execution
of the IT block resumes correctly. This is the only way that a PC-modifying instruction is permitted to branch to an
instruction in an IT block.

Restrictions
The following instructions are not permitted in an IT block:

e IT.
e (CBZand CBNZ.
e CPSID and CPSIE.
Other restrictions when using an IT block are:
e A branch or any instruction that modifies the PC must either be outside an IT block or must be the last
instruction inside the IT block. These are:
e ADD PC, PC, Rm.
MOV PC, Rm.
B, BL, BX, BLX.
Any LDM, LDR, or POP instruction that writes to the PC.
TBB and TBH.
Do not branch to any instruction inside an IT block, except when returning from an exception handler.

All conditional instructions except Bcond must be inside an IT block. Bcond can be either outside or inside an IT
block but has a larger branch range if it is inside one.

e Each instruction inside the IT block must specify a condition code suffix that is either the same or logical inverse
as for the other instructions in the block.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the use of assembler direc-

tives within them.

Condition Flags

This instruction does not change the flags.

Example

ITTE
ANDNE
ADDSNE
MOVEQ

CMP

ITE
ADDGT
ADDLE

IT
ADDGT

ITTEE
MOVEQ
ADDEQ
ANDNE
BNE.W

IT
ADD

12.6.10.4 TBB and TBH

NE

RO, RO,
R2, R2,
R2, R3

RO, #9

GT
R1, RO,
R1, RO,

GT
R1, R1,

EQ

RO, R1
R2, R2,
R3, R3,
dloop

NE
RO, RO,

R1
#1

#55
#48

#1

#10
#1

R1

Next 3 instructions are conditional
ANDNE does not update condition flags
ADDSNE updates condition flags
Conditional move

Convert RO hex value (0 to 15) into ASCII
("0"-"9", "A"-"F")

Next 2 instructions are conditional
Convert OxA -> “A"

Convert Ox0 -> =0*

IT block with only one conditional instruction
Increment R1 conditionally

Next 4 instructions are conditional

Conditional move

Conditional add

Conditional AND

Branch instruction can only be used in the last
instruction of an IT block

Next instruction is conditional
Syntax error: no condition code used in IT block

Table Branch Byte and Table Branch Halfword.

Syntax

TBB [Rn, Rm]

TBH [Rn, Rm, LSL #1]

where:

Rn is the register containing the address of the table of branch lengths.

If Rn is PC, then the address of the table is the address of the byte immediately following the TBB or
TBH instruction.

Rm is the index register. This contains an index into the table. For halfword tables, LSL #1 doubles the
value in Rm to form the right offset into the table.

Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets for TBB, or halfword offsets
for TBH. Rn provides a pointer to the table, and Rm supplies an index into the table. For TBB the branch offset is twice
the unsigned value of the byte returned from the table. and for TBH the branch offset is twice the unsigned value of
the halfword returned from the table. The branch occurs to the address at that offset from the address of the byte
immediately after the TBB or TBH instruction.

Atmel

SAM4CP16C [DATASHEET] 157

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

158

Restrictions
The restrictions are:

® Rn must not be SP.
e Rm must not be SP and must not be PC.

e When any of these instructions is used inside an IT block, it must be the last instruction of the IT block.
Condition Flags

These instructions do not change the flags.
Examples

ADR.W RO, BranchTable_Byte
TBB [RO, R1] ; R1 is the index, RO is the base address of the
; branch table

Casel

; an instruction sequence follows

Case2

; an instruction sequence follows

Case3

; an instruction sequence follows

BranchTable_ Byte
DCB 0] ; Casel offset calculation
DCB ((Case2-Casel)/2) ; Case2 offset calculation
DCB ((Case3-Casel)/2) ; Case3 offset calculation

TBH [PC, R1, LSL #1] ; R1 is the index, PC is used as base of the
; branch table
BranchTable_ H

DCI ((CaseA - BranchTable_H)/2) ; CaseA offset calculation
DCI ((CaseB - BranchTable_H)/2) ; CaseB offset calculation
DCI ((CaseC - BranchTable_H)/2) ; CaseC offset calculation

CaseA

; an instruction sequence follows

CaseB

; an instruction sequence follows

CaseC

; an instruction sequence follows

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.11 Floating-point Instructions

The table below shows the floating-point instructions.

These instructions are only available if the FPU is included, and enabled, in the system. See “Enabling the FPU” for
information about enabling the floating-point unit.

Table 12-27. Floating-point Instructions

Mnemonic Description
VABS Floating-point Absolute
VADD Floating-point Add
VCMP Compare two floating-point registers, or one floating-point register and zero
VCMPE Compare two floating-point registers, or one floating-point register and zero with Invalid Operation check
VCVT Convert between floating-point and integer
VCVT Convert between floating-point and fixed point
VCVTR Convert between floating-point and integer with rounding
VCVTB Converts half-precision value to single-precision
VCVTT Converts single-precision register to half-precision
VDIV Floating-point Divide
VEMA Floating-point Fused Multiply Accumulate
VENMA Floating-point Fused Negate Multiply Accumulate
VFMS Floating-point Fused Multiply Subtract
VENMS Floating-point Fused Negate Multiply Subtract
VLDM Load Multiple extension registers
VLDR Loads an extension register from memory
VLMA Floating-point Multiply Accumulate
VLMS Floating-point Multiply Subtract
VMOV Floating-point Move Immediate
VMOV Floating-point Move Register
VMOV Copy ARM core register to single precision
VMOV Copy 2 ARM core registers to 2 single precision
VMOV Copies between ARM core register to scalar
VMOV Copies between Scalar to ARM core register
VMRS Move to ARM core register from floating-point System Register
VMSR Move to floating-point System Register from ARM Core register
VMUL Multiply floating-point
VNEG Floating-point negate
VNMLA Floating-point multiply and add
VNMLS Floating-point multiply and subtract
VNMUL Floating-point multiply
VPOP Pop extension registers
VPUSH Push extension registers
VSQRT Floating-point square root
VSTM Store Multiple extension registers
VSTR Stores an extension register to memory
VSUB Floating-point Subtract
/ItmeL SAM4CP16C [DATASHEET] 159

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.11.1 VABS
Floating-point Absolute.

Syntax
VABS{cond}.F32 Sd, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd, Sm are the destination floating-point value and the operand floating-point value.
Operation

This instruction:
1. Takes the absolute value of the operand floating-point register.
2. Places the results in the destination floating-point register.
Restrictions
There are no restrictions.
Condition Flags
The floating-point instruction clears the sign bit.
Examples
VABS.F32 S4, S6

12.6.11.2 VADD
Floating-point Add

Syntax
VADD{cond}.F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the destination floating-point value.
Sn, Sm are the operand floating-point values.
Operation

This instruction:
1. Adds the values in the two floating-point operand registers.
2. Places the results in the destination floating-point register.
Restrictions
There are no restrictions.
Condition Flags
This instruction does not change the flags.
Examples
VADD.F32 sS4, S6, S7
12.6.11.3 VCMP, VCMPE
Compares two floating-point registers, or one floating-point register and zero.
Syntax

VCMP{E}{cond}.F32 Sd, Sm
VCMP{E}{cond}.F32 Sd, #0.0

where:
cond is an optional condition code, see “Conditional Execution”.
160 SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

E If present, any NaN operand causes an Invalid Operation exception.
Otherwise, only a signaling NaN causes the exception.

Sd is the floating-point operand to compare.

Sm is the floating-point operand that is compared with.

Operation

This instruction:
1. Compares:

e Two floating-point registers.
e One floating-point register and zero.
2. Writes the result to the FPSCR flags.

Restrictions

This instruction can optionally raise an Invalid Operation exception if either operand is any type of NaN. It always raises
an Invalid Operation exception if either operand is a signaling NaN.

Condition Flags

When this instruction writes the result to the FPSCR flags, the values are normally transferred to the ARM flags by a
subsequent VMRS instruction. See “VMRS”.

Examples

VCMP .F32 S4, #0.0
VCMP .F32 S4, S2

12.6.11.4 VCVT, VCVTR between Floating-point and Integer

Converts a value in a register from floating-point to a 32-bit integer.
Syntax

VCVT{R}{cond}.Tm.F32 Sd, Sm
VCVT{cond}.F32.Tm Sd, Sm

where:

R If R is specified, the operation uses the rounding mode specified by the FPSCR. If R is
omitted, the operation uses the Round towards Zero rounding mode.

cond is an optional condition code, see “Conditional Execution”.

Tm is the data type for the operand. It must be one of:

S32 signed 32- U32 unsigned 32-bit value.

Sd, Sm are the destination register and the operand register.

Operation

These instructions:
1. Either

e Convert a value in a register from floating-point value to a 32-bit integer.
e Convert from a 32-bit integer to floating-point value.
2. Place the result in a second register.

The floating-point to integer operation normally uses the Round towards Zero rounding mode, but can optionally use
the rounding mode specified by the FPSCR.

The integer to floating-point operation uses the rounding mode specified by the FPSCR.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAMA4CP16C [DATASHEET] 161
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.11.5 VCVT between Floating-point and Fixed-point

Converts a value in a register from floating-point to and from fixed-point.
Syntax

vevT{cond}.Td.F32 Sd, Sd, #fbits
vevT{cond}.F32.Td Sd, Sd, #fbits

where:
cond is an optional condition code, see “Conditional Execution”.
Td is the data type for the fixed-point number. It must be one of:
S16 signed 16-bit value.
U16 unsigned 16-bit value.
S32 signed 32-bit value.
U32 unsigned 32-bit value.
Sd is the destination register and the operand register.
fbits is the number of fraction bits in the fixed-point number:
If Td is S16 or U16, fbits must be in the range 0 - 16.
If Td is S32 or U32, fbits must be in the range 1 - 32.
Operation

These instructions:
1. Either

e Converts a value in a register from floating-point to fixed-point.
e Converts a value in a register from fixed-point to floating-point.
2. Places the result in a second register.

The floating-point values are single-precision.

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their operand from the low-
order bits of the source register and ignore any remaining bits.

Signed conversions to fixed-point values sign-extend the result value to the destination register width.
Unsigned conversions to fixed-point values zero-extend the result value to the destination register width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to floating-
point operation uses the Round to Nearest rounding mode.

Restrictions
There are no restrictions.
Condition Flags

These instructions do not change the flags.

12.6.11.6 VCVTB, VCVTT

162

Converts between a half-precision value and a single-precision value.
Syntax

VCVT{y}{cond}.F32.F16 Sd, Sm
VCVT{y}{cond}.F16.F32 Sd, Sm

where;
y Specifies which half of the operand register Sm or destination register Sd is used for the operand or
destination:
- If y is B, then the bottom half, bits [15:0], of Sm or Sd is used.
- If yis T, then the top half, bits [31:16], of Sm or Sd is used.
cond is an optional condition code, see “Conditional Execution”.
SAM4CP16C [DATASHEET
[] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Sd is the destination register.
Sm is the operand register.
Operation

This instruction with the .F16.32 suffix:

1. Converts the half-precision value in the top or bottom half of a single-precision. register to single-precision.

2. Writes the result to a single-precision register.
This instruction with the .F32.F16 suffix:

1. Converts the value in a single-precision register to half-precision.

2. Writes the result into the top or bottom half of a single-precision register, preserving the other half of the target

register.
Restrictions
There are no restrictions.
Condition Flags

These instructions do not change the flags.

12.6.11.7 VDIV
Divides floating-point values.

Syntax
vDIV{cond}.F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the destination register.
Sn, Sm are the operand registers.
Operation

This instruction:
1. Divides one floating-point value by another floating-point value.
2. Writes the result to the floating-point destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

12.6.11.8 VFMA, VFMS
Floating-point Fused Multiply Accumulate and Subtract.
Syntax

VFMA{cond}.F32 {Sd,} Sn, Sm
VFMS{cond}.F32 {Sd,} Sn, Sm

where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the destination register.
Sn, Sm are the operand registers.
SAM4CP16C [DATASHEET
Atmel []

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

163

Operation
The VFMA instruction:
1. Multiplies the floating-point values in the operand registers.
2. Accumulates the results into the destination register.
The result of the multiply is not rounded before the accumulation.
The VFMS instruction:
1. Negates the first operand register.
2. Multiplies the floating-point values of the first and second operand registers.
3. Adds the products to the destination register.
4. Places the results in the destination register.
The result of the multiply is not rounded before the addition.
Restrictions
There are no restrictions.
Condition Flags

These instructions do not change the flags.

12.6.11.9 VFNMA, VFNMS

164

Floating-point Fused Negate Multiply Accumulate and Subtract.
Syntax

VFNMA{cond}.F32 {Sd,} Sn, Sm
VFNMS{cond}.F32 {Sd,} Sn, Sm

where;:

cond is an optional condition code, see “Conditional Execution”.
Sd is the destination register.

Sn, Sm are the operand registers.

Operation

The VFNMA instruction:
1. Negates the first floating-point operand register.
2. Multiplies the first floating-point operand with second floating-point operand.
3. Adds the negation of the floating-point destination register to the product.
4. Places the result into the destination register.
The result of the multiply is not rounded before the addition.
The VFNMS instruction:

1. Multiplies the first floating-point operand with second floating-point operand.

2. Adds the negation of the floating-point value in the destination register to the product.

3. Places the result in the destination register.
The result of the multiply is not rounded before the addition.
Restrictions
There are no restrictions.
Condition Flags
These instructions do not change the flags.

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

12.6.11.10 VLDM
Floating-point Load Multiple

Syntax
VLDM{mode}{cond}{.size} Rn{!l}, list
where:
mode is the addressing mode:
-IA Increment After. The consecutive addresses start at the address specified in Rn.
- DB Decrement Before. The consecutive addresses end just before the address specified in Rn.
cond is an optional condition code, see “Conditional Execution”.
size is an optional data size specifier.
Rn is the base register. The SP can be used.
! is the command to the instruction to write a modified value back to Rn. This is required if mode == DB,
and is optional if mode == |A.
list is the list of extension registers to be loaded, as a list of consecutively numbered doubleword or single-
word registers, separated by commas and surrounded by brackets.
Operation

This instruction loads:
e Multiple extension registers from consecutive memory locations using an address from an ARM core
register as the base address.
Restrictions

The restrictions are:

e If size is present, it must be equal to the size in bits, 32 or 64, of the registers in list.

e For the base address, the SP can be used.
In the ARM instruction set, if ! is not specified the PC can be used.

e List must contain at least one register. If it contains doubleword registers, it must not contain more than
16 registers.

e If using the Decrement Before addressing mode, the write back flag, !, must be appended to the base
register specification.

Condition Flags

These instructions do not change the flags.

12.6.11.11 VLDR
Loads a single extension register from memory

Syntax

VLDR{cond}{.64} Dd, [Rn{#imm}]
VLDR{cond}{.64} Dd, label
VLDR{cond}{.64} Dd, [PC, #imm}]
VLDR{cond}{-32} Sd, [Rn {, #imm}]
VLDR{cond}{.-32} Sd, label
VLDR{cond}{-32} Sd, [PC, #imm]

where:
cond is an optional condition code, see “Conditional Execution”.
64, 32 are the optional data size specifiers.
Dd is the destination register for a doubleword load.
Sd is the destination register for a singleword load.
Rn is the base register. The SP can be used.
/ltmeL SAM4CP16C [DATASHEET] 165

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

imm is the + or - immediate offset used to form the address. Permitted address values are multiples of 4 in
the range 0 to 1020.

label is the label of the literal data item to be loaded.

Operation

This instruction:

e Loads a single extension register from memory, using a base address from an ARM core register, with an
optional offset.

Restrictions
There are no restrictions.
Condition Flags
These instructions do not change the flags.
12.6.11.12 VLMA, VLMS
Multiplies two floating-point values, and accumulates or subtracts the results.
Syntax

VLMA{cond}.F32 Sd, Sn, Sm
VLMS{cond}.F32 Sd, Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution”.
Sd is the destination floating-point value.

Sn, Sm are the operand floating-point values.

Operation

The floating-point Multiply Accumulate instruction:
1. Multiplies two floating-point values.
2. Adds the results to the destination floating-point value.
The floating-point Multiply Subtract instruction:
1. Multiplies two floating-point values.
2. Subtracts the products from the destination floating-point value.
3. Places the results in the destination register.
Restrictions
There are no restrictions.
Condition Flags
These instructions do not change the flags.

12.6.11.13 VMOV Immediate
Move floating-point Immediate

Syntax
VMOV{cond}.F32 Sd, #imm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the branch destination.
imm is a floating-point constant.
166 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Operation
This instruction copies a constant value to a floating-point register.
Restrictions
There are no restrictions.
Condition Flags
These instructions do not change the flags.
12.6.11.14 VMOV Register
Copies the contents of one register to another.
Syntax

VMOV{cond}.F64 Dd, Dm
VMOV{cond}.F32 Sd, Sm

where:

cond is an optional condition code, see “Conditional Execution”.
Dd is the destination register, for a doubleword operation.

Dm is the source register, for a doubleword operation.

Sd is the destination register, for a singleword operation.

Sm is the source register, for a singleword operation.
Operation

This instruction copies the contents of one floating-point register to another.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

12.6.11.15 VMOV Scalar to ARM Core Register
Transfers one word of a doubleword floating-point register to an ARM core register.

Syntax
VMOV{cond} Rt, Dn[x]

where:
cond is an optional condition code, see “Conditional Execution”.
Rt is the destination ARM core register.
Dn is the 64-bit doubleword register.
X Specifies which half of the doubleword register to use:

- If x is 0, use lower half of doubleword register.

- If x is 1, use upper half of doubleword register.
Operation

This instruction transfers:

e One word from the upper or lower half of a doubleword floating-point register to an ARM core register.
Restrictions

Rt cannot be PC or SP.
Condition Flags
These instructions do not change the flags.

SAMA4CP16C [DATASHEET] 167
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.11.16 VMOV ARM Core Register to Single Precision

Transfers a single-precision register to and from an ARM core register.
Syntax

VMOV{cond} Sn, Rt
VMOV{cond} Rt, Sn

where:

cond is an optional condition code, see “Conditional Execution”.
Sn is the single-precision floating-point register.

Rt is the ARM core register.

Operation

This instruction transfers:

e The contents of a single-precision register to an ARM core register.
e The contents of an ARM core register to a single-precision register.
Restrictions

Rt cannot be PC or SP.
Condition Flags

These instructions do not change the flags.

12.6.11.17 VMOV Two ARM Core Registers to Two Single Precision

168

Transfers two consecutively numbered single-precision registers to and from two ARM core registers.
Syntax

VMOV{cond} Sm, Sml, Rt, Rt2
VMOV{cond} Rt, Rt2, Sm, Sm

where:
cond is an optional condition code, see “Conditional Execution”.
Sm is the first single-precision register.
Sm1 is the second single-precision register.
This is the next single-precision register after Sm.
Rt is the ARM core register that Sm is transferred to or from.
Rt2 is the The ARM core register that Sm1 is transferred to or from.
Operation

This instruction transfers:
e The contents of two consecutively numbered single-precision registers to two ARM core registers.
e The contents of two ARM core registers to a pair of single-precision registers.
Restrictions
The restrictions are:
e The floating-point registers must be contiguous, one after the other.
e The ARM core registers do not have to be contiguous.
e Rtcannot be PC or SP.
Condition Flags
These instructions do not change the flags.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.11.18 VMOV ARM Core Register to Scalar
Transfers one word to a floating-point register from an ARM core register.

Syntax
VMOV{cond}{.32} Dd[x]., Rt
where:
cond is an optional condition code, see “Conditional Execution”.
32 is an optional data size specifier.
Dd[x] is the destination, where [x] defines which half of the doubleword is transferred, as follows:
If x is O, the lower half is extracted.
If x is 1, the upper half is extracted.
Rt is the source ARM core register.
Operation
This instruction transfers one word to the upper or lower half of a doubleword floating-point register from an ARM core
register.
Restrictions

Rt cannot be PC or SP.
Condition Flags
These instructions do not change the flags.
12.6.11.19 VMRS
Move to ARM Core register from floating-point System Register.
Syntax

VMRS{cond} Rt, FPSCR
VMRS{cond} APSR_nzcv, FPSCR

where:
cond is an optional condition code, see “Conditional Execution”.
Rt is the destination ARM core register. This register can be RO - R14.

APSR_nzcv transfers floating-point flags to the APSR flags.
Operation
This instruction performs one of the following actions:

e Copies the value of the FPSCR to a general-purpose register.
e Copies the value of the FPSCR flag bits to the APSR N, Z, C, and V flags.
Restrictions

Rt cannot be PC or SP.
Condition Flags
These instructions optionally change the flags: N, Z, C, V.

Atmel SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

169

12.6.11.20 VMSR
Move to floating-point System Register from ARM Core register.

Syntax
VMSR{cond} FPSCR, Rt
where;
cond is an optional condition code, see “Conditional Execution”.
Rt is the general-purpose register to be transferred to the FPSCR.
Operation

This instruction moves the value of a general-purpose register to the FPSCR. See “Floating-point Status Control
Register” for more information.

Restrictions
The restrictions are:

e Rtcannot be PC or SP.
Condition Flags

This instruction updates the FPSCR.

12.6.11.21 VMUL
Floating-point Multiply.

Syntax
VMUL{cond}.F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the destination floating-point value.
Sn, Sm are the operand floating-point values.
Operation

This instruction:
1. Multiplies two floating-point values.
2. Places the results in the destination register.
Restrictions
There are no restrictions.
Condition Flags

These instructions do not change the flags.

12.6.11.22 VNEG
Floating-point Negate.

Syntax
VNEG{cond}.F32 Sd, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the destination floating-point value.
Sm is the operand floating-point value.
170 SAM4CP16C [DATASHEET] /Itmet

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Operation
This instruction:

1. Negates a floating-point value.

2. Places the results in a second floating-point register.
The floating-point instruction inverts the sign bit.
Restrictions
There are no restrictions.

Condition Flags
These instructions do not change the flags.
12.6.11.23 VNMLA, VNMLS, VNMUL
Floating-point multiply with negation followed by add or subtract.
Syntax

VNMLA{cond}.F32 Sd, Sn, Sm
VNMLS{cond}.F32 Sd, Sn, Sm
VNMUL{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution”.
Sd is the destination floating-point register.

Sn, Sm are the operand floating-point registers.

Operation

The VNMLA instruction:
1. Multiplies two floating-point register values.
2. Adds the negation of the floating-point value in the destination register to the negation of the product.
3. Writes the result back to the destination register.
The VNMLS instruction:
1. Multiplies two floating-point register values.
2. Adds the negation of the floating-point value in the destination register to the product.
3. Writes the result back to the destination register.
The VNMUL instruction:
1. Multiplies together two floating-point register values.
2. Writes the negation of the result to the destination register.
Restrictions
There are no restrictions.
Condition Flags
These instructions do not change the flags.

12.6.11.24 VPOP
Floating-point extension register Pop.

Syntax
VPOP{cond}{.size} list

where:

cond is an optional condition code, see “Conditional Execution”.

size is an optional data size specifier.

If present, it must be equal to the size in bits, 32 or 64, of the registers in list.
SAM4CP16C [DATASHEET 171
Atmel []

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

list is the list of extension registers to be loaded, as a list of consecutively numbered doubleword or single-
word registers, separated by commas and surrounded by brackets.

Operation

This instruction loads multiple consecutive extension registers from the stack.
Restrictions

The list must contain at least one register, and not more than sixteen registers.
Condition Flags

These instructions do not change the flags.

12.6.11.25 VPUSH

Floating-point extension register Push.

Syntax
VPUSH{cond}{.size} list
where:
cond is an optional condition code, see “Conditional Execution”.
size is an optional data size specifier.
If present, it must be equal to the size in bits, 32 or 64, of the registers in list.
list is a list of the extension registers to be stored, as a list of consecutively numbered doubleword or sin-
gleword registers, separated by commas and surrounded by brackets.
Operation

This instruction:

e Stores multiple consecutive extension registers to the stack.
Restrictions

The restrictions are:

e List must contain at least one register, and not more than sixteen.
Condition Flags

These instructions do not change the flags.

12.6.11.26 VSQRT

172

Floating-point Square Root.

Syntax
VSQRT{cond}.F32 Sd, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the destination floating-point value.
Sm is the operand floating-point value.
Operation

This instruction:

e Calculates the square root of the value in a floating-point register.
e Writes the result to another floating-point register.
Restrictions

There are no restrictions.
Condition Flags
These instructions do not change the flags.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.11.27 VSTM

Floating-point Store Multiple.

Syntax
VSTM{mode}{cond}{.size} Rn{!l}, list
where:
mode is the addressing mode:
- IA Increment After. The consecutive addresses start at the address specified in Rn. This is the
default and can be omitted.
- DB Decrement Before. The consecutive addresses end just before the address specified in Rn.
cond is an optional condition code, see “Conditional Execution”.
size is an optional data size specifier.
If present, it must be equal to the size in bits, 32 or 64, of the registers in list.
Rn is the base register. The SP can be used.
! is the function that causes the instruction to write a modified value back to Rn.
Required if mode == DB.
list is a list of the extension registers to be stored, as a list of consecutively numbered doubleword or sin-
gleword registers, separated by commas and surrounded by brackets.
Operation

This instruction:

e Stores multiple extension registers to consecutive memory locations using a base address from an ARM
core register.

Restrictions
The restrictions are:

e List must contain at least one register.
If it contains doubleword registers it must not contain more than 16 registers.
e Use of the PC as Rn is deprecated.
Condition Flags

These instructions do not change the flags.

12.6.11.28 VSTR

Floating-point Store.
Syntax

VSTR{cond}{.32} Sd, [Rn{, #imm}]
VSTR{cond}{.64} Dd, [Rn{, #imm}]

where
cond is an optional condition code, see “Conditional Execution”.
32, 64 are the optional data size specifiers.
Sd is the source register for a singleword store.
Dd is the source register for a doubleword store.
Rn is the base register. The SP can be used.
imm is the + or - immediate offset used to form the address. Values are multiples of 4 in the range 0 - 1020.
imm can be omitted, meaning an offset of +0.
/ltmeL SAM4CP16C [DATASHEET] 173

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Operation
This instruction:

e Stores a single extension register to memory, using an address from an ARM core register, with an
optional offset, defined in imm.

Restrictions
The restrictions are:

e The use of PC for Rn is deprecated.
Condition Flags

These instructions do not change the flags.

12.6.11.29 VSUB
Floating-point Subtract.

Syntax
vsuB{cond}.F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the destination floating-point value.
Sn, Sm are the operand floating-point value.
Operation

This instruction:
1. Subtracts one floating-point value from another floating-point value.
2. Places the results in the destination floating-point register.
Restrictions
There are no restrictions.
Condition Flags
These instructions do not change the flags.

174 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.12 Miscellaneous Instructions
The table below shows the remaining Cortex-M4 instructions:

Table 12-28. Miscellaneous Instructions

Mnemonic | Description
BKPT Breakpoint
CPSID Change Processor State, Disable Interrupts
CPSIE Change Processor State, Enable Interrupts
DMB Data Memory Barrier
DSB Data Synchronization Barrier
ISB Instruction Synchronization Barrier
MRS Move from special register to register
MSR Move from register to special register
NOP No Operation
SEV Send Event
SvC Supervisor Call
WFE Wait For Event
WEFI Wait For Interrupt
12.6.12.1 BKPT
Breakpoint.
Syntax
BKPT #imm

where:

imm is an expression evaluating to an integer in the range 0 - 255 (8-bit value).

Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate system state
when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional information about the
breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaffected by the condition
specified by the IT instruction.

Condition Flags
This instruction does not change the flags.
Examples

BKPT OxAB ; Breakpoint with immediate value set to OxAB (debugger can
; extract the immediate value by locating it using the PC)

Note: ARM does not recommend the use of the BKPT instruction with an immediate value set to OxAB for any pur-
pose other than Semi-hosting.

SAMA4CP16C [DATASHEET] 175
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.12.2 CPS

Change Processor State.
Syntax
CPSeffect iflags
where:
effect is one of:
IE Clears the special purpose register.
ID Sets the special purpose register.
iflags is a sequence of one or more flags:
i Set or clear PRIMASK.
f Set or clear FAULTMASK.
Operation

CPS changes the PRIMASK and FAULTMASK special register values. See “Exception Mask Registers” for more
information about these registers.

Restrictions
The restrictions are:

e Use CPS only from privileged software, it has no effect if used in unprivileged software.
e CPS cannot be conditional and so must not be used inside an IT block.
Condition Flags

This instruction does not change the condition flags.

Examples
CPSID 1 ; Disable interrupts and configurable fault handlers (set PRIMASK)
CPSID ¥ ; Disable interrupts and all fault handlers (set FAULTMASK)
CPSIE 1 ; Enable interrupts and configurable fault handlers (clear PRIMASK)
CPSIE f ; Enable interrupts and fault handlers (clear FAULTMASK)

12.6.12.3 DMB

Data Memory Barrier.

Syntax
DMB{cond}

where:

cond is an optional condition code, see “Conditional Execution”.

Operation

176

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in program order,
before the DMB instruction are completed before any explicit memory accesses that appear, in program order, after
the DMB instruction. DMB does not affect the ordering or execution of instructions that do not access memory.

Condition Flags
This instruction does not change the flags.
Examples

DMB ; Data Memory Barrier

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.12.4 DSB

Data Synchronization Barrier.
Syntax

DSB{cond}
where:

cond is an optional condition code, see “Conditional Execution”.
Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in program order,
do not execute until the DSB instruction completes. The DSB instruction completes when all explicit memory
accesses before it complete.

Condition Flags
This instruction does not change the flags.
Examples
DSB ; Data Synchronisation Barrier

12.6.12.5ISB

Instruction Synchronization Barrier.
Syntax

I1SB{cond}
where:

cond is an optional condition code, see “Conditional Execution”.
Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions
following the ISB are fetched from memory again, after the ISB instruction has been completed.

Condition Flags
This instruction does not change the flags.
Examples
ISB ; Instruction Synchronisation Barrier

12.6.12.6 MRS

Move the contents of a special register to a general-purpose register.
Syntax

MRS{cond} Rd, spec_reg
where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK, BASEPRI,
BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR, for example to clear
the Q flag.

In process swap code, the programmers model state of the process being swapped out must be saved, including
relevant PSR contents. Similarly, the state of the process being swapped in must also be restored. These operations
use MRS in the state-saving instruction sequence and MSR in the state-restoring instruction sequence.

Note: BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.
See “MSR".

SAMA4CP16C [DATASHEET] 177
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Restrictions
Rd must not be SP and must not be PC.
Condition Flags
This instruction does not change the flags.
Examples
MRS RO, PRIMASK ; Read PRIMASK value and write it to RO

12.6.12.7 MSR

Move the contents of a general-purpose register into the specified special register.
Syntax

MSR{cond} spec_reg, Rn
where:

cond is an optional condition code, see “Conditional Execution”.
Rn is the source register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK, BASEPRI,
BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

The register access operation in MSR depends on the privilege level. Unprivileged software can only access the
APSR. See “Application Program Status Register”. Privileged software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

Note: When the user writes to BASEPRI_MAX, the instruction writes to BASEPRI only if either:
Rn is non-zero and the current BASEPRI value is 0.
Rn is non-zero and less than the current BASEPRI value.

See “MRS".
Restrictions
Rn must not be SP and must not be PC.
Condition Flags
This instruction updates the flags explicitly based on the value in Rn.
Examples
MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register

12.6.12.8 NOP

178

No Operation.
Syntax

NOP{cond}
where:

cond is an optional condition code, see “Conditional Execution”.
Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might remove it from the pipeline
before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.
Condition Flags

This instruction does not change the flags.

Examples

NOP ; No operation

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.12.9 SEV

Send Event.
Syntax
SEV{cond}
where:
cond is an optional condition code, see “Conditional Execution”.
Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a multiprocessor system. It also
sets the local event register to 1, see “Power Management”.

Condition Flags
This instruction does not change the flags.
Examples

SEV ; Send Event

12.6.12.10 SVC

Supervisor Call.

Syntax
SVC{cond} #imm
where:
cond is an optional condition code, see “Conditional Execution”.
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).
Operation

The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine what service is
being requested.

Condition Flags
This instruction does not change the flags.
Examples

SVC 0x32 ; Supervisor Call (SVC handler can extract the immediate value
; by locating it via the stacked PC)

12.6.12.11 WFE

Wait For Event.

Syntax
WFE{cond}
where:
cond is an optional condition code, see “Conditional Execution”.
Operation

WFE is a hint instruction.
If the event register is 0, WFE suspends execution until one of the following events occurs:
e An exception, unless masked by the exception mask registers or the current priority level.
e An exception enters the Pending state, if SEVONPEND in the System Control Register is set.
e A Debug Entry request, if Debug is enabled.
® An event signaled by a peripheral or another processor in a multiprocessor system using the SEV instruction.

SAMA4CP16C [DATASHEET] 179
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

If the event register is 1, WFE clears it to 0 and returns immediately.

For more information, see “Power Management”.

Condition Flags

This instruction does not change the flags.

Examples

WFE ; Wait for event

12.6.12.12 WFI
Wait for Interrupt.
Syntax
WF1{cond}
where:
cond is an optional condition code, see “Conditional Execution”.
Operation

WEFl is a hint instruction that suspends execution until one of the following events occurs:

An exception.
A Debug Entry request, regardless of whether Debug is enabled.

Condition Flags

This instruction does not change the flags.

Examples

WF1 ; Wait for interrupt

12.7 Cortex-M4 Core Peripherals

12.7.1 Peripherals

e Nested Vectored Interrupt Controller (NVIC)
The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that supports low latency
interrupt processing. See Section 12.8 "Nested Vectored Interrupt Controller (NVIC)”

e System Control Block (SCB)
The System Control Block (SCB) is the programmers model interface to the processor. It provides system
implementation information and system control, including configuration, control, and reporting of system
exceptions. See Section 12.9 "System Control Block (SCB)”

e System Timer (SysTick)
The System Timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating System (RTOS)
tick timer or as a simple counter. See Section 12.10 "System Timer (SysTick)”

e Memory Protection Unit (MPU)
The Memory Protection Unit (MPU) improves system reliability by defining the memory attributes for different
memory regions. It provides up to eight different regions, and an optional predefined background region. See
Section 12.11 "Memory Protection Unit (MPU)”

e Floating-point Unit (FPU)
The Floating-point Unit (FPU) provides IEEE754-compliant operations on single-precision, 32-bit, floating-point
values. See Section 12.12 "Floating Point Unit (FPU)”

180 SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.7.2 Address Map
The address map of the Private peripheral bus (PPB) is given in the following table:

Table 12-29. Core Peripheral Register Regions

Address Core Peripheral

0xEOOOEO008 - 0OxEOOOEQOF System Control Block

0xEOOOEO10 - OXEOOOEO1F System Timer

0xEOOOE100 - OXEOOOE4EF Nested Vectored Interrupt Controller
0xEOOOEDOO - 0OXEOOOED3F System Control block

0xEOOOED90 - OxEOOOEDBS Memory Protection Unit
OxEOOOEFO00 - 0XEOOOEF03 Nested Vectored Interrupt Controller
0xEOOOEF30 - 0XEOOOEF44 Floating-point Unit

In register descriptions:

e The required privilege gives the privilege level required to access the register, as follows:
e Privileged: Only privileged software can access the register.
e Unprivileged: Both unprivileged and privileged software can access the register.

12.8 Nested Vectored Interrupt Controller (NVIC)
This section describes the NVIC and the registers it uses. The NVIC supports:

e Upto 41 interrupts.

e A programmable priority level of O - 15 for each interrupt. A higher level corresponds to a lower priority, so level
0 is the highest interrupt priority.

Level detection of interrupt signals.

Dynamic reprioritization of interrupts.

Grouping of priority values into group priority and subpriority fields.
Interrupt tail-chaining.

e An external Non-maskable interrupt (NMI).

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no
instruction overhead. This provides low latency exception handling.

12.8.1 Level-sensitive Interrupts

The processor supports level-sensitive interrupts. A level-sensitive interrupt is held asserted until the peripheral
deasserts the interrupt signal. Typically, this happens because the ISR accesses the peripheral, causing it to clear the
interrupt request.

When the processor enters the ISR, it automatically removes the pending state from the interrupt (see “Hardware and
Software Control of Interrupts”). For a level-sensitive interrupt, if the signal is not deasserted before the processor
returns from the ISR, the interrupt becomes pending again, and the processor must execute its ISR again. This means
that the peripheral can hold the interrupt signal asserted until it no longer requires servicing.
12.8.1.1 Hardware and Software Control of Interrupts

The Cortex-M4 latches all interrupts. A peripheral interrupt becomes pending for one of the following reasons:

e The NVIC detects that the interrupt signal is HIGH and the interrupt is not active.

e The NVIC detects a rising edge on the interrupt signal.

e A software writes to the corresponding interrupt set-pending register bit, see “Interrupt Set-pending Registers”,
or to the NVIC_STIR to make an interrupt pending, see “Software Trigger Interrupt Register”.

SAMA4CP16C [DATASHEET] 181
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

A pending interrupt remains pending until one of the following:
e The processor enters the ISR for the interrupt. This changes the state of the interrupt from pending to active.
Then:
e For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the interrupt

signal. If the signal is asserted, the state of the interrupt changes to pending, which might cause the
processor to immediately re-enter the ISR. Otherwise, the state of the interrupt changes to inactive.

e Software writes to the corresponding interrupt clear-pending register bit.
For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not change.
Otherwise, the state of the interrupt changes to inactive.

12.8.2 NVIC Design Hints and Tips
Ensure that the software uses correctly aligned register accesses. The processor does not support unaligned
accesses to NVIC registers. See the individual register descriptions for the supported access sizes.

A interrupt can enter a pending state even if it is disabled. Disabling an interrupt only prevents the processor from
taking that interrupt.

Before programming SCB_VTOR to relocate the vector table, ensure that the vector table entries of the new vector
table are set up for fault handlers, NMI and all enabled exception like interrupts. For more information, see the “Vector
Table Offset Register”.

12.8.2.1 NVIC Programming Hints
The software uses the CPSIE | and CPSID | instructions to enable and disable the interrupts. The CMSIS provides the
following intrinsic functions for these instructions:

void __disable_irq(void) // Disable Interrupts
void __enable_irg(void) // Enable Interrupts
In addition, the CMSIS provides a number of functions for NVIC control, including:

Table 12-30. CMSIS Functions for NVIC Control

CMSIS Interrupt Control Function Description

void NVIC_SetPriorityGrouping(uint32_t priority_grouping) Set the priority grouping

void NVIC_EnablelRQ(IRQn_t IRQnN) Enable IRQn

void NVIC_DisableIRQ(IRQn_t IRQnN) Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQnN) Return true (IRQ-Number) if IRQn is pending
void NVIC_SetPendingIRQ (IRQn_t IRQN) Set IRQnN pending

void NVIC_ClearPendingIRQ (IRQn_t IRQN) Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQnN) Return the IRQ number of the active interrupt
void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority) Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQnN) Read priority of IRQn

void NVIC_SystemReset (void) Reset the system

The input parameter IRQn is the IRQ number. For more information about these functions, see the CMSIS
documentation.

To improve software efficiency, the CMSIS simplifies the NVIC register presentation. In the CMSIS:
e The Set-enable, Clear-enable, Set-pending, Clear-pending and Active Bit registers map to arrays of 32-bit
integers, so that:
e The array ISER[0] to ISER[1] corresponds to the registers ISERO - ISER1.
e The array ICER][0] to ICER[1] corresponds to the registers ICERO - ICER1.
e The array ISPR[0] to ISPR[1] corresponds to the registers ISPRO - ISPR1.

182 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

e The array ICPRJ[0] to ICPR[1] corresponds to the registers ICPRO - ICPR1.
e The array IABR[0] to IABR[1] corresponds to the registers IABRO - IABR1.
e The Interrupt Priority Registers (IPRO - IPR10) provide an 8-bit priority field for each interrupt and each register
holds four priority fields.

The CMSIS provides thread-safe code that gives atomic access to the Interrupt Priority Registers. Table 12-31 shows
how the interrupts, or IRQ numbers, map onto the interrupt registers and corresponding CMSIS variables that have
one bit per interrupt.

Table 12-31. Mapping of Interrupts

Interrupts CMSIS Array Elements ("
Set-enable Clear-enable Set-pending Clear-pending | Active Bit
0-31 ISER[0] ICER[0] ISPR[0] ICPRI[0] IABR[O]
32-41 ISER[1] ICER[1] ISPR[1] ICPR[1] IABRI[1]
Note: 1. Each array element corresponds to a single NVIC register, for example the ICER[0] element corresponds
to the ICERO.
12.8.3 Nested Vectored Interrupt Controller (NVIC) User Interface
Table 12-32. Nested Vectored Interrupt Controller (NVIC) Register Mapping
Offset Register Name Access Reset

0xEOOOE100 Interrupt Set-enable Register 0 NVIC_ISERO Read/Write 0x00000000
OxEOOOE11C | Interrupt Set-enable Register 7 NVIC_ISER7 Read/Write 0x00000000
OXEOQOOOE180 | Interrupt Clear-enable Register 0 NVIC_ICERO Read/Write 0x00000000
OxEOOOE19C | Interrupt Clear-enable Register 7 NVIC_ICER7 Read/Write 0x00000000
O0XEOOOE200 | Interrupt Set-pending Register 0 NVIC_ISPRO Read/Write 0x00000000
OxEO00E21C | Interrupt Set-pending Register 7 NVIC_ISPR7 Read/Write 0x00000000
OXEOOOE280 | Interrupt Clear-pending Register 0 NVIC_ICPRO Read/Write 0x00000000
O0xEOO0E29C | Interrupt Clear-pending Register 7 NVIC_ICPR7 Read/Write 0x00000000
0OxEOOOE300 Interrupt Active Bit Register 0 NVIC_IABRO Read/Write 0x00000000
OXEOOOE31C | Interrupt Active Bit Register 7 NVIC_IABR7 Read/Write 0x00000000
0xEOO0E400 Interrupt Priority Register 0 NVIC_IPRO Read/Write 0x00000000
OxEOOOE428 Interrupt Priority Register 10 NVIC_IPR10 Read/Write 0x00000000
OxEOOOEF00 | Software Trigger Interrupt Register NVIC_STIR Write-only 0x00000000

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.8.3.1 Interrupt Set-enable Registers

Name: NVIC_ISERXx [x=0..7]
Access: Read/Write
Reset: 0x00000000

31 30 29 28 27 26 25 24
| SETENA

23 22 21 20 19 18 17 16
| SETENA

15 14 13 12 11 10 9 8
| SETENA

7 6 5 4 3 2 1 0
| SETENA

These registers enable interrupts and show which interrupts are enabled.

¢ SETENA: Interrupt Set-enable
Write:

0: No effect.

1: Enables the interrupt.
Read:

0: Interrupt disabled.

1: Interrupt enabled.

Notes: 1. If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority.

2. If an interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, the NVIC never

activates the interrupt, regardless of its priority.

184 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

12.8.3.2 Interrupt Clear-enable Registers

Name: NVIC_ICERx [x=0..7]
Access: Read/Write
Reset: 0x00000000

31 30 29 28 27 26 25 24
| CLRENA

23 22 21 20 19 18 17 16
| CLRENA

15 14 13 12 11 10 9 8
| CLRENA

7 6 5 4 3 2 1 0
| CLRENA

These registers disable interrupts, and show which interrupts are enabled.

e CLRENA: Interrupt Clear-enable

Write:

0: No effect.

1: Disables the interrupt.
Read:

0: Interrupt disabled.

1: Interrupt enabled.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

185

12.8.3.3 Interrupt Set-pending Registers

Name: NVIC_ISPRx [x=0..7]
Access: Read/Write
Reset: 0x00000000

31 30 29 28 27 26 25 24
| SETPEND

23 22 21 20 19 18 17 16
| SETPEND

15 14 13 12 11 10 9 8
| SETPEND

7 6 5 4 3 2 1 0
| SETPEND

These registers force interrupts into the pending state, and show which interrupts are pending.

e SETPEND: Interrupt Set-pending
Write:

0: No effect.

1: Changes the interrupt state to pending.
Read:

0: Interrupt is not pending.

1: Interrupt is pending.

Notes: 1. Writing a 1 to an ISPR bit corresponding to an interrupt that is pending has no effect.

2. Writing a 1 to an ISPR bit corresponding to a disabled interrupt sets the state of that interrupt to pending.

186 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

12.8.3.4 Interrupt Clear-pending Registers

Name: NVIC_ICPRx [x=0..7]
Access: Read/Write
Reset: 0x00000000

31 30 29 28 27 26 25 24
| CLRPEND

23 22 21 20 19 18 17 16
| CLRPEND

15 14 13 12 11 10 9 8
| CLRPEND

7 6 5 4 3 2 1 0
| CLRPEND

These registers remove the pending state from interrupts, and show which interrupts are pending.

e CLRPEND: Interrupt Clear-pending

Write:
0: No effect.

1: Removes the pending state from an interrupt.

Read:
0: Interrupt is not pending.

1: Interrupt is pending.

Note: Writing a 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

187

12.8.3.5 Interrupt Active Bit Registers

Name: NVIC_IABRXx [x=0..7]
Access: Read/Write
Reset: 0x00000000

31 30 29 28 27 26 25 24
| ACTIVE

23 22 21 20 19 18 17 16
| ACTIVE

15 14 13 12 11 10 9 8
| ACTIVE

7 6 5 4 3 2 1 0
| ACTIVE
These registers indicate which interrupts are active.
e ACTIVE: Interrupt Active Flags
0: Interrupt is not active.
1: Interrupt is active.
Note: A bit reads as one if the status of the corresponding interrupt is active, or active and pending.
188 SAM4CP16C [DATASHEET

[] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.8.3.6 Interrupt Priority Registers

Name: NVIC_IPRx [x=0..10]

Access: Read/Write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| PRI3 |
23 22 21 20 19 18 17 16

| PRI2 |
15 14 13 12 1 10 9 8

| PRI |
7 6 5 4 3 2 1 0

| PRIO |

The NVIC_IPRO - NVIC_IPR10 registers provide a 8-bit priority field for each interrupt. These registers are byte-accessible.
Each register holds four priority fields that map up to four elements in the CMSIS interrupt priority array IP[0] to IP[40].

¢ PRI3: Priority (4m+3)
Priority, Byte Offset 3, refers to register bits [31:24].

* PRI2: Priority (4m+2)
Priority, Byte Offset 2, refers to register bits [23:16].

* PRI1: Priority (4m+1)
Priority, Byte Offset 1, refers to register bits [15:8].

* PRIO: Priority (4m)

Priority, Byte Offset O, refers to register bits [7:0].

Notes: 1. Each priority field holds a priority value, 0 - 15. The lower the value, the greater the priority of the corresponding
interrupt. The processor implements only bits [7:4] of each field; bits [3:0] read as zero and ignore writes.

2. For more information about the IP [0] to IP [40] interrupt priority array, that provides the software view of the
interrupt priorities, see Table 12-30, “CMSIS Functions for NVIC Control” .

3. The corresponding IPR number n is given by n = m DIV 4.
4. The byte offset of the required Priority field in this register is m MOD 4.

SAMA4CP16C [DATASHEET] 189
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.8.3.7 Software Trigger Interrupt Register

Name: NVIC_STIR
Access: Write-only
Reset: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
. - - r -+ - 1 - f{ - [- [W |
7 6 5 4 3 2 1 0
| INTID |
Write to this register to generate an interrupt from the software.
¢ INTID: Interrupt ID
Interrupt ID of the interrupt to trigger, in the range 0 - 239. For example, a value of 0x03 specifies interrupt IRQ3.
190 SAM4CP16C [DATASHEET
[] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9

System Control Block (SCB)

The System Control Block (SCB) provides system implementation information, and system control. This includes
configuration, control, and reporting of the system exceptions.

Ensure that the software uses aligned accesses of the correct size to access the system control block registers:

e Except for the SCB_CFSR and SCB_SHPR1 - SCB_SHPRS registers, it must use aligned word accesses.

e For the SCB_CFSR and SCB_SHPR1 - SCB_SHPRS3 registers, it can use byte or aligned halfword or word
accesses.

The processor does not support unaligned accesses to system control block registers.
In a fault handler, to determine the true faulting address:

1. Read and save the MMFAR or SCB_BFAR value.
2. Read the MMARVALID bit in the MMFSR subregister, or the BFARVALID bit in the BFSR subregister. The
SCB_MMFAR or SCB_BFAR address is valid only if this bit is 1.
The software must follow this sequence because another higher priority exception might change the SCB_MMFAR or

SCB_BFAR value. For example, if a higher priority handler preempts the current fault handler, the other fault might
change the SCB_MMFAR or SCB_BFAR value.

12.9.1 System Control Block (SCB) User Interface
Table 12-33. System Control Block (SCB) Register Mapping

Offset Register Name Access Reset
0xEOO0E008 Auxiliary Control Register SCB_ACTLR Read/Write 0x00000000
0xEOO00EDO0O CPUID Base Register SCB_CPUID Read-only 0x410FC240
0xEOO0EDO04 Interrupt Control and State Register SCB_ICSR Read/Write!") 0x00000000
O0xEOOOEDO08 Vector Table Offset Register SCB_VTOR Read/Write 0x00000000
0xEOOOEDOC Application Interrupt and Reset Control Register SCB_AIRCR Read/Write 0xFA050000
O0xEOOOED10 System Control Register SCB_SCR Read/Write 0x00000000
0xEOOOED14 Configuration and Control Register SCB_CCR Read/Write 0x00000200
O0xEOOOED18 System Handler Priority Register 1 SCB_SHPR1 Read/Write 0x00000000
O0xEOOOED1C System Handler Priority Register 2 SCB_SHPR2 Read/Write 0x00000000
0xEOO00ED20 System Handler Priority Register 3 SCB_SHPR3 Read/Write 0x00000000
0xEOOOED24 System Handler Control and State Register SCB_SHCSR Read/Write 0x00000000
OxEO0OED28 Configurable Fault Status Register SCB_CFSR® Read/Write 0x00000000
0xEOOOED2C HardFault Status Register SCB_HFSR Read/Write 0x00000000
O0xEOOOED34 MemManage Fault Address Register SCB_MMFAR Read/Write Unknown
0xEOOOED38 BusFault Address Register SCB_BFAR Read/Write Unknown

Notes: 1. See the register description for more information.

Atmel

2. This register contains the subregisters: “MMFSR: Memory Management Fault Status Subregister” (OXEOOOED28 -
8 bits), “BFSR: Bus Fault Status Subregister” (OXEOOOED29 - 8 bits), “UFSR: Usage Fault Status Subregister”
(OXEOOOED2A - 16 bits).

SAM4CP16C [DATASHEET] 191

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9.1.1 Auxiliary Control Register

Name: SCB_ACTLR
Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - | DISOOFP | DISFPCA |
7 6 5 4 3 2 1 0

| - DISFOLD | DISDEFWBUF | DISMCYCINT |

The SCB_ACTLR provides disable bits for the following processor functions:

« IT folding.
» Write buffer use for accesses to the default memory map.
* Interruption of multi-cycle instructions.

By default, this register is set to provide optimum performance from the Cortex-M4 processor, and does not normally require
modification.

* DISOOFP: Disable Out Of Order Floating Point
Disables floating point instructions that complete out of order with respect to integer instructions.

* DISFPCA: Disable FPCA
Disables an automatic update of CONTROL.FPCA.

* DISFOLD: Disable Folding
When set to 1, disables the IT folding.
Note: In some situations, the processor can start executing the first instruction in an IT block while it is still executing the IT

instruction. This behavior is called IT folding, and it improves the performance. However, IT folding can cause jitter in
looping. If a task must avoid jitter, set the DISFOLD bit to 1 before executing the task, to disable the IT folding.

« DISDEFWBUF: Disable Default Write Buffer
When set to 1, it disables the write buffer use during default memory map accesses. This causes BusFault to be precise but
decreases the performance, as any store to memory must complete before the processor can execute the next instruction.

This bit only affects write buffers implemented in the Cortex-M4 processor.

¢ DISMCYCINT: Disable Multiple Cycle Interruption

When set to 1, it disables the interruption of load multiple and store multiple instructions. This increases the interrupt latency of
the processor, as any LDM or STM must complete before the processor can stack the current state and enter the interrupt
handler.

192 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9.1.2 CPUID Base Register

Name: SCB_CPUID

Access: Read/Write
31 30 29 28 27 26 25 24

| Implementer |
23 22 21 20 19 18 17 16

| Variant Constant |
15 14 13 12 1 10 9 8

| PartNo |
7 6 5 4 3 2 1 0

| PartNo Revision |

The SCB_CPUID register contains the processor part number, version, and implementation information.

* Implementer: Implementer Code
0x41: ARM.

* Variant: Variant Number
It is the r value in the rnpn product revision identifier:

0x0: Revision 0.

¢ Constant: Reads as OxF
Reads as OxF.

¢ PartNo: Part Number of the Processor
0xC24 = Cortex-M4.

* Revision: Revision Number
It is the p value in the rnpn product revision identifier:

0x0: Patch 0.

SAMA4CP16C [DATASHEET] 193
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9.1.3 Interrupt Control and State Register

Name: SCB_ICSR

Access: Read/Write
31 30 29 28 27 26 25 24

| NMIPENDSET | - PENDSVSET | PENDSVCLR | PENDSTSET | PENDSTCLR - |
23 22 21 20 19 18 17 16

| - | ISRPENDING VECTPENDING |
15 14 13 12 11 10 9 8

| VECTPENDING RETTOBASE - VECTACTIVE |
7 6 5 4 3 2 1 0

| VECTACTIVE |

The SCB_ICSR provides a set-pending bit for the Non-Maskable Interrupt (NMI) exception, and set-pending and clear-pending
bits for the PendSV and SysTick exceptions.

It indicates:

» The exception number of the exception being processed, and whether there are preempted active exceptions.
» The exception number of the highest priority pending exception, and whether any interrupts are pending.

« NMIPENDSET: NMI Set-pending
Write:

PendSV set-pending bit.

Write:

0: No effect.

1: Changes NMI exception state to pending.
Read:

0: NMI exception is not pending.

1: NMI exception is pending.

As NMI is the highest-priority exception, the processor normally enters the NMI exception handler as soon as it registers a
write of 1 to this bit. Entering the handler clears this bit to 0. A read of this bit by the NMI exception handler returns 1 only if the
NMI signal is reasserted while the processor is executing that handler.

« PENDSVSET: PendSV Set-pending
Write:

0: No effect.

1: Changes PendSV exception state to pending.

Read:

0: PendSV exception is not pending.

1: PendSV exception is pending.

Writing a 1 to this bit is the only way to set the PendSV exception state to pending.

194 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

¢« PENDSVCLR: PendSV Clear-pending
Write:

0: No effect.

1: Removes the pending state from the PendSV exception.

* PENDSTSET: SysTick Exception Set-pending
Write:

0: No effect.

1: Changes SysTick exception state to pending.

Read:

0: SysTick exception is not pending.

1: SysTick exception is pending.

* PENDSTCLR: SysTick Exception Clear-pending
Write:

0: No effect.

1: Removes the pending state from the SysTick exception.

This bit is Write-only. On a register read, its value is Unknown.

¢ ISRPENDING: Interrupt Pending Flag (Excluding NMI and Faults)
. Interrupt not pending.

- O

. Interrupt pending.

VECTPENDING: Exception Number of the Highest Priority Pending Enabled Exception
0: No pending exceptions.

Nonzero: The exception number of the highest priority pending enabled exception.

The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the
PRIMASK register.

e RETTOBASE: Preempted Active Exceptions Present or Not
0: There are preempted active exceptions to execute.

1: There are no active exceptions, or the currently-executing exception is the only active exception.

¢ VECTACTIVE: Active Exception Number Contained
0: Thread mode.

Nonzero: The exception number of the currently active exception. The value is the same as IPSR bits [8:0]. See “Interrupt Pro-
gram Status Register”.

Subtract 16 from this value to obtain the IRQ number required to index into the Interrupt Clear-Enable, Set-Enable,
Clear-Pending, Set-Pending, or Priority Registers, see “Interrupt Program Status Register”.

Note: When the user writes to the SCB_ICSR, the effect is unpredictable if:
- Writing a 1 to the PENDSVSET bit and writing a 1 to the PENDSVCLR bit.
- Writing a 1 to the PENDSTSET bit and writing a 1 to the PENDSTCLR bit.

SAMA4CP16C [DATASHEET] 195
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9.1.4 Vector Table Offset Register

Name: SCB_VTOR
Access: Read/Write

31 30 29 28 27 26 25 24
| TBLOFF

23 22 21 20 19 18 17 16
| TBLOFF

15 14 13 12 11 10 9 8
| TBLOFF

7 6 5 4 3 2 1 0
| TBLOFF | -

The SCB_VTOR indicates the offset of the vector table base address from memory address 0x00000000.

e TBLOFF: Vector Table Base Offset

It contains bits [29:7] of the offset of the table base from the bottom of the memory map.

Bit [29] determines whether the vector table is in the code or SRAM memory region:

0: Code.
1: SRAM.
It is sometimes called the TBLBASE bit.

Note: When setting TBLOFF, the offset must be aligned to the number of exception entries in the vector table. Configure the
next statement to give the information required for your implementation; the statement reminds the user of how to
determine the alignment requirement. The minimum alignment is 32 words, enough for up to 16 interrupts. For more
interrupts, adjust the alignment by rounding up to the next power of two. For example, if 21 interrupts are required, the
alignment must be on a 64-word boundary because the required table size is 37 words, and the next power of two

is 64.

Table alignment requirements mean that bits[6:0] of the table offset are always zero.

196 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

12.9.1.5 Application Interrupt and Reset Control Register

Name: SCB_AIRCR

Access: Read/Write
31 30 29 28 27 26 25 24

| VECTKEYSTAT/VECTKEY |
23 22 21 20 19 18 17 16

| VECTKEYSTAT/VECTKEY |
15 14 13 12 11 10 9 8

| ENDIANNESS - | PRIGROUP |
7 6 5 4 3 2 1 0

| - |SYSRESETREQ VECTCLRACTIVE VECTRESETl

The SCB_AIRCR provides priority grouping control for the exception model, endian status for data accesses, and reset control
of the system. To write to this register, write Ox5FA to the VECTKEY field, otherwise the processor ignores the write.

« VECTKEYSTAT: Register Key (Read)
Reads as OxFAO05.

* VECTKEY: Register Key (Write)
Writes Ox5FA to VECTKEY, otherwise the write is ignored.

« ENDIANNESS: Data Endianness
0: Little-endian.

1: Big-endian.

* PRIGROUP: Interrupt Priority Grouping

This field determines the split of group priority from subpriority. It shows the position of the binary point that splits the PRI_n
fields in the Interrupt Priority Registers into separate group priority and subpriority fields. The table below shows how the PRI-
GROUP value controls this split.

Interrupt Priority Level Value, PRI_N[7:0] Number of
PRIGROUP Binary Point'" Group Priority Bits Subpriority Bits Group Priorities | Subpriorities
0b000 bXxxxxxxx.y [7:1] None 128 2
0b001 bXXXXXX.yy [7:2] [4:0] 64 4
0b010 bxxxxx.yyy [7:3] [4:0] 32 8
0b011 bxxxx.yyyy [7:4] [4:0] 16 16
0b100 bxxx.yyyyy [7:5] [4:0] 8 32
0b101 bxx.yyyyyy [7:6] [56:0] 4 64
0b110 bx.yyyyyyy [7] [6:0] 2 128
0b111 b.yyyyyyy None [7:0] 1 256

Note: 1. PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a subpriority field bit.
Determining preemption of an exception uses only the group priority field.

SAMA4CP16C [DATASHEET] 197
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

* SYSRESETREQ: System Reset Request
0: No system reset request.

1: Asserts a signal to the outer system that requests a reset.

This is intended to force a large system reset of all major components except for debug. This bit reads as 0.

* VECTCLRACTIVE: Reserved for Debug use
This bit reads as 0. When writing to the register, write a 0 to this bit, otherwise the behavior is unpredictable.

« VECTRESET: Reserved for Debug use
This bit reads as 0. When writing to the register, write a 0 to this bit, otherwise the behavior is unpredictable.

198 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9.1.6 System Control Register

Name: SCB_SCR

Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8
7 6 5 4 3 2 1 0

| - | SEVONPEND - SLEEPDEEP | SLEEPONEXIT - |

« SEVONPEND: Send Event on Pending Bit
0: Only enabled interrupts or events can wake up the processor; disabled interrupts are excluded.

1: Enabled events and all interrupts, including disabled interrupts, can wake up the processor.

When an event or an interrupt enters the pending state, the event signal wakes up the processor from WFE. If the processor is
not waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an external event.

e SLEEPDEEP: Sleep or Deep Sleep
Controls whether the processor uses sleep or deep sleep as its low-power mode:

0: Sleep.
1: Deep sleep.

* SLEEPONEXIT: Sleep-on-exit
Indicates sleep-on-exit when returning from the Handler mode to the Thread mode:

0: Do not sleep when returning to Thread mode.
1: Enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt-driven application to avoid returning to an empty main application.

SAMA4CP16C [DATASHEET] 199
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9.1.7 Configuration and Control Register

Name: SCB_CCR
Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - STKALIGN BFHFNMIGN |
7 6 5 4 3 2 1 0
UNALIGN_ USERSETM NONBASET
B DIV_0_TRP TRP B PEND HRDENA

The SCB_CCR controls the entry to the Thread mode and enables the handlers for NMI, hard fault and faults escalated by
FAULTMASK to ignore BusFaults. It also enables the division by zero and unaligned access trapping, and the access to the
NVIC_STIR by unprivileged software (see “Software Trigger Interrupt Register”).

* STKALIGN: Stack Alignment
Indicates the stack alignment on exception entry:

0: 4-byte aligned.
1: 8-byte aligned.

On exception entry, the processor uses bit [9] of the stacked PSR to indicate the stack alignment. On return from the excep-
tion, it uses this stacked bit to restore the correct stack alignment.

* BFHFNMIGN: Bus Faults Ignored
Enables handlers with priority -1 or -2 to ignore data bus faults caused by load and store instructions. This applies to the hard
fault and FAULTMASK escalated handlers:

0: Data bus faults caused by load and store instructions cause a lock-up.
1: Handlers running at priority -1 and -2 ignore data bus faults caused by load and store instructions.

Set this bit to 1 only when the handler and its data are in absolutely safe memory. The normal use of this bit is to probe system
devices and bridges to detect control path problems and fix them.

* DIV_0_TRP: Division by Zero Trap
Enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of O:

0: Do not trap divide by 0.
1: Trap divide by 0.

When this bit is set to 0, a divide by zero returns a quotient of 0.

¢ UNALIGN_TRP: Unaligned Access Trap
Enables unaligned access traps:

0: Do not trap unaligned halfword and word accesses.

1: Trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a usage fault.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of whether UNALIGN_TRP is set to 1.

200 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

¢« USERSETMPEND: Unprivileged Software Access
Enables unprivileged software access to the NVIC_STIR, see “Software Trigger Interrupt Register”:

0: Disable.
1: Enable.

* NONBASETHRDENA: Thread Mode Enable
Indicates how the processor enters Thread mode:

0: The processor can enter the Thread mode only when no exception is active.

1: The processor can enter the Thread mode from any level under the control of an EXC_RETURN value, see “Exception
Return”.

SAMA4CP16C [DATASHEET] 201
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9.1.8 System Handler Priority Registers

The SCB_SHPR1 - SCB_SHPRS3 registers set the priority level, 0 to 15 of the exception handlers that have configurable

priority. They are byte-accessible.

The system fault handlers and the priority field and register for each handler are:

Table 12-34. System Fault Handler Priority Fields

Handler Field Register Description
Memory management fault (MemManage) PRI_4
Bus fault (BusFault) PRI_5 “System Handler Priority Register 1”
Usage fault (UsageFault) PRI_6
SVCall PRI_11 “System Handler Priority Register 2”
PendSV PRI_14

“System Handler Priority Register 3”
SysTick PRI_15

Each PRI_N field is 8 bits wide, but the processor implements only bits [7:4] of each field, and bits [3:0] read as zero and

ignore writes.

202 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

12.9.1.9 System Handler Priority Register 1

Name: SCB_SHPR1
Access: Read/Write

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16
| PRI_6

15 14 13 12 11 10 9 8
| PRI_5

7 6 5 4 3 2 1 0
| PRI_4

¢ PRI_6: Priority
Priority of system handler 6, UsageFault.

¢ PRI_5: Priority
Priority of system handler 5, BusFault.

¢ PRI_4: Priority
Priority of system handler 4, MemManage.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

203

12.9.1.10 System Handler Priority Register 2

Name: SCB_SHPR2
Access: Read/Write
31 30 29 28 27 26 25 24
| PRI_11 |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
* PRI_11: Priority
Priority of system handler 11, SVCall.
204 SAM4CP16C [DATASHEET
[] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9.1.11 System Handler Priority Register 3

Name: SCB_SHPR3
Access: Read/Write
31 30 29 28 27 26 25 24
| PRI_15
23 22 21 20 19 18 17 16
| PRI_14
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

¢ PRI_15: Priority

Priority of system handler 15, SysTick exception.

« PRI_14: Priority

Priority of system handler 14, PendSV.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

205

12.9.1.12 System Handler Control and State Register

Name: SCB_SHCSR
Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| - USGFAULTENA|BUSFAULTENA MEMFAULTENA|
15 14 13 12 1 10 9 8
SVCALLPEN |BUSFAULTPEN| MEMFAULTPE |USGFAULTPEN
DED DED NDED DED SYSTICKACT | PENDSVACT - MONITORACT
7 6 5 4 3 2 1 0
SVCALLACT - USGFAULTACT - BUSFAULTACT [MEMFAULTACT

The SHCSR enables the system handlers, and indicates the pending status of the bus fault, memory management fault, and
SVC exceptions; it also indicates the active status of the system handlers.

* USGFAULTENA: Usage Fault Enable
0: Disables the exception.

1: Enables the exception.

BUSFAULTENA: Bus Fault Enable
0: Disables the exception.

1: Enables the exception.

MEMFAULTENA: Memory Management Fault Enable
0: Disables the exception.

1: Enables the exception.

e SVCALLPENDED: SVC Call Pending
Read:

0: The exception is not pending.
1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

e BUSFAULTPENDED: Bus Fault Exception Pending
Read:

0: The exception is not pending.
1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

* MEMFAULTPENDED: Memory Management Fault Exception Pending
Read:

0: The exception is not pending.
1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

206 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

« USGFAULTPENDED: Usage Fault Exception Pending
Read:

0: The exception is not pending.
1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

* SYSTICKACT: SysTick Exception Active
Read:

0: The exception is not active.
1: The exception is active.

Note: The user can write to these bits to change the active status of the exceptions.
- Caution: A software that changes the value of an active bit in this register without a correct adjustment to the stacked
content can cause the processor to generate a fault exception. Ensure that the software writing to this register retains
and subsequently restores the current active status.
- Caution: After enabling the system handlers, to change the value of a bit in this register, the user must use a
read-modify-write procedure to ensure that only the required bit is changed.

¢ PENDSVACT: PendSV Exception Active
0: The exception is not active.

1: The exception is active.

* MONITORACT: Debug Monitor Active
0: Debug monitor is not active.

1: Debug monitor is active.

e SVCALLACT: SVC Call Active
0: SVC call is not active.

1: SVC call is active.

* USGFAULTACT: Usage Fault Exception Active
0: Usage fault exception is not active.

1: Usage fault exception is active.

e BUSFAULTACT: Bus Fault Exception Active
0: Bus fault exception is not active.

1: Bus fault exception is active.

¢« MEMFAULTACT: Memory Management Fault Exception Active
0: Memory management fault exception is not active.

1: Memory management fault exception is active.
If the user disables a system handler and the corresponding fault occurs, the processor treats the fault as a hard fault.

The user can write to this register to change the pending or active status of system exceptions. An OS kernel can write to the
active bits to perform a context switch that changes the current exception type.

SAMA4CP16C [DATASHEET] 207
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9.1.13 Configurable Fault Status Register

Name: SCB_CFSR

Access: Read/Write
31 30 29 28 27 26 25 24

| - | DIVBYZERO | UNALIGNED |
23 22 21 20 19 18 17 16

| - | NOCP | INVPC | INVSTATE | UNDEFINSTR |
15 14 13 12 11 10 9 8

| BFARVALID | - | LSPERR | STKERR | UNSTKERR |IMPRECISERR| PRECISERR | IBUSERR |
7 6 5 4 3 2 1 0

| MMARVALID | - | MLSPERR | MSTKERR | MUNSTKERR| - | DACCVIOL | IACCVIOL |

* IACCVIOL: Instruction Access Violation Flag
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No instruction access violation fault.
1: The processor attempted an instruction fetch from a location that does not permit execution.
This fault occurs on any access to an XN region, even when the MPU is disabled or not present.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has not written
a fault address to the SCB_MMFAR.

* DACCVIOL: Data Access Violation Flag
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No data access violation fault.
1: The processor attempted a load or store at a location that does not permit the operation.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has loaded the
SCB_MMFAR with the address of the attempted access.

* MUNSTKERR: Memory Manager Fault on Unstacking for a Return From Exception
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No unstacking fault.
1: Unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original return stack is still present. The processor
has not adjusted the SP from the failing return, and has not performed a new save. The processor has not written a fault
address to the SCB_MMFAR.

« MSTKERR: Memory Manager Fault on Stacking for Exception Entry
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No stacking fault.
1: Stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The processor has
not written a fault address to SCB_ MMFAR.

208 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

¢ MLSPERR: MemManage During Lazy State Preservation
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No MemManage fault occurred during the floating-point lazy state preservation.

1: A MemManage fault occurred during the floating-point lazy state preservation.

* MMARVALID: Memory Management Fault Address Register (SCB_MMFAR) Valid Flag
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: The value in SCB_MMFAR is not a valid fault address.
1: SCB_MMFAR holds a valid fault address.

If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this
bit to 0. This prevents problems on return to a stacked active memory management fault handler whose SCB_MMFAR value
has been overwritten.

¢ IBUSERR: Instruction Bus Error
This is part of “BFSR: Bus Fault Status Subregister”.

0: No instruction bus error.
1: Instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1 only if it
attempts to issue the faulting instruction.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

* PRECISERR: Precise Data Bus Error
This is part of “BFSR: Bus Fault Status Subregister”.

0: No precise data bus error.

1: A data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused the
fault.

When the processor sets this bit to 1, it writes the faulting address to the SCB_BFAR.

¢ IMPRECISERR: Imprecise Data Bus Error
This is part of “BFSR: Bus Fault Status Subregister”.

0: No imprecise data bus error.

1: A data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the
error.

When the processor sets this bit to 1, it does not write a fault address to the SCB_BFAR.

This is an asynchronous fault. Therefore, if it is detected when the priority of the current process is higher than the bus fault
priority, the bus fault becomes pending and becomes active only when the processor returns from all higher priority processes.
If a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects that both this
bit and one of the precise fault status bits are set to 1.

¢ UNSTKERR: Bus Fault on Unstacking for a Return From Exception
This is part of “BFSR: Bus Fault Status Subregister”.

0: No unstacking fault.
1: Unstack for an exception return has caused one or more bus faults.

This fault is chained to the handler. This means that when the processor sets this bit to 1, the original return stack is still
present. The processor does not adjust the SP from the failing return, does not performed a new save, and does not write a
fault address to the BFAR.

SAMA4CP16C [DATASHEET] 209
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

¢ STKERR: Bus Fault on Stacking for Exception Entry
This is part of “BFSR: Bus Fault Status Subregister”.

0: No stacking fault.
1: Stacking for an exception entry has caused one or more bus faults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the context area on the stack might be incorrect.
The processor does not write a fault address to the SCB_BFAR.

* LSPERR: Bus Error During Lazy Floating-point State Preservation
This is part of “BFSR: Bus Fault Status Subregister”.

0: No bus fault occurred during floating-point lazy state preservation.

1: A bus fault occurred during floating-point lazy state preservation.

« BFARVALID: Bus Fault Address Register (BFAR) Valid flag
This is part of “BFSR: Bus Fault Status Subregister”.

0: The value in SCB_BFAR is not a valid fault address.
1: SCB_BFAR holds a valid fault address.

The processor sets this bit to 1 after a bus fault where the address is known. Other faults can set this bit to 0, such as a
memory management fault occurring later.

If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to 0. This pre-
vents problems if returning to a stacked active bus fault handler whose SCB_BFAR value has been overwritten.

¢ UNDEFINSTR: Undefined Instruction Usage Fault
This is part of “UFSR: Usage Fault Status Subregister”.

0: No undefined instruction usage fault.
1: The processor has attempted to execute an undefined instruction.
When this bit is set to 1, the PC value stacked for the exception return points to the undefined instruction.

An undefined instruction is an instruction that the processor cannot decode.

¢ INVSTATE: Invalid State Usage Fault
This is part of “UFSR: Usage Fault Status Subregister”.

0: No invalid state usage fault.
1: The processor has attempted to execute an instruction that makes illegal use of the EPSR.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that attempted the illegal use of
the EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

¢ INVPC: Invalid PC Load Usage Fault
This is part of “UFSR: Usage Fault Status Subregister”. It is caused by an invalid PC load by EXC_RETURN:

0: No invalid PC load usage fault.

1: The processor has attempted an illegal load of EXC_RETURN to the PC, as a result of an invalid context, or an invalid
EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that tried to perform the illegal
load of the PC.

210 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

* NOCP: No Coprocessor Usage Fault
This is part of “UFSR: Usage Fault Status Subregister”. The processor does not support coprocessor instructions:

0: No usage fault caused by attempting to access a coprocessor.

1: The processor has attempted to access a coprocessor.

¢ UNALIGNED: Unaligned Access Usage Fault
This is part of “UFSR: Usage Fault Status Subregister”.

0: No unaligned access fault, or unaligned access trapping not enabled.
1: The processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the SCB_CCR to 1. See “Configuration and Con-
trol Register”. Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the setting of UNALIGN_TRP.

* DIVBYZERO: Divide by Zero Usage Fault
This is part of “UFSR: Usage Fault Status Subregister”.

0: No divide by zero fault, or divide by zero trapping not enabled.
1: The processor has executed an SDIV or UDIV instruction with a divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the exception return points to the instruction that performed the
divide by zero. Enable trapping of divide by zero by setting the DIV_0_TRP bit in the SCB_CCR to 1. See “Configuration and
Control Register”.

SAMA4CP16C [DATASHEET] 211
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9.1.14 Configurable Fault Status Register (Byte Access)

Name: SCB_CFSR (BYTE)
Access: Read/Write

31 30 29 28 27 26 25 24
| UFSR

23 22 21 20 19 18 17 16
| UFSR

15 14 13 12 11 10 9 8
| BFSR

7 6 5 4 3 2 1 0
| MMFSR

* MMFSR: Memory Management Fault Status Subregister

The flags in the MMFSR subregister indicate the cause of memory access faults. See bitfield [7..0] description in Section
12.9.1.13.

* BFSR: Bus Fault Status Subregister
The flags in the BFSR subregister indicate the cause of a bus access fault. See bitfield [14..8] description in Section 12.9.1.13.

¢ UFSR: Usage Fault Status Subregister
The flags in the UFSR subregister indicate the cause of a usage fault. See bitfield [31..15] description in Section 12.9.1.13.

Note: The UFSR bits are sticky. This means that as one or more fault occurs, the associated bits are set to 1. A bit that is set
to 1 is cleared to 0 only by writing a 1 to that bit, or by a reset.

The SCB_CFSR indicates the cause of a memory management fault, bus fault, or usage fault. It is byte accessible. The user
can access the SCB_CFSR or its subregisters as follows:

Access complete SCB_CFSR with a word access to 0OXEOOOED28.
Access MMFSR with a byte access to 0OXEOOOED28.

Access MMFSR and BFSR with a halfword access to OxEOOOED28.
Access BFSR with a byte access to OxEOOOED29.

Access UFSR with a halfword access to 0OXEOOOED2A.

212 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9.1.15 Hard Fault Status Register

Name: SCB_HFSR
Access: Read/Write
31 30 29 28 27 26 25 24

| DEBUGEVT FORCED - |

23 22 21 20 19 18 17 16

I - |
15 14 13 12 11 10 9 8

I - |
7 6 5 4 3 2 1 0

| - VECTTBL - |

The SCB_HFSR gives information about events that activate the hard fault handler. This register is read, write to clear. This
means that bits in the register read normally, but writing a 1 to any bit clears that bit to 0.

 DEBUGEVT: Reserved for Debug Use
When writing to the register, write a 0 to this bit, otherwise the behavior is unpredictable.

* FORCED: Forced Hard Fault

It indicates a forced hard fault, generated by escalation of a fault with configurable priority that cannot be handles, either
because of priority or because it is disabled:

0: No forced hard fault.
1: Forced hard fault.

When this bit is set to 1, the hard fault handler must read the other fault status registers to find the cause of the fault.

e VECTTBL: Bus Fault on a Vector Table
It indicates a bus fault on a vector table read during an exception processing:

0: No bus fault on vector table read.
1: Bus fault on vector table read.
This error is always handled by the hard fault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that was preempted by the
exception.

Note: The HFSR bits are sticky. This means that, as one or more fault occurs, the associated bits are set to 1. A bit that is
set to 1 is cleared to 0 only by writing a 1 to that bit, or by a reset.

SAMA4CP16C [DATASHEET] 213
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9.1.16 MemManage Fault Address Register

Name: SCB_MMFAR
Access: Read/Write

31 30 29 28 27 26 25 24
| ADDRESS

23 22 21 20 19 18 17 16
| ADDRESS

15 14 13 12 11 10 9 8
| ADDRESS

7 6 5 4 3 2 1 0
| ADDRESS

The SCB_MMFAR contains the address of the location that generated a memory management fault.

* ADDRESS: Memory Management Fault Generation Location Address

When the MMARVALID bit of the MMFSR subregister is set to 1, this field holds the address of the location that generated the
memory management fault.

Notes:

214

1. When an unaligned access faults, the address is the actual address that faulted. Because a single read or write
instruction can be split into multiple aligned accesses, the fault address can be any address in the range of the
requested access size.

2. Flags in the MMFSR subregister indicate the cause of the fault, and whether the value in the SCB_MMFAR is
valid. See “MMFSR: Memory Management Fault Status Subregister”.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9.1.17 Bus Fault Address Register

Name: SCB_BFAR
Access: Read/Write

31 30 29 28 27 26 25 24
| ADDRESS

23 22 21 20 19 18 17 16
| ADDRESS

15 14 13 12 11 10 9 8
| ADDRESS

7 6 5 4 3 2 1 0
| ADDRESS

The SCB_BFAR contains the address of the location that generated a bus fault.

» ADDRESS: Bus Fault Generation Location Address
When the BFARVALID bit of the BFSR subregister is set to 1, this field holds the address of the location that generated the bus

fault.

Notes: 1. When an unaligned access faults, the address in the SCB_BFAR is the one requested by the instruction, even if it

is not the address of the fault.

2. Flags in the BFSR indicate the cause of the fault, and whether the value in the SCB_BFAR is valid. See “BFSR:

Bus Fault Status Subregister”.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

215

12.10 System Timer (SysTick)

The processor has a 24-bit system timer, SysTick, that counts down from the reload value to zero, reloads (wraps to)
the value in the SYST_RVR on the next clock edge, then counts down on subsequent clocks.

When the processor is halted for debugging, the counter does not decrement.

The SysTick counter runs on the processor clock. If this clock signal is stopped for low-power mode, the SysTick
counter stops.

Ensure that the software uses aligned word accesses to access the SysTick registers.

The SysTick counter reload and current value are undefined at reset; the correct initialization sequence for the
SysTick counter is:

1. Program the reload value.
2. Clear the current value.
3. Program the Control and Status register.

12.10.1 System Timer (SysTick) User Interface
Table 12-35. System Timer (SYST) Register Mapping

Offset Register Name Access Reset
OxEOOOEO10 | SysTick Control and Status Register SYST_CSR Read/Write 0x00000000
OxEOOOEO14 | SysTick Reload Value Register SYST_RVR Read/Write Unknown
OxEOOOEO18 | SysTick Current Value Register SYST_CVR Read/Write Unknown
OXEOOOEO1C | SysTick Calibration Value Register SYST_CALIB Read-only 0x000030D4

216 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

12.10.1.1 SysTick Control and Status Register

Name: SYST_CSR
Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| — COUNTFLAG |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
| - | - - - - CLKSOURCE TICKINT ENABLE |

The SysTick SYST_CSR enables the SysTick features.

e COUNTFLAG: Count Flag
Returns 1 if the timer counted to 0 since the last time this was read.

¢ CLKSOURCE: Clock Source
Indicates the clock source:

0: External Clock.
1: Processor Clock.

¢ TICKINT: SysTick Exception Request Enable
Enables a SysTick exception request:

0: Counting down to zero does not assert the SysTick exception request.
1: Counting down to zero asserts the SysTick exception request.

The software can use COUNTFLAG to determine if SysTick has ever counted to zero.

e ENABLE: Counter Enable
Enables the counter:

0: Counter disabled.
1: Counter enabled.

When ENABLE is set to 1, the counter loads the RELOAD value from the SYST_RVR and then counts down. On reaching 0, it
sets the COUNTFLAG to 1 and optionally asserts the SysTick depending on the value of TICKINT. It then loads the RELOAD
value again, and begins counting.

SAMA4CP16C [DATASHEET] 217
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.10.1.2 SysTick Reload Value Register

Name: SYST_RVR

Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| RELOAD |
15 14 13 12 11 10 9 8

| RELOAD |
7 6 5 4 3 2 1 0

| RELOAD |

The SYST_RVR specifies the start value to load into the SYST_CVR.

* RELOAD: SYST_CVR Load Value
Value to load into the SYST_CVR when the counter is enabled and when it reaches 0.

The RELOAD value can be any value in the range 0x00000001 - 0xOOFFFFFF. A start value of 0 is possible, but has no effect
because the SysTick exception request and COUNTFLAG are activated when counting from 1 to 0.

The RELOAD value is calculated according to its use: For example, to generate a multi-shot timer with a period of N processor
clock cycles, use a RELOAD value of N-1. If the SysTick interrupt is required every 100 clock pulses, set RELOAD to 99.

218 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.10.1.3 SysTick Current Value Register

Name: SYST_CVR
Access: Read/Write

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16
| CURRENT

15 14 13 12 11 10 9 8
| CURRENT

7 6 5 4 3 2 1 0
| CURRENT

The SysTick SYST_CVR contains the current value of the SysTick counter.

e CURRENT: SysTick Counter Current Value

Reads return the current value of the SysTick counter.
A write of any value clears the field to 0, and also clears the SYST_CSR.COUNTFLAG bit to 0.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

219

12.10.1.4 SysTick Calibration Value Register

Name: SYST_CALIB

Access: Read/Write
31 30 29 28 27 26 25 24

| NOREF SKEW |
23 22 21 20 19 18 17 16

| TENMS |
15 14 13 12 11 10 9 8

| TENMS |
7 6 5 4 3 2 1 0

| TENMS |

The SysTick SYST_CSR indicates the SysTick calibration properties.

* NOREF: No Reference Clock

It indicates whether the device provides a reference clock to the processor:

0: Reference clock provided.

1: No reference clock provided.

If your device does not provide a reference clock, the SYST_CSR.CLKSOURCE bit reads-as-one and ignores writes.

e SKEW: TENMS Value Verification
It indicates whether the TENMS value is exact:

0: TENMS value is exact.

1: TENMS value is inexact, or not given.

An inexact TENMS value can affect the suitability of SysTick as a software real time clock.

« TENMS: Ten Milliseconds

The reload value for 10 ms (100 Hz) timing is subject to system clock skew errors. If the value reads as zero, the calibration

value is not known.
The TENMS field default value is 0x000030D4 (12500 decimal).

In order to achieve a 1 ms timebase on SysTick, the TENMS field must be programmed to a value corresponding to the pro-

cessor clock frequency (in kHz) divided by 8.

For example, for devices running the processor clock at 48 MHz, the TENMS field value must be 0x00001770 (48000 kHz/8).

220 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

12.11 Memory Protection Unit (MPU)

The MPU divides the memory map into a number of regions, and defines the location, size, access permissions, and
memory attributes of each region. It supports:

e Independent attribute settings for each region.

e Overlapping regions.

e Export of memory attributes to the system.
The memory attributes affect the behavior of memory accesses to the region. The Cortex-M4 MPU defines:

e Eight separate memory regions, 0 - 7.

e A background region.

When memory regions overlap, a memory access is affected by the attributes of the region with the highest number.
For example, the attributes for region 7 take precedence over the attributes of any region that overlaps region 7.

The background region has the same memory access attributes as the default memory map, but is accessible from
privileged software only.

The Cortex-M4 MPU memory map is unified. This means that instruction accesses and data accesses have the same
region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates a memory manage-
ment fault. This causes a fault exception, and might cause the termination of the process in an OS environment.

In an OS environment, the kernel can update the MPU region setting dynamically based on the process to be exe-
cuted. Typically, an embedded OS uses the MPU for memory protection.

The configuration of MPU regions is based on memory types (see “Memory Regions, Types and Attributes”).

Table 12-36 shows the possible MPU region attributes. These include Shareability and cache behavior attributes that
are not relevant to most microcontroller implementations. See “MPU Configuration for a Microcontroller” for guidelines
for programming such an implementation.

Table 12-36. Memory Attributes Summary

Memory Type Shareability | Other Attributes | Description

All accesses to Strongly-ordered memory occur in program

Strongly-ordered | -) order. All Strongly-ordered regions are assumed to be shared.

Shared - Memory-mapped peripherals that several processors share.
Device - i i

Non-shared) Memory-mapped peripherals that only a single processor

uses.
N | Shared - Normal memory that is shared between several processors.
orma
Non-shared | - Normal memory that only a single processor uses.
SAM4CP16C [DATASHEET 221
Atmel : :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.11.1 MPU Access Permission Attributes

This section describes the MPU access permission attributes. The access permission bits (TEX, C, B, S, AP, and XN)
of the MPU_RASR control the access to the corresponding memory region. If an access is made to an area of
memory without the required permissions, then the MPU generates a permission fault.

The table below shows the encodings for the TEX, C, B, and S access permission bits.

Table 12-37. TEX, C, B, and S Encoding

TEX C B S Memory Type Shareability | Other Attributes
Strongly-
Q)] -
0 0 X ordered Shareable
1 x(Device Shareable -
0 Not) . .
b000 0 Normal shareable Outer and inner write-through. No write
allocate.
1 1 Shareable
Not
1 0 Normal shareable Outer and inner write-back. No write
allocate.
1 Shareable
Not
0
0 0 Normal shareable -
1 Shareable
1 xM Reserved encoding -
b001 0 o) Implementation defined)
attributes.
1 Not
1 0 Normal shareable Outer and inner write-back. Write and read
allocate.
1 Shareable
0 xM Device Not Nonshared Device.
0 shareable
b010 1 x(M Reserved encoding -
1 xM xM Reserved encoding -
Not
0 h bl
b1BB A A Normal shareable -
1 Shareable
Notes: The MPU ignores the value of this bit.

Table 12-38 shows the cache policy for memory attribute encodings with a TEX value is in the range 4 - 7.

Table 12-38. Cache Policy for Memory Attribute Encoding

Encoding, AA or BB | Corresponding Cache Policy

00 Non-cacheable

01 Write back, write and read allocate
10 Write through, no write allocate

11 Write back, no write allocate

222 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

Table 12-39 shows the AP encodings that define the access permissions for privileged and unprivileged software.

Table 12-39. AP Encoding

AP[2:0] | Privileged Unprivileged Description
Permissions Permissions
000 No access No access All accesses generate a permission fault
001 RwW No access Access from privileged software only
010 RwW RO Writes by unprivileged software generate a permission fault
011 RwW RW Full access
100 Unpredictable Unpredictable Reserved
101 RO No access Reads by privileged software only
110 RO RO Read only, by privileged or unprivileged software
111 RO RO Read only, by privileged or unprivileged software

12.11.1.1 MPU Mismatch
When an access violates the MPU permissions, the processor generates a memory management fault, see “Excep-
tions and Interrupts”. The MMFSR indicates the cause of the fault. See “MMFSR: Memory Management Fault Status
Subregister” for more information.

12.11.1.2 Updating an MPU Region
To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR and MPU_RASRs. Each register can
be programed separately, or a multiple-word write can be used to program all of these registers. MPU_RBAR and
MPU_RASR aliases can be used to program up to four regions simultaneously using an STM instruction.

12.11.1.3 Updating an MPU Region Using Separate Words

Simple code to configure one region:

; R2
; R3

size/enable
attributes

; R4 = address

LDR RO,=MPU_RNR
STR R1, [RO, #0x0]
STR R4, [RO, #O0x4]
STRH R2, [RO, #O0x8]
STRH R3, [RO, #OxA]

; R1 = region number

OXEOOOED98, MPU region number register
Region Number
Region Base Address

; Region Size and Enable
; Region Attribute

Disable a region before writing new region settings to the MPU, if the region being changed was previously enabled.
For example:

: R2 = size/enable
: R3 = attributes
: R4 = address

LDR RO,=MPU_RNR
STR R1, [RO, #0x0O]

BIC R2, R2, #1

STRH R2, [RO, #0x8]
STR R4, [RO, #0x4]

STRH R3, [RO, #OxA]
ORR R2, #1

STRH R2, [RO, #0x8]

Atmel

; R1 = region number

; OXEOOOED98, MPU region number register
; Region Number

; Disable

; Region Size and Enable
; Region Base Address
; Region Attribute

; Enable

; Region Size and Enable

SAM4CP16C [DATASHEET] 223

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.111.

224

The software must use memory barrier instructions:

e Before the MPU setup, if there might be outstanding memory transfers, such as buffered writes, that might be
affected by the change in MPU settings.
e After the MPU setup, if it includes memory transfers that must use the new MPU settings.
However, memory barrier instructions are not required if the MPU setup process starts by entering an exception han-
dler, or is followed by an exception return, because the exception entry and exception return mechanisms cause
memory barrier behavior.

The software does not need any memory barrier instructions during an MPU setup, because it accesses the MPU
through the PPB, which is a Strongly-Ordered memory region.

For example, if the user wants all of the memory access behavior to take effect immediately after the programming
sequence, a DSB instruction and an ISB instruction must be used. A DSB is required after changing MPU settings,
such as at the end of a context switch. An ISB is required if the code that programs the MPU region or regions is
entered using a branch or call. If the programming sequence is entered using a return from exception, or by taking an
exception, then an ISB is not required.

4 Updating an MPU Region Using Multi-word Writes
The user can program directly using multi-word writes, depending on how the information is divided. Consider the
following reprogramming:

: R1 region number

: R2 = address

: R3 = size, attributes in one

LDR RO, =MPU_RNR ; OXEOOOED98, MPU region number register
STR R1, [RO, #0x0] ; Region Number

STR R2, [RO, #0x4] ; Region Base Address

STR R3, [RO, #0x8] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:

: R1 region number
: R2 address
: R3 = size, attributes in one

LDR RO, =MPU_RNR ; OXEOOOED98, MPU region number register
STM RO, {R1-R3} ; Region Number, address, attribute, size and enable

This can be done in two words for pre-packed information. This means that the MPU_RBAR contains the required
region number and had the VALID bit set to 1. See “MPU Region Base Address Register”. Use this when the data is
statically packed, for example in a boot loader:

; R1 = address and region number in one
; R2 = size and attributes in one
LDR RO, =MPU_RBAR ; OXEOOOED9C, MPU Region Base register
STR R1, [RO, #0x0] ; Region base address and
; region number combined with VALID (bit 4) set to 1

STR R2, [RO, #0x4] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:

; R1 = address and region number in one

; R2 = size and attributes in one

LDR RO,=MPU_RBAR ; OXEOOOED9C, MPU Region Base register

STM RO, {R1-R2} ; Region base address, region number and VALID bit,
; and Region Attribute, Size and Enable

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.11.1.5 Subregions

Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the corresponding bit in the SRD field
of the MPU_RASR field to disable a subregion. See “MPU Region Attribute and Size Register”. The least significant
bit of SRD controls the first subregion, and the most significant bit controls the last subregion. Disabling a subregion
means another region overlapping the disabled range matches instead. If no other enabled region overlaps the
disabled subregion, the MPU issues a fault.

Regions of 32, 64, and 128 bytes do not support subregions. With regions of these sizes, the SRD field must be set to
0x00, otherwise the MPU behavior is unpredictable.

12.11.1.6 Example of SRD Use

Two regions with the same base address overlap. Region 1 is 128 KB, and region 2 is 512 KB. To ensure the attri-
butes from region 1 apply to the first 128 KB region, set the SRD field for region 2 to b00000011 to disable the first two
subregions, as in Figure 12-13 below:

Figure 12-13. SRD Use

Region 2, with Offset from
subregions base address
512KB
448KB
384KB
320KB
256KB
Region 1 192KB
128KB
64KB
0

Disabled subregion
Disabled subregion

Base address of both regions

12.11.1.7 MPU Design Hints And Tips
To avoid unexpected behavior, disable the interrupts before updating the attributes of a region that the interrupt han-
dlers might access.

Ensure the software uses aligned accesses of the correct size to access MPU registers:

e Except for the MPU_RASR, it must use aligned word accesses.
e Forthe MPU_RASR, it can use byte or aligned halfword or word accesses.
The processor does not support unaligned accesses to MPU registers.

When setting up the MPU, and if the MPU has previously been programmed, disable unused regions to prevent any
previous region settings from affecting the new MPU setup.

MPU Configuration for a Microcontroller
Usually, a microcontroller system has only a single processor and no caches. In such a system, program the MPU as
follows:

Table 12-40. Memory Region Attributes for a Microcontroller

Memory Region | TEX C | B | S | Memory Type and Attributes

Flash memory b000 1 | 0 | O [Normal memory, non-shareable, write-through
Internal SRAM b000 1 | 0 | 1 | Normal memory, shareable, write-through

External SRAM b000 1 1 1 | Normal memory, shareable, write-back, write-allocate
Peripherals b000 0 | 1 |1 | Device memory, shareable

In most microcontroller implementations, the shareability and cache policy attributes do not affect the system
behavior. However, using these settings for the MPU regions can make the application code more portable. The
values given are for typical situations. In special systems, such as multiprocessor designs or designs with a separate
DMA engine, the shareability attribute might be important. In these cases, refer to the recommendations of the
memory device manufacturer.

SAMA4CP16C [DATASHEET] 225
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.11.2 Memory Protection Unit (MPU) User Interface

Table 12-41. Memory Protection Unit (MPU) Register Mapping

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Offset Register Name Access Reset
OxEOOOED90 | MPU Type Register MPU_TYPE Read-only 0x00000800
OxEOOOED94 | MPU Control Register MPU_CTRL Read/Write 0x00000000
OxEOOOED98 | MPU Region Number Register MPU_RNR Read/Write 0x00000000
OxEOOOED9C | MPU Region Base Address Register MPU_RBAR Read/Write 0x00000000
OxEOOOEDAOQO | MPU Region Attribute and Size Register MPU_RASR Read/Write 0x00000000
OxEOOOEDA4 | MPU Region Base Address Register Alias 1 MPU_RBAR_A1 | Read/Write 0x00000000
OxEOOOEDA8 | MPU Region Attribute and Size Register Alias 1 MPU_RASR_A1 | Read/Write 0x00000000
OxEOOOEDAC | MPU Region Base Address Register Alias 2 MPU_RBAR_A2 | Read/Write 0x00000000
OxEOOOEDBO | MPU Region Attribute and Size Register Alias 2 MPU_RASR_A2 | Read/Write 0x00000000
OxEOOOEDB4 | MPU Region Base Address Register Alias 3 MPU_RBAR_A3 | Read/Write 0x00000000
OxEOOOEDB8 | MPU Region Attribute and Size Register Alias 3 MPU_RASR_A3 | Read/Write 0x00000000

226 SAM4CP16C [DATASHEET] /ItmeL

12.11.2.1 MPU Type Register

Name: MPU_TYPE

Access: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| IREGION |
15 14 13 12 11 10 9 8

| DREGION |
7 6 5 4 3 2 1 0

| - SEPARATE |

The MPU_TYPE register indicates whether the MPU is present, and if so, how many regions it supports.

* IREGION: Instruction Region

Indicates the number of supported MPU instruction regions.

Always contains 0x00. The MPU memory map is unified and is described by the DREGION field.

* DREGION: Data Region

Indicates the number of supported MPU data regions:

0x08 = Eight MPU regions.

¢« SEPARATE: Separate Instruction

Indicates support for unified or separate instruction and date memory maps:

0: Unified.

Atmel

SAM4CP16C [DATASHEET] 227

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.11.2.2 MPU Control Register

Name: MPU_CTRL
Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - PRIVDEFENA | HFNMIENA ENABLE |

The MPU CTRL register enables the MPU, enables the default memory map background region, and enables the use of the
MPU when in the hard fault, Non-maskable Interrupt (NMI), and FAULTMASK escalated handlers.

* PRIVDEFENA: Privileged Default Memory Map Enable
Enables privileged software access to the default memory map:

0: If the MPU is enabled, disables the use of the default memory map. Any memory access to a location not covered by any
enabled region causes a fault.

1: If the MPU is enabled, enables the use of the default memory map as a background region for privileged software accesses.

When enabled, the background region acts as a region number -1. Any region that is defined and enabled has priority over this
default map.

If the MPU is disabled, the processor ignores this bit.

¢ HFNMIENA: Hard Fault and NMI Enable
Enables the operation of MPU during hard fault, NMI, and FAULTMASK handlers.

When the MPU is enabled:

0: MPU is disabled during hard fault, NMI, and FAULTMASK handlers, regardless of the value of the ENABLE bit.
1: The MPU is enabled during hard fault, NMI, and FAULTMASK handlers.

When the MPU is disabled, if this bit is set to 1, the behavior is unpredictable.

« ENABLE: MPU Enable
Enables the MPU:

0: MPU disabled.
1: MPU enabled.
When ENABLE and PRIVDEFENA are both set to 1:

* For privileged accesses, the default memory map is as described in “Memory Model”. Any access by privileged software
that does not address an enabled memory region behaves as defined by the default memory map.

» Any access by unprivileged software that does not address an enabled memory region causes a memory management
fault.

XN and Strongly-ordered rules always apply to the System Control Space regardless of the value of the ENABLE bit.

228 SAMA4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled for the system to function unless the
PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is set to 1 and no regions are enabled, then only privileged software can
operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the same memory attributes as if the
MPU is not implemented. The default memory map applies to accesses from both privileged and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are always permitted. Other areas are
accessible based on regions and whether PRIVDEFENA is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the handler for an exception with
priority —1 or —2. These priorities are only possible when handling a hard fault or NMI exception, or when FAULTMASK is
enabled. Setting the HFNMIENA bit to 1 enables the MPU when operating with these two priorities.

SAMA4CP16C [DATASHEET] 229
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.11.2.3 MPU Region Number Register

Name: MPU_RNR

Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| REGION

The MPU_RNR selects which memory region is referenced by the MPU_RBAR and MPU_RASRs.

* REGION: MPU Region Referenced by the MPU_RBAR and MPU_RASRs
Indicates the MPU region referenced by the MPU_RBAR and MPU_RASRs.

The MPU supports 8 memory regions, so the permitted values of this field are 0 - 7.

Normally, the required region number is written to this register before accessing the MPU_RBAR or MPU_RASR. However,
the region number can be changed by writing to the MPU_RBAR with the VALID bit set to 1; see “MPU Region Base Address
Register”. This write updates the value of the REGION field.

230 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

12.11.2.4 MPU Region Base Address Register

Name: MPU_RBAR
Access: Read/Write

31 30 29 28 27 26 25 24
| ADDR

23 22 21 20 19 18 17 16
| ADDR

15 14 13 12 11 10 9 8
| ADDR

7 6 5 4 3 2 1 0
| ADDR VALID REGION

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

* ADDR: Region Base Address
Software must ensure that the value written to the ADDR field aligns with the size of the selected region (SIZE field in the
MPU_RASR).

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies the
complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB, for
example, at 0x00010000 or 0x00020000.

* VALID: MPU Region Number Valid
Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and
ignores the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for the
region specified in the REGION field.

Always reads as zero.

¢ REGION: MPU Region
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

SAMA4CP16C [DATASHEET] 231
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.11.2.5 MPU Region Attribute and Size Register

Name: MPU_RASR

Access: Read/Write
31 30 29 28 27 26 25 24

| - XN - | AP |
23 22 21 20 19 18 17 16

| - TEX | [C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| - SIZE ENABLE |

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and enables
that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:

» The most significant halfword holds the region attributes.
» The least significant halfword holds the region size, and the region and subregion enable bits.

¢ XN: Instruction Access Disable
0: Instruction fetches enabled.

1: Instruction fetches disabled.

¢ AP: Access Permission
See Table 12-39.

* TEX, C, B: Memory Access Attributes
See Table 12-37.

¢ S: Shareable
See Table 12-37.

* SRD: Subregion Disable
For each bit in this field:

0: Corresponding subregion is enabled.
1: Corresponding subregion is disabled.
See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD
field as 0x00.

232 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

¢ SIZE: Size of the MPU Protection Region
The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR as follows:

(Region size in bytes

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE
values, with the corresponding region size and value of N in the MPU_RBAR.

) - 2(SIZE+1)

SIZE Value Region Size Value of N(") Note

b00100 (4) 32B 5 Minimum permitted size
b01001 (9) 1 KB 10 -

b10011 (19) 1 MB 20 -

b11101 (29) 1GB 30 -

b11111 (31) 4GB b01100 Maximum possible size

Note: 1. Inthe MPU_RBAR; see “MPU Region Base Address Register”.

* ENABLE: Region Enable

Note: For information about access permission, see “MPU Access Permission Attributes”.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.11.2.6 MPU Region Base Address Register Alias 1

Name: MPU_RBAR_A1

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 1 10 9 8

| ADDR |
7 6 5 4 3 2 1 0

| ADDR | VALID | REGION |

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

* ADDR: Region Base Address
Software must ensure that the value written to the ADDR field aligns with the size of the selected region.

The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified by
the SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes).
If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies the
complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB, for
example, at 0x00010000 or 0x00020000.

e VALID: MPU Region Number Valid
Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and
ignores the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for the
region specified in the REGION field.

Always reads as zero.

* REGION: MPU Region
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

234 SAMA4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.11.2.7 MPU Region Attribute and Size Register Alias 1

Name: MPU_RASR_A1

Access: Read/Write
31 30 29 28 27 26 25 24

I - [XN | - I AP |
23 22 21 20 19 18 17 16

| — TEX | S C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| - | SIZE | ENABLE |

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and enables
that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:
» The most significant halfword holds the region attributes.
» The least significant halfword holds the region size, and the region and subregion enable bits.

¢ XN: Instruction Access Disable
0: Instruction fetches enabled.

1: Instruction fetches disabled.

¢ AP: Access Permission
See Table 12-39.

¢ TEX, C, B: Memory Access Attributes
See Table 12-37.

¢ S: Shareable
See Table 12-37.

¢ SRD: Subregion Disable
For each bit in this field:

0: Corresponding subregion is enabled.
1: Corresponding subregion is disabled.
See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD
field as 0x00.

SAMA4CP16C [DATASHEET] 235
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

¢ SIZE: Size of the MPU Protection Region
The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR as follows:

(Region size in bytes) = 2
The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE

SIZE+1)

values, with the corresponding region size and value of N in the MPU_RBAR.

SIZE Value Region Size Value of N(") Note

b00100 (4) 32B 5 Minimum permitted size
b01001 (9) 1 KB 10 -

b10011 (19) 1 MB 20 -

b11101 (29) 1GB 30 -

b11111 (31) 4GB b01100 Maximum possible size

Note: 1. Inthe MPU_RBAR; see “MPU Region Base Address Register”.

« ENABLE: Region Enable
Note: For information about access permission, see “MPU Access Permission Attributes”.

236 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

12.11.2.8 MPU Region Base Address Register Alias 2

Name: MPU_RBAR_A2

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 1 10 9 8

| ADDR |
7 6 5 4 3 2 1 0

| ADDR | VALID | REGION |

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

* ADDR: Region Base Address
Software must ensure that the value written to the ADDR field aligns with the size of the selected region.

The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified by
the SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes).

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies the
complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB, for
example, at 0x00010000 or 0x00020000.

* VALID: MPU Region Number Valid
Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and
ignores the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for the
region specified in the REGION field.

Always reads as zero.

¢ REGION: MPU Region
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

SAMA4CP16C [DATASHEET] 237
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.11.2.9 MPU Region Attribute and Size Register Alias 2

Name: MPU_RASR_A2

Access: Read/Write
31 30 29 28 27 26 25 24

I - [XN | - I AP |
23 22 21 20 19 18 17 16

| — TEX | S C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| - | SIZE | ENABLE |

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and enables
that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:
» The most significant halfword holds the region attributes.
» The least significant halfword holds the region size, and the region and subregion enable bits.

¢ XN: Instruction Access Disable
0: Instruction fetches enabled.

1: Instruction fetches disabled.

¢ AP: Access Permission
See Table 12-39.

* TEX, C, B: Memory Access Attributes
See Table 12-37.

¢ S: Shareable
See Table 12-37.

¢ SRD: Subregion Disable
For each bit in this field:

0: Corresponding subregion is enabled.
1: Corresponding subregion is disabled.
See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD
field as 0x00.

238 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

¢ SIZE: Size of the MPU Protection Region
The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR as follows:

(Region size in bytes) = 2
The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE

SIZE+1)

values, with the corresponding region size and value of N in the MPU_RBAR.

SIZE Value Region Size Value of N(") Note

b00100 (4) 32B 5 Minimum permitted size
b01001 (9) 1 KB 10 -

b10011 (19) 1 MB 20 -

b11101 (29) 1GB 30 -

b11111 (31) 4GB b01100 Maximum possible size

Note: 1. Inthe MPU_RBAR; see “MPU Region Base Address Register”.

« ENABLE: Region Enable
Note: For information about access permission, see “MPU Access Permission Attributes”.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.11.2.10 MPU Region Base Address Register Alias 3

Name: MPU_RBAR_A3

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 1 10 9 8

| ADDR |
7 6 5 4 3 2 1 0

| ADDR | VALID | REGION |

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

* ADDR: Region Base Address
Software must ensure that the value written to the ADDR field aligns with the size of the selected region.

The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified by
the SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes).
If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies the
complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB, for
example, at 0x00010000 or 0x00020000.

e VALID: MPU Region Number Valid
Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and
ignores the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for the
region specified in the REGION field.

Always reads as zero.

¢ REGION: MPU Region
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

240 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.11.2.11 MPU Region Attribute and Size Register Alias 3

Name: MPU_RASR_A3

Access: Read/Write
31 30 29 28 27 26 25 24

I - [XN | - I AP |
23 22 21 20 19 18 17 16

| — TEX | S C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| - | SIZE | ENABLE |

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and enables
that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:
» The most significant halfword holds the region attributes.
» The least significant halfword holds the region size, and the region and subregion enable bits.

¢ XN: Instruction Access Disable
0: Instruction fetches enabled.

1: Instruction fetches disabled.

¢ AP: Access Permission
See Table 12-39.

¢ TEX, C, B: Memory Access Attributes
See Table 12-37.

¢ S: Shareable
See Table 12-37.

¢ SRD: Subregion Disable
For each bit in this field:

0: Corresponding subregion is enabled.
1: Corresponding subregion is disabled.
See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD
field as 0x00.

SAMA4CP16C [DATASHEET] 241
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

¢ SIZE: Size of the MPU Protection Region
The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR as follows:

(Region size in bytes) = 2
The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE

SIZE+1)

values, with the corresponding region size and value of N in the MPU_RBAR.

SIZE Value Region Size Value of N(") Note

b00100 (4) 32B 5 Minimum permitted size
b01001 (9) 1 KB 10 -

b10011 (19) 1 MB 20 -

b11101 (29) 1GB 30 -

b11111 (31) 4GB b01100 Maximum possible size

Note: 1. Inthe MPU_RBAR; see “MPU Region Base Address Register”.

* ENABLE: Region Enable
Note: For information about access permission, see “MPU Access Permission Attributes”.

242 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

12.12 Floating Point Unit (FPU)
The Cortex-M4F FPU implements the FPv4-SP floating-point extension.

The FPU fully supports single-precision add, subtract, multiply, divide, multiply and accumulate, and square root
operations. It also provides conversions between fixed-point and floating-point data formats, and floating-point

constant instructions.

The FPU provides floating-point computation functionality that is compliant with the ANSI/IEEE Std 754-2008, IEEE
Standard for Binary Floating-Point Arithmetic, referred to as the IEEE 754 standard.

The FPU contains 32 single-precision extension registers, which can also be accessed as 16 doubleword registers for

load, store, and move operations.

12.12.1 Enabling the FPU

The FPU is disabled from reset. It must be enabled before any floating-point instructions can be used. An example
code sequence for enabling the FPU in both privileged and user modes is showed below. The processor must be in

privileged mode to read from and write to the CPACR.
Example of Enabling the FPU:

; CPACR is located at address OxEOOOED88
LDR.W RO, =0xEOOOED88

; Read CPACR

LDR R1, [RO]

; Set bits 20-23 to enable CP10 and CP1l1 coprocessors

ORR R1, R1, #(OxF << 20)
; Write back the modified value to the CPACR

STR R1, [RO]; wait for store to complete
DSB

;reset pipeline now the FPU is enabled
1SB

12.12.2 Floating Point Unit (FPU) User Interface

Table 12-42. Floating Point Unit (FPU) Register Mapping

Offset Register Name Access Reset
OxEOOOED88 | Coprocessor Access Control Register CPACR Read/Write 0x00000000
OxEOOOEF34 | Floating-point Context Control Register FPCCR Read/Write 0xC0000000
OxEOOOEF38 | Floating-point Context Address Register FPCAR Read/Write -

- Floating-point Status Control Register FPSCR Read/Write | —
OxEOOOEO1C | Floating-point Default Status Control Register FPDSCR | Read/Write 0x00000000

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

243

12.12.2.1 Coprocessor Access Control Register

Name: CPACR
Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| CP11 CP10
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

The CPACR specifies the access privileges for coprocessors.

* CP10: Access Privileges for Coprocessor 10
The possible values of each field are:

0: Access denied. Any attempted access generates a NOCP UsageFault.
1: Privileged access only. An unprivileged access generates a NOCP fault.
2: Reserved. The result of any access is unpredictable.

3: Full access.

e CP11: Access Privileges for Coprocessor 11
The possible values of each field are:

0: Access denied. Any attempted access generates a NOCP UsageFault.
1: Privileged access only. An unprivileged access generates a NOCP fault.
2: Reserved. The result of any access is unpredictable.

3: Full access.

244 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

12.12.2.2 Floating-point Context Control Register

Name: FPCCR

Access: Read/Write
31 30 29 28 27 26 25 24

| ASPEN LSPEN - |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| - | MONRDY |
7 6 5 4 3 2 1 0

| - BFRDY | MMRDY HFRDY | THREAD - USER | LSPACT |

The FPCCR sets or returns FPU control data.

* ASPEN: Automatic Hardware State Preservation And Restoration
Enables CONTROL bit [2] setting on execution of a floating-point instruction. This results in an automatic hardware state
preservation and restoration, for floating-point context, on exception entry and exit.

0: Disable CONTROL bit [2] setting on execution of a floating-point instruction.
1: Enable CONTROL bit [2] setting on execution of a floating-point instruction.

¢ LSPEN: Automatic Lazy State Preservation
0: Disable automatic lazy state preservation for floating-point context.

1: Enable automatic lazy state preservation for floating-point context.

¢ MONRDY: Debug Monitor Ready
0: DebugMonitor is disabled or the priority did not permit to set MON_PEND when the floating-point stack frame was allocated.

1: DebugMonitor is enabled and the priority permitted to set MON_PEND when the floating-point stack frame was allocated.

* BFRDY: Bus Fault Ready
0: BusFault is disabled or the priority did not permit to set the BusFault handler to the pending state when the floating-point
stack frame was allocated.

1: BusFault is enabled and the priority permitted to set the BusFault handler to the pending state when the floating-point stack
frame was allocated.

* MMRDY: Memory Management Ready
0: MemManage is disabled or the priority did not permit to set the MemManage handler to the pending state when the floating-
point stack frame was allocated.

1: MemManage is enabled and the priority permitted to set the MemManage handler to the pending state when the floating-
point stack frame was allocated.

* HFRDY: Hard Fault Ready
0: The priority did not permit to set the HardFault handler to the pending state when the floating-point stack frame was
allocated.

1: The priority permitted to set the HardFault handler to the pending state when the floating-point stack frame was allocated.

SAMA4CP16C [DATASHEET] 245
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

e THREAD: Thread Mode
0: The mode was not the Thread Mode when the floating-point stack frame was allocated.

1: The mode was the Thread Mode when the floating-point stack frame was allocated.

¢ USER: User Privilege Level
0: The privilege level was not User when the floating-point stack frame was allocated.

1: The privilege level was User when the floating-point stack frame was allocated.

¢ LSPACT: Lazy State Preservation Active
0: The lazy state preservation is not active.

1: The lazy state preservation is active. The floating-point stack frame has been allocated but saving the state to it has been

deferred.
246 SAM4CP16C [DATASHEET]
Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16 /I t m e L

12.12.2.3 Floating-point Context Address Register

Name: FPCAR

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS | - |

The FPCAR holds the location of the unpopulated floating-point register space allocated on an exception stack frame.

* ADDRESS: Location of Unpopulated Floating-point Register Space Allocated on an Exception Stack Frame
The location of the unpopulated floating-point register space allocated on an exception stack frame.

SAMACP16C [DATASHEET] 247
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.12.2.4 Floating-point Status Control Register

Name: FPSCR
Access: Read/Write
31 30 29 28 27 26 25 24
| N Z | C Vv - AHP DN Fz
23 22 21 20 19 18 17 16
| RMode | -
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
| IDC | - IXC UFC OFC DzC I0C

The FPSCR provides all necessary User level control of the floating-point system.

* N: Negative Condition Code Flag
Floating-point comparison operations update this flag.

e Z: Zero Condition Code Flag

Floating-point comparison operations update this flag.

¢ C: Carry Condition Code Flag

Floating-point comparison operations update this flag.

¢ V: Overflow Condition Code Flag
Floating-point comparison operations update this flag.

¢ AHP: Alternative Half-precision Control

0: IEEE half-precision format selected

1: Alternative half-precision format selected.

e DN: Default NaN Mode Control

0: NaN operands propagate through to the output of a floating-point operation.

1: Any operation involving one or more NaNs returns the Default NaN.

¢ FZ: Flush-to-zero Mode Control

0: Flush-to-zero mode disabled. The behavior of the floating-point system is fully compliant with the IEEE 754 standard.

1: Flush-to-zero mode enabled.

* RMode: Rounding Mode Control

The encoding of this field is:
0b00: Round to Nearest (RN) mode.

0b01: Round towards Plus Infinity (RP) mode.
0b10: Round towards Minus Infinity (RM) mode.

0b11: Round towards Zero (RZ) mode.

The specified rounding mode is used by almost all floating-point instructions.

248 SAMA4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

¢ IDC: Input Denormal Cumulative Exception
IDC is a cumulative exception bit for floating-point exception; see also bits [4:0].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

¢ IXC: Inexact Cumulative Exception
IXC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

¢ UFC: Underflow Cumulative Exception
UFC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

* OFC: Overflow Cumulative Exception
OFC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

* DZC: Division by Zero Cumulative Exception
DZC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

¢ 10C: Invalid Operation Cumulative Exception
I0C is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

Atmel SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

249

12.12.2.5 Floating-point Default Status Control Register
Name: FPDSCR

Access: Read/Write

31 30 29 28 27

26

25

24

AHP

DN

Fz

23 22 21 20 19

18

17

16

| RMode -

15 14 13 12 11

10

The FPDSCR holds the default values for the floating-point status control data.

¢ AHP: FPSCR.AHP Default Value
Default value for FPSCR.AHP.

e DN: FPSCR.DN Default Value
Default value for FPSCR.DN.

¢ FZ: FPSCR.FZ Default Value
Default value for FPSCR.FZ.

¢ RMode: FPSCR.RMode Default Value
Default value for FPSCR.RMode.

250 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

12.13 Glossary

This glossary describes some of the terms used in technical documents from ARM.

A mechanism that indicates to a processor that the value associated with a memory access is invalid.

Abort
An abort can be caused by the external or internal memory system as a result of attempting to access
invalid instruction or data memory.

Aligned A data item stored at an address that is divisible by the number of bytes that defines the data size is

said to be aligned. Aligned words and halfwords have addresses that are divisible by four and two
respectively. The terms word-aligned and halfword-aligned therefore stipulate addresses that are
divisible by four and two respectively.

Banked register

A register that has multiple physical copies, where the state of the processor determines which copy is
used. The Stack Pointer, SP (R13) is a banked register.

Base register

In instruction descriptions, a register specified by a load or store instruction that is used to hold the
base value for the instruction’s address calculation. Depending on the instruction and its addressing
mode, an offset can be added to or subtracted from the base register value to form the address that is
sent to memory.

See also “Index register”.

Big-endian (BE)

Byte ordering scheme in which bytes of decreasing significance in a data word are stored at
increasing addresses in memory.

See also “Byte-invariant”, “Endianness”, “Little-endian (LE)".

Big-endian memory

Memory in which:

a byte or halfword at a word-aligned address is the most significant byte or halfword within the word at
that address, a byte at a halfword-aligned address is the most significant byte within the halfword at
that address.

See also “Little-endian memory”.

Breakpoint

A breakpoint is a mechanism provided by debuggers to identify an instruction at which program
execution is to be halted. Breakpoints are inserted by the programmer to enable inspection of register
contents, memory locations, variable values at fixed points in the program execution to test that the
program is operating correctly. Breakpoints are removed after the program is successfully tested.

Byte-invariant

In a byte-invariant system, the address of each byte of memory remains unchanged when switching
between little-endian and big-endian operation. When a data item larger than a byte is loaded from or
stored to memory, the bytes making up that data item are arranged into the correct order depending
on the endianness of the memory access.

An ARM byte-invariant implementation also supports unaligned halfword and word memory accesses.
It expects multi-word accesses to be word-aligned.

Condition field

A four-bit field in an instruction that specifies a condition under which the instruction can execute.

Atmel

SAM4CP16C [DATASHEET] 251

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Conditional execution

If the condition code flags indicate that the corresponding condition is true when the instruction starts
executing, it executes normally. Otherwise, the instruction does nothing.

Context The environment that each process operates in for a multitasking operating system. In ARM
processors, this is limited to mean the physical address range that it can access in memory and the
associated memory access permissions.

Coprocessor A processor that supplements the main processor. Cortex-M4 does not support any coprocessors.

Debugger A debugging system that includes a program, used to detect, locate, and correct software faults,

together with custom hardware that supports software debugging.

Direct Memory Access
(DMA)

An operation that accesses main memory directly, without the processor performing any accesses to
the data concerned.

Doubleword

A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise stated.

Doubleword-aligned

A data item having a memory address that is divisible by eight.

Endianness Byte ordering. The scheme that determines the order that successive bytes of a data word are stored
in memory. An aspect of the system’s memory mapping.
See also “Little-endian (LE)” and “Big-endian (BE)”".

Exception An event that interrupts program execution. When an exception occurs, the processor suspends the

normal program flow and starts execution at the address indicated by the corresponding exception
vector. The indicated address contains the first instruction of the handler for the exception.

An exception can be an interrupt request, a fault, or a software-generated system exception. Faults
include attempting an invalid memory access, attempting to execute an instruction in an invalid
processor state, and attempting to execute an undefined instruction.

Exception service routine

See “Interrupt handler”.

Exception vector

See “Interrupt vector”.

Flat address mapping

A system of organizing memory in which each physical address in the memory space is the same as
the corresponding virtual address.

Halfword

A 16-bit data item.

lllegal instruction

An instruction that is architecturally Undefined.

252

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

Implementation-defined

The behavior is not architecturally defined, but is defined and documented by individual
implementations.

Implementation-specific

The behavior is not architecturally defined, and does not have to be documented by individual
implementations. Used when there are a number of implementation options available and the option
chosen does not affect software compatibility.

Index register

In some load and store instruction descriptions, the value of this register is used as an offset to be
added to or subtracted from the base register value to form the address that is sent to memory. Some
addressing modes optionally enable the index register value to be shifted prior to the addition or
subtraction.

See also “Base register”.

Instruction cycle count

The number of cycles that an instruction occupies the Execute stage of the pipeline.

Interrupt handler

A program that control of the processor is passed to when an interrupt occurs.

Interrupt vector

One of a number of fixed addresses in low memory, or in high memory if high vectors are configured,
that contains the first instruction of the corresponding interrupt handler.

Little-endian (LE)

Byte ordering scheme in which bytes of increasing significance in a data word are stored at increasing
addresses in memory.

n o«

See also “Big-endian (BE)”, “Byte-invariant”, “Endianness”.

Little-endian memory

Memory in which:

a byte or halfword at a word-aligned address is the least significant byte or halfword within the word at
that address, a byte at a halfword-aligned address is the least significant byte within the halfword at
that address.

See also “Big-endian memory”.

Load/store architecture

A processor architecture where data-processing operations only operate on register contents, not
directly on memory contents.

Memory Protection Unit
(MPU)

Hardware that controls access permissions to blocks of memory. An MPU does not perform any
address translation.

Prefetching

In pipelined processors, the process of fetching instructions from memory to fill up the pipeline before
the preceding instructions have finished executing. Prefetching an instruction does not mean that the
instruction has to be executed.

Preserved

Preserved by writing the same value back that has been previously read from the same field on the
same processor.

Atmel

SAM4CP16C [DATASHEET] 253

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Read

Reads are defined as memory operations that have the semantics of a load. Reads include the Thumb
instructions LDM, LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.

Region

A partition of memory space.

Reserved

A field in a control register or instruction format is reserved if the field is to be defined by the
implementation, or produces Unpredictable results if the contents of the field are not zero. These fields
are reserved for use in future extensions of the architecture or are implementation-specific. All
reserved bits not used by the implementation must be written as 0 and read as 0.

Thread-safe

In a multi-tasking environment, thread-safe functions use safeguard mechanisms when accessing
shared resources, to ensure correct operation without the risk of shared access conflicts.

Thumb instruction

One or two halfwords that specify an operation for a processor to perform. Thumb instructions must be
halfword-aligned.

Unaligned A data item stored at an address that is not divisible by the number of bytes that defines the data size
is said to be unaligned. For example, a word stored at an address that is not divisible by four.

Undefined Indicates an instruction that generates an Undefined instruction exception.

Unpredictable One cannot rely on the behavior. Unpredictable behavior must not represent security holes.
Unpredictable behavior must not halt or hang the processor, or any parts of the system.

Warm reset Also known as a core reset. Initializes the majority of the processor excluding the debug controller and
debug logic. This type of reset is useful if debugging features of a processor.

Word A 32-bit data item.

Write

Writes are defined as operations that have the semantics of a store. Writes include the Thumb
instructions STM, STR, STRH, STRB, and PUSH.

254 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

13. Debug and Test Features

13.1 Description

A number of complementary debug and test capabilities are available to users. The Serial Wire/JTAG Debug Port
(SWJ-DP) combining a Serial Wire Debug Port (SW-DP) and a JTAG Debug Port (JTAG-DP) is used for standard
debugging functions, such as downloading code and single-stepping through programs. It also embeds a serial wire

trace.

13.2 Associated Documentation

The SAM4CP implements the standard ARM CoreSight™ Macrocell. For information on CoreSight, the following
reference documents are available from the ARM website:

Cortex-M4/M4F Technical Reference Manual (ARM DDI 0439C).
CoreSight Technology System Design Guide (ARM DGI 0012D).
CoreSight Components Technical Reference Manual (ARM DDI 0314H).
ARM Debug Interface v5 Architecture Specification (Doc. ARM IHI 0031A).
ARMv7-M Architecture Reference Manual (ARM DDI 0403D).

13.3 Embedded Characteristics

Atmel

Dual Core Debugging with common Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-
DP) debug access port connected to both cores.

Star Topology AHB-AP Debug Access Port Implementation with common SW-DP / SWJ-DP providing higher
performance than daisy-chain topology.

Possibility to halt each core on debug event on the other core (hardware).

Possibility to restart each core when the other core has restarted (hardware).
Synchronization and software cross-triggering with Debugger.

Instrumentation Trace Macrocell (ITM) on both core for support of ‘printf’ style debugging.
Mux 2-1 to trace chosen core (limit the number of out put pin).

Single wire Viewer or Clock mode (4-bit parallel output ports).

Debug access to all memory and registers in the system, including Cortex-M4 register bank when the core is
running, halted, or held in reset.

Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches.
Data Watchpoint and Trace (DWT) unit for implementing watch points, data tracing, and system profiling.
IEEE 1149.1 JTAG Boundary scan on All Digital Pins.

SAM4CP16C [DATASHEET] 255

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 13-1. Debug and Test Block Diagram

EI T™MS
!EI TCK/SWCLK

El TDI

Boundary
TAP

SWJ-DP d

EI JTAGSEL

—»@ TDO/TRACESWO

Reset

POR
and
Test 4—@ TST

Figure 13-2 illustrates the dual core debug implementation using only one SW-JTAG/SW-DP Debug Access Port. Star
topology has been used to connect the AHB-AP 0 (Core 0) and AHB-AP 1 (Core) rather than legacy daisy chaining
method. Star topology provides higher performance than daisy-chain topology. This core debug architecture is fully
supported by debug tools vendors.

Figure 13-2. Dual Core Debug Architecture

Serial Wire and JTAG Debug Port (SW-DP / SWJ-DP)

A

Y

AHB-AP O

DAP

ROM

Cortex-M4 |«

AHB-AP 1

Core 0
(CM4PO)

IT™M

\

Cross-Trigering

Cortex-M4F DAP

Debug Event |«
(Halt / Restart)

256 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Y

ROM

IT™M

Core 1
(CM4P1)

2->1

v

Trace Data

Atmel

13.4 Cross Triggering Debug Events
Cross Triggering (CT) as shown in Figure 13-2 is an Atmel module that enables two cores to send and receive debug
events to and from each other. This module is used to debug two applications at the same time (one application
running on each core).
CT enables core 0 (or 1) to trigger a debug event (halt) to core 1 (or 0) to enter Debug mode. The debug event can be
sent when the core 0 (or 1) enters Debug mode (such as breakpoint) or at run-time.
Once core 0 (or 1) gets out of Debug mode, it releases core 1 (0) from Debug mode as well.
The Cross Triggering configuration is located in the Special Function Register in the Matrix User Interface.
13.5 Application Examples
13.5.1 Debug Environment
Figure 13-3 shows a complete debug environment example. The SWJ-DP interface is used for standard debugging
functions, such as downloading code and single-stepping through the program, as well as viewing core and peripheral
registers.
Figure 13-3. Application Debug Environment Example
I I
/
Host Debugger
[
SWJ-DP
Emulator/Probe
SWJ-DP
Connector
|
SAM4
SAM4-based Application Board
SAM4CP16C [DATASHEET 257
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

13.5.2 Test Environment

Figure 13-4 shows an example of a test environment (JTAG Boundary scan). Test vectors are sent and interpreted by
the tester. In this example, the “board in test” is designed using a number of JTAG-compliant devices. These devices
can be connected to form a single scan chain.

Figure 13-4. Application Test Environment Example

Test Adaptor

Tester
JTAG
Probe
JTAG))
Connector || Chip nf = = 4 Chip 2
I
SAM4-based Application Board In Test
13.6 Debug and Test Pin Description
Table 13-1. Debug and Test Signal List
Signal Name Function Type Active Level
Reset/Test
NRST Microcontroller Reset Input/Output Low
TST Test Select Input -
SWD/JTAG
TCK/SWCLK Test Clock/Serial Wire Clock Input -
TDI Test Data In Input -
TDO/TRACESWO Test Data Out/Trace Asynchronous Data Out Output -
TMS/SWDIO Test Mode Select/Serial Wire Input/Output Input -
JTAGSEL JTAG Selection Input High

258 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

13.7 Functional Description

13.7.1 Test Pin

One dedicated pin, TST, is used to define the device operating mode. When this pin is at low level during power-up,
the device is in Normal operating mode. When at high level, the device is in Test mode or FFPI mode. The TST pin
integrates a permanent pull-down resistor of about 15 kQ, so that it can be left unconnected for normal operation.
Note that when setting the TST pin to low or high level at power-up, the pin must remain in the same state for the
duration of the operation.

13.7.2 Debug Architecture

Figure 13-5 illustrates the debug architecture. The Cortex-M4 embeds four functional units for debug:

SWJ-DP (Serial Wire/JTAG Debug Port).
FPB (Flash Patch Breakpoint).

DWT (Data Watchpoint and Trace).

ITM (Instrumentation Trace Macrocell).
TPIU (Trace Port Interface Unit).

The information that follows is mainly dedicated to developers of SWJ-DP Emulators/Probes and debugging tool
vendors for Cortex-M4 based microcontrollers. For further details on SWJ-DP, see the Cortex-M4 technical reference
manual.

Figure 13-5. Debug Architecture

DWT

4 watchpoints

FPB
PC sampler

6 breakpoints

SWJ-DP

data address sampler

data sampler 1™

software trace

32 channels

SWD/ITAG

SWO trace

interrupt trace

time stamping

TPIU

CPU statistics

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

259

13.7.3 Serial Wire/JTAG Debug Port (SWJ-DP)

The Cortex-M4 embeds a SWJ-DP Debug port which is the standard CoreSight debug port. It combines the Serial
Wire Debug Port (SW-DP), from 2 to 3 pins, and the JTAG Debug Port (JTAG-DP), 5 pins.

By default, the JTAG-DP is active. If the host debugger needs to switch to the SW-DP, it must provide a dedicated
JTAG sequence on TMS/SWDIO and TCK/SWCLK. This disables JTAG-DP and enables SW-DP.

When SW-DP is active, TDO/TRACESWO can be used for trace. The asynchronous TRACE output (TRACESWO) is
multiplexed with TDO and thus the asynchronous trace can only be used with SW-DP.

Table 13-2. SWJ-DP Pin List

Pin Name JTAG Port Serial Wire Debug Port
TMS/SWDIO TMS SWDIO
TCK/SWCLK TCK SWCLK

TDI TDI -
TDO/TRACESWO TDO TRACESWO (optional: trace)

SW-DP or JTAG-DP mode is selected when JTAGSEL is low. It is not possible to switch directly between SWJ-DP
and JTAG boundary scan operations. A chip reset must be performed after JTAGSEL is changed.

13.7.3.1 SW-DP and JTAG-DP Selection
Debug port selection is done by sending a specific SWDIOTMS sequence. The JTAG-DP is selected by default after
reset.
e Switch from JTAG-DP to SW-DP. The sequence is:
e Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1
e Send the 16-bit sequence on SWDIOTMS = 0111100111100111 (0x79E7 MSB first)
e Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1
e Switch from SWD to JTAG. The sequence is:
e Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1
e Send the 16-bit sequence on SWDIOTMS = 0011110011100111 (Ox3CE7 MSB first)
e Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1

13.7.4 FPB (Flash Patch Breakpoint)

The FPB:
° Implements hardware breakpoints.
e Patches code and data from code space to system space.

The FPB unit contains:
e Two literal comparators for matching against literal loads from Code space, and remapping to a corresponding
area in System space.
e Six instruction comparators for matching against instruction fetches from Code space, and remapping to a
corresponding area in System space.
e Alternatively, comparators can also be configured to generate a Breakpoint instruction to the processor core on
a match.

260 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

13.7.5 DWT (Data Watchpoint and Trace)

The DWT contains four comparators which can be configured to generate the following:
e PC sampling packets at set intervals.
e PC or Data watchpoint packets.
e Watchpoint event to halt core.
The DWT contains counters for the items that follow:
e Clock cycle (CYCCNT).
Folded instructions.
Load Store Unit (LSU) operations.
Sleep Cycles.
CPI (all instruction cycles except for the first cycle).
Interrupt overhead.

13.7.6 ITM (Instrumentation Trace Macrocell)

The ITM is an application-driven trace source that supports ‘printf’ style debugging to trace operating system (OS) and
application events, and provides diagnostic system information. The ITM transmits the trace information as packets
which can be generated by three different sources with several priority levels:

e Software trace: Software can write directly to ITM stimulus registers. This can be done using the ‘printf
function. For more information, refer to Section 13.7.6.1 “How to Configure the ITM”.

Hardware trace: The ITM transmits packets generated by the DWT.

Time stamping: Timestamps are transmitted relative to packets. The ITM contains a 21-bit counter to generate
the timestamp.

13.7.6.1 How to Configure the ITM

The following example describes how to output trace data in Asynchronous Trace mode.
e Configure the TPIU for Asynchronous Trace mode (refer to Section 13.7.6.3 “How to Configure the TPIU”).

e Enable the write accesses into the ITM registers by writing OXC5ACCES55 into the Lock Access Register
(address: OXEOOOOFBO).

e Write 0x00010015 into the Trace Control Register:
e Enable ITM.
e Enable Synchronization packets.
e Enable SWO behavior.
e Setthe ATBID to 1.
e Write 0x1 into the Trace Enable Register:
e Enable the Stimulus port 0.
e Write Ox1 into the Trace Privilege Register:

e Stimulus port 0 only accessed in Privileged mode (clearing a bit in this register results in the
corresponding stimulus port being accessible in User mode).

e Write into the Stimulus port O register: TPIU (Trace Port Interface Unit).
The TPIU acts as a bridge between the on-chip trace data and the ITM.
The TPIU formats and transmits trace data off-chip at frequencies asynchronous to the core.

SAMA4CP16C [DATASHEET] 261
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

13.7.6.2 Asynchronous Mode

The TPIU is configured in Asynchronous mode, trace data are output using the single TRACESWO pin. The
TRACESWO signal is multiplexed with the TDO signal of the JTAG Debug Port. As a consequence, Asynchronous
Trace mode is only available when the Serial Wire Debug mode is selected since TDO signal is used in JTAG Debug
mode.
Two encoding formats are available for the single pin output:

e Manchester encoded stream. This is the reset value.

° NRZ_based UART byte structure.

13.7.6.3 How to Configure the TPIU

This example is applicable with Asynchronous Trace mode only.

e Set the TRCENA bit to 1 into the Debug Exception and Monitor Register (OXEOOOEDFC) to enable the use of
trace and debug blocks.

e Write 0x2 into the Selected Pin Protocol Register
e Select the Serial Wire Output — NRZ
Write 0x100 into the Formatter and Flush Control Register.

e Set the suitable clock prescaler value into the Async Clock Prescaler Register to scale the baud rate of the
asynchronous output (this can be done automatically by the debugging tool).

13.7.7 IEEE 1149.1 JTAG Boundary Scan

With IEEE 1149.1 JTAG Boundary Scan, the pin-level access is independent of the device packaging technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when TST is tied low, while JTAGSEL is high and INTEST7 is tied low
during the power-up, and must be kept in this state during the whole boundary scan operation. The SAMPLE,
EXTEST and BYPASS functions are implemented. In SWD/JTAG Debug mode, the ARM processor responds with a
non-JTAG chip ID that identifies the processor. This is not IEEE 1149.1 JTAG-compliant.

It is not possible to switch directly between JTAG Boundary Scan and SWJ Debug Port operations. A chip reset must
be performed after JTAGSEL is changed.

A Boundary-scan Descriptor Language (BSDL) file is provided on Atmel’s web site to set up the test.

13.7.7.1 JTAG Boundary-scan Register

The Boundary-scan Register (BSR) contains a number of bits which correspond to active pins and the associated
control signals.

Each SAM4 input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit contains data that can be
forced on the pad. The INPUT bit facilitates the observability of data applied to the pad. The CONTROL bit selects the
direction of the pad.

For more information, refer to Boundary Scan Description Language (BDSL) files available for the SAM4 Series.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

13.7.8 ID Code Register

Access: Read-only
31 30 29 28 27 26 25 24
| VERSION | PART NUMBER
23 22 21 20 19 18 17 16
| PART NUMBER
15 14 13 12 11 10 9 8
| PART NUMBER | MANUFACTURER IDENTITY
7 6 5 4 3 2 1 0
| MANUFACTURER IDENTITY | 1
¢ VERSION[31:28]: Product Version Number
Set to 0x0.
* PART NUMBER[27:12]: Product Part Number
Chip Name Chip ID
SAM4CP 0x05B34
e MANUFACTURER IDENTITY[11:1]
Set to Ox01F.
« Bit[0] Required by IEEE Std. 1149.1.
Set to 0x1.
Chip Name JTAG ID Code
SAMA4CP 0x05B3_403F
SAM4CP16C [DATASHEET 263
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

14.

141

14.2

14.3

14.4

264

SAMA4CP Boot Program

Description

The SAM-BA Boot Program includes an array of programs used to download and/or upload data into the different
memories of the product.

Hardware and Software Constraints

e SAM-BA Boot uses the first 4096 bytes of the SRAM for variables and stacks. The remaining available size can
be used for user code.

e UARTO requirements: None.

Table 14-1. Pins Driven during Boot Program Execution
Peripheral Pin PIO Line
UARTO URXDO PB4
UARTO UTXDO PB5

Flow Diagram

The Boot Program implements the algorithm depicted in Figure 14-1.

Figure 14-1. Boot Program Algorithm Flow Diagram
No

Device
Setup

Character # receive
from UARTO0?

[Run SAM-BA Monitor

The SAM-BA Boot program seeks to detect a source clock either from the embedded main oscillator with external
crystal (main oscillator enabled), or from a supported frequency signal applied to the XIN pin (main oscillator in
Bypass mode).

If a clock is found from the two possible sources above, the boot program checks whether the frequency is one of the
supported external frequencies. If no clock or frequency other than one of the supported external frequencies is found,
the internal 12-MHz RC oscillator is used as the main clock. The frequency drift of the 12-MHz RC oscillator should be
taken into account for high precision applications.

Device Initialization

Initialization follows the steps described below:
1. Stack setup
Setup the Embedded Flash Controller
External clock detection (crystal or external clock on XIN)
Main oscillator frequency detection if no external clock detected
Switch master clock on main oscillator
C variable initialization
PLLB setup: PLLB clock is initialized to generate a 48 MHz on MCK
Disable the watchdogs

© N o ok~ DN

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

9.

10. Wait for a character on UARTO
11. Jump to SAM-BA monitor (see Section 14.5 "SAM-BA Monitor”)

14.5 SAM-BA Monitor

The SAM-BA boot principle: once the communication interface is identified, running in an infinite loop waiting for

different commands as shown in Table 14-2.

Note:

[]
Note:

Atmel

Initialization of UARTO (115200 bauds, 8, N, 1)

Table 14-2. Commands Available through the SAM-BA Boot

Command Action Argument(s) Example

N Set Normal mode No argument N#

T Set Terminal mode No argument T#

(o] Write a byte Address, Value# 0200001,CA#

o Read a byte Address,# 0200001,#

H Write a half word Address, Value# H200002,CAFE#
h Read a half word Address,# h200002,#

w Write a word Address, Value# W200000,CAFEDECA#
w Read a word Address,# w200000,#

S Send a file Address # S$200000,#

R Receive a file Address, NbOfBytes# R200000,1234#
G Go Address# G200200#

\") Display version No argument V#

Mode commands:
e Normal mode configures SAM-BA Monitor to send/receive data in binary format
e Terminal mode configures SAM-BA Monitor to send/receive data in ASCII format
Write commands: Write a byte (O), a halfword (H) or a word (W) to the target
e Address: Address in hexadecimal
e Value: Byte, halfword or word to write in hexadecimal
Read commands: Read a byte (0), a halfword (h) or a word (w) from the target
e Address: Address in hexadecimal
e Output: The byte, halfword or word read in hexadecimal
Send a file (S): Send a file to a specified address
e Address: Address in hexadecimal

There is a time-out on this command which is reached when the prompt >’ appears before the end of the
command execution.

Receive a file (R): Receive data into a file from a specified address
e Address: Address in hexadecimal
e NbOfBytes: Number of bytes in hexadecimal to receive

Go (G): Jump to a specified address and execute the code
e Address: Address to jump in hexadecimal

Get Version (V): Return the SAM-BA boot version

In Terminal mode, when the requested command is performed, SAM-BA Monitor adds the following prompt
sequence to its answer: <LF>+<CR>+">",

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

265

14.5.1

14.5.2

266

UARTO Serial Port
Communication is performed through the UARTO initialized to 115200 Baud, 8, n, 1.

The Send and Receive File commands use the Xmodem protocol to communicate. Any terminal performing this
protocol can be used to send the application file to the target. The size of the binary file to send depends on the SRAM
size embedded in the product. In all cases, the size of the binary file must be lower than the SRAM size because the
Xmodem protocol requires some SRAM memory to work. See Section 14.2 "Hardware and Software Constraints”.

Xmodem Protocol
The supported Xmodem protocol is the 128-byte length block. This protocol uses a two-character CRC-16 to
guarantee detection of a maximum bit error.

Xmodem protocol with CRC is accurate provided both sender and receiver report a successful transmission. Each
block of the transfer looks like:

<SOH><blk #><255-blk #><--128 data bytes--><checksum>
where:
e <SOH> =01 hex
e <blk #> = binary number, starts at 01, increments by 1, and wraps OFFH to 00H (not to 01)
e <255-blk #> = 1’'s complement of the blk#.
e <checksum> = 2 bytes CRC16
Figure 14-2 shows a transmission using this protocol.

Figure 14-2. Xmodem Transfer Example

Host Device

Cc

SOH 01 FE Data[128] CRC CRC

ACK

SOH 02 FD Data[128] CRC CRC

ACK

SOH 03 FC Data[100] CRC CRC

ACK

EOT

ACK

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

14.5.3 In Application Programming (IAP) Feature

The IAP feature is a function located in the ROM that can be called by any software application.

When called, IAP sends the required FLASH command to the EEFC and waits for the Flash to be ready (looping while
the FRDY bit is not set in the EEFC_FSR register).

Since this function is executed from ROM, Flash programming (such as sector write) can be performed by code
running in Flash.

The IAP function entry point is retrieved by reading the NMI vector in the ROM (0x02000008).
This function takes one argument in parameter: the command to be sent to the EEFC.
This function returns the value of the EEFC_FSR register.

IAP software code example:

(unsigned int) (*1AP_Function)(unsigned long);
void main (void){

unsigned long FlashSectorNum = 200; //

unsigned long flash_cmd = 0;

unsigned long flash_status = 0;

unsigned long EFCIndex = 0; // O:EEFCO, 1: EEFC1

/* Initialize the function pointer (retrieve function address from NMI
vector) */

IAP_Function = ((unsigned long) (*)(unsigned long))
0x02000008;

/* Send your data to the sector here */
/* build the command to send to EEFC */

flash_cmd = (Ox5A << 24) | (FlashSectorNum << 8) |
AT91C_MC_FCMD_EWP;

/* Call the 1AP function with appropriate command */

flash_status = IAP_Function (EFCIndex, flash_cmd);

SAMA4CP16C [DATASHEET] 267
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

15. Reset Controller (RSTC)

15.1 Description
The Reset Controller (RSTC), driven by power-on reset (POR) cells, software, external reset pin and peripheral
events, handles all the resets of the system without any external components. It reports which reset occurred last.

The RSTC also drives independently or simultaneously the external reset and the peripheral and processor resets.

15.2 Embedded Characteristics
e Driven by Embedded Power-on Reset, Software, External Reset Pin and Peripheral Events
e Management of All System Resets, Including
e External Devices through the NRST Pin
e Processor and Coprocessor (second processor)
e Peripheral Set
e Reset Source Status
e Status of the Last Reset
e Either VYDDCORE and VDDBU POR Reset, Software Reset, User Reset, Watchdog Reset
e External Reset Signal Control and Shaping

15.3 Block Diagram

Figure 15-1. Reset Controller Block Diagram

Backup area reset

SUPC Reset Controller
POR
Backup
SM RSTC
VDDIO | interrupt line
POR | | VDDCORE reset
VDDCORE Processor
BoD | | reset line
VDDCORE Reset
user_reset State Peripherals
NRST Pin reset line
NRST Manager
D_ nrst_out Manager
= exter_nreset > Coprocessor
reset line
From | WDT_MR.WDRPROC » Coprocessor
Peripherals
watchdog wd_fault i reset line
SLCK
268 SAM4CP16C [DATASHEET] /lt
mel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

15.4

15.4.1

15.4.2

Functional Description

Overview
The RSTC is made up of an NRST Manager and a Reset State Manager. It runs at SLCK frequency and generates
the following reset signals:
e proc_nreset: processor reset line (also resets the Watchdog Timer)
e coproc_nreset: coprocessor (second processor) reset line
e periph_nreset: affects the whole set of embedded peripherals
e coproc_periph_nreset: affects the whole set of embedded peripherals driven by the Coprocessor
e nrst_out: drives the NRST pin
These reset signals are asserted by the RSTC, either on events generated by peripherals, events on NRST pin, or on

software action. The Reset State Manager controls the generation of reset signals and provides a signal to the NRST
Manager when an assertion of the NRST pin is required.

The NRST Manager shapes the NRST assertion during a programmable time, thus controlling external device resets.

The RSTC Mode register (RSTC_MR), used to configure the RSTC, is powered with VDDBU, so that its configuration
is saved as long as VDDBU is on.

NRST Manager

The NRST Manager samples the NRST input pin and drives this pin low when required by the Reset State Manager.
Figure 15-2 shows the block diagram of the NRST Manager.

Figure 15-2. NRST Manager

RSTC_MR
RSTC_SR URSTIEN
URSTS

ﬁ>—> RSTC
NRSTL [rsTc_MR Other l_ Interrupt line

interrupt
URSTEN sources
I > user_reset

NRST | RSTC_MR
nll
| nrst_out

I External Reset Timerfje«—————————— exter_nreset

15.4.2.1 NRST Signal or Interrupt

The NRST Manager samples the NRST pin at SLCK speed. When the NRST line is low for more than three clock
cycles, a User Reset is reported to the reset state manager. The NRST pin must be asserted for at least 1 SLCK clock
cycle to ensure execution of a user reset.

However, the NRST Manager can be programmed to not trigger a reset when an assertion of NRST occurs. Writing a
‘0’ to RSTC_MR.URSTEN disables the User Reset trigger.

The level of the pin NRST can be read at any time in the bit NRSTL in the RSTC Status Register (RSTC_SR). As
soon as the NRST pin is asserted, RSTC_SR.URSTS is written to ‘1. This bit is cleared only when the RSTC_SR is
read.

The RSTC can also be programmed to generate an interrupt instead of generating a reset. To do so,
RSTC_MR.URSTIEN must be set.

SAMA4CP16C [DATASHEET] 269
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

15.4.2.2 NRST External Reset Control

The Reset State Manager asserts the signal exter_nreset to assert the NRST pin. When this occurs, the “nrst_out”
signal is driven low by the NRST Manager for a time programmed by RSTC_MR.ERSTL. This assertion duration,
named External Reset Length, lasts 2ERSTL*1) S| CK cycles. This gives the approximate duration of an assertion
between 60 us and 2 seconds. Note that ERSTL at ‘0’ defines a two-cycle duration for the NRST pulse.

This feature allows the RSTC to shape the NRST pin level, and thus to guarantee that the NRST line is driven low for
a time compliant with potential external devices connected on the system reset.

RSTC_MR is backed up, making it possible to use the value of ERSTL to shape the system power-up reset for
devices requiring a longer startup time than that of the MCU.

15.4.3 Reset States

The Reset State Manager handles the different reset sources and generates the internal reset signals. It reports the
reset status in RSTTYP of the Status Register (RSTC_SR). The update of RSTC_SR.RSTTYP is performed when the
processor reset is released.

15.4.3.1 General Reset

A general reset occurs when a VDDBU power-on-reset is detected, a Brownout or a Voltage regulation loss is
detected by the Supply controller. The vddcore_nreset signal is asserted by the Supply Controller when a general
reset occurs.

All the reset signals are released and RSTC_SR.RSTTYP reports a General Reset. As the RSTC_MR is written to 0,
the NRST line rises two cycles after the vddcore_nreset, as ERSTL defaults at value 0xO.

Figure 15-3 shows how the General Reset affects the reset signals.

Figure 15-3. General Reset Timing Diagram

Power Supply
Activation

sto e L)L L L L L

L
ganie | SV A
(¢ AL 2
|)

)| T

Backup Area POR S S 2 SLCK cycles 5 Main RC cycles

Output
! 5 SLCK S S
. ' cycles
Backup Logic " Active T Inactive S S
Reset L

6.5 SLCK cycles + 2 Main RC cycles

VDDCORE POR o fmEmbE Inactive g g S S— \
Output . S S—

Processor
Reset Line Active SS __ [Inactive
Peripheral —
R:srg Iﬁ;ae Active S S_/ Inactigeg
3 SLCK cycles
(nrs,t\l_zﬁg Active < ! > g g |naCtngS
RSTTYP XXX)(0x0 = General Reset S S XXX
270 SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

15.4.3.2 Backup Reset

A Backup reset occurs when the chip exits from Backup Mode. While exiting Backup mode, the vddcore_nreset signal
is asserted by the Supply Controller.

Field RSTC_SR.RSTTYP is updated to report a Backup Reset.

15.4.3.3 Watchdog Reset
The Watchdog Reset is entered when a watchdog fault occurs. This reset lasts three SLCK cycles.
When in Watchdog Reset, assertion of the reset signals depends on the value of WDT_MR.WDRPROC:

e If WDRPROC = 0, the Processor Reset and the Peripheral Reset are asserted. The NRST line is also asserted,
depending on how field RSTC_MR.ERSTL is programmed. However, the resulting low level on NRST does not
result in a User Reset state.

e |f WDRPROC = 1, only the processor reset is asserted.

The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a processor reset if
WDT_MR.WDRSTEN is written to ‘1’, the Watchdog Timer is always reset after a Watchdog Reset, and the Watchdog
is enabled by default and with a period set to a maximum.

When WDT_MR.WDRSTEN is written to ‘0’, the watchdog fault has no impact on the RSTC.

After a watchdog overflow occurs, the report on the RSTC_SR.RSTTYP may differ (either WDT_RST or USER_RST)
depending on the external components driving the NRST pin. For example, if the NRST line is driven through a
resistor and a capacitor (NRST pin debouncer), the reported value is USER_RST if the low to high transition is greater
than one SLCK cycle.

Figure 15-4. Watchdog Reset Timing Diagram

sk [T (L §
WDT Fault \
Main RC
osetaor AN AL
Any An
MCK Frequency. -\ g g ”‘ .I_g g Frequgncx.
3 SLCK cycles + 2 MCK cycles
RSTTYP XXX X 0x2 E Watchdog Reset g g
Processor
Reset Line Inactive -\ g g Active Inactive
o
I
© | Peripherals -
8 Reset Line Inactive _\ g g Active Inactive
o
“; DD: Min = 2 S| CK cycles if ERSTL=0 (e.g. 8 if ERSTL=2)
=
© E NRST Inactive \ Active / / Inactive % g
s (nrst_out)
-
=)
=

15.4.3.4 Software Reset
The RSTC offers commands to assert the different reset signals. These commands are performed by writing the
Control register (RSTC_CR) or Coprocessor Mode register (RSTC_CPMR) with the following bits at ‘1’
RSTC_CR.PROCRST: Writing a ‘1’ to PROCRST resets the processor and the watchdog timer.

RSTC_CR.PERRST: Writing a ‘1’ to PERRST resets all the embedded peripherals associated to processor
whereas the coprocessor peripherals are not reset, including the memory system, and, in particular, the Remap

SAM4CP16C [DATASHEET] 271

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

Command. The Peripheral Reset is generally used for debug purposes.
Except for debug purposes, PERRST must always be used in conjunction with PROCRST (PERRST and
PROCRST set both at 1 simultaneously).

e RSTC_CPMR.CPROCEN: Writing a ‘0’ to CPROCEN resets the coprocessor only.
RSTC_CPMR.CPEREN: Writing a ‘0’ to CPEREN resets all the embedded peripherals associated to
coprocessor whereas the processor peripherals are not reset.

e RSTC_CR.EXTRST: Writing a ‘1’ to EXTRST asserts low the NRST pin during a time defined by the field
RSTC_MR.ERSTL.

The software reset is entered if at least one of these bits is written to ‘1’ by the software. All these commands can be
performed independently or simultaneously. The software reset lasts three SLCK cycles.

The internal reset signals are asserted as soon as the register write is performed. This is detected on the Master
Clock (MCK). They are released when the software reset has ended, i.e., synchronously to SLCK.

If EXTRST is written to ‘1’, the nrst_out signal is asserted depending on the configuration of RSTC_MR.ERSTL.
However, the resulting falling edge on NRST does not lead to a User Reset.

If and only if the RSTC_CR.PROCRST is written to ‘1’, the RSTC reports the software status in field
RSTC_SR.RSTTYP. Other Software Resets are not reported in RSTTYP.

As soon as a software operation is detected, RSTC_SR.SRCMP is written to ‘1’. SRCMP is cleared at the end of the
software reset. No other software reset can be performed while SRCMP is written to “1’, and writing any value in the
RSTC_CR has no effect.

Figure 15-5. Software Reset Timing Diagram

soe LU LI

Up to 1 SLCK cycle‘
«—>

Write RSTC_CR A

osaieer IS

MCK Any \

Frequency.

Any
Frequency.

3 SLCK cycles + 2 MCK cycles

RSTTYP XXX X 0xB = Software Reset S S
S g Active Inactive S S
g % Active Inactive g g

Min = 2 S|.CK cycles if ERSTL=0 (e.g. 8 if ERSTL=2)

NRST ————h <
(nrst_out) Inactive \ Active / / Inactive
if EXTRST=1

Processor
Reset Line Inactive

Peripherals ——\

Reset Line Inactive

RSTC_SR.SRCMP —\

15.4.3.5 User Reset

272

A User Reset is generated when a low level is detected on the NRST pin and RSTC_MR.URSTEN is at ‘“1’. The NRST
input signal is resynchronized with SLCK to ensure proper behavior of the system. Thus, the NRST pin must be
asserted for at least 1 SLCK clock cycle to ensure execution of a user reset.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

The User Reset is triggered 2 SLCK cycles after a low level is detected on NRST. The Processor and Coprocessor
Reset and the Peripheral Resets are asserted.

The User Reset ends when NRST rises, after a two-cycle resynchronization time and a three-cycle processor startup.
The processor clock is reenabled as soon as NRST is confirmed high.

When the processor reset signal is released, RSTC_SR.RSTTYP is loaded with the value ‘4’, indicating a User Reset.

The NRST Manager guarantees that the NRST line is asserted for External Reset Length SLCK cycles, as configured
in RSTC_MR.ERSTL. However, if NRST does not rise after External Reset Length because it is driven low externally,
the internal reset lines remain asserted until NRST actually rises.

Figure 15-6. User Reset Timing Diagram

SLCK _FI_I_IJSS_l_I_I_I_I_I_I_I_I_ LY

>

NRST pin ﬁ-\z SLCK cycles ,

Main RC

osanser [UL ULAAAAULARARAARAL S LAARARAAAAIL
MCK . g g g gjﬂ_ﬂ_g g Fraquoncy.

RSTTYP XXX 0x4 = U%%Reset
 6SLCK cycles T
Processor I I
Reset Line Inactive 8 Active g g Inac%v%s

Peripherals 8 R —
Reset Line Inactive \ g g Active g g Inactjv
Min = 2 SLCK cycles if ERSTL=0 (e.g. 8 if ERSTL=2)

NRST Inactive \ Active / Inactive
(nrst_out)

15.4.4 Reset State Priorities

The Reset State Manager manages the priorities among the different reset sources. The resets are listed in order of
priority as follows:

e General Reset
Backup Reset
Watchdog Reset
Software Reset

User Reset

Specific cases are listed below:

e When in User Reset:
e A watchdog event is impossible because the Watchdog Timer is being reset by the proc_nreset signal.
e A software reset is impossible, since the processor reset is being activated.

e When in Software Reset:
e A watchdog event has priority over the current state.
e The NRST has no effect.

e When in Watchdog Reset:
e The processor reset is active and so a Software Reset cannot be programmed.
e A User Reset cannot be entered.

SAMA4CP16C [DATASHEET] 273
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

15.4.5 Managing Reset at Application Level
As described, the device embeds only one system and power management controller shared by the two subsystems,
i.e.:
e Subsystem 0 (SUB-SO0 - Application Master/Core)
e Subsystem 1 (SUB-S1 - Metrology/Co-Processor Core)

After a power-up, the SUB-SO0 application configures the SUB-S1 system clock (PMC). Then, the application code can
be downloaded into the SUB-S1 boot memory (SRAM1) and SUB-S0 can afterwards deassert the SUB-S1 reset lines
through the RSTC.

Once the two subsystems are up and running, each one executes its firmware independently. In some application use
case, Subsystem 1 must not be reset even if Subsystem 0 is allowed to, due to a firmware upgrade or due to a reset
request from one of the following reset sources:

e a User Reset (NRST pin), a Software Reset, a VDDIO Supply Monitor Reset

e a Watchdog Reset
Since the PMC can be reset from one of the above reset sources, if a reset occurs, the PMC is reset, leading to
switching off the SUB-S1 clocks.

To avoid this, the SUB-S0 application must be in charge of the reset management of the complete system in the
following manner:

1. User Reset (NRST pin) and VDDIO Supply Monitor Reset must be configured to generate an interrupt, and not
a reset. This allows to reset only the SUB-S0 processor and not the peripherals (so, not the PMC). This is man-
datory to avoid any stop of a metrology part due to a reset on clocks.

2. Watchdog Reset must be configured to generate a SUB-S0 processor reset only.

Note: The Core Brownout detector reset (general reset source) and the Backup reset are not taken into account in
the reset management considerations described above, as they are related, respectively, to a power loss
detection or to a wake-up from Backup mode or low level on VDDBU. (Note that in Backup mode, all digital
logic, except the backup zone, is shut down).

15.5 Reset Controller (RSTC) User Interface

Table 15-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register RSTC_CR Write-only -
0x04 Status Register RSTC_SR Read-only 0x0000_0000(")
0x08 Mode Register RSTC_MR Read/Write 0x0000 0001
0x0C Coprocessor Mode Register RSTC_CPMR Read/Write 0x0000_0000
Notes: 1. This value assumes that a general reset has been performed, subject to change if other types of reset are
generated.
274 SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

15.5.1 RSTC Control Register

Name:

Address:

Access:
31

RSTC_CR
0x400E1400
Write-only
30 29

28 27 26 25

24

KEY

23

22 21

20 19 18 17

15

14 13

12 11 10 9

4 3 2 1

0

- | EXTRST | PERRST | -

| PROCRST |

* PROCRST: Processor Reset

0: No effect.

1: If KEY = 0xA5, resets the processor.

¢ PERRST: Peripheral Reset

0: No effect.

1: If KEY = 0xA5, resets the peripherals.

e EXTRST: External Reset

0: No effect.

1: If KEY = OxAb, asserts the NRST pin.

* KEY: System Reset Key

Value

Name

Description

0xA5

PASSWD

Writing any other value in this field aborts the write operation.

Atmel

SAM4CP16C [DATASHEET] 275

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

15.5.2 RSTC Status Register

Name: RSTC_SR

Address: 0x400E1404

Access: Read-only
31 30 29 28 27 26 25 24

. - r - +r - -+ - 1 - {r - [- |
23 22 21 20 19 18 17 16

| - | - | — | - | - | - | SRCMP | NRSTL |
15 14 13 12 11 10 9 8

. - r -+ - [- [- 1] RSTTYP |
7 6 5 4 3 2 1 0

. - r - +r - - +r - [- [- | URSTS |

¢ URSTS: User Reset Status

A high-to-low transition of the NRST pin sets the URSTS. This transition is also detected on the MCK rising edge. If the user
reset is disabled (URSTEN = 0 in RSTC_MR) and if the interrupt is enabled by RSTC_MR.URSTIEN, URSTS triggers an inter-
rupt. Reading the RSTC_SR resets URSTS and clears the interrupt.

0: No high-to-low edge on NRST happened since the last read of RSTC_SR.
1: At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR.

* RSTTYP: Reset Type
This field reports the cause of the last processor reset. Reading this RSTC_SR does not reset this field.

Value Name Description
0 GENERAL_RST First power-up Reset
1 BACKUP_RST Return from Backup Mode
2 WDT_RST Watchdog fault occurred
3 SOFT_RST Processor reset required by the software
4 USER_RST NRST pin detected low
5 - Reserved
6 - Reserved
7 - Reserved

¢« NRSTL: NRST Pin Level
Registers the NRST pin level sampled on each MCK rising edge.

¢ SRCMP: Software Reset Command in Progress

When set, this bit indicates that a software reset command is in progress and that no further software reset should be per-
formed until the end of the current one. This bit is automatically cleared at the end of the current software reset.

0: No software command is being performed by the RSTC. The RSTC is ready for a software command.

1: A software reset command is being performed by the RSTC. The RSTC is busy.

276 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

15.5.3 RSTC Mode Register

Name: RSTC_MR

Address: 0x400E1408

Access: Read/Write
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 1 10 9 8

| — | — | - | - | ERSTL |
7 6 5 4 3 2 1 0

| — | — | - | URSTIEN | - | - | - | URSTEN |

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register

(SYSC_WPMR).

URSTEN: User Reset Enable

: The detection of a low level on the NRST pin does not generate a User Reset.

1: The detection of a low level on the NRST pin triggers a User Reset.

URSTIEN: User Reset Interrupt Enable

ERSTL: External Reset Length

This field defines the external reset length. The external reset is asserted during a time of

:RSTC_SR.USRTS at ‘1’ has no effect on the RSTC interrupt line.
1: RSTC_SR.USRTS at ‘1’ asserts the RSTC interrupt line if URSTEN = 0.

D(ERSTL+1

) SLCK cycles. This allows

assertion duration to be programmed between 60 ps and 2 seconds. Note that synchronization cycles must also be considered
when calculating the actual reset length as previously described.

e KEY: Write Access Password

Value

Name

Description

0xA5

PASSWD

Writing any other value in this field aborts the write operation. Always reads as 0.

Atmel

SAM4CP16C [DATASHEET] 277

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

15.5.4 RSTC Coprocessor Mode Register

Name: RSTC_CPMR
Address: 0x400E140C
Access: Read/Write

31 30 29 28 27 26 25 24
| CPKEY |

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
| - | - | — | CPEREN | - - - | CPROCEN |
* CPROCEN: Coprocessor (Second Processor) Enable
0: If CPKEY = 0x5A, resets the coprocessor (power-on default value).
1: If CPKEY = 0x5A, deasserts the reset of the coprocessor.
¢ CPEREN: Coprocessor Peripheral Enable
0: If CPKEY = 0x5A, resets the coprocessor peripherals.
1: If CPKEY = 0x5A, deasserts the reset of the coprocessor peripherals.
e CPKEY: Coprocessor System Enable Key

Value Name Description

O0x5A PASSWD Writing any other value in this field aborts the write operation.
278 SAM4CP16C [DATASHEET
[] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

16.

16.1

16.2

16.3

Real-time Timer (RTT)

Description

The Real-time Timer (RTT) is built around a 32-bit counter used to count roll-over events of the programmable 16-bit
prescaler driven from the 32 kHz slow clock source. It generates a periodic interrupt and/or triggers an alarm on a

programmed value.

The RTT can also be configured to be driven by the 1 Hz RTC signal, thus taking advantage of a calibrated 1 Hz

clock.

The slow clock source can be fully disabled to reduce power consumption when only an elapsed seconds count is

required.

Embedded Characteristics

e 32-bit Free-running Counter on prescaled slow clock or RTC calibrated 1 Hz clock

e 16-bit Configurable Prescaler

e Interrupt on Alarm or Counter Increment

Block Diagram

Figure 16-1. Real-time Timer

RTT_MR RTT_MR RTT_MR
RTTDIS | | RTTRSTl |RTPRES
reload
SLCK 16-bit
Divider
0
RTT_MR
RTC 1Hz l

RTT_MR

| RTTRST|—§\1 0/
|

|
RTC1HZ [\ 1 | 0/

>

32-bit
Counter

RTT_VR | CRTV |

set

| RTT

reset

RTT_SR

read ¢
RTT_SR

reset
RTT_SR

> set

RTT_AR ALMV

Atmel

SAM4CP16C [DATASHEET]

|

[INC |

[]

RTT_MR

RTTINCIEN

RTT_MR

ALMIEN

rtt_int

rtt_alarm

279

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

16.4

280

Functional Description

The programmable 16-bit prescaler value can be configured through the RTPRES field in the “Real-time Timer Mode
Register” (RTT_MR).

Configuring the RTPRES field value to 0x8000 (default value) corresponds to feeding the real-time counter with a 1Hz
signal (if the slow clock is 32.768 kHz). The 32-bit counter can count up to 232 seconds, corresponding to more than
136 years, then roll over to 0. Bit RTTINC in the “Real-time Timer Status Register” (RTT_SR) is set each time there is
a prescaler roll-over (see Figure 16-2).

The real-time 32-bit counter can also be supplied by the 1 Hz RTC clock. This mode is interesting when the RTC 1Hz
is calibrated (CORRECTION field # 0 in RTC_MR) in order to guaranty the synchronism between RTC and RTT
counters.

Setting the RTC1HZ bit in the RTT_MR drives the 32-bit RTT counter from the 1Hz RTC clock. In this mode, the
RTPRES field has no effect on the 32-bit counter.

The prescaler roll-over generates an increment of the real-time timer counter if RTC1HZ = 0. Otherwise, if
RTC1HZ = 1, the real-time timer counter is incremented every second. The RTTINC bit is set independently from the
32-bit counter increment.

The Real-time Timer can also be used as a free-running timer with a lower time-base. The best accuracy is achieved
by writing RTPRES to 3 in RTT_MR.

Programming RTPRES to 1 or 2 is forbidden.

If the RTT is configured to trigger an interrupt, the interrupt occurs two slow clock cycles after reading the RTT_SR. To
prevent several executions of the interrupt handler, the interrupt must be disabled in the interrupt handler and re-
enabled when the RTT_SR is cleared.

The CRTV field can be read at any time in the “Real-time Timer Value Register” (RTT_VR). As this value can be
updated asynchronously with the Master Clock, the CRTV field must be read twice at the same value to read a correct
value.

The current value of the counter is compared with the value written in the “Real-time Timer Alarm Register”
(RTT_AR). If the counter value matches the alarm, the ALMS bit in the RTT_SR is set. The RTT_AR is set to its
maximum value (OxFFFF_FFFF) after a reset.

The ALMS flag is always a source of the RTT alarm signal that may be used to exit the system from low power modes
(see Figure 16-1).

The alarm interrupt must be disabled (ALMIEN must be cleared in RTT_MR) when writing a new ALMV value in the
RTT_AR.

The RTTINC bit can be used to start a periodic interrupt, the period being one second when the RTPRES field
value = 0x8000 and the slow clock = 32.768 kHz.

The RTTINCIEN bit must be cleared prior to writing a new RTPRES value in the RTT_MR.
Reading the RTT_SR automatically clears the RTTINC and ALMS bits.

Writing the RTTRST bit in the RTT_MR immediately reloads and restarts the clock divider with the new programmed
value. This also resets the 32-bit counter.

When not used, the Real-time Timer can be disabled in order to suppress dynamic power consumption in this module.
This can be achieved by setting the RTTDIS bit in the RTT_MR.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 16-2. RTT Counting

SLCK |||||||||

|
| | |
RTPRES - 1 S :
| | |
Prescaler | | |
|
0 L L
CRTV 0 Almvit X Aty Xamv+1 XX amv+2 X ALMY+3		
RTTINC (RTT_SR) / \. : / ,_. /		
ALMS (RTT_SR) : .\		
APB Interface U AN 'ﬂ		
:		
'APBcycle “read RTT SR PB cycle
16.5 Real-time Timer (RTT) User Interface
Table 16-1. Register Mapping
Offset Register Name Access Reset
0x00 Mode Register RTT_MR Read/Write 0x0000_8000
0x04 Alarm Register RTT_AR Read/Write OxFFFF_FFFF
0x08 Value Register RTT_VR Read-only 0x0000_0000
0x0C Status Register RTT_SR Read-only 0x0000_0000
SAM4CP16C [DATASHEET 281
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

16.5.1 Real-time Timer Mode Register

Name: RTT_MR
Address: 0x400E1430
Access: Read/Write
31 30 29 28 27 26 25 24
I - [- | - - [- I - | - | RTC1HZ
23 22 21 20 19 18 17 16
| - | - | — | RTTDIS | - | RTTRST | RTTINCIEN | ALMIEN
15 14 13 12 11 10 9 8
| RTPRES
7 6 5 4 3 2 1 0
| RTPRES
* RTPRES: Real-time Timer Prescaler Value
Defines the number of SLCK periods required to increment the Real-time timer. RTPRES is defined as follows:
RTPRES = 0: The prescaler period is equal to 2'® * SLCK periods.
RTPRES = 1 or 2: forbidden.
RTPRES # 0, 1 or 2: The prescaler period is equal to RTPRES * SLCK periods.
Note: The RTTINCIEN bit must be cleared prior to writing a new RTPRES value.
e ALMIEN: Alarm Interrupt Enable
0: The bit ALMS in RTT_SR has no effect on interrupt.
1: The bit ALMS in RTT_SR asserts interrupt.
¢ RTTINCIEN: Real-time Timer Increment Interrupt Enable
0: The bit RTTINC in RTT_SR has no effect on interrupt.
1: The bit RTTINC in RTT_SR asserts interrupt.
¢ RTTRST: Real-time Timer Restart
0: No effect.
1: Reloads and restarts the clock divider with the new programmed value. This also resets the 32-bit counter.
* RTTDIS: Real-time Timer Disable
0: The real-time timer is enabled.
1: The real-time timer is disabled (no dynamic power consumption).
Note: RTTDIS is write only.
* RTC1HZ: Real-Time Clock 1Hz Clock Selection
0: The RTT 32-bit counter is driven by the 16-bit prescaler roll-over events.
1: The RTT 32-bit counter is driven by the 1 Hz RTC clock.
Note: RTC1HZ is write only.
282 SAM4CP16C [DATASHEET
[] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

16.5.2 Real-time Timer Alarm Register

Name: RTT_AR

Address: 0x400E1434

Access: Read/Write
31 30 29 28 27 26 25 24

| ALMV |
23 22 21 20 19 18 17 16

| ALMV |
15 14 13 12 11 10 9 8

| ALMV |
7 6 5 4 3 2 1 0

| ALMV |

e ALMV: Alarm Value

When the CRTV value in RTT_VR equals the ALMV field, the ALMS flag is set in RTT_SR. As soon as the ALMS flag rises,
the CRTV value equals ALMV+1 (refer to Figure 16-2).

Note: The alarm interrupt must be disabled (ALMIEN must be cleared in RTT_MR) when writing a new ALMV value.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

283

16.5.3 Real-time Timer Value Register

Name: RTT_VR
Address: 0x400E1438
Access: Read-only
31 30 29 28 27 26 25 24
| CRTV |
23 22 21 20 19 18 17 16
| CRTV |
15 14 13 12 11 10 9 8
| CRTV
7 6 5 4 3 2 1 0
| CRTV
¢ CRTV: Current Real-time Value
Returns the current value of the Real-time Timer.
Note: As CRTV can be updated asynchronously, it must be read twice at the same value.
284 SAM4CP16C [DATASHEET
[] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

16.5.4 Real-time Timer Status Register

Name: RTT_SR
Address: 0x400E143C
Access: Read-only

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
| - | - | — | - | - | - | RTTINC | ALMS |
* ALMS: Real-time Alarm Status (cleared on read)
0: The Real-time Alarm has not occurred since the last read of RTT_SR.
1: The Real-time Alarm occurred since the last read of RTT_SR.
¢ RTTINC: Prescaler Roll-over Status (cleared on read)
0: No prescaler roll-over occurred since the last read of the RTT_SR.
1: Prescaler roll-over occurred since the last read of the RTT_SR.

SAM4CP16C [DATASHEET 285

Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.

171

Real-time Clock (RTC)

Description

The Real-time Clock (RTC) peripheral is designed for very low power consumption. For optimal functionality, the RTC
requires an accurate external 32.768 kHz clock, which can be provided by a crystal oscillator.

It combines a complete time-of-day clock with alarm and a Gregorian or Persian calendar, complemented by a
programmable periodic interrupt. The alarm and calendar registers are accessed by a 32-bit data bus.

The time and calendar values are coded in binary-coded decimal (BCD) format. The time format can be 24-hour mode
or 12-hour mode with an AM/PM indicator.

Updating time and calendar fields and configuring the alarm fields are performed by a parallel capture on the 32-bit
data bus. An entry control is performed to avoid loading registers with incompatible BCD format data or with an
incompatible date according to the current month/year/century.

A clock divider calibration circuitry can be used to compensate for crystal oscillator frequency variations.

An RTC output can be programmed to generate several waveforms, including a prescaled clock derived from
32.768 kHz.

Timestamping capability reports the first and last occurrences of tamper events.

17.2 Embedded Characteristics

Full Asynchronous Design for Ultra Low Power Consumption
Gregorian and Persian Modes Supported
Programmable Periodic Interrupt

Safety/security features:
e Valid Time and Date Programming Check
e On-The-Fly Time and Date Validity Check
Counters Calibration Circuitry to Compensate for Crystal Oscillator Variations
Waveform Generation
Tamper Timestamping Registers
Register Write Protection

17.3 Block Diagram

286

Figure 17-1. Real-time Clock Block Diagram

! !
Slow Clock: SLCK 32768 Divider] Wave RTCOUTO
Time Date

Generator

o] I 1
} b i

Entry Interrupt
System Bus <@=m=p| User Interface Control Alarm Control RTC Interrupt

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.4 Product Dependencies

17.4.1 Power Management

The Real-time Clock is continuously clocked at 32.768 kHz. The Power Management Controller has no effect on RTC
behavior.

17.4.2 Interrupt

RTC interrupt line is connected on one of the internal sources of the interrupt controller. RTC interrupt requires the
interrupt controller to be programmed first.

Table 17-1. Peripheral IDs

Instance ID

RTC 2

17.5 Functional Description

The RTC provides a full binary-coded decimal (BCD) clock that includes century (19/20), year (with leap years),
month, date, day, hours, minutes and seconds reported in “RTC Time Register” (RTC_TIMR) and “RTC Calendar
Register” (RTC_CALR).

The valid year range is up to 2099 in Gregorian mode (or 1300 to 1499 in Persian mode).
The RTC can operate in 24-hour mode or in 12-hour mode with an AM/PM indicator.

Corrections for leap years are included (all years divisible by 4 being leap years except 1900). This is correct up to the
year 2099.

The RTC can generate configurable waveforms on RTCOUTO output.

17.5.1 Reference Clock
The reference clock is the Slow Clock (SLCK). It can be driven internally or by an external 32.768 kHz crystal.

During low-power modes of the processor, the oscillator runs and power consumption is critical. The crystal selection
has to take into account the current consumption for power saving and the frequency drift due to temperature effect on
the circuit for time accuracy.

17.5.2 Timing
The RTC is updated in real time at one-second intervals in Normal mode for the counters of seconds, at one-minute
intervals for the counter of minutes and so on.

Due to the asynchronous operation of the RTC with respect to the rest of the chip, to be certain that the value read in
the RTC registers (century, year, month, date, day, hours, minutes, seconds) are valid and stable, it is necessary to
read these registers twice. If the data is the same both times, then it is valid. Therefore, a minimum of two and a
maximum of three accesses are required.

17.5.3 Alarm
The RTC has five programmable fields: month, date, hours, minutes and seconds.

Each of these fields can be enabled or disabled to match the alarm condition:

e If all the fields are enabled, an alarm flag is generated (the corresponding flag is asserted and an interrupt
generated if enabled) at a given month, date, hour/minute/second.

e If only the “seconds” field is enabled, then an alarm is generated every minute.

Depending on the combination of fields enabled, a large number of possibilities are available to the user ranging from
minutes to 365/366 days.

SAMA4CP16C [DATASHEET] 287
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.5.4

17.5.5

17.5.6

288

Hour, minute and second matching alarm (SECEN, MINEN, HOUREN) can be enabled independently of SEC, MIN,

HOUR fields.

Note: To change one of the SEC, MIN, HOUR, DATE, MONTH fields, it is recommended to disable the field before
changing the value and then re-enable it after the change has been made. This requires up to three accesses
to the RTC_TIMALR or RTC_CALALR. The first access clears the enable corresponding to the field to
change (SECEN, MINEN, HOUREN, DATEEN, MTHEN). If the field is already cleared, this access is not
required. The second access performs the change of the value (SEC, MIN, HOUR, DATE, MONTH). The
third access is required to re-enable the field by writing 1 in SECEN, MINEN, HOUREN, DATEEN, MTHEN
fields.

Error Checking when Programming

Verification on user interface data is performed when accessing the century, year, month, date, day, hours, minutes,
seconds and alarms. A check is performed on illegal BCD entries such as illegal date of the month with regard to the
year and century configured.

If one of the time fields is not correct, the data is not loaded into the register/counter and a flag is set in the validity
register. The user can not reset this flag. It is reset as soon as an acceptable value is programmed. This avoids any
further side effects in the hardware. The same procedure is followed for the alarm.
The following checks are performed:
1. Century (check if itis in range 19 - 20 or 13 - 14 in Persian mode)
Year (BCD entry check)
Date (check range 01 - 31)
Month (check if it is in BCD range 01 - 12, check validity regarding “date”)
Day (check range 1 -7)
Hour (BCD checks: in 24-hour mode, check range 00 - 23 and check that AM/PM flag is not set if RTC is set in
24-hour mode; in 12-hour mode check range 01 - 12)
7. Minute (check BCD and range 00 - 59)
8. Second (check BCD and range 00 - 59)

Note: If the 12-hour mode is selected by means of the RTC Mode Register (RTC_MR), a 12-hour value can be pro-
grammed and the returned value on RTC_TIMR will be the corresponding 24-hour value. The entry control
checks the value of the AM/PM indicator (bit 22 of RTC_TIMR) to determine the range to be checked.

2

RTC Internal Free Running Counter Error Checking

To improve the reliability and security of the RTC, a permanent check is performed on the internal free running
counters to report non-BCD or invalid date/time values.

An error is reported by TDERR bit in the status register (RTC_SR) if an incorrect value has been detected. The flag
can be cleared by setting the TDERRCLR bit in the RTC Status Clear Command Register (RTC_SCCR).

Anyway the TDERR error flag will be set again if the source of the error has not been cleared before clearing the
TDERR flag. The clearing of the source of such error can be done by reprogramming a correct value on RTC_CALR
and/or RTC_TIMR.

The RTC internal free running counters may automatically clear the source of TDERR due to their roll-over (i.e., every
10 seconds for SECONDSJ3:0] field in RTC_TIMR). In this case the TDERR is held high until a clear command is
asserted by TDERRCLR bit in RTC_SCCR.

Updating Time/Calendar

The update of the time/calendar must be synchronized on a second periodic event by either polling the RTC_SR.SEC
status bit or by enabling the SECEN interrupt in the RTC_IER register.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Once the second event occurs, the user must stop the RTC by setting the corresponding field in the Control Register
(RTC_CR). Bit UPDTIM must be set to update time fields (hour, minute, second) and bit UPDCAL must be set to
update calendar fields (century, year, month, date, day).

The ACKUPD bit must then be read to 1 by either polling the RTC_SR or by enabling the ACKUPD interrupt in the
RTC_IER. Once ACKUPD is read to 1, it is mandatory to clear this flag by writing the corresponding bit in the
RTC_SCCR, after which the user can write to the Time Register, the Calendar Register, or both.

Once the update is finished, the user must write UPDTIM and/or UPDCAL to 0 in the RTC_CR.
The timing sequence of the time/calendar update is described in Figure 17-2 "Time/Calendar Update Timing Diagram”

When entering the Programming mode of the calendar fields, the time fields remain enabled. When entering the
Programming mode of the time fields, both the time and the calendar fields are stopped. This is due to the location of
the calendar logical circuity (downstream for low-power considerations). It is highly recommended to prepare all the
fields to be updated before entering Programming mode. In successive update operations, the user must wait for at
least one second after resetting the UPDTIM/UPDCAL bit in the RTC_CR before setting these bits again. This is done
by waiting for the SEC flag in the RTC_SR before setting the UPDTIM/UPDCAL bit. After resetting UPDTIM/UPDCAL,
the SEC flag must also be cleared.

Figure 17-2. Time/Calendar Update Timing Diagram

I
1Hz RTC Clock | L, I

"

|

|

} I | |
RTC_TIMR.SEC 2 | o 5 >< " >

1!

|

: Clear Clear

-

|

|

Update request
Sofware from SW

I |

|

ACKUPD bit UPDTIM bit I

Time Line - I

— (3 () ———_____ RTC BACK TO
20 |_ NORMALMODE ™|
Update
RTC_TIMR.SEC to 15
RTC_CR.UPDTIM

I Il —|—\—|

SEC Event Flag

RTC_SR.ACKUPD
1 I

SAMA4CP16C [DATASHEET] 289
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 17-3. Update Sequence

Begin
|

Prepare Time or Calendar Fields

Wait for second periodic event

Set UPDTIM and/or UPDCAL
bit(s) in RTC_CR

Read RTC_SR
Polling or
IRQ (if enabled)
ACKUPD No
=17
Yes

Clear ACKUPD bit in RTC_SCCR

Update Time and/or Calendar values in
RTC_TIMR/RTC_CALR

Clear UPDTIM and/or UPDCAL bit
in RTC_CR

End

290 SAM4CP16C [DATASHEET] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.5.7 RTC Accurate Clock Calibration

The crystal oscillator that drives the RTC may not be as accurate as expected mainly due to temperature variation.
The RTC is equipped with circuitry able to correct slow clock crystal drift.

To compensate for possible temperature variations over time, this accurate clock calibration circuitry can be
programmed on-the-fly and also programmed during application manufacturing, in order to correct the crystal
frequency accuracy at room temperature (20-25°C). The typical clock drift range at room temperature is £20 ppm.

In the device operating temperature range, the 32.768 kHz crystal oscillator clock inaccuracy can be up to -200 ppm.
The RTC clock calibration circuitry allows positive or negative correction in a range of 1.5 ppm to 1950 ppm.

The calibration circuitry is fully digital. Thus, the configured correction is independent of temperature, voltage,
process, etc., and no additional measurement is required to check that the correction is effective.

If the correction value configured in the calibration circuitry results from an accurate crystal frequency measure, the
remaining accuracy is bounded by the values listed below:

e Below 1 ppm, for an initial crystal drift between 1.5 ppm up to 20 ppm, and from 30 ppm to 90 ppm

e Below 2 ppm, for an initial crystal drift between 20 ppm up to 30 ppm, and from 90 ppm to 130 ppm

e Below 5 ppm, for an initial crystal drift between 130 ppm up to 200 ppm
The calibration circuitry does not modify the 32.768 kHz crystal oscillator clock frequency but it acts by slightly
modifying the 1 Hz clock period from time to time. The correction event occurs every 1 + [(20 -
(19 x HIGHPPM)) x CORRECTION] seconds. When the period is modified, depending on the sign of the correction,
the 1 Hz clock period increases or reduces by around 4 ms. Depending on the CORRECTION, NEGPPM and
HIGHPPM values configured in RTC_MR, the period interval between two correction events differs.

Figure 17-4. Calibration Circuitry

RTC
32.768 kHz . Divider by 32768 1Hz | Time/Calendar
il i Add Suppress ”
5 A t
(O] 32.768 kHz
I:I (=3 Integrator l—— CORRECTION, HIGHPPM
|— 8 Comparatorle—— negprm
L]
> Other Logic

SAM4CP16C [DATASHEET] 291

A t ' I leL Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

292

Figure 17-5. Calibration Circuitry Waveforms

Monotonic 1 Hz

Counter value 32.768 kHz fr5O ppm

Nominal 32.768 kHz

User configurable period
(integer multiple of 1s or 20s)

Crystal clock

A - A
Phase adjustment /- - >
(~4 ms) ><{_ 32.768 kHz -50 ppm Z
2 : pp - /_25 ppm
i - - -
2Ly ‘ ‘ Crystal frequency -7 ‘ -50 ppm
- | remains unadjusted >
| |
>Z - | ! P - |
ok ‘ Internal,1 Hz clock = |
;- 1 ! is adjusted > ‘ :
: l ‘ » Time ‘ » Time
|

‘ ;
€«

-50 ppm correction period
-25 ppm correction periodi

I
I
I
“
i

Clock pulse periodically suppressed

K_ when correction period elapses

1.000 second

| 128 Hz clock edge delayed by 3.906 ms
| when correction period elapses

=z
o
|_
(@)
w
o
o
8 Internally divided clock (128 Hz)
w
=
<
)
w
z

1.003906second

Internally divided clock (256 Hz)

Internally divided clock (128 Hz)

/—Clock edge periodically added
| when correction period elapses

Internally divided clock (64 Hz)

POSITIVE CORRECTION

0.996094 second

128 Hz clock edge delayed by 3.906 ms
when correction period elapses

1.000 second

! dashed lines = no correction

The inaccuracy of a crystal oscillator at typical room temperature (20 ppm at 20 - 25 °C) can be compensated if a
reference clock/signal is used to measure such inaccuracy. This kind of calibration operation can be set up during the
final product manufacturing by means of measurement equipment embedding such a reference clock. The correction
of value must be programmed into the RTC_MR, and this value is kept as long as the circuitry is powered (backup
area). Removing the backup power supply cancels this calibration. This room temperature calibration can be further
processed by means of the networking capability of the target application.

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

17.5.8

To ease the comparison of the inherent crystal accuracy with the reference clock/signal during manufacturing, an
internal prescaled 32.768 kHz clock derivative signal can be assigned to drive RTC output. To accommodate the
measure, several clock frequencies can be selected among 1 Hz, 32 Hz, 64 Hz, 512 Hz.

The clock calibration correction drives the internal RTC counters but can also be observed in the RTC output when
one of the following three frequencies 1 Hz, 32 Hz or 64 Hz is configured. The correction is not visible in the RTC
output if 512 Hz frequency is configured.

In any event, this adjustment does not take into account the temperature variation.

The frequency drift (up to -200 ppm) due to temperature variation can be compensated using a reference time if the
application can access such a reference. If a reference time cannot be used, a temperature sensor can be placed
close to the crystal oscillator in order to get the operating temperature of the crystal oscillator. Once obtained, the
temperature may be converted using a lookup table (describing the accuracy/temperature curve of the crystal
oscillator used) and RTC_MR configured accordingly. The calibration can be performed on-the-fly. This adjustment
method is not based on a measurement of the crystal frequency/drift and therefore can be improved by means of the
networking capability of the target application.

If no crystal frequency adjustment has been done during manufacturing, it is still possible to do it. In the case where
a reference time of the day can be obtained through LAN/WAN network, it is possible to calculate the drift of the
application crystal oscillator by comparing the values read on RTC Time Register (RTC_TIMR) and programming the
HIGHPPM and CORRECTION fields on RTC_MR according to the difference measured between the reference time
and those of RTC_TIMR.

Waveform Generation

Waveforms can be generated by the RTC in order to take advantage of the RTC inherent prescalers while the RTC is
the only powered circuitry (Low-power mode of operation, Backup mode) or in any active mode. Going into Backup or
Low-power operating modes does not affect the waveform generation outputs.

The RTC output (RTCOUTO) has a source driver selected among seven possibilities.

The first selection choice sticks the associated output at 0 (This is the reset value and it can be used at any time to
disable the waveform generation).

Selection choices 1 to 4 respectively select 1 Hz, 32 Hz, 64 Hz and 512 Hz.

32 Hz or 64 Hz can drive, for example, a TN LCD backplane signal while 1 Hz can be used to drive a blinking
character like “.” for basic time display (hour, minute) on TN LCDs.

Selection choice 5 provides a toggling signal when the RTC alarm is reached.

Selection choice 6 provides a copy of the alarm flag, so the associated output is set high (logical 1) when an alarm
occurs and immediately cleared when software clears the alarm interrupt source.

Selection choice 7 provides a 1 Hz periodic high pulse of 15 us duration that can be used to drive external devices for
power consumption reduction or any other purpose.

PIO line associated to RTC output is automatically selecting these waveforms as soon as RTC_MR corresponding
fields OUTO differ from 0.

SAMA4CP16C [DATASHEET] 293
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 17-6. Waveform Generation

TN
1Hz —>»|1
32Hz —>» |2
64Hz —>»|3
—>» RTCOUTO
512Hz —>»|4
toggle_alarm —> (5
flag_alarm —>»|[6
pulse ———)»;/4\
RTC_MR(OUTO)
alarm match alarm match
event 1 l event 2
flag_alarm
S | T
| RTC_SCCR(ALRCLR) | RTC_SCCR(ALRCLR)

toggle_alarm

pulse H / i_‘ [
/ B

ﬁ' : Thigh /
Tperio

Tperiod

o

«<

17.5.9 Tamper Timestamping

294

'«
As soon as a tamper is detected, the tamper counter is incremented and the RTC stores the time of the day, the date
and the source of the tamper event in registers located in the backup area. Up to two tamper events can be stored.

The tamper counter saturates at 15. Once this limit is reached, the exact number of tamper occurrences since the last
read of stamping registers cannot be known.

The first set of timestamping registers (RTC_TSTRO, RTC_TSDRO, RTC_TSSRO0) cannot be overwritten, so once
they have been written all data are stored until the registers are reset.Therefore these registers are storing the first
tamper occurrence after a read.

The second set of timestamping registers (RTC_TSTR1, RTC_TSDR1, RTC_TSSRH1) are overwritten each time a
tamper event is detected. Thus the date and the time data of the first and the second stamping registers may be
equal. This occurs when the tamper counter value carried on field TEVCNT in RTC_TSTRO equals 1. Thus this
second set of registers stores the last occurrence of tamper before a read.

Reading a set of timestamping registers requires three accesses, one for the time of the day, one for the date and one
for the tamper source.

Reading the third part (RTC_TSSRO0/1) of a timestamping register set clears the whole content of the registers (time,
date and tamper source) and makes the timestamping registers available to store a new event.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.6 Real-time Clock (RTC) User Interface

Table 17-2. Register Mapping

Offset Register Name Access Reset
0x00 Control Register RTC_CR Read/Write 0x00000000
0x04 Mode Register RTC_MR Read/Write 0x00000000
0x08 Time Register RTC_TIMR Read/Write 0x00000000
0x0C Calendar Register RTC_CALR Read/Write 0x01E111220
0x10 Time Alarm Register RTC_TIMALR Read/Write 0x00000000
0x14 Calendar Alarm Register RTC_CALALR Read/Write 0x01010000
0x18 Status Register RTC_SR Read-only 0x00000000
0x1C Status Clear Command Register RTC_SCCR Write-only -
0x20 Interrupt Enable Register RTC_IER Write-only -
0x24 Interrupt Disable Register RTC_IDR Write-only -
0x28 Interrupt Mask Register RTC_IMR Read-only 0x00000000
0x2C Valid Entry Register RTC_VER Read-only 0x00000000
0xBO TimeStamp Time Register 0 RTC_TSTRO Read-only 0x00000000
0xB4 TimeStamp Date Register 0 RTC_TSDRO Read-only 0x00000000
0xB8 TimeStamp Source Register 0 RTC_TSSRO Read-only 0x00000000
0xBC TimeStamp Time Register 1 RTC_TSTR1 Read-only 0x00000000
0xCO TimeStamp Date Register 1 RTC_TSDR1 Read-only 0x00000000
0xC4 TimeStamp Source Register 1 RTC_TSSR1 Read-only 0x00000000
0xC8 Reserved - - -
0xCC Reserved - - -
0xDO Reserved - - -
0xD4 — OxEOQ Reserved - - -
OxE4 Write Protection Mode Register RTC_WPMR Read/Write 0x00000000
OxE8 — OxF8 Reserved - - -
OxFC Reserved - - -

Note: If an offset is not listed in the table it must be considered as reserved.

SAM4CP16C [DATASHEET] 295

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

17.6.1 RTC Control Register

Name: RTC_CR

Address: 0x400E1460

Access: Read/Write
31 30 29 28 27 26 25 24

. - r - +r -t - +r - 1 - {r - [- |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - [CALEVSEL |
15 14 13 12 11 10 9 8

| - | - | - | - | - [_ [TIMEVSEL |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - [upbcaL | upbTiM]

This register can only be written if the WPEN bit is cleared in the “RTC Write Protection Mode Register”

¢ UPDTIM: Update Request Time Register
0 = No effect or, if UPDTIM has been previously written to 1, stops the update procedure.
1 = Stops the RTC time counting.

Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and
acknowledged by the bit ACKUPD of the RTC_SR.

¢« UPDCAL: Update Request Calendar Register
0 = No effect or, if UPDCAL has been previously written to 1, stops the update procedure.
1 = Stops the RTC calendar counting.

Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once this
bit is set and acknowledged by the bit ACKUPD of the RTC_SR.

e TIMEVSEL: Time Event Selection
The event that generates the flag TIMEV in RTC_SR depends on the value of TIMEVSEL.

Value Name Description
0 MINUTE Minute change
1 HOUR Hour change
2 MIDNIGHT Every day at midnight
3 NOON Every day at noon

* CALEVSEL: Calendar Event Selection
The event that generates the flag CALEV in RTC_SR depends on the value of CALEVSEL.

Value Name Description
0 WEEK Week change (every Monday at time 00:00:00)
1 MONTH Month change (every 01 of each month at time 00:00:00)
2 YEAR Year change (every January 1 at time 00:00:00)
3 - Reserved
296 SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.6.2 RTC Mode Register

Name: RTC_MR
Address: 0x400E1464
Access: Read/Write

31 30 29 28 27 26 25 24
I - [- [TPERIOD | ~ | THIGH

23 22 21 20 19 18 17 16
I - I - I - I - I - I ouTo

15 14 13 12 11 10 9 8
[HiGHPPM | CORRECTION

7 6 5 4 3 2 1 0
I - I - I - | NEGPPM] - [- [PERSIAN | HRMOD

This register can only be written if the WPEN bit is cleared in the “RTC Write Protection Mode Register”

¢ HRMOD: 12-/24-hour Mode
0 = 24-hour mode is selected.

1 = 12-hour mode is selected.

¢ PERSIAN: PERSIAN Calendar
0 = Gregorian calendar.

1 = Persian calendar.

* NEGPPM: NEGative PPM Correction

0 = Positive correction (the divider will be slightly higher than 32768).

1 = Negative correction (the divider will be slightly lower than 32768).

Refer to CORRECTION and HIGHPPM field descriptions.

Note: NEGPPM must be cleared to correct a crystal slower than 32.768 kHz.

¢ CORRECTION: Slow Clock Correction
0 = No correction.

1 - 127 = The slow clock will be corrected according to the formula given in HIGHPPM description.

¢ HIGHPPM: HIGH PPM Correction
0 = Lower range ppm correction with accurate correction.
1 = Higher range ppm correction with accurate correction.
If the absolute value of the correction to be applied is lower than 30 ppm, it is recommended to clear HHGHPPM. HIGHPPM set
to 1 is recommended for 30 ppm correction and above.
Formula:

If HIGHPPM = 0, then the clock frequency correction range is from 1.5 ppm up to 98 ppm. The RTC accuracy is less than 1
ppm for a range correction from 1.5 ppm up to 30 ppm.

SAMA4CP16C [DATASHEET] 297
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

The correction field must be programmed according to the required correction in ppm; the formula is as follows:

3906

CORRECTION =
20 x ppm
The value obtained must be rounded to the nearest integer prior to being programmed into CORRECTION field.

If HIGHPPM = 1, then the clock frequency correction range is from 30.5 ppm up to 1950 ppm. The RTC accuracy is less
than 1 ppm for a range correction from 30.5 ppm up to 90 ppm.

The correction field must be programmed according to the required correction in ppm; the formula is as follows:

CORRECTION = 3906 _ 4
ppm

The value obtained must be rounded to the nearest integer prior to be programmed into CORRECTION field.

If NEGPPM is set to 1, the ppm correction is negative (used to correct crystals that are faster than the nominal 32.768 kHz).

¢ OUTO: RTCOUTO Output Source Selection

Value Name Description
0 NO_WAVE No waveform, stuck at ‘0’
1 FREQ1HZ 1 Hz square wave
2 FREQ32HZ 32 Hz square wave
3 FREQ64HZ 64 Hz square wave
4 FREQ512HZ 512 Hz square wave
5 ALARM_TOGGLE Output toggles when alarm flag rises
6 ALARM_FLAG Output is a copy of the alarm flag
7 PROG_PULSE Duty cycle programmable pulse

* THIGH: High Duration of the Output Pulse

Value Name Description
0 H_31MS 31.2ms
1 H_16MS 15.6 ms
2 H_4MS 3.91ms
3 H_976US 976 s
4 H_488US 488 us
5 H_122US 122 s
6 H_30US 30.5 ps
7 H_15US 15.2 us

¢ TPERIOD: Period of the Output Pulse

Value Name Description
0 P_1S 1 second
1 P_500MS 500 ms
2 P_250MS 250 ms
3 P_125MS 125 ms
298 SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.6.3 RTC Time Register

Name: RTC_TIMR
Address: 0x400E1468
Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| - RY HOUR
15 14 13 12 1 10 9 8
| — | MIN
7 6 5 4 3 2 1 0
| - | SEC

e SEC: Current Second
The range that can be set is 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

¢ MIN: Current Minute
The range that can be set is 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

* HOUR: Current Hour
The range that can be setis 1 - 12 (BCD) in 12-hour mode or 0 - 23 (BCD) in 24-hour mode.

¢ AMPM: Ante Meridiem Post Meridiem Indicator

This bit is the AM/PM indicator in 12-hour mode.

0=AM.
1=PM.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

299

17.6.4 RTC Calendar Register

Name: RTC_CALR

Address: 0x400E146C

Access: Read/Write
31 30 29 28 27 26 25 24

L - [- | DATE |
23 22 21 20 19 18 17 16

| DAY | MONTH |
15 14 13 12 11 10 9 8

| YEAR |
7 6 5 4 3 2 1 0

L - | CENT |

e CENT: Current Century
The range that can be set is 19 - 20 (gregorian) or 13 - 14 (persian) (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

* YEAR: Current Year
The range that can be set is 00 - 99 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

¢ MONTH: Current Month
The range that can be setis 01 - 12 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

¢ DAY: Current Day in Current Week
The range that can be setis 1 - 7 (BCD).

The coding of the number (which number represents which day) is user-defined as it has no effect on the date counter.

* DATE: Current Day in Current Month
The range that can be setis 01 - 31 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

300 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.6.5 RTC Time Alarm Register

Name: RTC_TIMALR
Address: 0x400E1470
Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
[HOUREN [AwPm | HOUR
15 14 13 12 11 10 9 8
[MINEN | MIN
7 6 5 4 3 2 1 0
[SECEN | SEC

This register can only be written if the WPEN bit is cleared in the “RTC Write Protection Mode Register”

Note: To change one of the SEC, MIN, HOUR fields, it is recommended to disable the field before changing the value and
then re-enable it after the change has been made. This requires up to three accesses to the RTC_TIMALR. The first
access clears the enable corresponding to the field to change (SECEN, MINEN, HOUREN). If the field is already
cleared, this access is not required. The second access performs the change of the value (SEC, MIN, HOUR). The
third access is required to re-enable the field by writing 1 in SECEN, MINEN, HOUREN fields.

e SEC: Second Alarm

This field is the alarm field corresponding to the BCD-coded second counter.

* SECEN: Second Alarm Enable
0 = The second-matching alarm is disabled.

1 = The second-matching alarm is enabled.

¢ MIN: Minute Alarm

This field is the alarm field corresponding to the BCD-coded minute counter.

¢ MINEN: Minute Alarm Enable
0 = The minute-matching alarm is disabled.

1 = The minute-matching alarm is enabled.

¢ HOUR: Hour Alarm
This field is the alarm field corresponding to the BCD-coded hour counter.

« AMPM: AM/PM Indicator

This field is the alarm field corresponding to the BCD-coded hour counter.

¢ HOUREN: Hour Alarm Enable
0 = The hour-matching alarm is disabled.

1 = The hour-matching alarm is enabled.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

301

17.6.6 RTC Calendar Alarm Register

Name: RTC_CALALR
Address: 0x400E1474
Access: Read/Write
31 30 29 28 27 26 25 24
[DATEEN | — | DATE
23 22 21 20 19 18 17 16
[mTHEN | — | — | MONTH
15 14 13 12 11 10 9 8
- 1 - 1 - T - 1 - T - T - -
7 6 5 4 3 2 1 0

This register can only be written if the WPEN bit is cleared in the “RTC Write Protection Mode Register”

Note:

* MONTH: Month Alarm
This field is the alarm field corresponding to the BCD-coded month counter.

e MTHEN: Month Alarm Enable
0 = The month-matching alarm is disabled.

To change one of the DATE, MONTH fields, it is recommended to disable the field before changing the value and then

re-enable it after the change has been made. This requires up to three accesses to the RTC_CALALR. The first
access clears the enable corresponding to the field to change (DATEEN, MTHEN). If the field is already cleared, this
access is not required. The second access performs the change of the value (DATE, MONTH). The third access is
required to re-enable the field by writing 1 in DATEEN, MTHEN fields.

e DATE: Date Alarm

This field is the alarm field corresponding to the BCD-coded date counter.

* DATEEN: Date Alarm Enable
0 = The date-matching alarm is disabled.

1 = The month-matching alarm is enabled.

1 = The date-matching alarm is enabled.

302 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

17.6.7 RTC Status Register

Name: RTC_SR
Address: 0x400E1478
Access: Read-only
31 30 29 28 27 26 25 24
. - r - +r -t - +r - 1 - {r - [- |
23 22 21 20 19 18 17 16
. - r - +r - -+ - 1 - +r - [- |
15 14 13 12 11 10 9 8
. - r - +r -t - +r - 1 - {r - [- |
7 6 5 4 3 2 1 0
| - | - [TDERR | cAlev | TmMev | sec | AlARM | AckupD |
* ACKUPD: Acknowledge for Update
Value Name Description
0 FREERUN Time and calendar registers cannot be updated.
1 UPDATE Time and calendar registers can be updated.

ALARM: Alarm Flag

Value Name Description
0 NO_ALARMEVENT No alarm matching condition occurred.
1 ALARMEVENT An alarm matching condition has occurred.

SEC: Second Event

Value Name Description
0 NO_SECEVENT No second event has occurred since the last clear.
1 SECEVENT At least one second event has occurred since the last clear.

TIMEV: Time Event

Value Name Description
0 NO_TIMEVENT No time event has occurred since the last clear.
1 TIMEVENT At least one time event has occurred since the last clear.
Note: The time event is selected in the TIMEVSEL field in the Control Register (RTC_CR) and can be any one of the

following events: minute change, hour change, noon, midnight (day change).

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

303

e CALEV: Calendar Event

Value Name Description
0 NO_CALEVENT No calendar event has occurred since the last clear.
1 CALEVENT At least one calendar event has occurred since the last clear.

Note:

The calendar event is selected in the CALEVSEL field in the Control Register (RTC_CR) and can be any one of the
following events: week change, month change and year change.

* TDERR: Time and/or Date Free Running Error

Value Name Description
The internal free running counters are carrying valid values since the last read
0 CORRECT of the Status Register (RTC_SR).
The internal free running counters have been corrupted (invalid date or time,
1 ERR_TIMEDATE non-BCD values) since the last read and/or they are still invalid.

304

SAM4CP16C [DATASHEET]

Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.6.8 RTC Status Clear Command Register

Name: RTC_SCCR

Address: 0x400E147C

Access: Write-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| — | - [TDERRCLR [cALclR [TmmMcLR | secclR | ALRCLR | AckclrR |

¢ ACKCLR: Acknowledge Clear

0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

¢ ALRCLR: Alarm Clear

0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

* SECCLR: Second Clear

0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

¢ TIMCLR: Time Clear

0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

e CALCLR: Calendar Clear

0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

« TDERRCLR: Time and/or Date Free Running Error Clear

0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

SAM4CP16C [DATASHEET] 305

Atmel

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.6.9 RTC Interrupt Enable Register

Name: RTC_IER

Address: 0x400E1480

Access: Write-only
31 30 29 28 27 26 25 24

I - I | - - I | - - I |
23 22 21 20 19 18 17 16

I - [- | - - I | - - I |
15 14 13 12 11 10 9 8

I - I | - - I | - - I |
7 6 5 4 3 2 1 0

| — | - | TDERREN | cAalteN [TiMeN | SeEceN | ALREN [ACKEN |

ACKEN: Acknowledge Update Interrupt Enable
0 = No effect.

1 = The acknowledge for update interrupt is enabled.

ALREN: Alarm Interrupt Enable
0 = No effect.

1 = The alarm interrupt is enabled.

SECEN: Second Event Interrupt Enable
0 = No effect.

1 = The second periodic interrupt is enabled.

TIMEN: Time Event Interrupt Enable
0 = No effect.

1 = The selected time event interrupt is enabled.

e CALEN: Calendar Event Interrupt Enable
0 = No effect.

1 = The selected calendar event interrupt is enabled.

TDERREN: Time and/or Date Error Interrupt Enable
0 = No effect.

1 = The time and date error interrupt is enabled.

306 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.6.10 RTC Interrupt Disable Register

Name: RTC_IDR

Address: 0x400E1484

Access: Write-only
31 30 29 28 27 26 25 24

. - r - r -+ - - £ - ¢ - § - |
23 22 21 20 19 18 17 16

. - r - r -+ - - £ - ¢ - § - |
15 14 13 12 11 10 9 8

. - r - r -+ - - £ - ¢ - § - |
7 6 5 4 3 2 1 0

| - | - | TDERRDIS | cADis [TiMmDis [secbis [ALRDIS | AckDIS |

ACKDIS: Acknowledge Update Interrupt Disable
0 = No effect.

1 = The acknowledge for update interrupt is disabled.

ALRDIS: Alarm Interrupt Disable
0 = No effect.

1 = The alarm interrupt is disabled.

SECDIS: Second Event Interrupt Disable
0 = No effect.

1 = The second periodic interrupt is disabled.

TIMDIS: Time Event Interrupt Disable
0 = No effect.

1 = The selected time event interrupt is disabled.

CALDIS: Calendar Event Interrupt Disable
0 = No effect.

1 = The selected calendar event interrupt is disabled.

0 = No effect.

1 = The time and date error interrupt is disabled.

Atmel

TDERRDIS: Time and/or Date Error Interrupt Disable

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

307

17.6.11 RTC Interrupt Mask Register

Name: RTC_IMR
Address: 0x400E1488
Access: Read-only
31 30 29 28 27 26 25 24
S I I - - - -
23 22 21 20 19 18 17 16
S I I - - - -
15 14 13 12 11 10 9 8
I N I - - - -
7 6 5 4 3 2 1 0
| - | - | TERR | cAL TIM SEC ALR ACK

¢ ACK: Acknowledge Update Interrupt Mask
0 = The acknowledge for update interrupt is disabled.

1 = The acknowledge for update interrupt is enabled.

e ALR: Alarm Interrupt Mask
0 = The alarm interrupt is disabled.

1 = The alarm interrupt is enabled.

* SEC: Second Event Interrupt Mask
0 = The second periodic interrupt is disabled.

1 = The second periodic interrupt is enabled.

¢ TIM: Time Event Interrupt Mask
0 = The selected time event interrupt is disabled.

1 = The selected time event interrupt is enabled.

CAL: Calendar Event Interrupt Mask
0 = The selected calendar event interrupt is disabled.

1 = The selected calendar event interrupt is enabled.

TDERR: Time and/or Date Error Mask
0 = The time and/or date error event is disabled.

1 = The time and/or date error event is enabled.

308 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

17.6.12 RTC Valid Entry Register

Name: RTC_VER

Address: 0x400E148C

Access: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| — | - | — | — [NvCcALALR | NvTIMALR | Nveal [nvTiv |

* NVTIM: Non-valid Time

0 = No invalid data has been detected in RTC_TIMR (Time Register).

1= RTC_TIMR has contained invalid data since it was last programmed.

¢ NVCAL: Non-valid Calendar

0 = No invalid data has been detected in RTC_CALR (Calendar Register).

1 = RTC_CALR has contained invalid data since it was last programmed.

* NVTIMALR: Non-valid Time Alarm

0 = No invalid data has been detected in RTC_TIMALR (Time Alarm Register).

1 = RTC_TIMALR has contained invalid data since it was last programmed.

* NVCALALR: Non-valid Calendar Alarm

0 = No invalid data has been detected in RTC_CALALR (Calendar Alarm Register).

1 = RTC_CALALR has contained invalid data since it was last programmed.

SAM4CP16C [DATASHEET 309
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.6.13 RTC TimeStamp Time Register 0

Name: RTC_TSTRO

Address: 0x400E1510

Access: Read-only
31 30 29 28 27 26 25 24

[BACKUP | - | — | - | TEVCNT |
23 22 21 20 19 18 17 16

| - [avev] HOUR |
15 14 13 12 11 10 9 8

| - | MIN |
7 6 5 4 3 2 1 0

| — | SEC |

RTC_TSTRO reports the timestamp of the first tamper event after reading RTC_TSSRO.
This register is cleared by reading RTC_TSSRO.

SEC: Seconds of the Tamper

MIN: Minutes of the Tamper

HOUR: Hours of the Tamper

AMPM: AM/PM Indicator of the Tamper

e TEVCNT: Tamper Events Counter

Each time a tamper event occurs, this counter is incremented. This counter saturates at 15. Once this value is reached, it is no
more possible to know the exact number of tamper events.

If this field is not null, this implies that at least one tamper event occurs since last register reset and that the values stored in
timestamping registers are valid.

« BACKUP: System Mode of the Tamper
0 = The state of the system is different from backup mode when the tamper event occurs.

1 = The system is in backup mode when the tamper event occurs.

310 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.6.14 RTC TimeStamp Time Register 1

Name: RTC_TSTR1
Address: 0x400E151C
Access: Read-only
31 30 29 28 27 26 25 24
L eackop | - | - [- { - [- [- [-
23 22 21 20 19 18 17 16
| — [Avem | HOUR
15 14 13 12 11 10 9 8
| — | MIN
7 6 5 4 3 2 1 0
| — | SEC
RTC_TSTR1 reports the timestamp of the last tamper event.
This register is cleared by reading RTC_TSSR1.
* SEC: Seconds of the Tamper
¢ MIN: Minutes of the Tamper
¢ HOUR: Hours of the Tamper
¢ AMPM: AM/PM Indicator of the Tamper
* BACKUP: System Mode of the Tamper
0 = The state of the system is different from Backup mode when the tamper event occurs.
1 = The system is in Backup mode when the tamper event occurs.
311

Atmel SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.6.15 RTC TimeStamp Date Register

Name: RTC_TSDRXx

Address: 0x400E1514 [0], 0x400E1520 [1]

Access: Read-only
31 30 29 28 27 26 25 24

| - | - DATE |
23 22 21 20 19 18 17 16

| DAY MONTH |
15 14 13 12 11 10 9 8

| YEAR |
7 6 5 4 3 2 1 0

| — | CENT |

RTC_TSDRO reports the timestamp of the first tamper event after reading RTC_TSSRO0, and RTC_TSDR1 reports the time-

stamp of the last tamper event.
This register is cleared by reading RTC_TSSR.

e CENT: Century of the Tamper
* YEAR: Year of the Tamper

* MONTH: Month of the Tamper
* DAY: Day of the Tamper

* DATE: Date of the Tamper
The fields contain the date and the source of a tamper occurrence if the TEVCNT is not null.

312

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

17.6.16 RTC TimeStamp Source Register

Name: RTC_TSSRx

Address: 0x400E1518 [0], 0x400E1524 [1]

Access: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

— | TSRC

e TSRC: Tamper Source
This field contains the tamper source. It is valid only if the TEVCNT is not null.

This register is cleared after read and the read access also performs a clear on RTC_TSTRx and RTC_TSDRX.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

313

17.6.17 RTC Write Protection Mode Register

Name: RTC_WPMR
Address: 0x400E1544
Access: Read/Write

31 30 29 28 27 26 25 24
| WPKEY

23 22 21 20 19 18 17 16
| WPKEY

15 14 13 12 11 10 9 8
| WPKEY

7 6 5 4 3 2 1 0
I - I - I - - I - - - WPEN

* WPEN: Write Protection Enable
0 = Disables the write protection if WPKEY corresponds to 0x525443 (“RTC” in ASCII).
1 = Enables the write protection if WPKEY corresponds to 0x525443 (“RTC” in ASCII).

The following registers can be write-protected:
“RTC Mode Register”

“RTC Time Alarm Register”
“RTC Calendar Alarm Register”

WPKEY: Write Protection Key

Value Name Description
0x525443 PASSWD Writing any other value in this field aborts the write operation of the WPEN bit. Always reads as 0.
314 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

18. Watchdog Timer (WDT)

18.1 Description

The Watchdog Timer (WDT) is used to prevent system lock-up if the software becomes trapped in a deadlock.
It features a 12-bit down counter that allows a watchdog period of up to 16 seconds (slow clock around 32 kHz). It can
generate a general reset or a processor reset only. In addition, it can be stopped while the processor is in Debug

mode or Sleep mode (Idle mode).

18.2 Embedded Characteristics

e 12-bit key-protected programmable counter.

e Watchdog Clock is independent from Processor Clock.

e Provides reset or interrupt signals to the system.

e Counter may be stopped while the processor is in debug state or in idle mode.

18.3 Block Diagram

Figure 18-1. Watchdog Timer Block Diagram

write WDT_MR

WDT_CR

| WDRSTT |

WDT_MR

WDV

reload r' [

N o/

12-bit Down
Counter

WDT_MR
1 reload
WDD Current
Value < [1128 SLCK
v
<=WDD
WDT_MR
4 WDRSTEN
-
:l N\ wdt_fault
1_/ N (to Reset Controller)
| set
[woune | wit i
set hreset
| o |
WDERR I
read WDT_SR M reset WDFIEN
or

reset

Atmel

WDT_MR

SAM4CP16C [DATASHEET] 315

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

18.4

316

Functional Description

The Watchdog Timer is used to prevent system lock-up if the software becomes trapped in a deadlock. It is supplied
with VDDCORE. It restarts with initial values on processor reset.

The watchdog is built around a 12-bit down counter, which is loaded with the value defined in the field WDV of the
Mode Register (WDT_MR). The Watchdog Timer uses the Slow Clock divided by 128 to establish the maximum
watchdog period to be 16 seconds (with a typical Slow Clock of 32.768 kHz).

After a Processor Reset, the value of WDV is OxFFF, corresponding to the maximum value of the counter with the
external reset generation enabled (field WDRSTEN at 1 after a Backup Reset). This means that a default watchdog is
running at reset, i.e., at power-up. The user can either disable the WDT by setting bit WDT_MR.WDDIS or reprogram
the WDT to meet the maximum watchdog period the application requires.

If the watchdog is restarted by writing into the Control Register (WDT_CR), WDT_MR must not be programmed
during a period of time of three slow clock periods following the WDT_CR write access. In any case, programming a
new value in WDT_MR automatically initiates a restart instruction.

WDT_MR can be written only once. Only a processor reset resets it. Writing WDT_MR reloads the timer with the
newly programmed mode parameters.

In normal operation, the user reloads the watchdog at regular intervals before the timer underflow occurs, by setting
bit WDT_CR.WDRSTT. The watchdog counter is then immediately reloaded from WDT_MR and restarted, and the
Slow Clock 128 divider is reset and restarted. WDT_CR is write-protected. As a result, writing WDT_CR without the
correct hard-coded key has no effect. If an underflow does occur, the “wdt_fault” signal to the Reset Controller is
asserted if bit WDT_MR.WDRSTEN is set. Moreover, the bit WDUNF is set in the Status Register (WDT_SR).

The reload of the watchdog must occur while the watchdog counter is within a window between 0 and WDD. WDD is
defined in WDT_MR.

Any attempt to restart the watchdog while the watchdog counter is between WDV and WDD results in a watchdog
error, even if the watchdog is disabled. The bit WDT_SR.WDERR is updated and the “wdt_fault” signal to the Reset
Controller is asserted.

Note that this feature can be disabled by programming a WDD value greater than or equal to the WDV value. In such
a configuration, restarting the Watchdog Timer is permitted in the whole range [0; WDV] and does not generate an
error. This is the default configuration on reset (the WDD and WDV values are equal).

The status bits WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an interrupt, provided the bit
WDT_MR.WDFIEN is set. The signal “wdt_fault” to the reset controller causes a watchdog reset if the WDRSTEN bit
is set as already explained in the reset controller documentation. In this case, the processor and the Watchdog Timer
are reset, and the WDERR and WDUNF flags are reset.

If a reset is generated or if WDT_SR is read, the status bits are reset, the interrupt is cleared, and the “wdt_fault”
signal to the reset controller is deasserted.

Writing WDT_MR reloads and restarts the down counter.

While the processor is in Debug state or in Sleep mode, the counter may be stopped depending on the value
programmed for the bits WDIDLEHLT and WDDBGHLT in WDT_MR.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 18-2. Watchdog Behavior

Watchdog Error

Watchdog Underflow

if WDRSTEN is 1
FFF
Normal behavior if WDRSTEN is O
wDV \
Forbidden .
Window -TT
WDD Y
Permitted \ \ \ \
Window
\ \ / / A
0
Watchd WDT_CR. WDRSTT=1
P atchdog

Fault

18.5 Watchdog Timer (WDT) User Interface

Table 18-1. Register Mapping

Offset Register Name Access Reset

0x00 Control Register WDT_CR Write-only -

0x04 Mode Register WDT_MR Read/Write Once Ox3FFF_2FFF
0x08 Status Register WDT_SR Read-only 0x0000_0000

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

18.5.1 Watchdog Timer Control Register

Name: WDT_CR

Address: 0x400E1450

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

. - r - +r - - +r - 1 - - [- |
15 14 13 12 11 10 9 8

. - r - +r - -+ - 1 - {r - [- |
7 6 5 4 3 2 1 0

. - r - +r - - +r - 1 - [- | WORSTT |

Notes: 1. The WDT_CR register values must not be modified within three slow clock periods following a restart of the watch-

- O

dog performed by a write access in WDT_CR. Any modification will cause the watchdog to trigger an end of period

earlier than expected.

KEY: Password

WDRSTT: Watchdog Restart
: No effect.
: Restarts the watchdog if KEY is written to OxA5.

Value

Name

Description

0xA5

PASSWD

Writing any other value in this field aborts the write operation.

318 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

18.5.2 Watchdog Timer Mode Register

Name: WDT_MR

Address: 0x400E1454

Access: Read/Write Once
31 30 29 28 27 26 25 24

| - [- [WDIDLEHLT | WDDBGHLT | WDD |
23 22 21 20 19 18 17 16

| WDD |
15 14 13 12 11 10 9 8

[wbDIS [wprPROC [WDRSTEN | WDFIEN WDV |
7 6 5 4 3 2 1 0

| WDV |

Notes: 1. The first write access prevents any further modification of the value of this register. Read accesses remain
possible.

2. The WDT_MR register values must not be modified within three slow clock periods following a restart of the watch-
dog performed by a write access in WDT_CR. Any modification will cause the watchdog to trigger an end of period
earlier than expected.

« WDV: Watchdog Counter Value
Defines the value loaded in the 12-bit watchdog counter.

* WDFIEN: Watchdog Fault Interrupt Enable
0: A watchdog fault (underflow or error) has no effect on interrupt.

1: A watchdog fault (underflow or error) asserts interrupt.

« WDRSTEN: Watchdog Reset Enable
0: A watchdog fault (underflow or error) has no effect on the resets.

1: A watchdog fault (underflow or error) triggers a watchdog reset.

* WDRPROC: Watchdog Reset Processor
0: If WDRSTEN is 1, a watchdog fault (underflow or error) activates all resets.

1: If WDRSTEN is 1, a watchdog fault (underflow or error) activates the processor reset.

 WDDIS: Watchdog Disable
0: Enables the Watchdog Timer.
1: Disables the Watchdog Timer.

* WDD: Watchdog Delta Value

Defines the permitted range for reloading the Watchdog Timer.

If the Watchdog Timer value is less than or equal to WDD, setting bit WDT_CR.WDRSTT restarts the timer.
If the Watchdog Timer value is greater than WDD, setting bit WDT_CR.WDRSTT causes a watchdog error.

SAMA4CP16C [DATASHEET] 319
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

WDDBGHLT: Watchdog Debug Halt
: The watchdog runs when the processor is in debug state.

- O

: The watchdog stops when the processor is in debug state.

WDIDLEHLT: Watchdog Idle Halt
: The watchdog runs when the system is in idle state.

- O

: The watchdog stops when the system is in idle state.

320 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16 A t I I I e L

18.5.3 Watchdog Timer Status Register

Name: WDT_SR
Address: 0x400E1458
Access Read-only

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
| - | - | - | - | - | - | WDERR | WDUNF |
* WDUNF: Watchdog Underflow (cleared on read)
0: No watchdog underflow occurred since the last read of WDT_SR.
1: At least one watchdog underflow occurred since the last read of WDT_SR.
« WDERR: Watchdog Error (cleared on read)
0: No watchdog error occurred since the last read of WDT_SR.
1: At least one watchdog error occurred since the last read of WDT_SR.

SAM4CP16C [DATASHEET 321

Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

19.

19.1

19.2

19.3

322

Reinforced Safety Watchdog Timer (RSWDT)

Description

The Reinforced Safety Watchdog Timer (RSWDT) works in parallel with the Watchdog Timer (WDT) to reinforce safe
watchdog operations.

The RSWDT can be used to reinforce the safety level provided by the WDT in order to prevent system lock-up if the
software becomes trapped in a deadlock. The RSWDT works in a fully operable mode, independent of the WDT. Its
clock source is automatically selected from either the Slow RC oscillator clock, or from the Main RC oscillator divided
clock to get an equivalent Slow RC oscillator clock. If the WDT clock source (for example, the 32 kHz crystal oscillator)
fails, the system lock-up is no longer monitored by the WDT because the RSWDT performs the monitoring. Thus,
there is no lack of safety regardless of the external operating conditions. The RSWDT shares the same features as
the WDT (i.e., a 12-bit down counter that allows a watchdog period of up to 16 seconds with slow clock at 32.768
kHz). It can generate a general reset or a processor reset only. In addition, it can be stopped while the processor is in
Debug mode or Idle mode.

Embedded Characteristics
e Automatically selected reliable RSWDT clock source (independent of WDT clock source).
e 12-bit key-protected programmable counter.
e Provides Reset Signal to the system.
e Counter may be stopped while processor is in debug state or idle mode.

Block Diagram

Figure 19-1. Reinforced Safety Watchdog Timer Block Diagram

main RC frequency main RC clock

et
divider <

Automatic selection
[CKGR_MOR.MOSCRCEN =0
and
(WDT_MR.WDDIS

or

write RSWDT_MR
RSWDT MR

RSWDT_CR Wov

WDRSTT l
D reload p 5
q

) SUPC_MR.XTALSEL = 1)]

12-bit Down

Counter
RSWDT_MR l reload 5
WDD Current —
Vale S 1/128
1 J«— slow RC clock
<= WDD
RSWDT_MR
E_ 0 WDRSTEN
rswdt_fault
;] > (to Reset Controller)
set (ORed with wdt_fault)

WDUNF

set reset

WDERR
reset
or

read RSWDT_SR
reset

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

19.4 Functional Description

The RSWDT is supplied by VDDCORE. The RSWDT is initialized with default values on processor reset or on a
power-on sequence and is disabled (its default mode) under such conditions.

The RSWDT must not be enabled if the WDT is disabled.

The Main RC oscillator divided clock is selected if the Main RC oscillator is already enabled by the application
(CKGR_MOR.MOSCRCEN = 1) or if the WDT is driven by the Slow RC oscillator.

The RSWDT is built around a 12-bit down counter, which is loaded with a slow clock value other than that of the slow
clock in the WDT, defined in the WDV (Watchdog Counter Value) field of the Mode Register (RSWDT_MR). The
RSWDT uses the slow clock divided by 128 to establish the maximum watchdog period to be 16 seconds (with a
typical slow clock of 32.768 kHz).

After a processor reset, the value of RSWDT_MR.WDV is OxFFF, corresponding to the maximum value of the counter
with the external reset generation enabled (RSWDT_MR.WDRSTEN = 1 after a backup reset). This means that a
default watchdog is running at reset, i.e., at power-up.

If the watchdog is restarted by writing into the Control Register (RSWDT_CR), the RSWDT_MR must not be
programmed during a period of time of three slow clock periods following the RSWDT_CR write access. Programming
a new value in the RSWDT_MR automatically initiates a restart instruction.

RSWDT_MR can be written only once. Only a processor reset resets it. Writing RSWDT_MR reloads the timer with
the newly programmed mode parameters.

In normal operation, the user reloads the watchdog at regular intervals before the timer underflow occurs, by setting
bit RSWDT_CR.WDRSTT. The watchdog counter is then immediately reloaded from the RSWDT_MR and restarted,
and the slow clock 128 divider is reset and restarted. The RSWDT_CR is write-protected. As a result, writing
RSWDT_CR without the correct hard-coded key has no effect. If an underflow does occur, the “wdt_fault” signal to the
Reset Controller is asserted if RSWDT_MR.WDRSTEN is set. Moreover, WDUNF (Watchdog Underflow) is set in the
Status Register (RSWDT_SR).

The signal “wdt_fault” to the Reset Controller causes a Watchdog reset if the WDRSTEN bit. For details, refer to the
section “Reset Controller (RSTC)". In this case, the processor and the RSWDT are reset, and the WDUNF and
WDERR flags are reset.

If a reset is generated, or if RSWDT_SR is read, the status bits are reset, and the “wdt_fault” signal to the reset
controller is deasserted.

Writing RSWDT_MR reloads and restarts the down counter.
The RSWDT is disabled after any power-on sequence.

While the processor is in Debug state or in Idle mode, the counter may be stopped depending on the value
programmed for the WDIDLEHLT and WDDBGHLT bits in the RSWDT_MR.

SAMA4CP16C [DATASHEET] 323
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 19-2. Watchdog Behavior
Watchdog Error

Watchdog Underflow

if WDRSTEN is 1
FFF

Normal behavior \ if WDRSTEN is O
WDV

Forbidden \

Window -t

WDD Pl

Window \ \ \ \

RSWDT_CR.WDRSTT =1

19.5 Reinforced Safety Watchdog Timer (RSWDT) User Interface

Table 19-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register RSWDT_CR Write-only -
0x04 Mode Register RSWDT_MR Read/Write Once Ox3FFF_AFFF
0x08 Status Register RSWDT_SR Read-only 0x0000_0000
324 SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16 AtmeL

19.5.1 Reinforced Safety Watchdog Timer Control Register

Name: RSWDT_CR
Address: 0x400E1500
Access: Write-only
31 30 29 28 27 26 25 24
| KEY |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
- T - T - T - T = T = T - T wors]
« WDRSTT: Watchdog Restart
0: No effect.
1: Restarts the watchdog.
* KEY: Password
Value Name Description
0xC4 PASSWD Writing any other value in this field aborts the write operation.
SAM4CP16C [DATASHEET 325
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

19.5.2 Reinforced Safety Watchdog Timer Mode Register

Name: RSWDT_MR

Address: 0x400E1504

Access: Read/Write Once
31 30 29 28 27 26 25 24

| - | - | WDIDLEHLT | WDDBGHLT | ALLONES |
23 22 21 20 19 18 17 16

| ALLONES |
15 14 13 12 11 10 9 8

[wbDIS [wprPROC [WDRSTEN | - | WDV |
7 6 5 4 3 2 1 0

| WDV |

Note: The first write access prevents any further modification of the value of this register, read accesses remain possible.

Note:

The WDV value must not be modified within three slow clock periods following a restart of the watchdog performed

by means of a write access in the RSWDT_CR, else the watchdog may trigger an end of period earlier than

expected.

WDV: Watchdog Counter Value

Defines the value loaded in the 12-bit watchdog counter.

0:

WDRSTEN: Watchdog Reset Enable
A Watchdog fault (underflow or error) has no effect on the resets.

1: A Watchdog fault (underflow or error) triggers a watchdog reset.

WDRPROC: Watchdog Reset Processor

: If WDRSTEN is 1, a watchdog fault (underflow or error) activates all resets.

1: If WDRSTEN is 1, a watchdog fault (underflow or error) activates the processor reset.

ALLONES: Must Always Be Written with 0xFFF

WDDBGHLT: Watchdog Debug Halt

: The RSWDT runs when the processor is in debug state.

1: The RSWDT stops when the processor is in debug state.

WDIDLEHLT: Watchdog Idle Halt

: The RSWDT runs when the system is in idle mode.

1: The RSWDT stops when the system is in idle state.

WDDIS: Watchdog Disable

: Enables the RSWDT.

1: Disables the RSWDT.

326 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

19.5.3 Reinforced Safety Watchdog Timer Status Register

Name: RSWDT_SR
Address: 0x400E1508
Access: Read-only
31 30 29 28 27 26 25 24
I I - - - - S B
23 22 21 20 19 18 17 16
T - 1 — - - - — 1T -]
15 14 13 12 11 10 9 8
I I - - - - S B
7 6 5 4 3 2 1 0
— — — — - - |WDUNF

* WDUNF: Watchdog Underflow

0: No watchdog underflow occurred since the last read of RSWDT_SR.

1: At least one watchdog underflow occurred since the last read of RSWDT_SR.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

327

20. Supply Controller (SUPC)

20.1 Description

The Supply Controller (SUPC) controls the supply voltages of the system and manages the backup Low-power mode.
In this mode, current consumption is reduced to less than 1 pA (typ) for backup power retention. Exit from this mode is
possible on multiple wake-up sources. The SUPC also generates the slow clock by selecting either the low-power RC
oscillator or the low-power crystal oscillator.

20.2 Embedded Characteristics

e Manages VDDCORE and the Backup Low-Power Mode by Controlling the Embedded Voltage Regulator

e Manages the LCD Power Supply VDDLCD and the Backup Low-Power Mode by Controlling the Embedded
LCD Voltage Regulator
A Supply Monitor Detection on VDDIO or a Brownout Detection on VDDCORE Triggers a System Reset
A Zero-power Power-on Reset on VDDBU_SW Triggers a System Reset
Generates the Slow Clock SLCK by Selecting Either the 32 kHz Low-Power RC Oscillator or the 32 kHz Low-
Power Crystal Oscillator

e Supports Multiple Wake-up Sources for Exit from Backup Low-Power Mode

Force Wake-up Pin, with Programmable Debouncing

Up to 16 Wake-up Inputs (including Tamper Inputs), with Programmable Debouncing

Real-time Clock Alarm

Real-time Timer Alarm

Supply Monitor Detection on VDDIO with Programmable Scan Period and Voltage Threshold

328 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.3 Block Diagram

Figure 20-1. Supply Controller Block Diagram

VDDBU

[l /0 pin referred to vDDBU

[10 pin referred to vDDIO VDDLCD \ 4

B—
vomo.—» e Mode

SUPPLY CONTROLLER >l s+on

Backup

VDDBU_SW

A .
> Core Voltage
—| I VDDOUT
ONREG Used/Unused Regulator

A
| VDDIN

LCDVROUT el

LCD Voltage VDDLCD
e - - - LCDMODE Regulator (In/Out)
: Slow Clock Control - OFF (LCDOFF)
¢ OSCBYPASS - Active (LCDON_EXTVR),
- Hi-Z (LCDON_EXTVR)
XTAL OSC 32kHz

. SLCK (Slow Clock

RC OSC 32kHz

1
1
1
|
]
. i Programmable General
WKUPO : Debouncer LLCIHE Clear on
1
1
]
1
1
1

""" XTALSEL i

WKUPDBC

Programmable WKUPEN[1..15]

Debouncer wake-up

wake-up
LPDBC R RTC

TIMSTPM3DIS [
e . pr— S-Sl R RGERY Timestamp Module

NIVSEVEEY Disable

Programmable

WKUPDBC

LPDBCCLR [RElEgEZEnl Purpose
Programmable LPDBC tiggg:ggts; an BaCkuP
i LPDBCENO

LP Debouncer tamper LPDBDISCLR3 Registers

FWUPDBC

Programmable FWUPEN

Debouncer wake-up

PORCORE out

disable

BODDIS
reset enable

BODRSTEN vddcore_nreset (system reset signal)
BODCORE out

RSTC

wake-up enable
interrupt enable RYVITSN]
Programmable reset enable RYISESIEN] |
Supply Monitor sampling period [PV core_backup_reset
VDDIO threshold

SMIO out

Module

enable

Zero-Power
Power-On-Reset
VDDBU SW o~~~

Supplied by
DBU_SW

PORBUSW_out

Supplied by
VDDIN

Atmel

Note: TMPx signals and WKUPX signals are multiplexed on the same pins (i.e., TMPO/WKUPO, TMP1/WKUP10, etc).
This generates a wake-up event only, a tamper event only or a wake-up and a tamper event.

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

329

20.4 Supply Controller Functional Description

20.4.1 Supply Controller Overview

The device can be divided into two power supply areas:

e The backup VDDBU_SW power supply that includes the Supply Controller, a part of the Reset Controller, the
slow clock switch, the general-purpose backup registers, the supply monitor and the clock which includes the
Real-time Timer and the Real-time Clock.

e The core power supply that includes the other part of the Reset Controller, the Brownout Detector, the
processor, the SRAM memory, the Flash memory and the peripherals.

The SUPC controls the core power supply and intervenes when the VDDBU_SW power supply rises (when the
system is starting) or when the backup Low-power mode is entered.

The SUPC also integrates the slow clock generator which is based on a 32 kHz crystal oscillator and an embedded
32 kHz RC oscillator. The slow clock defaults to the RC oscillator, but the software can enable the crystal oscillator
and select it as the slow clock source.

The SUPC and the VDDBU_SW power supply have a reset circuitry based on a zero-power power-on reset cell. The
zero-power power-on reset allows the SUPC to start properly as soon as the VDDBU_SW voltage becomes valid.

At start-up of the system, once the backup voltage VDDBU_SW is valid and the embedded 32 kHz RC oscillator is
stabilized, the SUPC starts up the core voltage regulator and ties the SHDN pin to VDDBU. Once the VDDCORE
voltage is valid, it releases the system reset signal (vddcore_nreset) to the RSTC. The RSTC module then releases
the subsystem 0 reset signals (proc_nreset and periph_nreset). Note that the subsystem 1 remains in reset after
power-up.

Once the system has started, the user can program a supply monitor and/or a brownout detector. If a powerfail
condition occurs on either VDDIO or on VDDCORE power supplies, the SUPC asserts the system reset signal
(vddcore_nreset). This signal is released when the powerfail condition is cleared.

When the backup Low-power mode is entered, the SUPC sequentially asserts the system reset signal and disables
the voltage regulator, in order to maintain only the VDDBU_SW power supply. Current consumption is reduced to less
than one microamp for the backup part retention. Exit from this mode is possible on multiple wake-up sources
including an event on the FWUP pin or WKUPX pins, or a clock alarm. To exit this mode, the SUPC operates in the
same way as system start-up by enabling the core voltage regulator and the SHDN pin.

20.4.2 Slow Clock Generator

The SUPC embeds a slow clock generator that is supplied with the VDDBU_SW power supply. As soon as
VDDBU_SW is supplied, both the crystal oscillator and the embedded RC oscillator are powered up, but only the
embedded RC oscillator is enabled. This allows the slow clock to be valid in a short time (about 100 us).

The user can select the crystal oscillator to be the source of the slow clock, as it provides a more accurate frequency.
The command is executed by writing the Supply Controller Control register (SUPC_CR) with the XTALSEL bit at 1,
resulting in the following sequence:

1. The crystal oscillator is enabled.

2. A number of slow RC oscillator clock periods is counted to cover the start-up time of the crystal oscillator (refer
to the electrical characteristics for information on 32 kHz crystal oscillator start-up time).

3. The slow clock is switched to the output of the crystal oscillator.
4. The RC oscillator is disabled to save power.

The switching time may vary depending on the slow RC oscillator clock frequency range. The switch of the slow clock
source is glitch-free. The OSCSEL bit of the Supply Controller Status register (SUPC_SR) indicates that the
switchover has completed.

Reverting to the RC oscillator is only possible by shutting down the VDDBU_SW power supply.
If the crystal oscillator is not needed, the XIN32 and XOUT32 pins should be left unconnected.

330 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

The user can also put the crystal oscillator in Bypass mode instead of connecting a crystal. In this case, the user has
to provide the external clock signal on XIN32. For details of input characteristics of the XIN32 pin, see the section
“Electrical Characteristics”. To enter Bypass mode, the OSCBYPASS bit of the Supply Controller Mode register
(SUPC_MR) must be set to 1 before writing a 1 to the bit XTALSEL.

20.4.3 Core Voltage Regulator Control/Low-Power Backup Mode

The SUPC can be used to control the embedded voltage regulator.

The voltage regulator automatically adapts its quiescent current depending on the required load current. For details,
see the section “Electrical Characteristics”.

The voltage regulator can be switched off and the device put in Backup mode by setting the bit VROFF in SUPC_CR.

This asserts the system reset signal after the write resynchronization time, which lasts two slow clock cycles (worst
case). Once the system reset signal is asserted, the processor and the peripherals are stopped one slow clock cycle
before the core voltage regulator shuts off and the SHDN pin is pulled down to ground.

When the embedded voltage regulator is not used and VDDCORE is supplied via an external supply, the voltage
regulator can be disabled. This is done by clearing the ONREG bit in SUPC_MR.

20.4.4 Segmented LCD Voltage Regulator Control

The SUPC can be used to select the power supply source of the Segmented LCD (SLCD) voltage regulator.

This selection is done by the LCDMODE field in SUPC_MR. After a backup reset, the LCDMODE field is at 0. No
power supply source is selected and the SLCD reset signal is asserted.
The status of the SLCD Controller (SLCDC) reset is given by the LCDS field in SUPC_ SR.

e |f LCDMODE is written to 2 while it is at 0, after the write resynchronization time (about 2 slow clock cycles), the
external power supply source is selected, then after one slow clock cycle, the SLCDC reset signal is released.

e |f LCDMODE is written to 0 while it is at 2, after the write resynchronization time (about 2 slow clock cycles), the
SLCDC reset signal is asserted, then after one slow clock cycle, the external power supply source is
deselected.

e |f LCDMODE is written to 3 while it is at 0, after the write resynchronization time (about 2 slow clock cycles), the
internal power supply source is selected and the embedded regulator is turned on, then after 15 slow clock
cycles, the SLCDC reset signal is released.

e |f LCDMODE is written to O while it is at 3, after the write resynchronization time (about 2 slow clock cycles), the
SLCDC reset signal, then after one slow clock cycle, the internal power supply source is deselected.
There are several restrictions concerning the write of the LCDMODE field:

e The user must check that the previous power supply selection is done before writing LCDMODE again. To do
so, the user must check that the LCDS flag has the correct value. If LCDMODE is cleared, the LCDS flag is
cleared. If LCDMODE is set to 2 or 3, the LCDS flag is set.

Writing LCDMODE to 2 while it is at 3 or writing LCDMODE to 3 while it is at 2 is forbidden and has no effect.

Before writing LCDMODE to 2, the user must ensure that the external power supply is ready and supplies the
VDDLCD pin.

e Before writing LCDMODE to 3, the user must ensure that the external power supply does not supply the
VDDLCD pin.

The SLCD can be used in all low-power modes.

20.4.5 Using Backup Battery/Automatic Power Switch
The power switch automatically selects either VDDBU or VDDIO as a power source.

As soon as VDDIO is present (higher than 1.9V), it supplies the backup area of the device (VDDBU_SW = VDDIO)
even if the voltage of VDDBU is higher than VDDIO. If not, the backup area is supplied by the VDDBU voltage source
(VDDBU_SW = VDDBU). For more information on power supply schematics, refer to the section “Power Supplies”.

SAMA4CP16C [DATASHEET] 331
Atmel ; :

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.4.6 Supply Monitor

332

The SUPC embeds a supply monitor located in the VDDBU_SW power domain and which monitors VDDIO power
supply.

The supply monitor can be used to prevent the processor from falling into an unpredictable state if the main power
supply drops below a certain level.

The threshold of the supply monitor is programmable. It can be selected from 1.9V to 3.4V by steps of 100 mV. This
threshold is configured in the SMTH field of the Supply Controller Supply Monitor Mode register (SUPC_SMMR).

The supply monitor can also be enabled during one slow clock period on every one of either 32, 256 or 2048 slow
clock periods, depending on the user selection. This is configured in the SMSMPL field in SUPC_SMMR.

Enabling the supply monitor for such reduced times divides the typical supply monitor power consumption by factors
of 2, 16 or 128, respectively, if continuous monitoring of the VDDIO power supply is not required.

A supply monitor detection can either generate a system reset (vddcore_nreset signal is asserted) or a system wake-
up. Generating a system reset when a supply monitor detection occurs is enabled by setting the SMRSTEN bit in
SUPC_SMMR.

Waking up the system when a supply monitor detection occurs is enabled by setting the SMEN bit in the Supply
Controller Wake-up Mode register (SUPC_WUMR).

The SUPC provides two status bits for the supply monitor in the SUPC_SR. These bits determine whether the last
wake-up was due to the supply monitor:

e the SMOS bit provides real-time information, updated at each measurement cycle or updated at each Slow
Clock cycle, if the measurement is continuous.

e the SMS bit provides saved information and shows a supply monitor detection has occurred since the last read
of SUPC_SR.

The SMS bit generates an interrupt if the SMIEN bit is set in SUPC_SMMR.

Figure 20-2. Supply Monitor Status Bit and Associated Interrupt

| e Continuous Sampling (SMSMPL = 1)

|

T
Supply Monitor ON ! | l | |k Periodic Sampling | |

|

|

|

T

33V

|
Threshold 'r\

oV

| lRead SUPC_SR

SMS and SUPC interrupt

|
|
|
|
:
|
SMOS !
|
|
|
|
|
I
|

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.4.7 Backup Power Supply Reset

20.4.7.1 Raising the Backup Power Supply

As soon as the backup voltage VDDBU_SW rises, the 32 kHz RC oscillator is powered up and the zero-power power-
on reset cell maintains its output low as long as VDDBU_SW has not reached its target voltage. During this time, the
SUPC is reset. When the VDDBU_SW voltage becomes valid and zero-power power-on reset signal is released, a
counter is started for five slow clock cycles. This is the period required for the 32 kHz RC oscillator to stabilize.

After this time, the SHDN pin is asserted high and the core voltage regulator is enabled. The core power supply rises
and the brownout detector provides the core regulator status as soon as the core voltage VDDCORE is valid. The
system reset signal is then released to the Reset Controller after the core voltage status has been confirmed as being
valid for at least one slow clock cycle.

Figure 20-3. Raising the VDDBU_SW Power Supply

Backup Power Supply

Zero-Power Power-On

Core Regulator Status

(no ext. drive assumed)

7 x Slow Clock Cycles TouVoltage 3 xSlow Clock 2 x Slow Clock 6.5 x Slow Clock

, (5 for startup slow RC + 2 for synchro.) , Regulator Cycles ' Cycles Cycles
P 1 ! 1

| Zero-Power POR 1

ML LU L LU LT

Reset Cell output

22 -42 kHz RC

Oscillator output |

SHDN
: H i I
Core Power Supply /‘ E E : :
SR N

Oscillator output |
|

from BOD core
I

i i
1 .

| v I
d H Il
! RSTC.ERSTL | |
| default=2 I

i |
| N — I

System Reset
(vddcore_nreset)

NRST
0
0 I -
|

"

Peripheral Reset

Processor Reset
(Core 0 only)

)

Note: After processor reset rising, the core starts fetching instructions from Flash at 4 MHz.

SAMA4CP16C [DATASHEET] 333
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.4.7.2 SHDN Output Pin

The SHDN pin is designed to drive the enable pin of an external voltage regulator. This pin is controlled by the VROFF
bit in SUPC_CR. When the device goes into Backup mode (bit VROFF set), the SHDN pin is asserted low. Upon a
wake-up event, the SHDN pin is released (VDDBU level).

20.4.8 System Reset

The SUPC manages the system reset signal (vddcore_nreset) to the Reset Controller, as described in Section 20.4.7
"Backup Power Supply Reset”. The system reset signal is normally asserted before shutting down the core power
supply and released as soon as the core power supply is correctly regulated.
There are two additional sources which can be programmed to activate the system reset signal:

e a supply monitor detection

e abrownout detection

20.4.8.1 Supply Monitor Reset

The supply monitor can generate a reset of the system. This can be enabled by setting the SMRSTEN bit in
SUPC_SMMR.

The output of the supply monitor is synchronized on SLCK. If SMRSTEN is set and if a supply monitor detection
occurs, the system reset is asserted one or two slow clock cycles after the detection.

20.4.8.2 Brownout Detector Reset

The brownout detector provides the core voltage status signal (BODCORE_out) to the SUPC which indicates that the
voltage regulation is operating as programmed. If this signal is lost for longer than one slow clock period while the
voltage regulator is enabled, the SUPC can assert a system reset signal. This feature is enabled by setting
BODRSTEN (Brownout Detector Reset Enable) in SUPC_MR.

If BODRSTEN is set and the voltage regulation is lost (output voltage of the regulator too low), the system reset signal
is asserted for a minimum of one slow clock cycle and then released if the core voltage status has been reactivated.
The BODRSTS bit is set in SUPC_SR, indicating the source of the last reset.

The system reset signal remains active as long as the core voltage status signal (BODCORE_out) indicates a
powerfail condition.

20.4.8.3 Power-on-Reset on VDDBU_SW
The power-on-reset monitors VDDBU_SW. It is active by default and monitors voltage at start-up but also during
power-down. It can be deactivated by clearing the BUPPOREN bit in SUPC_MR. If VDDBU_SW goes below the
threshold voltage, the chip is reset. Note that due to the automatic power switch, VDDBU_SW can be either VDDIO or
VDDBU.

334 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.4.9 Wake-up Sources

The wake-up events allow the device to exit Backup mode. When a wake-up event is detected, the SUPC performs a
sequence which automatically re-enables the core power supply.

Figure 20-4. Wake-up Sources

I—D—

Supply Monitor J
RTCEN N\
RTC ALARM J
RTTEN N\
RTT ALARM
)
ILPDBCSZ |
Y [\
TS — —
ILPDBCS1 I
WKUP15/TMP3 FaIIing/Rising ||—PDBCEN3 I
| I Edge Detector]
WKUPT14
WKUP14/TMP2 | I Falling/Rising |LPDBCEN2 |‘) OR
Edge Detector |/ RTCOUTO LPDBC
WKUPT10
> Debouncer
WKUP10/TMP1 D— Falling/Rising LPDBCENT enable
Edge Detector
WKUPTO RTCOUE [troBc | [croBcso |
Falling/Rising LPDBCENO P Debouncer
Edge Detector enable
|WKUPENO I
|WKUPTO I WKUPENO &
WKUPISO
LPDBCENO=0
WKUPO/TMPO [wkueosc | | wkups |
Falling/Rising
Edge Detector SLCK
WKUPT1 I_>>
[wkupent | [wkueist | | OR Debouncer
- — ble
Falling/Rising €na
WKUP1 | I Edge Detector
1
1
! |WKUPT15| WKUPEN15 &
: LPDBCEN3=0 WKUPISTS
WKUP15 D— Falling/Rising
Edge Detector

rwoe [

Low
Level
Detector

FWUPDBC
SLCK

Lsb

Debouncer

| FWUP I

Atmel

)
|/

SAM4CP16C [DATASHEET]

OR

Core
—> Supply
Restart

335

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.4.9.1 Force Wake-up

The FWUP pin is enabled as a wake-up source by setting the FWUPEN bit in SUPC_WUMR. The FWUPDBC field in
the same register then selects the debouncing period, which can be selected between 3, 32, 512, 4,096 or 32,768
slow clock cycles. This corresponds to about 100 us, about 1 ms, about 16 ms, about 128 ms and about 1 second,
respectively (for a typical slow clock frequency of 32 kHz). Configuring FWUPDBC to 0 selects an immediate wake-

up, i.e., the FWUP pin must be low during at least one slow clock period to wake up the system.

If the FWUP pin is asserted for a time longer than the debouncing period, a system wake-up is started and the
FWUPS bit in SUPC_SR is set and remains high until the register is read.

20.4.9.2 Wake-up Inputs

The wake-up inputs WKUPx can be programmed to perform a system wake-up. Each input can be enabled by setting
the corresponding bit, WKUPENX, in the Wake-up Inputs register (SUPC_WUIR). The wake-up level can be selected
with the corresponding polarity bit, WKUPTYX, also located in SUPC_WUIR.

A logical OR combination of all the resulting signals triggers a debouncing counter. The WKUPDBC field can be
configured to select a debouncing period of 3, 32, 512, 4,096 or 32,768 slow clock cycles. This corresponds,
respectively, to about 100 ps, about 1 ms, about 16 ms, about 128 ms and about 1 second (for a typical slow clock
frequency of 32 kHz). Configuring WKUPDBC to 0 selects an immediate wake-up, i.e., an enabled WKUP pin must be
active according to its polarity during a minimum of one slow clock period to wake up the core power supply.

If an enabled WKUPX pin holds the active polarity for a time longer than the debouncing period, a system wake-up is
started and the flags WKUPISXx, as shown in Figure 20-4, are reported in SUPC_SR. This allows the user to identify
the source of the wake-up. However, if a new wake-up condition occurs, the primary information is lost. No new wake-
up can be detected since the primary wake-up condition has disappeared.

Prior to instructing the system to enter Backup mode, if the field WKUPDBC > 0, it must be verified that none of the
WKUPXx pins, enabled for a wake-up (exit of Backup mode), holds an active polarity. The verification can be made by
reading the pin status in the PIO controller. If WKUPENXx = 1 and the pin WKUPXx holds an active polarity, the system

must not be instructed to enter Backup mode.

Figure 20-5. Entering and Exiting Backup Mode with a WKUP pin

WKUPDBC > 0

WKUPTx=0

WKUPX ——— Edgedetect+ Edge detect +

() debounce time p () debounce time
N vRoFF=1 LY | | | VROFF=1
IEE VYo A A
v

System Active BACKUP Active BACKUP Active BACKUP
i check
| WKUPx!

active runtime

active runtime

check
WKUPx
status

20.4.9.3 Low-power Debouncer Inputs (Tamper Detection Pins)

336

! status

Low-power debouncer inputs are dedicated to tamper detection. If the tamper sensor is biased through a resistor and
constantly driven by the power supply, this leads to power consumption as long as the tamper detection switch is in its
active state. To prevent power consumption when the switch is in active state, the tamper sensor circuitry can be
intermittently powered, thus, a specific waveform must be generated.

The waveform can be generated using pin RTCOUTO in all modes, including Backup mode. Refer to the section

“Real-time Clock (RTC)” for waveform generation.

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

For SAM4CP16C devices, separate debouncers are embedded, one for WKUPO/TMPO input and a shared one for
WKUP10/TMP1, WKUP14/TMP2, WKUP15/TMP3 inputs. See Figure 20-4.

The WKUPO/TMPO and/or WKUP10/TMP1, WKUP14/TMP2, WKUP15/TMP3 inputs can be programmed to perform a
system wake-up with a debouncing done by RTCOUTO. This can be enabled by setting LPDBCENO0/1/2/3 in
SUPC_WUMR.

These inputs can be also used when VDDCORE is powered to obtain the tamper detection function with a low-power
debounce function and to raise an interrupt.

The low-power debounce mode of operation requires the RTC output (RTCOUTO) to be configured to generate a duty
cycle programmable pulse (i.e., OUTO0 = 0x7 in RTC_MR) in order to create the sampling points of both debouncers.
The sampling point is the falling edge of the RTCOUTO waveform.

Figure 20-6 shows an example of an application where two tamper switches are used. RTCOUTO powers the external
pull-up used by the tampers.

Figure 20-6. Low-Power Debouncer (Push-to-Make Switch, Pull-up Resistors)

MCU

RTCOUTO

Pull-Up
Resistor

WKUPO/TMPO

Pull-Up
Resistor

GND WKUPx/TMPx
\®, 1
GND
GND

Figure 20-7. Low-Power Debouncer (Push-to-Break Switch, Pull-down Resistors)

MCU

RTCOUTO

»| WKUPO/TMPO

< R —
WKUPx/TMPx
Pull-Down _L
Resistors GND
GND GND

The duration of the debouncing period is configurable. The period is identical for all debouncers (i.e., the duration
cannot be adjusted separately for each debouncer). The number of successive identical samples to wake up the
system can be configured from 2 up to 8 in the LPDBC field of SUPC_WUMR. The period of time between two
samples can be configured in the TPERIOD field in the RTC_MR. Power parameters can be adjusted by modifying
the period of time in the THIGH field in RTC_MR.

SAMA4CP16C [DATASHEET] 337
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

The wake-up polarity of the inputs can be independently configured by writing WKUPTO/WKUPT10/WKUPT14
/WKUPT15 bits in SUPC_WUIR.

In order to determine which wake-up/tamper pin triggers the system wake-up, a status flag LPDBCSx is associated to
each low-power debouncer. These flags can be read in the SUPC_SR.

A debounce event (tamper detection) can perform an immediate clear (0 delay) on the first half of the general-purpose
backup registers (GPBR). The LPDBCCLR bit must be set in SUPC_WUMR. The clear capability for
TMP1/TMP2/TMP3 can be individually disabled by setting the corresponding bit DISTMPCLR1/2/3.

Note that it is not mandatory to use the RTCOUTO pin when using the WKUPO/WKUP10/WKUP14/WKUP15 pins as
tampering inputs (TMPO/TMP1/TMP2/TMP3) in any mode. Using the RTCOUTO pin provides a “sampling mode” to
further reduce the power consumption of the tamper detection circuitry. If RTCOUTO is not used, the RTC must be
configured to create an internal sampling point for the debouncer logic. The period of time between two samples can
be configured by programming the TPERIOD field in the RTC_MR.

Figure 20-8 illustrates the use of WKUPx/TMPx without the RTCOUTO pin.

Figure 20-8. Using WKUP/TMP Pins Without RTCOUT Pins
VDD

MCU

RTCOUTO

Pull-Up
Resistor

= N"> pull-Up
Resistor
WKUPx/TMPx
_\® 1
GND

»(WKUPO/TMPO

20.4.9.4 Clock Alarms

The RTC and the RTT alarms generate a system wake-up. This can be enabled by setting bits RTCEN and RTTEN in
SUPC_WUMR.

The SUPC does not provide any status, as the information is available in the user interface of either the Real-Time
Timer or the Real-Time Clock.

20.4.9.5 Supply Monitor Detection

338

The supply monitor can generate a system wake-up. See Section 20.4.6 "Supply Monitor”.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.5 Register Write Protection

To prevent any single software error from corrupting SUPC behavior, certain registers in the address space can be
write-protected by setting the WPEN bit in the “System Controller Write Protection Mode Register” (SYSC_WPMR).

The following registers can be write-protected:

Atmel

RSTC Mode Register

RTT Mode Register

RTT Alarm Register

RTC Control Register

RTC Mode Register

RTC Time Alarm Register

RTC Calendar Alarm Register

General Purpose Backup Registers
Supply Controller Control Register

Supply Controller Supply Monitor Mode Register
Supply Controller Mode Register

Supply Controller Wake-up Mode Register

SAM4CP16C [DATASHEET] 339

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.6 Supply Controller (SUPC) User Interface

The user interface of the SUPC is part of the System Controller user interface.

20.6.1 System Controller (SYSC) User Interface

Table 20-1. System Controller Peripheral Offsets

Offset System Controller Peripheral Name
0x00 - OxOC | Reset Controller RSTC
0x10 - 0x2C | Supply Controller SUPC
0x30 - 0x3C | Real Time Timer RTT
0x50 - 0x5C | Watchdog Timer WDT
0x60 - 0x8C | Real Time Clock RTC
0x90 - 0xDC | General Purpose Backup Register GPBR
OxEO Reserved -
OxE4 Write Protection Mode Register SYSC_WPMR
OxE8 - OxF8 | Reserved -
OxFC Reserved -
0x100 - 0x10C | Reinforced Safety Watchdog Timer RSWDT
0x110 - 0x124 | Time Stamping Registers RTC
20.6.2 Supply Controller (SUPC) User Interface
Table 20-2. Register Mapping
Offset Register Name Access Reset
0x00 Supply Controller Control Register SUPC_CR Write-only -
0x04 Supply Controller Supply Monitor Mode Register | SUPC_SMMR Read/Write 0x0000_0000
0x08 Supply Controller Mode Register SUPC_MR Read/Write 0x0000_DAO00
0x0C Supply Controller Wake-up Mode Register SUPC_WUMR Read/Write 0x0000_0000
0x10 Supply Controller Wake-up Inputs Register SUPC_WUIR Read/Write 0x0000_0000
0x14 Supply Controller Status Register SUPC_SR Read-only 0x0000_0000
0x18 Reserved - - -
OxFC Reserved - - -

340 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

20.6.3 Supply Controller Control Register

Name: SUPC_CR

Address: 0x400E1410

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - [- | - - [- | - - [- |
15 14 13 12 11 10 9 8

I - [- | - - [- | - - [- |
7 6 5 4 3 2 1 0

| - | - | — | - | XTALSEL | VROFF | - | - |

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register

(SYSC_WPMR).

* VROFF: Voltage Regulator Off
0 (NO_EFFECT): No effect.

1 (STOP_VREG): If KEY is correct, asserts the system reset signal and stops the voltage regulator.

e XTALSEL: Crystal Oscillator Select

0 (NO_EFFECT): No effect.

1 (CRYSTAL_SEL): If KEY is correct, switches the slow clock on the crystal oscillator output.

e KEY: Password

Value Name Description
O0xA5 PASSWD Writing any other value in this field aborts the write operation.
SAM4CP16C [DATASHEET 341
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.6.4 Supply Controller Supply Monitor Mode Register

Name: SUPC_SMMR
Address: 0x400E1414
Access: Read/Write
31 30 29 28 27 26 25 24
I - I - I - - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - - I - I - I - I - |
15 14 13 12 11 10 9 8
| - | - | SMIEN | SMRSTEN | - | SMSMPL |
7 6 5 4 3 2 1 0
- - | SMTH |

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register

(SYSC_WPMR).

e SMTH: Supply Monitor Threshold
Selects the threshold voltage of the supply monitor. Refer to the section “Electrical Characteristics” for voltage values.

e SMSMPL: Supply Monitor Sampling Period

Value Name Description
0 SMD Supply Monitor disabled
1 CSM Continuous Supply Monitor
2 32SLCK Supply Monitor enabled one SLCK period every 32 SLCK periods
3 256SLCK Supply Monitor enabled one SLCK period every 256 SLCK periods
4 2048SLCK Supply Monitor enabled one SLCK period every 2,048 SLCK periods

e SMRSTEN: Supply Monitor Reset Enable
0 (NOT_ENABLE): The system reset signal is not affected when a supply monitor detection occurs.

1 (ENABLE): The system reset signal is asserted when a supply monitor detection occurs.

¢ SMIEN: Supply Monitor Interrupt Enable
0 (NOT_ENABLE): The SUPC interrupt signal is not affected when a supply monitor detection occurs.

1 (ENABLE): The SUPC interrupt signal is asserted when a supply monitor detection occurs.

342

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

SAM4CP16C [DATASHEET]

Atmel

20.6.5 Supply Controller Mode Register

Name: SUPC_MR

Address: 0x400E1418

Access: Read/Write
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

| - | - | - | OSCBYPASS | - | - | - | - |
15 14 13 12 11 10 9 8

| BUPPOREN | ONREG | BODDIS | BODRSTEN | - | — | - | - |
7 6 5 4 3 2 1 0

| - | - | LCDMODE | LCDVROUT |

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register
(SYSC_WPMR).

* LCDVROUT: LCD Voltage Regulator Output
Adjusts the output voltage of the LCD Voltage Regulator. Refer to the section “Electrical Characteristics” for voltage values.

« LCDMODE: LCD Controller Mode of Operation

Value Name Description
0 LCDOFF The internal supply source and the external supply source are both deselected (OFF mode).
1 - Reserved
2 LCDON_EXTVR ran:)edee)xternal supply source for LCD (VDDLCD) is selected (the LCD voltage regulator is in Hi-Z
3 LCDON_INVR The internal supply source for LCD (the LCD Voltage Regulator) is selected (Active mode).

 BODRSTEN: Brownout Detector Reset Enable
0 (NOT_ENABLE): The system reset signal is not affected when a brownout detection occurs.
1 (ENABLE): The system reset signal is asserted when a brownout detection occurs.

» BODDIS: Brownout Detector Disable
0 (ENABLE): The core brownout detector is enabled.
1 (DISABLE): The core brownout detector is disabled.

* ONREG: Voltage Regulator enable
0 (ONREG_UNUSED): Internal voltage regulator is not used (external power supply is used).
1 (ONREG_USED): Internal voltage regulator is used.

« BUPPOREN: Backup Area Power-On Reset Enable
0 (BUPPOR_DISABLE): Disables the backup POR.
1 (BUPPOR_ENABLE): Enables the backup POR.

Note: The value written in BUPPOREN is effective when BUPPORS has the same value in "Supply Controller Status
Register”.
SAM4CP16C [DATASHEET 343
Atmel : :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

* OSCBYPASS: Oscillator Bypass
0 (NO_EFFECT): No effect. Clock selection depends on XTALSEL value.
1 (BYPASS): The 32 kHz crystal oscillator is bypassed if XTALSEL = 1. OSCBYPASS must be set before setting XTALSEL.

* KEY: Password Key

Value Name Description
0xA5 PASSWD Writing any other value in this field aborts the write operation.
344 SAM4CP16C [DATASHEET] /lt M eL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.6.6 Supply Controller Wake-up Mode Register

Name: SUPC_WUMR

Address: 0x400E141C

Access: Read/Write
31 30 29 28 27 26 25 24

| - | DISTSTMP3 | DISTSTMP2 | DISTSTMP1 | - | DISTMPCLR3 | DISTMPCLR2 | DISTMPCLRA1 |
23 22 21 20 19 18 17 16

| - | - | LPDBCEN3 | LPDBCEN2 | - | LPDBC |
15 14 13 12 11 10 9 8

| - | WKUPDBC | - | FWUPDBC |
7 6 5 4 3 2 1 0

| LPDBCCLR | LPDBCEN1 | LPDBCENO | - | RTCEN | RTTEN | SMEN | FWUPEN |

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register
(SYSC_WPMR).

* FWUPEN: Force Wake-up Enable
0 (NOT_ENABLE): The force wake-up pin has no wake-up effect.
1 (ENABLE): The force wake-up pin low forces a system wake-up.

¢ SMEN: Supply Monitor Wake-up Enable
0 (NOT_ENABLE): The supply monitor detection has no wake-up effect.
1 (ENABLE): The supply monitor detection forces a system wake-up.

¢ RTTEN: Real-time Timer Wake-up Enable
0 (NOT_ENABLE): The RTT alarm signal has no wake-up effect.
1 (ENABLE): The RTT alarm signal forces a system wake-up.

¢ RTCEN: Real-time Clock Wake-up Enable
0 (NOT_ENABLE): The RTC alarm signal has no wake-up effect.
1 (ENABLE): The RTC alarm signal forces a system wake-up.

* LPDBCENO: Low-Power Debouncer Enable WKUPO/TMPO
0 (NOT_ENABLE): The WKUPO/TMPO input pin is not connected to the low-power debouncer.
1 (ENABLE): The WKUPO/TMPO input pin is connected to the low-power debouncer and can force a system wake-up.

¢ LPDBCEN1: Low-Power Debouncer Enable WKUP10/TMP1
0 (NOT_ENABLE): The WKUP10/TMP1 input pin is not connected to the low-power debouncer.
1 (ENABLE): The WKUP10/TMP1 input pin is connected to the low-power debouncer and can force a system wake-up.

* LPDBCCLR: Low-Power Debouncer Clear
0 (NOT_ENABLE): A low-power debounce event does not create an immediate clear on the first half of GPBR registers.

1 (ENABLE): A low-power debounce event on WKUPO/TMPO or WKUP10/14/15/TMP1/2/3 (if DISTMPCLR1/2/3 is cleared)
generates an immediate clear on the first half of GPBR registers.

SAMA4CP16C [DATASHEET] 345
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

< FWUPDBC: Force Wake-up Debouncer Period

Value Name Description
0 IMMEDIATE Immediate, no debouncing, detected active at least on one Slow Clock edge
1 3_SLCK FWUP shall be low for at least 3 SLCK periods
2 32_SLCK FWUP shall be low for at least 32 SLCK periods
3 512_SLCK FWUP shall be low for at least 512 SLCK periods
4 4096 _SLCK FWUP shall be low for at least 4,096 SLCK periods
5 32768 SLCK FWUP shall be low for at least 32,768 SLCK periods

« WKUPDBC: Wake-up Inputs Debouncer Period

Value Name Description
0 IMMEDIATE Immediate, no debouncing, detected active at least on one Slow Clock edge
1 3_SLCK WKUPXx shall be in its active state for at least 3 SLCK periods
2 32_SLCK WKUPXx shall be in its active state for at least 32 SLCK periods
3 512_SLCK WKUPXx shall be in its active state for at least 512 SLCK periods
4 4096_SLCK WKUPXx shall be in its active state for at least 4,096 SLCK periods
5 32768 _SLCK WKUPXx shall be in its active state for at least 32,768 SLCK periods

e LPDBC: Low-Power Debouncer Period

Value Name Description

0 DISABLE Disable the low-power debouncers

1 2_RTCOUTO WKUPO0/10/14/15/TMP0/1/2/3 in active state for at least 2 RTCOUTO periods
2 3 _RTCOUTO WKUPO0/10/14/15/TMP0/1/2/3 in active state for at least 3 RTCOUTO periods
3 4 RTCOUTO WKUPO0/10/14/15/TMP0/1/2/3 in active state for at least 4 RTCOUTO periods
4 5 RTCOUTO WKUPO0/10/14/15/TMPO0/1/2/3 in active state for at least 5 RTCOUTO periods
5 6_RTCOUTO WKUPO0/10/14/15/TMP0/1/2/3 in active state for at least 6 RTCOUTO periods
6 7_RTCOUTO WKUPO0/10/14/15/TMP0/1/2/3 in active state for at least 7 RTCOUTO periods
7 8_RTCOUTO WKUPO0/10/14/15/TMP0/1/2/3 in active state for at least 8 RTCOUTO periods

* LPDBCENZ2: Low-Power Debouncer Enable WKUP14/TMP2
0 (NOT_ENABLE): The WKUP14/TMP2 input pin is not connected to the low-power debouncer.
1 (ENABLE): The WKUP14/TMP2 input pin is connected to the low-power debouncer and can force a system wake-up.

 LPDBCEN3: Low-Power Debouncer Enable WKUP15/TMP3
0 (NOT_ENABLE): The WKUP15/TMP3 input pin is not connected to the low-power debouncer.
1 (ENABLE): The WKUP15/TMP3 input pin is connected to the low-power debouncer and can force a system wake-up.

* DISTMPCLR1: Disable GPBR Clear Command from WKUP10/TMP1 pin
0 (ENABLE): The WKUP10/TMP1 input pin can clear the GPBR (if LPDBCCLR is enabled) when tamper is detected.
1 (DISABLE): The WKUP10/TMP1 input pin has no effect on the GPBR value (no clear on tamper detection).

346

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

¢ DISTMPCLR2: Disable GPBR Clear Command from WKUP14/TMP2 Pin
0 (ENABLE): The WKUP14/TMP2 input pin can clear the GPBR (if LPDBCCLR is enabled) when tamper is detected.
1 (DISABLE): The WKUP14/TMP2 input pin has no effect on the GPBR value (no clear on tamper detection).

* DISTMPCLR3: Disable GPBR Clear Command from WKUP15/TMP3 Pin
0 (ENABLE): The WKUP15/TMP3 input pin can clear the GPBR (if LPDBCCLR is enabled) when tamper is detected.
1 (DISABLE): The WKUP15/TMP3 input pin has no effect on the GPBR value (no clear on tamper detection).

¢ DISTSTMP1: Disable Timestamp from WKUP10/TMP1 Pin
0 (ENABLE): A tamper detection on WKUP10/TMP1 pin generates a timestamp.
1 (DISABLE): A tamper detection on WKUP10/TMP1 does NOT generate a report in timestamp register.

* DISTSTMP2: Disable Timestamp from WKUP14/TMP2 Pin
0 (ENABLE): A tamper detection on WKUP14/TMP2 pin generates a timestamp.
1 (DISABLE): A tamper detection on WKUP14/TMP2 does NOT generate a report in timestamp register.

¢ DISTSTMP3: Disable Timestamp from WKUP15/TMP3 Pin
0 (ENABLE): A tamper detection on WKUP15/TMP3 pin generates a timestamp.
1 (DISABLE): A tamper detection on WKUP15/TMP3 does NOT generate a report in timestamp register.

SAMACP16C [DATASHEET] 347
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.6.7 Supply Controller Wake-up Inputs Register

Name: SUPC_WUIR

Address: 0x400E1420

Access: Read/Write
31 30 29 28 27 26 25 24

| WKUPT15 | WKUPT14 | WKUPT13 | WKUPT12 | WKUPT11 | WKUPT10 | WKUPT9 | WKUPTS8 |
23 22 21 20 19 18 17 16

| WKUPT7 | WKUPT6 | WKUPT5 | WKUPT4 | WKUPT3 | WKUPT2 | WKUPT1 | WKUPTO |
15 14 13 12 11 10 9 8

| WKUPEN15 | WKUPEN14 | WKUPEN13 | WKUPEN12 | WKUPEN11 | WKUPEN10 | WKUPEN9 | WKUPENS8 |

7 6 5 4 3 2 1 0
| WKUPEN7 | WKUPENG6 | WKUPENS | WKUPEN4 | WKUPEN3 | WKUPEN2 | WKUPEN1 | WKUPENO |

* WKUPENx: WKUPx Input Enable
0 (DISABLE): The corresponding wake-up input has no wake-up effect.

1 (ENABLE): The corresponding wake-up input is enabled for a system wake-up.

* WKUPTx: WKUPx Input Type
0 (LOW): A falling edge followed by a low level for a period defined by WKUPDBC in SUPC_WUMR on the corresponding
wake-up input forces a system wake-up.

1 (HIGH): A rising edge followed by a high level for a period defined by WKUPDBC in SUPC_WUMR on the corresponding
wake-up input forces a system wake-up.

348 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.6.8 Supply Controller Status Register

Name: SUPC_SR
Address: 0x400E1424
Access: Read-only
31 30 29 28 27 26 25 24

| WKUPIS15 | WKUPIS14 | WKUPIS13 | WKUPIS12 | WKUPIS11 | WKUPIS10 | WKUPIS9 | WKUPIS8 |

23 22 21 20 19 18 17 16

| WKUPIS7 | WKUPIS6 | WKUPIS5 | WKUPIS4 | WKUPIS3 | WKUPIS2 | WKUPIS1 | WKUPISO |
15 14 13 12 11 10 9 8

| BUPPORS | LPDBCS1 | LPDBCSO0 | FWUPIS | - | LPDBCS3 | LPDBCS2 | LCDS |
7 6 5 4 3 2 1 0

| OSCSEL | SMOS | SMS | SMRSTS | BODRSTS | SMWS | WKUPS | FWUPS |

Note: Because of the asynchronism between the Slow Clock (SLCK) and the System Clock (MCK), the status register

flag reset is taken into account only two slow clock cycles after the read of the SUPC_SR.

* FWUPS: FWUP Wake-up Status (cleared on read)
0 (NO): No wake-up due to the assertion of the FWUP pin has occurred since the last read of SUPC_SR.
1 (PRESENT): At least one wake-up due to the assertion of the FWUP pin has occurred since the last read of SUPC_SR.

* WKUPS: WKUP Wake-up Status (cleared on read)
0 (NO): No wake-up due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.
1 (PRESENT): At least one wake-up due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.

e SMWS: Supply Monitor Detection Wake-up Status (cleared on read)
0 (NO): No wake-up due to a supply monitor detection has occurred since the last read of SUPC_SR.

1 (PRESENT): At least one wake-up due to a supply monitor detection has occurred since the last read of SUPC_SR.

 BODRSTS: Brownout Detector Reset Status (cleared on read)
0 (NO): No core brownout rising edge event has been detected since the last read of SUPC_SR.
1 (PRESENT): At least one brownout output rising edge event has been detected since the last read of SUPC_SR.

When the voltage remains below the defined threshold, there is no rising edge event at the output of the brownout detection
cell. The rising edge event occurs only when there is a voltage transition below the threshold.

* SMRSTS: Supply Monitor Reset Status (cleared on read)
0 (NO): No supply monitor detection has generated a system reset since the last read of SUPC_SR.

1 (PRESENT): At least one supply monitor detection has generated a system reset since the last read of SUPC_SR.

e SMS: Supply Monitor Status (cleared on read)
0 (NO): No supply monitor detection since the last read of SUPC_SR.
1 (PRESENT): At least one supply monitor detection since the last read of SUPC_SR.

¢ SMOS: Supply Monitor Output Status
0 (HIGH): The supply monitor detected VDDIO higher than its threshold at its last measurement.
1 (LOW): The supply monitor detected VDDIO lower than its threshold at its last measurement.

SAMA4CP16C [DATASHEET] 349
Atmel ; :

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

¢ OSCSEL: 32 kHz Oscillator Selection Status
0 (RC): The slow clock, SLCK, is generated by the embedded 32 kHz RC oscillator.
1 (CRYST): The slow clock, SLCK, is generated by the 32 kHz crystal oscillator.

* LCDS: LCD Status
0 (DISABLED): LCD controller is disabled.
1 (ENABLED): LCD controller is enabled.

 LPDBCS2: Low-Power Debouncer Tamper Status on WKUP14/TMP2 (cleared on read)

0 (NO): No tamper detection or wake-up due to the assertion of the WKUP14/TMP2 pin has occurred since the last read of
SUPC_SR.

1 (PRESENT): At least one tamper detection and wake-up (if enabled by WKUPEN14) due to the assertion of the
WKUP14/TMP2 pin has occurred since the last read of SUPC_SR. The SUPC interrupt line is asserted while LPDBCS2 is 1.

¢ LPDBCS3: Low-Power Debouncer Tamper Status on WKUP15/TMP3 (cleared on read)

0 (NO): No tamper detection or wake-up due to the assertion of the WKUP15/TMP3 pin has occurred since the last read of
SUPC_SR.

1 (PRESENT): At least one tamper detection and wake-up (if enabled by WKUPEN15) due to the assertion of the
WKUP15/TMP3 pin has occurred since the last read of SUPC_SR. The SUPC interrupt line is asserted while LPDBCS2 is 1.

¢ FWUPIS: FWUP Input Status
0 (LOW): FWUP input is tied low.
1 (HIGH): FWUP input is tied high.

* LPDBCSO0: Low-Power Debouncer Wake-up Status on WKUPO/TMPO (cleared on read)

0 (NO): No tamper detection or wake-up due to the assertion of the WKUPO/TMPO pin has occurred since the last read of
SUPC_SR.

1 (PRESENT): At least one tamper detection and wake-up (if enabled by WKUPENO) due to the assertion of the
WKUPO/TMPO pin has occurred since the last read of SUPC_SR. The SUPC interrupt line is asserted while LPDBCSO is 1.

* LPDBCS1: Low-Power Debouncer Wake-up Status on WKUP10/TMP1 (cleared on read)

0 (NO): No tamper detection or wake-up due to the assertion of the WKUP10 pin has occurred since the last read of
SUPC_SR.

1 (PRESENT): At least one tamper detection and wake-up (if enabled by WKUPEN10) due to the assertion of the
WKUP10/TMP1 pin has occurred since the last read of SUPC_SR. The SUPC interrupt line is asserted while LPDBCS1 is 1.

* BUPPORS: Backup Area Power-On Reset Status
0 (BUPPOR_DISABLED): Backup POR is disabled.
1 (BUPPOR_ENABLED): Backup POR is enabled.

Note: The value written in BUPPOREN is effective when BUPPORENS has the same value in "Supply Controller Status
Register”.

¢ WKUPISx: WKUPXx Input Status (cleared on read)

0 (DIS): The corresponding wake-up input is disabled, or was inactive at the time the debouncer triggered a wake-up event.

1 (EN): The corresponding wake-up input was active at the time the debouncer triggered a wake-up event since the last read
of SUPC_SR.

350 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.6.9 System Controller Write Protection Mode Register

Name: SYSC_WPMR
Access: Read/Write

31 30 29 28 27 26 25 24
| WPKEY

23 22 21 20 19 18 17 16
| WPKEY

15 14 13 12 1 10 9 8
| WPKEY

7 6 5 4 3 2 1 0
I S R R R - WPEN

For more information on Write Protection registers, refer to Section 20.5 "Register Write Protection”.

* WPEN: Write Protection Enable
0: Disables the write protection if WPKEY corresponds to 0x525443 (RTC in ASCII).
1: Enables the write protection if WPKEY corresponds to 0x525443 (RTC in ASCII).

See Section 20.5 "Register Write Protection” for the list of registers that can be protected.

* WPKEY: Write Protection Key

Value Name Description
0x525443 PASSWD Writing any other value in this field aborts the write operation of the WPEN bit. Always reads as 0.
SAM4CP16C [DATASHEET 351
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

21.

211

General Purpose Backup Registers (GPBR)

Description
The System Controller embeds 16 General Purpose Backup registers.

It is possible to generate an immediate clear of the content of General Purpose Backup registers 0 to 7 (first half), if
a Tamper event is detected on one of the tamper pins, TMPO to TMP3. The content of the other General Purpose
Backup registers (second half) remains unchanged. A Tamper event on pin TMPO always performs an immediate
clear, while tamper event on other tamper pin can be enabled or disabled in the Supply Controller.

The Supply Controller module must be programmed accordingly. In the register SUPC_WUMR in the Supply
Controller module, bits LPDBCCLR and LPDBCEN]JO0..3] must be configured to 1 and LPDBC must be other than 0.

If a Tamper event has been detected, it is not possible to write to the General Purpose Backup registers while the
LPDBCSx flags are not cleared in the Supply Controller Status Register (SUPC_SR).

21.2 Embedded Characteristics

e 16 32-bit General Purpose Backup Registers
e Immediate Clear on Tamper Event

21.3 General Purpose Backup Registers (GPBR) User Interface

Table 21-1. Register Mapping

Offset Register Name Access Reset
0x0 General Purpose Backup Register 0 SYS_GPBRO Read/Write | 0x00000000
0xCC General Purpose Backup Register 15 SYS _GPBR15 Read/Write | 0x00000000
352 SAM4CP16C [DATASHEET
[] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

21.3.1 General Purpose Backup Register x

Name: SYS_GPBRXx
Address: 0x400E1490
Access: Read/Write

31 30 29 28 27 26 25 24
| GPBR_VALUE

23 22 21 20 19 18 17 16
| GPBR_VALUE

15 14 13 12 11 10 9 8
| GPBR_VALUE

7 6 5 4 3 2 1 0
| GPBR_VALUE

These registers are reset at first power-up and on each loss of VDDBU_SW.

* GPBR_VALUE: Value of GPBR x

If a Tamper event has been detected, it is not possible to write GPBR_VALUE as long as the LPDBCSO0 or LPDBCS3 flag has
not been cleared in the Supply Controller Status Register (SUPC_SR).

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

353

22,

221

22.2

22.3

22.31

22.3.2

354

Enhanced Embedded Flash Controller (EEFC)

Description

The Enhanced Embedded Flash Controller (EEFC) provides the interface of the Flash block with the 32-bit internal
bus.

Its 128-bit or 64-bit wide memory interface increases performance. It also manages the programming, erasing, locking
and unlocking sequences of the Flash using a full set of commands. One of the commands returns the embedded
Flash descriptor definition that informs the system about the Flash organization, thus making the software generic.

Embedded Characteristics
Increases Performance in Thumb-2 Mode with 128-bit or 64-bit wide Memory Interface up to 100 MHz

Code Loop Optimization

128 Lock Bits, Each Protecting a Lock Region
2 General-purpose GPNVM Bits
One-by-one Lock Bit Programming
Commands Protected by a Keyword

Erase the Entire Flash

Erase by Plane

Erase by Sector

Erase by Page

Provides Unique Identifier

Provides 512-byte User Signature Area
Supports Erasing before Programming
Locking and Unlocking Operations

ECC Single and Multiple Error Flags Report
Supports Read of the Calibration Bits

Product Dependencies

Power Management

The Enhanced Embedded Flash Controller (EEFC) is continuously clocked. The Power Management Controller has
no effect on its behavior.

Interrupt Sources

The EEFC interrupt line is connected to the interrupt controller. Using the EEFC interrupt requires the interrupt
controller to be programmed first. The EEFC interrupt is generated only if the value of EEFC_FMR.FRDY is ‘1°.

Table 22-1. Peripheral IDs

Instance ID

EFC 6

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

22.4 Functional Description

22.41 Embedded Flash Organization

The embedded Flash interfaces directly with the internal bus. The embedded Flash is composed of:

One memory plane organized in several pages of the same size for the code.
A separate 2 x 512-byte memory area which includes the unique chip identifier.
A separate 512-byte memory area for the user signature.

Two 128-bit or 64-bit read buffers used for code read optimization.

One 128-bit or 64-bit read buffer used for data read optimization.

One write buffer that manages page programming. The write buffer size is equal to the page size. This buffer is
write-only and accessible all along the 1 Mbyte address space, so that each word can be written to its final
address.

Several lock bits used to protect write/erase operation on several pages (lock region). A lock bit is associated
with a lock region composed of several pages in the memory plane.

Several bits that may be set and cleared through the EEFC interface, called general-purpose non-volatile
memory bits (GPNVM bits).

The embedded Flash size, the page size, the organization of lock regions and the definition of GPNVM bits are
specific to the device. The EEFC returns a descriptor of the Flash controller after a ‘Get Flash Descriptor command
has been issued by the application (see Section 22.4.3.1 "Get Flash Descriptor Command”).

Figure 22-1. Flash Memory Areas

Atmel

l —
——

@FBA+0x010
@FBA+0x000

'
Write “Stop Unique Identifier’,
(Flash Gommand SPU.

7

Write “Start Unique Identifier”
(Flash Command STUI)

@FBA+0x3FF

—

BA+0x01

7

Unique !I(/erftifier

@FBA+0x0

@FBA+OX1FF

op User signature”

Write “Start User Signature”
(FlaslYCommand SPUS)

(Flash Command STUS)

@FBA+0x000 FBA = Flash Base Address

SAM4CP16C [DATASHEET] 355

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 22-2. Organization of Embedded Flash for Code

Memory Plane

Start Address e
Lock Region 0 <— LockBit0
Page (m-1)
oo
Lock Region 1 <—— LockBit1l
N
Lock Region (n-1) <«——— Lock Bit (n-1)
Start Address + Flash size -1 Page (1)

22.4.2 Read Operations

An optimized controller manages embedded Flash reads, thus increasing performance when the processor is running
in Thumb-2 mode by means of the 128- or 64-bit wide memory interface.

The Flash memory is accessible through 8-, 16- and 32-bit reads.

As the Flash block size is smaller than the address space reserved for the internal memory area, the embedded Flash
wraps around the address space and appears to be repeated within it.

The read operations can be performed with or without wait states. Wait states must be programmed in the field FWS
(Flash Read Wait State) in the Flash Mode register (EEFC_FMR). Defining FWS as 0 enables the single-cycle access
of the embedded Flash. For more details, refer to the section “Electrical Characteristics” of this datasheet.

22.4.2.1 128-bit or 64-bit Access Mode

By default, the read accesses of the Flash are performed through a 128-bit wide memory interface. It improves system
performance especially when two or three wait states are needed.

For systems requiring only 1 wait state, or to focus on current consumption rather than performance, the user can
select a 64-bit wide memory access via the bit EEFC_FMR.FAM.

For more details, refer to the section “Electrical Characteristics” of this datasheet.

22.4.2.2 Code Read Optimization
Code read optimization is enabled if the bit EEFC_FMR.SCOD is cleared.
A system of 2 x 128-bit or 2 x 64-bit buffers is added in order to optimize sequential code fetch.
Note: Immediate consecutive code read accesses are not mandatory to benefit from this optimization.

The sequential code read optimization is enabled by default. If the bit EEFC_FMR.SCOD is set, these buffers are
disabled and the sequential code read is no longer optimized.

Another system of 2 x 128-bit or 2 x 64-bit buffers is added in order to optimize loop code fetch. Refer to Section
22.4.2.3 "Code Loop Optimization” for more details.

356 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 22-3. Code Read Optimization for FWS =0

Master Clock I I I l I ! I l I l I l I I
s ?\ SF\ S S S SO S S
\ @+4 @ +8 ;@+12 @+16 @+20 @+24 @+28 @+32

Flash Access | X Byte§\0—15 XBytesm16 31 X X XBytes 32-47X X X

Buffer 0 (128bits) X XXX X N BytesO 15 X Bytes 32-47
Buffer 1 (128bits) X \ ixxx | \ Bytes 16-31
S \ é Y Y

Data To ARM XXX X Bytes 0-3 X Bytés 4-7 X Bytes 8-11 ¥Bytek 12-15 X Bytes 16-19 YBytes 20-23 Bytes 24-27 YBytes 28-31

Note: When FWS is equal to 0, all the accesses are performed in a single-cycle access.

Figure 22-4. Code Read Optimization for FWS = 3

s g 00 A W A

@0 @4 @+’8 @+16 @+20 @+24 +32 @+36 @+40 @+44 @+48 @+52;

wait 3 cycies before

128bit data isstable ‘ nt|C|patlon of @16-31 annapahon of @32-47

@0/ 4/ 8/12are 'eady @16/20/24/28 are ready

Flash Access XXXXX\ ny\tes 0—15 XXXXX Bytés 16-31 XXXX X Bytes 32-47 Y Y Y ¥ XBytes48 -63
| \ i) [\

Buffer 0 (128bits) | X NBytesO—’ls Vi | iX wBytes3247 | |

I \\\ || 1N I
R —

Buffer 1 (128bits) | LOXXX |:X _Bytes 16-31 : :
5 L l. l. V N | '
Data To ARM :X XXX X(;-:e 4}7 Ysi11 Y1255 Yiot19K20-20) 2427 Y(28-31)e2-35 Y 36-39 40—43X44—47X48 51

Note: When FWS is between 1 and 3, in case of sequential reads, the first access takes (FWS + 1) cycles.
The following accesses take only one cycle.

22.4.2.3 Code Loop Optimization
Code loop optimization is enabled when the bit EEFC_FMR.CLOE is set.

When a backward jump is inserted in the code, the pipeline of the sequential optimization is broken and becomes
inefficient. In this case, the loop code read optimization takes over from the sequential code read optimization to
prevent the insertion of wait states. The loop code read optimization is enabled by default. In EEFC_FMR, if the bit
CLOE is reset to 0 or the bit SCOD is set, these buffers are disabled and the loop code read is not optimized.

When code loop optimization is enabled, if inner loop body instructions L, to L,, are positioned from the 128-bit Flash
memory cell My, to the memory cell M, after recognition of a first backward branch, the first two Flash memory cells
My, and My, targeted by this branch are cached for fast access from the processor at the next loop iteration.

Then by combining the sequential prefetch (described in Section 22.4.2.2 "Code Read Optimization”) through the loop
body with the fast read access to the loop entry cache, the entire loop can be iterated with no wait state.

SAMA4CP16C [DATASHEET] 357
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 22-5 illustrates code loop optimization.

Figure 22-5. Code Loop Optimization

Backward address jump

Flash Memory |
128-bit words

I
I
I
I I
I I
I I
| Mbo | Mb1 Mpo Mp1
I I I | I I
I I I I I I
N I T B S B T [oo [J o Jta Jtm [& |] |
_______________ T T 1
I I
. By B B, B, | B, Bs Bs B, . LR, P, P, P, P, Ps Ps P, |
) 5
2x128-bit loop entry 2x128-bit prefetch ”
cache buffer
My Branch Cache 0 Ly Loop Entry instruction Mo Prefetch Buffer 0
My, Branch Cache 1 L, Loop End instruction Mg, Prefetch Buffer 1

22.4.2.4 Data Read Optimization

The organization of the Flash in 128 bits or 64 bits is associated with two 128-bit or 64-bit prefetch buffers and one
128-bit or 64-bit data read buffer, thus providing maximum system performance. This buffer is added in order to store
the requested data plus all the data contained in the 128-bit or 64-bit aligned data. This speeds up sequential data
reads if, for example, FWS is equal to 1 (see Figure 22-6). The data read optimization is enabled by default. If the bit
EEFC_FMR.SCOD is set, this buffer is disabled and the data read is no longer optimized.

Note: No consecutive data read accesses are mandatory to benefit from this optimization.

Figure 22-6. Data Read Optimization for FWS = 1

S Sy Yy oy oy I By
i 1 t t 1t 1 N | 1

@Byte 0 @4 @8 @12 @16 @0 @24 @8 @32 @36
FlashAccess xxx X Byteso-15 X X Bytesi631 X X Bytes32-47
Buffer (128bits) X XXX X Bytes 0-15 X Bytes 16-31

Data To ARM X XXX XBytesO—BX 4-7 X 8-11 X 12-15 X X16—19X 20-23 X 24-27 X 28-31 X X32—35

358 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

22.4.3 Flash Commands

The EEFC offers a set of commands to manage programming the Flash memory, locking and unlocking lock regions,
consecutive programming, locking and full Flash erasing, etc.
The commands are listed in the following table.

Table 22-2. Set of Commands

Command Value Mnemonic
Get Flash descriptor 0x00 GETD
Write page 0x01 WP
Write page and lock 0x02 WPL
Erase page and write page 0x03 EWP
Erase page and write page then lock 0x04 EWPL
Erase all 0x05 EA
Erase pages 0x07 EPA
Set lock bit 0x08 SLB
Clear lock bit 0x09 CLB
Get lock bit 0x0A GLB
Set GPNVM bit 0x0B SGPB
Clear GPNVM bit 0x0C CGPB
Get GPNVM bit 0x0D GGPB
Start read unique identifier 0x0E STUI
Stop read unique identifier 0xOF SPUI
Get CALIB bit 0x10 GCALB
Erase sector 0x11 ES
Write user signature 0x12 Wus
Erase user signature 0x13 EUS
Start read user signature 0x14 STUS
Stop read user signature 0x15 SPUS

In order to execute one of these commands, select the required command using the FCMD field in the Flash
Command register (EEFC_FCR). As soon as EEFC_FCR is written, the FRDY flag and the FVALUE field in the Flash
Result register (EEFC_FRR) are automatically cleared. Once the current command has completed, the FRDY flag is
automatically set. If an interrupt has been enabled by setting the bit EEFC_FMR.FRDY, the corresponding interrupt
line of the interrupt controller is activated. (Note that this is true for all commands except for the STUI command. The
FRDY flag is not set when the STUI command has completed).

All the commands are protected by the same keyword, which must be written in the eight highest bits of EEFC_FCR.

Writing EEFC_FCR with data that does not contain the correct key and/or with an invalid command has no effect on
the whole memory plane, but the FCMDE flag is set in the Flash Status register (EEFC_FSR). This flag is
automatically cleared by a read access to EEFC_FSR.

When the current command writes or erases a page in a locked region, the command has no effect on the whole
memory plane, but the FLOCKE flag is set in EEFC_FSR. This flag is automatically cleared by a read access to
EEFC_FSR.

SAMA4CP16C [DATASHEET] 359
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 22-7. Command State Chart

Read Status: EEFC_FSR <

Check if FRDY flag Set

l Yes

Write FCMD and PAGENB in Flash Command Register

A

Read Status: EEFC_FSR <

Check if FRDY flag Set

Check if FLOCKE flag Set Locking region violation

Check if FCMDE flag Set Bad keyword violation

Command Successfull

22.4.3.1 Get Flash Descriptor Command

This command provides the system with information on the Flash organization. The system can take full advantage of
this information. For instance, a device could be replaced by one with more Flash capacity, and so the software is able
to adapt itself to the new configuration.

To get the embedded Flash descriptor, the application writes the GETD command in EEFC_FCR. The first word of the
descriptor can be read by the software application in EEFC_FRR as soon as the FRDY flag in EEFC_FSR rises. The
next reads of EEFC_FRR provide the following word of the descriptor. If extra read operations to EEFC_FRR are
done after the last word of the descriptor has been returned, the EEFC_FRR value is 0 until the next valid command.

360 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Table 22-3. Flash Descriptor Definition

Symbol Word Index Description

FL_ID 0 Flash Interface Description

FL_SIZE 1 Flash size in bytes

FL_PAGE_SIZE 2 Page size in bytes

FL_NB_PLANE 3 Number of planes

FL_PLANE[O] 4 Number of bytes in the plane
Number of lock bits. A bit is associated with a lock

FL_NB_LOCK 4 + FL_NB_PLANE region. A lock bit is used to prevent write or erase
operations in the lock region

FL_LOCK]O0] 4 + FL_NB_PLANE + 1 Number of bytes in the first lock region

22.4.3.2 Write Commands
Several commands are used to program the Flash.

Only 0 values can be programmed using Flash technology; 1 is the erased value. In order to program words in a page,
the page must first be erased. Commands are available to erase the full memory plane or a given number of pages.
With the EWP and EWPL commands, a page erase is done automatically before a page programming.

After programming, the page (the entire lock region) can be locked to prevent miscellaneous write or erase
sequences. The lock bit can be automatically set after page programming using WPL or EWPL commands.

Data to be programmed in the Flash must be written in an internal latch buffer before writing the programming
command in EEFC_FCR. Data can be written at their final destination address, as the latch buffer is mapped into the
Flash memory address space and wraps around within this Flash address space.

Byte and half-word AHB accesses to the latch buffer are not allowed. Only 32-bit word accesses are supported.

32-bit words must be written continuously, in either ascending or descending order. Writing the latch buffer in a
random order is not permitted. This prevents mapping a C-code structure to the latch buffer and accessing the data of
the structure in any order. It is instead recommended to fill in a C-code structure in SRAM and copy it in the latch
buffer in a continuous order.

Write operations in the latch buffer are performed with the number of wait states programmed for reading the Flash.

The latch buffer is automatically re-initialized, i.e., written with logical ‘1’, after execution of each programming
command.
The programming sequence is the following:
1. Write the data to be programmed in the latch buffer.
2. Write the programming command in EEFC_FCR. This automatically clears the bit EEFC_FSR.FRDY.
3. When Flash programming is completed, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by
setting the bit EEFC_FMR.FRDY, the interrupt line of the EEFC is activated.
Three errors can be detected in EEFC_FSR after a programming sequence:
e Command Error: A bad keyword has been written in EEFC_FCR.

e Lock Error: The page to be programmed belongs to a locked region. A command must be run previously to
unlock the corresponding region.

e Flash Error: When programming is completed, the WriteVerify test of the Flash memory has failed.

Only one page can be programmed at a time. It is possible to program all the bits of a page (full page programming) or
only some of the bits of the page (partial page programming).

Depending on the number of bits to be programmed within the page, the EEFC adapts the write operations required to
program the Flash.

SAMA4CP16C [DATASHEET] 361
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

When a ‘Write Page’ (WP) command is issued, the EEFC starts the programming sequence and all the bits written at
0 in the latch buffer are cleared in the Flash memory array.

During programming, i.e., until EEFC_FSR.FDRY rises, access to the Flash is not allowed.

Full Page Programming
To program a full page, all the bits of the page must be erased before writing the latch buffer and issuing the WP
command. The latch buffer must be written in ascending order, starting from the first address of the page. See Figure
22-8, "Full Page Programming".
Partial Page Programming
To program only part of a page using the WP command, the following constraints must be respected:
e Data to be programmed must be contained in integer multiples of 64-bit address-aligned words.
e 64-bit words can be programmed only if all the corresponding bits in the Flash array are erased (at logical value
1).
See Figure 22-9, "Partial Page Programming".
Programming Bytes
Individual bytes can be programmed using the Partial page programming mode. In this case, an area of 64 bits must
be reserved for each byte. Refer to Figure 22-10, "Programming Bytes in the Flash".

Figure 22-8. Full Page Programming

32 bits wide 32 bits wide
 — - —
e — 7
CA FE CA FE FF FF FF FF
CA FE CA FE | oxX1C FF FF FF FF 0xX1C
FF FF FF FF 0xX18
CA FE CA FE | 0xX18 address space
CA FE CA FE | 0xX14 for FF FF FF FF 0xX14
CA FE CA FE 0xX10 Page N FF FF FF FF 0xX10
CA FE CA FE 0xX0C FF FF FF FF 0xX0C
CA FE CA FE | 0xX08 FF FF FF FF | 0xX08
CA FE CA FE | 0xX04 FF FF FF FF | O0xXo04
CA FE CA FE | 0xX00 FF FF FF FF | OxX00
Before programming: Unerased page in Flash array Step 1: Flash array after page erase
i —— i —
//\—' A
DE CA DE CA DE CA DE CA
DE CA DE CA| O0xX1C DE CA DE CA| 0xX1C
DE CA DE CA| 0xX18
DE CA DE CA| 0xx18 address space x address space
DE CA DE CA| 0xX14 for DE CA DE CA| 0xX14 for
DE CA DE CA| o0xX10 latch buffer DE CA DE CA|[oxx10 Page N
DE CA DE CA| oxXocC DE CA DE CA| 0xX0C
DE CA DE CA| 0xXo08 DE CA DE CA| 0xX08
DE CA DE CA| 0xX04 DE CA DE CA| 0xX04
DE CA DE CA| 0xX00 DE CA DE CA| 0xX00
Step 2: Writing a page in the latch buffer Step 3: Page in Flash array after issuing

WP command and FRDY=1

362 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 22-9. Partial Page Programming

32 bits wide

J:__;Iﬁ

AT

FF FF FF FF
FF FF FF FF
FF FF FF FF
FF FF FF FF

Step 1: Flash array after page erase

32 bits wide

L

o

FF FF FF FF

FF FF FF FF | OxX1C
FF FF FF FF | 0xX18
FF FF FF FF | OxX14
FF FF FF FF | 0xX10

CA FE CA FE | OxXo0C
CA FE CA FE | OxX08

CA FE CA FE | 0xXo4
CA FE CA FE | 0xX00

Step 3: Flash array after programming
a second 64-bit data at address 0xX00

(write latch buffer + WP)

Figure 22-10. Programming Bytes in the Flash

32 bits wide

address space
for
Page N

)’/?__’Ij

/
FF FF FF FF

FF FF FF FF
4 x 32 bits = FF FF FF FF
1 Flash word FF FF FF FF

4 x 32 bits = FF FF FF FF
1 Flashword | [T 70— 7 = = = —

XX xx xx AA

O0xX1C
0xX18
0xX14
0xX10

0xX0C
0xX08
0xX04
0xX00

address space
for
Page N

Step 1: Flash array after programming first byte (OxAA)
64-bit used at address 0xX00 (write latch buffer + WP)

Note: The byte location shown here is for example only, it can be any byte location within a 64-bit word.

Atmel

32 bits wide

FF FF FF FF

FF FF FF FF
FF FF FF FF
FF FF FF FF

32 bits wide

FF FF FF FF

CA FE CA FE

32 bits wide

J’/__’Ij

AT

0xX1C
0xX18
0xX14
0xX10

0xX0C
0xX08
0xX04
0xX00

Step 2: Flash array after programming
64-bit at address 0xX08 (write latch buffer + WP)

pE—

0xX1C
0xX18
0xX14
0xX10

0xX0C
0xX08
0xX04
0xX00

Step 4: Flash array after programming
a 128-bit data word at address 0xX10
(write latch buffer + WP)

e —

/
FF FF FF FF

FF FF FF FF
FF FF FF FF
FF FF FF FF

XX xx xx AA

O0xX1C
0xX18
0xX14
0xX10

0xX0C
0xX08
0xX04
0xX00

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Step 2: Flash array after programming second byte (0x55)
64-bit used at address 0xX08 (write latch buffer + WP)

22.4.3.3 Erase Commands
Erase commands are allowed only on unlocked regions. Depending on the Flash memory, several commands can be
used to erase the Flash:
e Erase All Memory (EA): All memory is erased. The processor must not fetch code from the Flash memory.

e Erase Pages (EPA): 8 or 16 pages are erased in the Flash sector selected. The first page to be erased is
specified in the FARG[15:2] field of the EEFC_FCR. The first page number must be a multiple of 8, 16 or 32
depending on the number of pages to erase at the same time.

e FErase Sector (ES): A full memory sector is erased. Sector size depends on the Flash memory.
EEFC_FCR.FARG must be set with a page number that is in the sector to be erased.

If the processor is fetching code from the Flash memory while the EPA or ES command is being executed, the
processor accesses are stalled until the EPA command is completed. To avoid stalling the processor, the code can be
run out of internal SRAM.
The erase sequence is the following:

1. Erase starts as soon as one of the erase commands and the FARG field are written in EEFC_FCR.

e For the EPA command, the two lowest bits of the FARG field define the number of pages to be erased
(FARG [1:0]):

Table 22-4. EEFC_FCR.FARG Field for EPA command

FARG[1:0] Number of pages to be erased with EPA command
0 4 pages (only valid for small 8 KB sectors)
1 8 pages
2 16 pages
3 32 pages (not valid for small 8 KB sectors)

2. When erasing is completed, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting the bit
EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.
Three errors can be detected in EEFC_FSR after an erasing sequence:
e Command Error: A bad keyword has been written in EEFC_FCR.

e Lock Error: At least one page to be erased belongs to a locked region. The erase command has been refused,
no page has been erased. A command must be run previously to unlock the corresponding region.

e Flash Error: At the end of the erase period, the EraseVerify test of the Flash memory has failed.

22.4.3.4 Lock Bit Protection
Lock bits are associated with several pages in the embedded Flash memory plane. This defines lock regions in the
embedded Flash memory plane. They prevent writing/erasing protected pages.

The lock sequence is the following:

1. Execute the ‘Set Lock Bit' command by writing EEFC_FCR.FCMD with the SLB command and
EEFC_FCR.FARG with a page number to be protected.

2. When the locking completes, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting the bit
EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

3. The result of the SLB command can be checked running a ‘Get Lock Bit' (GLB) command.

Note: The value of the FARG argument passed together with SLB command must not exceed the higher lock bit
index available in the product.

Two errors can be detected in EEFC_FSR after a programming sequence:
e Command Error: A bad keyword has been written in EEFC_FCR.
e Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has failed.

364 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

It is possible to clear lock bits previously set. After the lock bits are cleared, the locked region can be erased or
programmed. The unlock sequence is the following:

1. Execute the ‘Clear Lock Bit command by writing EEFC_FCR.FCMD with the CLB command and
EEFC_FCR.FARG with a page number to be unprotected.

2. When the unlock completes, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting the bit
EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Note: The value of the FARG argument passed together with CLB command must not exceed the higher lock bit
index available in the product.

Two errors can be detected in EEFC_FSR after a programming sequence:
e Command Error: A bad keyword has been written in EEFC_FCR.
e Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has failed.

The status of lock bits can be returned by the EEFC. The ‘Get Lock Bit’ sequence is the following:
1. Execute the ‘Get Lock Bit' command by writing EEFC_FCR.FCMD with the GLB command. Field
EEFC_FCR.FARG is meaningless.

2. Lock bits can be read by the software application in EEFC_FRR. The first word read corresponds to the 32 first
lock bits, next reads providing the next 32 lock bits as long as it is meaningful. Extra reads to EEFC_FRR return
0.

For example, if the third bit of the first word read in EEFC_FRR is set, the third lock region is locked.

Two errors can be detected in EEFC_FSR after a programming sequence:
e Command Error: A bad keyword has been written in EEFC_FCR.
e Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has failed.

Note: Access to the Flash in read is permitted when a ‘Set Lock Bit’, ‘Clear Lock Bit’ or ‘Get Lock Bit' command is
executed.

22.4.3.5 GPNVM Bit

GPNVM bits do not interfere with the embedded Flash memory plane. For more details, refer to the section
“Memories” of this datasheet.
The ‘Set GPNVM Bit’ sequence is the following:

1. Execute the ‘Set GPNVM Bit' command by writing EEFC_FCR.FCMD with the SGPB command and
EEFC_FCR.FARG with the number of GPNVM bits to be set.

2. When the GPNVM bit is set, the bit EEFC_FSR.FRDY rises. If an interrupt was enabled by setting the bit
EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

3. The result of the SGPB command can be checked by running a ‘Get GPNVM Bit' (GGPB) command.

Note: The value of the FARG argument passed together with SGPB command must not exceed the higher GPNVM
index available in the product. Flash data content is not altered if FARG exceeds the limit. Command Error is
detected only if FARG is greater than 8.

Two errors can be detected in EEFC_FSR after a programming sequence:

e Command Error: A bad keyword has been written in EEFC_FCR.
e Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has failed.

It is possible to clear GPNVM bits previously set. The ‘Clear GPNVM Bit’ sequence is the following:
1. Execute the ‘Clear GPNVM Bit" command by writing EEFC_FCR.FCMD with the CGPB command and
EEFC_FCR.FARG with the number of GPNVM bits to be cleared.
2. When the clear completes, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting the bit
EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.
Note: The value of the FARG argument passed together with CGPB command must not exceed the higher GPNVM

index available in the product. Flash data content is not altered if FARG exceeds the limit. Command Error is
detected only if FARG is greater than 8.

SAMA4CP16C [DATASHEET] 365
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Two errors can be detected in EEFC_FSR after a programming sequence:

e Command Error: A bad keyword has been written in EEFC_FCR.

e Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has failed.
The status of GPNVM bits can be returned by the EEFC. The sequence is the following:

1. Execute the ‘Get GPNVM Bit' command by writing EEFC_FCR.FCMD with the GGPB command. Field
EEFC_FCR.FARG is meaningless.

2. GPNVM bits can be read by the software application in EEFC_FRR. The first word read corresponds to the 32
first GPNVM bits, following reads provide the next 32 GPNVM bits as long as it is meaningful. Extra reads to
EEFC_FRR return 0.

For example, if the third bit of the first word read in EEFC_FRR is set, the third GPNVM bit is active.

One error can be detected in EEFC_FSR after a programming sequence:
e Command Error: A bad keyword has been written in EEFC_FCR.

Note: Access to the Flash in read is permitted when a ‘Set GPNVM Bit, ‘Clear GPNVM Bit’ or ‘Get GPNVM Bit’
command is executed.

22.4.3.6 Calibration Bit
Calibration bits do not interfere with the embedded Flash memory plane.
The calibration bits cannot be modified.

The status of calibration bits are returned by the EEFC. The sequence is the following:

1. Execute the ‘Get CALIB Bit' command by writing EEFC_FCR.FCMD with the GCALB command.
Field EEFC_FCR.FARG is meaningless.

2. Calibration bits can be read by the software application in EEFC_FRR. The first word read corresponds to the
first 32 calibration bits. The following reads provide the next 32 calibration bits as long as it is meaningful. Extra
reads to EEFC_FRR return 0.

The 8/12 MHz internal RC oscillator is calibrated in production. This calibration can be read through the GCALB
command. Table 22-5 shows the bit implementation.

The RC calibration for the 4 MHz is set to “1000000°.

Table 22-5. Calibration Bit Indexes

RC Calibration Frequency EEFC_FRR Bits
8 MHz RC calibration output [28 - 22]
12 MHz RC calibration output [38 - 32]

22.4.3.7 Security Bit Protection

When the security bit is enabled, access to the Flash through the SWD interface or through the Fast Flash
Programming interface is forbidden. This ensures the confidentiality of the code programmed in the Flash.
The security bit is GPNVMO.

Disabling the security bit can only be achieved by asserting the ERASE pin at ‘1’, and after a full Flash erase is
performed. When the security bit is deactivated, all accesses to the Flash are permitted.

22.4.3.8 Unique Identifier Area
Each device is programmed with a 2x512-bytes unique identifier area. See Figure 22-1, "Flash Memory Areas".

The sequence to read the unique identifier area is the following:

1. Execute the ‘Start Read Unique Identifier command by writing EEFC_FCR.FCMD with the STUlI command.
Field EEFC_FCR.FARG is meaningless.

2. Wait until the bit EEFC_FSR.FRDY falls to read the unique identifier area. The unique identifier field is located
in the first 128 bits of the Flash memory mapping. The ‘Start Read Unique Identifier command reuses some

366 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

addresses of the memory plane for code, but the unique identifier area is physically different from the memory
plane for code.

3. To stop reading the unique identifier area, execute the ‘Stop Read Unique ldentifier command by writing
EEFC_FCR.FCMD with the SPUI command. Field EEFC_FCR.FARG is meaningless.

4. When the SPUI command has been executed, the bit EEFC_FSR.FRDY rises. If an interrupt was enabled by
setting the bit EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Note that during the sequence, the software cannot be fetched from the Flash.

22.4.3.9 User Signature Area

Each product contains a user signature area of 512 bytes. It can be used for storage. Read, write and erase of this
area is allowed. See Figure 22-1, "Flash Memory Areas".
The sequence to read the user signature area is the following:
1. Execute the ‘Start Read User Signature’ command by writing EEFC_FCR.FCMD with the STUS command.
Field EEFC_FCR.FARG is meaningless.

2. Wait until the bit EEFC_FSR.FRDY falls to read the user signature area. The user signature area is located in
the first 512 bytes of the Flash memory mapping. The ‘Start Read User Signature’ command reuses some
addresses of the memory plane but the user signature area is physically different from the memory plane.

3. To stop reading the user signature area, execute the ‘Stop Read User Signature’ command by writing
EEFC_FCR.FCMD with the SPUS command. Field EEFC_FCR.FARG is meaningless.

4. When the SPUS command has been executed, the bit EEFC_FSR.FRDY rises. If an interrupt was enabled by
setting the bit EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.
Note that during the sequence, the software cannot be fetched from the Flash.

One error can be detected in EEFC_FSR after this sequence:
e Command Error: A bad keyword has been written in EEFC_FCR.

The sequence to write the user signature area is the following:
1. Write the full page, at any page address, within the internal memory area address space.

2. Execute the ‘Write User Signature’ command by writing EEFC_FCR.FCMD with the WUS command. Field
EEFC_FCR.FARG is meaningless.

3. When programming is completed, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting
the bit EEFC_FMR.FRDY, the corresponding interrupt line of the interrupt controller is activated.
Two errors can be detected in EEFC_FSR after this sequence:
e Command Error: A bad keyword has been written in EEFC_FCR.
e Flash Error: At the end of the programming, the WriteVerify test of the Flash memory has failed.

The sequence to erase the user signature area is the following:

1. Execute the ‘Erase User Signature’ command by writing EEFC_FCR.FCMD with the EUS command. Field
EEFC_FCR.FARG is meaningless.

2. When programming is completed, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting
the bit EEFC_FMR.FRDY, the corresponding interrupt line of the interrupt controller is activated.
Two errors can be detected in EEFC_FSR after this sequence:
e Command Error: A bad keyword has been written in EEFC_FCR.
e Flash Error: At the end of the programming, the EraseVerify test of the Flash memory has failed.

SAMA4CP16C [DATASHEET] 367
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

22.4.3.10 ECC Errors and Corrections

The Flash embeds an ECC module able to correct one unique error and able to detect two errors. The errors are
detected while a read access is performed into memory array and stored in EEFC_FSR (see Section 22.5.3 "EEFC
Flash Status Register”). The error report is kept until EEFC_FSR is read.

There is one flag for a unique error on lower half part of the Flash word (64 LSB) and one flag for the upper half part
(MSB). The multiple errors are reported in the same way.

Due to the anticipation technique to improve bandwidth throughput on instruction fetch, a reported error can be
located in the next sequential Flash word compared to the location of the instruction being executed, which is located
in the previously fetched Flash word.

If a software routine processes the error detection independently from the main software routine, the entire Flash
located software must be rewritten because there is no storage of the error location.

If only a software routine is running to program and check pages by reading EEFC_FSR, the situation differs from the
previous case. Performing a check for ECC unique errors just after page programming completion involves a read of
the newly programmed page. This read sequence is viewed as data accesses and is not optimized by the Flash
controller. Thus, in case of unique error, only the current page must be reprogrammed.

22.5 Enhanced Embedded Flash Controller (EEFC) User Interface

The User Interface of the Enhanced Embedded Flash Controller (EEFC) is integrated within the System Controller
with base address 0x400EOA00.

Table 22-6. Register Mapping

368

Offset Register Name Access Reset State
0x00 EEFC Flash Mode Register EEFC_FMR Read/Write 0x0400_0000
0x04 EEFC Flash Command Register EEFC_FCR Write-only -
0x08 EEFC Flash Status Register EEFC_FSR Read-only 0x0000_0001
0x0C EEFC Flash Result Register EEFC_FRR Read-only 0x0

0x10 - Ox14 Reserved - - -
0x18 - OxE4 Reserved - - -

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

22.5.1 EEFC Flash Mode Register

Name: EEFC_FMR

Address: 0x400EOQAO00

Access: Read/Write
31 30 29 28 27 26 25 24

| - | - | - | - | - | CLOE | - FAM
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - SCOD
15 14 13 12 11 10 9 8

I - I - I - I - I FWS
7 6 5 4 3 2 1 0

——— 1 -1 1 71 71 =71 = FRDY

FRDY: Flash Ready Interrupt Enable
: Flash ready does not generate an interrupt.

- O

: Flash ready (to accept a new command) generates an interrupt.

FWS: Flash Wait State
This field defines the number of wait states for read and write operations:
FWS = Number of cycles for Read/Write operations - 1.

* SCOD: Sequential Code Optimization Disable
0: The sequential code optimization is enabled.
1: The sequential code optimization is disabled.

No Flash read should be done during change of this field.

* FAM: Flash Access Mode
0: 128-bit access in Read mode only to enhance access speed.
1: 64-bit access in Read mode only to enhance power consumption.

No Flash read should be done during change of this field.

¢ CLOE: Code Loop Optimization Enable
0: The opcode loop optimization is disabled.
1: The opcode loop optimization is enabled.

No Flash read should be done during change of this field.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

22.5.2 EEFC Flash Command Register

Name: EEFC_FCR
Address: 0x400E0A04
Access: Write-only
31 30 29 28 27 26 25 24
| FKEY |
23 22 21 20 19 18 17 16
| FARG |
15 14 13 12 11 10 9 8
| FARG |
7 6 5 4 3 2 1 0
| FCMD |
* FCMD: Flash Command
Value Name Description
0x00 GETD Get Flash descriptor
0x01 WP Write page
0x02 WPL Write page and lock
0x03 EWP Erase page and write page
0x04 EWPL Erase page and write page then lock
0x05 EA Erase all
0x07 EPA Erase pages
0x08 SLB Set lock bit
0x09 CLB Clear lock bit
0x0A GLB Get lock bit
0x0B SGPB Set GPNVM bit
0x0C CGPB Clear GPNVM bit
0x0D GGPB Get GPNVM bit
O0x0E STUI Start read unique identifier
OxOF SPUI Stop read unique identifier
0x10 GCALB Get CALIB bit
0x11 ES Erase sector
0x12 WuUS Write user signature
0x13 EUS Erase user signature
0x14 STUS Start read user signature
0x15 SPUS Stop read user signature
370 SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

¢ FARG: Flash Command Argument

GETD, GLB, Commands requiring

GGPB, STUI, no argument

SPUI. GCALB, including ’ FARG is meaningless, must be written with 0

WUS, EUS,

STUS, SPUS, EA Erase all command

ES Erase sector FARG must be written with any page number within the sector to be erased
command

FARGI[1:0] defines the number of pages to be erased

The start page must be written in FARG[15:2]

FARGI[1:0] = 0: Four pages to be erased. FARG[15:2] = Page_Number / 4
FARGI[1:0] = 1: Eight pages to be erased. FARG[15:3] = Page_Number / 8,

EPA Erase pages FARG[2] = 0
command FARG[1:0] = 2: Sixteen pages to be erased. FARG[15:4] = Page_Number / 16,
FARG[3:2] = 0
FARGI1:0] = 3: Thirty-two pages to be erased. FARG[15:5] = Page_Number / 32,
FARG[4:2] = 0

Refer to Table 22-4, “EEFC_FCR.FARG Field for EPA command,” on page 364

WP, WPL, EWP, Programming FARG must be written with the page number to be programmed

EWPL commands
SLB, CLB Lock bit commands FARG defines the page number to be locked or unlocked
SGPB, CGPB GPNVM commands FARG defines the GPNVM number to be programmed

* FKEY: Flash Writing Protection Key

Value Name Description

The 0x5A value enables the command defined by the bits of the register. If the field is

Ox5A PASSWD written with a different value, the write is not performed and no action is started.

SAMA4CP16C [DATASHEET] 371
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

22.5.3 EEFC Flash Status Register

Name: EEFC_FSR

Address: 0x400E0A08

Access: Read-only
31 30 29 28 27 26 25 24

. - r - r - r - 1 - fr - [- [- |
23 22 21 20 19 18 17 16

| - | - | - | - | MECCEMSB | UECCEMSB | MECCELSB | UECCELSB |
15 14 13 12 11 10 9 8

. - r - r - r - 1 - fr - [- [- |
7 6 5 4 3 2 1 0

| - [- | - | — | FLERR | FLOCKE | FCMDE | FRDY |

* FRDY: Flash Ready Status (cleared when Flash is busy)

0: The EEFC is busy.

1: The EEFC is ready to start a new command.

When set, this flag triggers an interrupt if the FRDY flag is set in EEFC_FMR.

This flag is automatically cleared when the EEFC is busy.

* FCMDE: Flash Command Error Status (cleared on read or by writing EEFC_FCR)
0: No invalid commands and no bad keywords were written in EEFC_FMR.

1: An invalid command and/or a bad keyword was/were written in EEFC_FMR.

* FLOCKE: Flash Lock Error Status (cleared on read)

0: No programming/erase of at least one locked region has happened since the last read of EEFC_FSR.
1: Programming/erase of at least one locked region has happened since the last read of EEFC_FSR.
This flag is automatically cleared when EEFC_FSR is read or EEFC_FCR is written.

* FLERR: Flash Error Status (cleared when a programming operation starts)
0: No Flash memory error occurred at the end of programming (EraseVerify or WriteVerify test has passed).

1: A Flash memory error occurred at the end of programming (EraseVerify or WriteVerify test has failed).

« UECCELSB: Unique ECC Error on LSB Part of the Memory Flash Data Bus (cleared on read)
0: No unique error detected on 64 LSB data bus of the Flash memory since the last read of EEFC_FSR.

1: One unique error detected but corrected on 64 LSB data bus of the Flash memory since the last read of EEFC_FSR.

e MECCELSB: Multiple ECC Error on LSB Part of the Memory Flash Data Bus (cleared on read)
0: No multiple error detected on 64 LSB part of the Flash memory data bus since the last read of EEFC_FSR.
1: Multiple errors detected and NOT corrected on 64 LSB part of the Flash memory data bus since the last read of EEFC_FSR.

372 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

UECCEMSB: Unique ECC Error on MSB Part of the Memory Flash Data Bus (cleared on read)
: No unique error detected on 64 MSB data bus of the Flash memory since the last read of EEFC_FSR.

- O

: One unique error detected but corrected on 64 MSB data bus of the Flash memory since the last read of EEFC_FSR.

MECCEMSB: Multiple ECC Error on MSB Part of the Memory Flash Data Bus (cleared on read)
0: No multiple error detected on 64 MSB part of the Flash memory data bus since the last read of EEFC_FSR.

1: Multiple errors detected and NOT corrected on 64 MSB part of the Flash memory data bus since the last read of
EEFC_FSR.

SAMA4CP16C [DATASHEET] 373
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

22.5.4 EEFC Flash Result Register

Name: EEFC_FRR

Address: 0x400EQAOQC

Access: Read-only
31 30 29 28 27 26 25 24

| FVALUE |
23 22 21 20 19 18 17 16

| FVALUE |
15 14 13 12 11 10 9 8

| FVALUE |
7 6 5 4 3 2 1 0

| FVALUE |

e FVALUE: Flash Result Value

The result of a Flash command is returned in this register. If the size of the result is greater than 32 bits, the next resulting

value is accessible at the next register read.

374 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

23. Fast Flash Programming Interface (FFPI)
23.1 Description
The Fast Flash Programming Interface (FFPI) provides parallel high-volume programming using a standard gang
programmer. The parallel interface is fully handshaked and the device is considered to be a standard EEPROM.
Additionally, the parallel protocol offers an optimized access to all the embedded Flash functionalities.
Although the Fast Flash Programming mode is a dedicated mode for high volume programming, this mode is not
designed for in-situ programming.
23.2 Embedded Characteristics
e Programming Mode for High-volume Flash Programming Using Gang Programmer
e Offers Read and Write Access to the Flash Memory Plane
e Enables Control of Lock Bits and General-purpose NVM Bits
e Enables Security Bit Activation
e Disabled Once Security Bit is Set
e Parallel Fast Flash Programming Interface
e Provides an 16-bit Parallel Interface to Program the Embedded Flash
e Full Handshake Protocol
23.3 Parallel Fast Flash Programming
23.3.1 Device Configuration
In Fast Flash Programming mode, the device is in a specific test mode. Only a certain set of pins is significant. The
rest of the PIOs are used as inputs with a pull-up. The crystal oscillator is in bypass mode. Other pins must be left
unconnected.
Figure 23-1. 16-bit Parallel Programming Interface
VvDDIO —> TST
VDDIO —>| PGMENO
VDDIO —> PGMEN1
«—— VDDCORE
NCMD ——| PGMNCMD vbbio
RDY <«—{PGMRDY < VDDPLL
NOE ——»| PGMNOE «— VDDBU
NVALID <—| PGMNVALID < GND
MODE[3:0] —> PGMM[3:0]
DATA[15:0] <—>PGMDI[15:0]
External
Clock XIN
SAM4CP16C [DATASHEET 375
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

23.3.2 Signal Names

Table 23-1. Signal Description List

Active Pin
Signal Name | Function Type Level | Comments (LQFP176)
Power
VDDIO I/O Lines Power Supply Power
VDDCORE Core Power Supply Power
VDDPLL PLL Power Supply Power
GND Ground Power
Clocks
XIN Main Clock Input Input
Test
TST Test Mode Select Input High Must be connected to VDDIO
PGMENO Test Mode Select Input High Must be connected to VDDIO 158
PGMEN1 Test Mode Select Input High Must be connected to VDDIO 174
PIO
PGMNCMD Valid command available Input Low Pulled-up input at reset 145
0: Device is busy . .
PGMRDY o Output High Pulled-up input at reset 144
1: Device is ready for a new command
PGMNOE Output Enable (active high) Input Low Pulled-up input at reset 111
0: DATA[15:0] is in input mode)
PGMNVALID o Output Low Pulled-up input at reset 176
1: DATA[15:0] is in output mode
PGMMO 45
PGMM1 . . 126
Specifies DATA type (see Table 23-2) Input Pulled-up input at reset
PGMM2 127
PGMM3 128
PGMDO 147
PGMD1 130
PGMD2 131
PGMD3 133
PGMD4 134
PGMD5 135
PGMD6 43
PGMD7 o . 42
Bidirectional data bus Input/Output Pulled-up input at reset
PGMD8 40
PGMD9 115
PGMD10 116
PGMD11 124
PGMD12 38
PGMD13 36
PGMD14 34
PGMD15 110
376 SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Depending on the MODE settings, DATA is latched in different internal registers.

Table 23-2. Mode Coding

MODE[3:0] Symbol Data

0000 CMDE Command Register
0001 ADDRO Address Register LSBs
0010 ADDR1 -

0101 DATA Data Register

Default IDLE No register

When MODE is equal to CMDE, then a new command (strobed on DATA[15:0] signals) is stored in the command
register.

Table 23-3. Command Bit Coding

DATA[15:0] Symbol Command Executed

0x0011 READ Read Flash

0x0012 WP Write Page Flash

0x0022 WPL Write Page and Lock Flash
0x0032 EWP Erase Page and Write Page
0x0042 EWPL Erase Page and Write Page then Lock
0x0013 EA Erase All

0x0014 SLB Set Lock Bit

0x0024 CLB Clear Lock Bit

0x0015 GLB Get Lock Bit

0x0034 SGPB Set General Purpose NVM bit
0x0044 CGPB Clear General Purpose NVM bit
0x0025 GGPB Get General Purpose NVM bit
0x0054 SSE Set Security Bit

0x0035 GSE Get Security Bit

0x001F WRAM Write Memory

0x001E GVE Get Version

23.3.3 Entering Parallel Programming Mode

The following algorithm puts the device in Parallel Programming mode:
1. Apply the supplies as described in Table 23-1.

2. If an external clock is available, apply it to XIN within the VDDCORE POR reset timeout period, as defined in
the section “Electrical Characteristics”.

3. Wait for the end of this reset period.
4. Start aread or write handshaking.

SAMA4CP16C [DATASHEET] 377
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

23.3.4 Programmer Handshaking

A handshake is defined for read and write operations. When the device is ready to start a new operation (RDY signal
set), the programmer starts the handshake by clearing the NCMD signal. The handshaking is completed once the
NCMD signal is high and RDY is high.

23.3.4.1 Write Handshaking

For details on the write handshaking sequence, refer to Figure 23-2 and Table 23-4.

Figure 23-2. Parallel Programming Timing, Write Sequence

NCMD (@) /@
RDY ﬁ@D ®/—

NOE

NVALID

®

Table 23-4. Write Handshake

Step | Programmer Action Device Action Data I/O
1 Sets MODE and DATA signals Waits for NCMD low Input
2 Clears NCMD signal Latches MODE and DATA Input
3 Waits for RDY low Clears RDY signal Input
4 Releases MODE and DATA signals Executes command and polls NCMD high Input
5 Sets NCMD signal Executes command and polls NCMD high Input
6 Waits for RDY high Sets RDY Input

23.3.4.2 Read Handshaking

For details on the read handshaking sequence, refer to Figure 23-3 and Table 23-5.

Figure 23-3. Parallel Programming Timing, Read Sequence

NCMD j@ Q@
RDY ﬁ@) Q@
o O

NVALID ®¥._£Dﬁ
@ ® ® @

pataissio) X adressin_ Xz X pamout Xx XN
@,

mopezo])X abor - X X X XX X X D

378 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Table 23-5. Read Handshake

Step | Programmer Action Device Action DATA /O

1 Sets MODE and DATA signals | Waits for NCMD low Input

2 Clears NCMD signal Latch MODE and DATA Input

3 Waits for RDY low Clears RDY signal Input

4 Sets DATA signal in tristate Waits for NOE Low Input

5 Clears NOE signal - Tristate
6 Waits for NVALID low Sets DATA bus in output mode and outputs the flash contents | Output
7 - Clears NVALID signal Output
8 Reads value on DATA Bus Waits for NOE high Output
9 Sets NOE signal - Output
10 Waits for NVALID high Sets DATA bus in input mode X

11 Sets DATA in output mode Sets NVALID signal Input
12 Sets NCMD signal Waits for NCMD high Input
13 Waits for RDY high Sets RDY signal Input

23.3.5 Device Operations

Several commands on the Flash memory are available. These commands are summarized in Table 23-3. Each
command is driven by the programmer through the parallel interface running several read/write handshaking
sequences.

When a new command is executed, the previous one is automatically achieved. Thus, chaining a read command after
a write automatically flushes the load buffer in the Flash.
23.3.5.1 Flash Read Command

This command is used to read the contents of the Flash memory. The read command can start at any valid address in
the memory plane and is optimized for consecutive reads. Read handshaking can be chained; an internal address
buffer is automatically increased.

Table 23-6. Read Command

Step | Handshake Sequence | MODE[3:0] DATA[15:0]
1 Write handshaking CMDE READ
2 Write handshaking ADDRO Memory Address LSB
3 Write handshaking ADDR1 Memory Address
4 Read handshaking DATA *Memory Address++
5 Read handshaking DATA *Memory Address++
n Write handshaking ADDRO Memory Address LSB
n+1 Write handshaking ADDR1 Memory Address
n+2 Read handshaking DATA *Memory Address++
n+3 Read handshaking DATA *Memory Address++
/ItmeL SAM4CP16C [DATASHEET] 379

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

23.3.5.2 Flash Write Command
This command is used to write the Flash contents.

The Flash memory plane is organized into several pages. Data to be written are stored in a load buffer that
corresponds to a Flash memory page. The load buffer is automatically flushed to the Flash:

e before access to any page other than the current one

e when a new command is validated (MODE = CMDE)

The Write Page command (WP) is optimized for consecutive writes. Write handshaking can be chained; an internal
address buffer is automatically increased.

Table 23-7. Write Command

Step | Handshake Sequence | MODE[3:0] DATA[15:0]
1 Write handshaking CMDE WP or WPL or EWP or EWPL
2 Write handshaking ADDRO Memory Address LSB
3 Write handshaking ADDR1 Memory Address
4 Write handshaking DATA *Memory Address++
5 Write handshaking DATA *Memory Address++
n Write handshaking ADDRO Memory Address LSB
n+1 Write handshaking ADDR1 Memory Address
n+2 Write handshaking DATA *Memory Address++
n+3 Write handshaking DATA *Memory Address++

The Flash command Write Page and Lock (WPL) is equivalent to the Flash Write Command. However, the lock bit is
automatically set at the end of the Flash write operation. As a lock region is composed of several pages, the
programmer writes to the first pages of the lock region using Flash write commands and writes to the last page of the
lock region using a Flash write and lock command.

The Flash command Erase Page and Write (EWP) is equivalent to the Flash Write Command. However, before
programming the load buffer, the page is erased.

The Flash command Erase Page and Write the Lock (EWPL) combines EWP and WPL commands.
23.3.5.3 Flash Full Erase Command
This command is used to erase the Flash memory planes.

All lock regions must be unlocked before the Full Erase command by using the CLB command. Otherwise, the erase
command is aborted and no page is erased.

Table 23-8. Full Erase Command

Step | Handshake Sequence MODE[3:0] DATAJ[15:0]
1 Write handshaking CMDE EA
2 Write handshaking DATA 0

23.3.5.4 Flash Lock Commands

Lock bits can be set using WPL or EWPL commands. They can also be set by using the Set Lock command (SLB).
With this command, several lock bits can be activated. A Bit Mask is provided as argument to the command. When bit
0 of the bit mask is set, then the first lock bit is activated.

380 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

In the same way, the Clear Lock command (CLB) is used to clear lock bits.

Table 23-9. Set and Clear Lock Bit Command

Step | Handshake Sequence MODE[3:0] DATAJ[15:0]
1 Write handshaking CMDE SLB or CLB
2 Write handshaking DATA Bit Mask

Lock bits can be read using Get Lock Bit command (GLB). The n'" lock bit is active when the bit n of the bit mask is
set.

Table 23-10. Get Lock Bit Command

Step | Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE GLB
Lock Bit Mask Status
2 Read handshaking DATA 0 = Lock bit is cleared
1 = Lock bit is set

23.3.5.5 Flash General-purpose NVM Commands

General-purpose NVM bits (GP NVM bits) can be set using the Set GPNVM command (SGPB). This command also
activates GP NVM bits. A bit mask is provided as argument to the command. When bit 0 of the bit mask is set, then
the first GP NVM bit is activated.

In the same way, the Clear GPNVM command (CGPB) is used to clear general-purpose NVM bits. The general-
purpose NVM bit is deactivated when the corresponding bit in the pattern value is set to 1.

Table 23-11. Set/Clear GP NVM Command

Step | Handshake Sequence MODE[3:0] DATAJ[15:0]
1 Write handshaking CMDE SGPB or CGPB
2 Write handshaking DATA GP NVM bit pattern value

General-purpose NVM bits can be read using the Get GPNVM Bit command (GGPB). The n" GP NVM bit is active
when bit n of the bit mask is set.

Table 23-12. Get GP NVM Bit Command

Step | Handshake Sequence MODE[3:0] DATAJ[15:0]
1 Write handshaking CMDE GGPB
GP NVM Bit Mask Status
2 Read handshaking DATA 0 = GP NVM bit is cleared
1 =GP NVM bit is set

23.3.5.6 Flash Security Bit Command

A security bit can be set using the Set Security Bit command (SSE). Once the security bit is active, the Fast Flash
programming is disabled. No other command can be run. An event on the Erase pin can erase the security bit once
the contents of the Flash have been erased.

Table 23-13. Set Security Bit Command

Step | Handshake Sequence MODE[3:0] DATAJ[15:0]
1 Write handshaking CMDE SSE
2 Write handshaking DATA 0
Once the security bit is set, it is not possible to access FFPI. The only way to erase the security bit is to erase the
Flash.
AtmeL SAM4CP16C [DATASHEET] 381

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

To erase the Flash, perform the following steps:

e Power-off the chip.
e Power-on the chip with TST = 0.

e Assert the ERASE pin for at least the ERASE pin assertion time as defined in the section “Electrical

Characteristics”.

e Power-off the chip.

Return to FFPI mode to check that the Flash is erased.

23.3.5.7 Memory Write Command

This command is used to perform a write access to any memory location.

The Memory Write command (WRAM) is optimized for consecutive writes. Write handshaking can be chained;

an internal address buffer is automatically increased.

Table 23-14. Write Command

Step | Handshake Sequence | MODE[3:0] DATA[15:0]
1 Write handshaking CMDE WRAM
2 Write handshaking ADDRO Memory Address LSB
3 Write handshaking ADDR1 Memory Address
4 Write handshaking DATA *Memory Address++
5 Write handshaking DATA *Memory Address++
n Write handshaking ADDRO Memory Address LSB
n+1 Write handshaking ADDR1 Memory Address
n+2 Write handshaking DATA *Memory Address++
n+3 Write handshaking DATA *Memory Address++

23.3.5.8 Get Version Command

The Get Version (GVE) command retrieves the version of the FFPI interface.

Table 23-15. Get Version Command

Step | Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE GVE
2 Read handshaking DATA Version

382 SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

24. Cortex-M Cache Controller (CMCC)

241 Description

The Cortex-M Cache Controller (CMCC) is a 4-Way set associative unified cache controller. It integrates a controller,
a tag directory, data memory, metadata memory and a configuration interface.

24.2 Embedded Characteristics

L1 data cache set to 2 Kbytes.
L1 cache line size set to 16 Bytes.

Round Robin victim selection policy.

24.3 Block Diagram

Figure 24-1. Block Diagram

Physically addressed and physically tagged.

L1 cache integrates 32-bit bus master interface.

Unified direct mapped cache architecture.

Unified 4-Way set associative cache architecture.

Write accesses forwarded, cache state not modified. Allocate on read.

Event Monitoring, with one programmable 32-bit counter.
Configuration registers accessible through Cortex-M Private Peripheral Bus (PPB).
Cache interface includes cache maintenance operations registers.

Cortex-M Memory Interface Bus

Cortex-M Interface

Cache
Controller

META INFO RAM

RAM

DATA RAM

Cortex-M Registers
PPB Interface

Interface

TAG RAM

Memory Interface

Atmel

System Memory Bus

SAM4CP16C [DATASHEET] 383

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

24.4

2441

2442

Functional Description

Cache Operation

On reset, the cache controller data entries are all invalidated and the cache is enabled. The cache is transparent to
processor operations. The cache controller is activated with its configuration registers. The configuration interface is
memory-mapped in the private peripheral bus.

The cache must always be enabled, even if the code is running out of a non-cached region.

When the cache is disabled, the accesses to the cache on its slave port are “forwarded” to the master port. In this
case, there are two simultaneous accesses on the matrix: one on a non-cached region, and another “dummy” access
on the cache master port. These two accesses can slow down the system due to the wait error introduction on the
cache master port.

Cache Maintenance

If the contents seen by the cache have changed, the user must invalidate the cache entries. This can be done line-by-
line or for all cache entries.

24.4.2.1 Cache Invalidate-by-Line Operation

When an invalidate-by-line command is issued, the cache controller resets the valid bit information of the decoded
cache line. As the line is no longer valid, the replacement counter points to that line.
Use the following sequence to invalidate one line of cache:

1. Disable the cache controller by clearing the CEN bit of the Control Register (CMCC_CTRL).

2. Check the CSTS bit of CMCC_SR to verify that the cache is successfully disabled.

3. Perform an invalidate-by-line by configuring the bits INDEX and WAY in the Maintenance Register 1
(CMCC_MAINT1).

4. Enable the cache controller by writing a one to the CEN bit of the CMCC_CTRL.

24.4.2.2 Cache Invalidate All Operation

2443

384

To invalidate all cache entries, write a one to the INVALL bit of the Maintenance Register 0 (CMCC_MAINTO).

Cache Performance Monitoring

The Cortex-M cache controller includes a programmable 32-bit monitor counter. The monitor can be configured to
count the number of clock cycles, the number of data hits or the number of instruction hits.
Use the following sequence to activate the counter:

1. Configure the monitor counter by writing to the MODE field of the Monitor Configuration Register
(CMCC_MCFG).

2. Enable the counter by writing a one to the MENABLE bit of the Monitor Enable Register (CMCC_MEN).

3. If required, clear the counter by writing a one to the SWRST bit of the Monitor Control Register
(CMCC_MCTRL).

4. Check the value of the monitor counter by reading the EVENT_CNT field of the CMCC_MSR.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

24.5 Cortex-M Cache Controller (CMCC) User Interface

Table 24-1. Register Mapping
Offset Register Name Access Reset
0x00 Cache Controller Type Register CMCC_TYPE Read-only 0x000011D7
0x04 Reserved - - -
0x08 Cache Controller Control Register CMCC_CTRL Write-only -
0x0C Cache Controller Status Register CMCC_SR Read-only 0x00000001
0x10 - 0x1C Reserved - - -
0x20 Cache Controller Maintenance Register 0 CMCC_MAINTO Write-only -
0x24 Cache Controller Maintenance Register 1 CMCC_MAINT1 Write-only -
0x28 Cache Controller Monitor Configuration Register | CMCC_MCFG Read/Write 0x00000000
0x2C Cache Controller Monitor Enable Register CMCC_MEN Read/Write 0x00000000
0x30 Cache Controller Monitor Control Register CMCC_MCTRL Write-only -
0x34 Cache Controller Monitor Status Register CMCC_MSR Read-only 0x00000000
0x38 - OxFC Reserved - - -
/ItmeL SAM4CP16C [DATASHEET] 385

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

24.5.1 Cache Controller Type Register

Name: CMCC_TYPE
Address: 0x4007C000 (0), 0x48018000 (1)
Access: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - | - | CLSIZE | CSIZE
7 6 5 4 3 2 1 0
| LCKDOWN | WAYNUM | RRP | LRUP | RANDP - -
* RANDP: Random Selection Policy Supported
0: Random victim selection is not supported.
1: Random victim selection is supported.
* LRUP: Least Recently Used Policy Supported
0: Least Recently Used Policy is not supported.
1: Least Recently Used Policy is supported.
* RRP: Random Selection Policy Supported
0: Random Selection Policy is not supported.
1: Random Selection Policy is supported.
¢ WAYNUM: Number of Ways
Value Name Description
0 DMAPPED Direct Mapped Cache
1 ARCH2WAY 2-way set associative
2 ARCH4WAY 4-way set associative
3 ARCH8WAY 8-way set associative
e LCKDOWN: Lockdown Supported
0: Lockdown is not supported.
1: Lockdown is supported.
e CSIZE: Data Cache Size
Value Name Description
0 CSIZE_1KB Data cache size is 1 Kbyte
1 CSIZE_2KB Data cache size is 2 Kbytes
2 CSIZE_4KB Data cache size is 4 Kbytes
3 CSIZE_8KB Data cache size is 8 Kbytes
386 SAM4CP16C [DATASHEET
[] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

¢ CLSIZE: Cache Line Size

Value Name Description
0 CLSIZE_1KB Cache line size is 4 bytes
1 CLSIZE_2KB Cache line size is 8 bytes
2 CLSIZE_4KB Cache line size is 16 bytes
3 CLSIZE_8KB Cache line size is 32 bytes
/Itmel. N SAM4CP16C [DATASHEET] 387
mel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

24.5.2 Cache Controller Control Register

Name: CMCC_CTRL
Address: 0x4007C008 (0), 0x48018008 (1)
Access: Write-only

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
- T - T - - - : - CEN]
¢ CEN: Cache Controller Enable
0: The cache controller is disabled.
1: The cache controller is enabled.
388 SAM4CP16C [DATASHEET

:] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

24.5.3 Cache Controller Status Register

Name: CMCC_SR
Address: 0x4007C00C (0), 0x4801800C (1)
Access: Read-only

31 30 29 28 27 26 25 24
I I - - - - S -
23 22 21 20 19 18 17 16
T - 1 — - - - — 1 -
15 14 13 12 11 10 9 8
I I - - - - S -
7 6 5 4 3 2 1 0
T - 1 = - - - [ot

¢ CSTS: Cache Controller Status
0: The cache controller is disabled.

1: The cache controller is enabled.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

389

24.5.4 Cache Controller Maintenance Register 0

Name: CMCC_MAINTO
Address: 0x4007C020 (0), 0x48018020 (1)
Access: Write-only
31 30 29 28 27 26 25 24
[~ T - 1 - T - - : — 1T -]
23 22 21 20 19 18 17 16
I N N - : — T -]
15 14 13 12 11 10 9 8
[~ T - 1 - T - - : — 1T -]
7 6 5 4 3 2 1 0
I N N - : [WAL]
¢ INVALL: Cache Controller Invalidate All
0: No effect.
1: All cache entries are invalidated.
390 SAM4CP16C [DATASHEET
[] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

24.5.5 Cache Controller Maintenance Register 1

Name: CMCC_MAINT1

Address: 0x4007C024 (0), 0x48018024 (1)

Access: Write-only
31 30 29 28 27 26 25 24

I WAY . - r - 1 - [- - -
23 22 21 20 19 18 17 16

T - 1 - 1T - T - T - - —]
15 14 13 12 11 10 9 8

. - r - +r - { - [- [- - INDEX |
7 6 5 4 3 2 1 0

INDEX

* INDEX: Invalidate Index
This field indicates the cache line that is being invalidated.

The size of the INDEX field depends on the cache size:

For example:

— for 2 Kbytes: 5 bits
— for 4 Kbytes: 6 bits
— for 8 Kbytes: 7 bits

* WAY: Invalidate Way

Value Name Description
0 WAYO0 Way 0 is selection for index invalidation
1 WAY1 Way 1 is selection for index invalidation
2 WAY2 Way 2 is selection for index invalidation
3 WAY3 Way 3 is selection for index invalidation
Atmel

SAM4CP16C [DATASHEET] 391

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

24.5.6 Cache Controller Monitor Configuration Register

Name: CMCC_MCFG
Address: 0x4007C028 (0), 0x48018028 (1)
Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
— T - 1 - T - T - - VODE
* MODE: Cache Controller Monitor Counter Mode
Value Name Description
0 CYCLE_COUNT Cycle counter
1 IHIT_COUNT Instruction hit counter
2 DHIT_COUNT Data hit counter
392 SAM4CP16C [DATASHEET
[] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

24.5.7 Cache Controller Monitor Enable Register

Name: CMCC_MEN
Address: 0x4007C02C (0), 0x4801802C (1)
Access: Read/Write
31 30 29 28 27 26 25 24
I I R - - - S B
23 22 21 20 19 18 17 16
I N I R - - — 1T -]
15 14 13 12 11 10 9 8
I I R - - - S B
7 6 5 4 3 2 1 0
_ _ — — - — |MENABLE

e MENABLE: Cache Controller Monitor Enable
0: The monitor counter is disabled.

1: The monitor counter is enabled.

Atmel

SAM4CP16C [DATASHEET] 393

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

24.5.8 Cache Controller Monitor Control Register

Name: CMCC_MCTRL
Address: 0x4007C030 (0), 0x48018030 (1)
Access: Write-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
| - | - - - - - - | SWRST
* SWRST: Monitor
0: No effect.
1: Resets the event counter register.
394 SAM4CP16C [DATASHEET
[] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

24.5.9 Cache Controller Monitor Status Register

Name: CMCC_MSR

Address: 0x4007C034 (0), 0x48018034 (1)

Access: Read-only
31 30 29 28 27 26 25 24

| EVENT_CNT |
23 22 21 20 19 18 17 16

| EVENT_CNT |
15 14 13 12 11 10 9 8

| EVENT_CNT |
7 6 5 4 3 2 1 0

EVENT_CNT |

 EVENT_CNT: Monitor Event Counter

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

395

25.

251

25.2

396

Interprocessor Communication (IPC)

Description

The Interprocessor Communication (IPC) module has 32 interrupt sources. Each source has a set of enable, disable,
clear, set, mask and status registers. The interrupt sources are ORed, and the IPC interrupt output line is connected
to the Interrupt Controller input.

Block Diagram

Figure 25-1. IPC Block Diagram

IPC_IPR IRQ0 ——) IPC
IPC_IPR IRQ1 ——

: Thirty-two
e : > Sources
N >

IPC_IPR IRQ31 >)
A
¥ APB

Figure 25-2. Dual Core IPC Implementation

—

Application

(Cortex-M4)

= NVICO

%H

Core 0

Core

A 4

\ 4

IRQNn

ARM
Core

Core 1

Metrology
Core
(Cortex-M4F)

CX=8-

%‘—/

A

AHB Matrix (Mx0)

-

i

[AHB to APB Bridge 0]

IPCO

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

To NVIC1

Async
AHB-AHB
Bridge

H AHB Matrix (Mx1)

!

[AHB to APB Bridge 1]

To NVICO

A

A 4

-

Atmel

25.3 Product Dependencies

25.3.1 Power Management

The Interprocessor Communication module is not continuously clocked. The IPC interface is clocked through the
Power Management Controller (PMC), therefore the programmer must first configure the PMC to enable the IPC
clock.

25.3.2 Interrupt Line

The IPC module has an interrupt line connected to the Interrupt Controller. Handling interrupts requires programming
the Interrupt Controller before configuring the IPC.

25.4 Functional Description

25.4.1 Interrupt Sources

Table 25-1. Peripheral IDs

Instance ID
IPCO 31
IPCA1 39

25.4.1.1 Interrupt Generation
Interrupt sources can be individually generated by writing respectively the IPC_ISCR and IPC_ICCR registers.

25.4.1.2 Interrupt Source Control

Each interrupt source (IRQO to IRQ31) can be enabled or disabled by using the command registers: IPC_IECR
(Interrupt Enable Command Register) and IPC_IDCR (Interrupt Disable Command Register). This set of registers
conducts enabling or disabling of an instruction. The interrupt mask can be read in the IPC_IMR register. All IPC
interrupts can be enabled/disabled, thus configuring the IPC Interrupt mask register. Each pending and unmasked
IPC interrupt asserts the IPC output interrupt line.

A disabled interrupt does not affect servicing of other interrupts.

25.4.1.3 Interrupt Status
The IPC_IECR and IPC_IDCR registers are used to determine which interrupt sources are active/inhibited to generate
an interrupt output. The IPC_IMR register is a status of the interrupt source selection (a result from write into the
IPC_IECR and IPC_IDCR registers). The IPC_ISCR and IPC_ICCR registers are used to activate/inhibit interrupt
sources. The IPC_IPR register is a status register giving active interrupt sources.

The IPC_ISR register reports which interrupt source(s) is(are) currently asserting an interrupt output. IPC_ISR is
basically equivalent to an AND between the IPC_IPR and IPC_IMR registers.

SAMA4CP16C [DATASHEET] 397
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 25-3. Interrupt Input Stage

P
|IPC_IECR |RQ31|— Set
= Y
|IPC_IMR IRQ31|
:.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.:" -: e Interrupt
: - : Controller
: : [Pc_PR IRQO]
Set
o)
| IPC_IECR IRQO |— Set
\ 4
|IPC_IMR IRQO |
25.5 Interprocessor Communication (IPC) User Interface
Table 25-2. Register Mapping
Offset Register Name Access Reset
0x0000 Interrupt Set Command Register IPC_ISCR Write-only -
0x0004 Interrupt Clear Command Register IPC_ICCR Write-only -
0x0008 Interrupt Pending Register IPC_IPR Read-only 0x0
0x000C Interrupt Enable Command Register IPC_IECR Write-only -
0x0010 Interrupt Disable Command Register IPC_IDCR Write-only -
0x0014 Interrupt Mask Register IPC_IMR Read-only 0x0
0x0018 Interrupt Status Register IPC_ISR Read-only 0x0

398

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

25.5.1 IPC Interrupt Set Command Register
Name: IPC_ISCR
Address: 0x4004C000 (0), 0x48014000 (1)
Access: Write-only
31 30 29 28 27 26 25 24
[RrRaz31 [rRazo | R@29 | Ra2s | rR@2z | Ra26 | R@25 | IRQ24
23 22 21 20 19 18 17 16
[RrRa23 [Rra22 | RrRa21 | Ra20 [Ra19 | RrRa1e | Ra1iz | IRQ16
15 14 13 12 11 10 9 8
[RrRats [Rra14a | RrRa13 | RrRa12 [RrRa11 | RrRato | Ra9 | RS
7 6 5 4 3 2 1 0
[wraz [RrRae | RrRas | R4 | RrRa3 | Rra2 | RrRat | IRQo

¢ IRQO-IRQ31: Interrupt Set

0: No effect.

1: Sets the corresponding interrupt.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

399

25.5.2 IPC Interrupt Clear Command Register

Name: IPC_ICCR
Address: 0x4004C004 (0), 0x48014004 (1)
Access: Write-only
31 30 29 28 27 26 25 24
[RrRaz1 [rRazo [R@29 | R@2s | R@2z | Ra@26 | IRQ25 IRQ24
23 22 21 20 19 18 17 16
[RrRa23 [Rra22 | Ra@21 | Ra20 | Ra19 | Ra1s | IRQ17 IRQ16
15 14 13 12 11 10 9 8
[RrRats [Rra14a | RrRa13 | RrRa12 [RrRa11 | Ra0 | IRQ9 IRQ8
7 6 5 4 3 2 1 0
[raz [Rrae | Rras | R4 | RrRa3 | RrRa2 | IRa1 IRQO
¢ IRQO-IRQ31: Interrupt Clear
0: No effect.
1: Clears the corresponding interrupt.
400 SAM4CP16C [DATASHEET
[] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

25.5.3 IPC Interrupt Pending Register

Name: IPC_IPR

Address: 0x4004C008 (0), 0x48014008 (1)

Access: Read-only

Reset: 0x0
31 30 29 28 27 26 25 24

[Rra31 [Razo | 1Ra29 | IRQ2s IRQ27 IRQ26 IRQ25 IRQ24
23 22 21 20 19 18 17 16

[Rra2z3 [rR@22 | R@21 | IRQ20 IRQ19 IRQ18 IRQ17 IRQ16
15 14 13 12 11 10 9 8

| wrRa1s [rRa14 [RrRa13 | IRQ12 IRQ11 IRQ10 IRQ9 IRQ8
7 6 5 4 3 2 1 0

[raz [Rrae | Ras | R4 IRQ3 IRQ2 IRQ1 IRQO

* IRQO-IRQ31: Interrupt Pending

0: The corresponding interrupt is not pending.

1: The corresponding interrupt is pending.

SAM4CP16C [DATASHEET] 401

Atmel

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

25.5.4 IPC Interrupt Enable Command Register

Name: IPC_IECR
Address: 0x4004C00C (0), 0x4801400C (1)
Access: Write-only
31 30 29 28 27 26 25 24
[RrRaz1 [rRazo [R@29 | R@2s | R@2z | Ra@26 | IRQ25 IRQ24
23 22 21 20 19 18 17 16
[RrRa23 [Rra22 | Ra@21 | Ra20 | Ra19 | Ra1s | IRQ17 IRQ16
15 14 13 12 11 10 9 8
[RrRats [Rra14a | RrRa13 | RrRa12 [RrRa11 | Ra0 | IRQ9 IRQ8
7 6 5 4 3 2 1 0
[raz [Rrae | Rras | R4 | RrRa3 | RrRa2 | IRa1 IRQO
¢ IRQO0-IRQ31: Interrupt Enable
0: No effect.
1: Enables the corresponding interrupt.
402 SAM4CP16C [DATASHEET
[] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

25.5.5 IPC Interrupt Disable Command Register

Name: IPC_IDCR

Address: 0x4004C010 (0), 0x48014010 (1)

Access: Write-only
31 30 29 28 27 26 25 24

[RQ31 [IRQ30 | IRQ29 | IR@2s | IRQ27 | IRQ26 | IRQ25 IRQ24
23 22 21 20 19 18 17 16

[RQ23 [rRQ22 | rRQ21 | rRQ20 | rQ19 | rRQ18 | IRQ17 IRQ16
15 14 13 12 11 10 9 8

[Ra15 [RQ14 [RQ13 | RQ12 [RQ11 | IRQ10 | IRQ9 IRQ8
7 6 5 4 3 2 1 0

| IRQ7 | IRQ6 | IRQ5 | IRQ4 | IRQ3 | IRQ2 | IRQ1 IRQO

¢ IRQO-IRQ31: Interrupt Disable

0: No effect.

1: Disables the corresponding interrupt.

SAM4CP16C [DATASHEET] 403

Atmel

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

25.5.6 IPC Interrupt Mask Register

Name: IPC_IMR

Address: 0x4004C014 (0), 0x48014014 (1)

Access: Read-only

Reset: 0x0
31 30 29 28 27 26 25 24

| mrRa31 [Ra30 [RQ29 | R@28 [R@27 | Ra26e | RQ2s | IRQ24 |
23 22 21 20 19 18 17 16

[RrRa23 [RrRa22 | R@21 | Ra20 | Ra19 | Ra1s | RQ17 | RQ16 |
15 14 13 12 11 10 9 8

| wrRats5 [wrRa14 | Rz | Ra12 [Rt | Ra10 | R@ [Ras |
7 6 5 4 3 2 1 0

[mraz [RrRaee | RrRas | R4 | RrRa3 | RrRa2 | Ra1 | Ra0 |

+ IRQO-IRQ31: Interrupt Mask
0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

404 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

25.5.7 IPC Interrupt Status Register

Name: IPC_ISR

Address: 0x4004C018 (0), 0x48014018 (1)

Access: Read-only

Reset: 0x0
31 30 29 28 27 26 25 24

| mrRa31 [Ra30 [RQ29 | R@28 [R@27 | Ra26e | RQ2s | IRQ24 |
23 22 21 20 19 18 17 16

[RrRa23 [RrRa22 | R@21 | Ra20 | Ra19 | Ra1s | RQ17 | RQ16 |
15 14 13 12 11 10 9 8

| wrRats5 [wrRa14 | Rz | Ra12 [Rt | Ra10 | R@ [Ras |
7 6 5 4 3 2 1 0

[mraz [RrRaee | RrRas | R4 | RrRa3 | RrRa2 | Ra1 | Ra0 |

¢ IRQO-IRQ31: Current Interrupt Identifier
0: The corresponding interrupt source is not currently asserting the interrupt output.

1: The corresponding interrupt source is currently asserting the interrupt output.

SAMA4CP16C [DATASHEET] 405
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

26. Bus Matrix (MATRIX)

26.1 Description

The Bus Matrix implements a multi-layer AHB, based on the AHB-Lite protocol, that enables parallel access paths
between multiple AHB masters and slaves in a system, thus increasing the overall bandwidth. The Bus Matrix
interconnects AHB masters to AHB slaves. The normal latency to connect a master to a slave is one cycle except for
the default master of the accessed slave which is connected directly (zero cycle latency).

26.2 Embedded Characteristics
e One Decoder for Each Master.
e Support for Long Bursts of 32, 64 and 128 Beats and Up to the 256-beat Word Burst AHB Limit.
e Enhanced Programmable Mixed Arbitration for Each Slave.
e Round-robin.
e Fixed Priority.
e Latency Quality of Service.
e Programmable Default Master for Each Slave.
e No Default Master.
e Last Accessed Default Master.
e Fixed Default Master.
Deterministic Maximum Access Latency for Masters.
Zero or One Cycle Arbitration Latency for the First Access of a Burst.
Bus Lock Forwarding to Slaves.
Master Number Forwarding to Slaves.
Write Protection of User Interface Registers.

26.2.1 Matrix 0

26.2.1.1 Matrix 0 Masters

The Bus Matrix 0, which corresponds to the sub-system 0 (Core 0 - CM4P0), manages the masters listed in
Table 26-1. Each master can perform an access to an available slave concurrently with other masters.

Each master has its own specifically-defined decoder. In order to simplify the addressing, all the masters have the
same decodings.

Table 26-1. List of Bus Matrix Masters

Master O Cortex-M4 Instruction/Data (CM4PO0 I/D Bus)
Master 1 Cortex-M4 System (CM4PO0 S Bus)
Master 2 Peripheral DMA Controller 0 (PDCO)
Master 3 Integrity Check Module (ICM)
Master 4 Matrix1
Master 5 Reserved
Master 6 CMCCO
406 SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

26.2.1.2 Matrix 0 Slaves

The Bus Matrix manages the slaves listed in Table 26-2. Each slave has its own arbiter providing a dedicated
arbitration per slave.

Table 26-2. List of Bus Matrix Slaves

Slave 0 Internal SRAMO

Slave 1 Internal ROM

Slave 2 Internal Flash

Slave 3 Reserved

Slave 4 Peripheral Bridge 0
Slave 5 CPKCC RAM and ROM
Slave 6 Matrix1

Slave 7 CMCCO

26.2.1.3 Master to Slave Access (Matrix 0)

Table 26-3 gives valid paths for master to slave access on Matrix 0. The paths shown as “-” are forbidden or not wired,
i.e., access from the Cortex-M4 S Bus to the Internal ROM.

Table 26-3. Matrix 0 Master to Slave Access

Masters
0 1 2 3 4 5 6
Cortex-M4 | Cortex-M4
Slaves I/ID Bus S Bus PDCO ICM Matrix1 | Reserved | CMCCO

0 Internal SRAMO - X X X X - -
1 Internal ROM X - X X - - -
2 Internal Flash X - - X X - X
3 Reserved - - - - - - -
4 Peripheral Bridge 0 - X X - X - -
5 CPKCC SRAM, ROM - X - X - - -
6 Matrix1 - X - X - - -
7 CMCCO X - - - - - -

26.2.1.4 Accesses through Matrix 0
e CMA4PO I/D Bus access to:
e Flash, ROM

e Flash through Cache Controller CMCCO (respectively through 0x11000000 to Ox11FFFFFF and
0x13000000 to Ox16FFFFFF)

e CMP4PO0 S Bus access to:
e SRAMO, SRAM1 through Matrix1, SRAM2 through Matrix1
e CPKCC

SAMA4CP16C [DATASHEET] 407
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

e PDCO access to:
e SRAMO, ROM
e HBRIDGEO
e |ICM access to:
e Flash, ROM, SRAMO, SRAM1 through Matrix1, SRAM2 through Matrix1
e CPKCC
e HBRIDGE1 through Matrix1
e Matrix1 access to
e Flash (through 0x01000000 to 0x01FFFFFF and 0x11000000 to Ox11FFFFFF)
e SRAMO
e HBRIDGEO
e Cache Controller CMCCO access to:
e Flash (through 0x11000000 to Ox11FFFFFF)

26.2.2 Matrix 1

26.2.2.1 Matrix 1 Masters

The Bus Matrix 1, which corresponds to the sub-system 1 (Core 1 - CM4P1), manages the masters listed in
Table 26-4. Each master can perform an access to an available slave concurrently with other masters.

Each master has its own specifically-defined decoder. In order to simplify the addressing, all the masters have the
same decodings.

Table 26-4. List of Bus Matrix Masters

Master 0 Cortex-M4 Instruction/Data (CM4P1 I/D Bus)
Master 1 Cortex-M4 System (CM4P1 S Bus)

Master 2 Peripheral DMA Controller 1 (PDC1)

Master 3 MatrixO

Master 4 Reserved

Master 5 CMCC1

26.2.2.2 Matrix 1 Slaves

The Bus Matrix manages the slaves listed in Table 26-5. Each slave has its own arbiter providing a dedicated
arbitration per slave.

Table 26-5. List of Bus Matrix Slaves

Slave 0 Internal SRAM1
Slave 1 Internal SRAM2
Slave 2 Reserved
Slave 3 Peripheral Bridge 1
Slave 4 Matrix0
Slave 5 CMCC1
408 SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

26.2.2.3 Master to Slave Access (Matrix 1)

Table 26-6 gives valid paths for master to slave access on Matrix 1. The paths shown as

i.e., access from the Cortex-M4 S Bus to the Internal ROM.

Table 26-6. Matrix 1 Master to Slave Access

are forbidden or not wired,

Masters
0 1 3 4 5
Cortex-M4 | Cortex-M4
Slaves I/D Bus S Bus PDC1 Matrix0 Reserved | CMCC1

0 Internal SRAM1 X X X - -
1 Internal SRAM2 - X X - -
2 Reserved - - - - -
3 Peripheral Bridge 1 - X X - -
4 Matrix0 X X - - X
5 CMCCH1 X - - - -

26.2.2.4 Accesses through Matrix 1

Atmel

CM4P1 I/D Bus access to:
e Flash (through 0x01000000 to 0x01FFFFFF)
e Flash through Cache CMCC1
CM4P1 S-Bus access to:
e SRAM1, SRAM2, SRAMO through Matrix0 (0x20000000)
e HBRIDGE1, HBRIDGEO through Matrix0 (0x40000000)
PDC1 access to:
e SRAM1, SRAM2
e HBRIDGE1
Matrix0O access to:
e SRAM1, SRAM2
e HBRIDGE1
Cache CMCC1 access to:
e Flash through 0x11000000

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

409

26.3 Special Bus Granting Mechanism

The Bus Matrix provides some speculative bus granting techniques in order to anticipate access requests from
masters. This mechanism reduces latency at first access of a burst, or for a single transfer, as long as the slave is free
from any other master access. However, the technique does not provide any benefits if the slave is continuously
accessed by more than one master, since arbitration is pipelined and has no negative effect on the slave bandwidth or
access latency.

This bus granting mechanism sets a different default master for every slave.
At the end of the current access, if no other request is pending, the slave remains connected to its associated default
master. A slave can be associated with three kinds of default masters:

e No default master

e |astaccess master

e Fixed default master
To change from one type of default master to another, the Bus Matrix user interface provides Slave Configuration
registers, one for every slave which set a default master for each slave. The Slave Configuration register contains two
fields to manage master selection: DEFMSTR_TYPE and FIXED_DEFMSTR. The 2-bit DEFMSTR_TYPE field
selects the default master type (no default, last access master, fixed default master), whereas the 4-bit

FIXED_DEFMSTR field selects a fixed default master provided that DEFMSTR_TYPE is set to fixed default master.
Refer to Section 26.9.2 “Bus Matrix Slave Configuration Registers”.

26.4 No Default Master

After the end of the current access, if no other request is pending, the slave is disconnected from all masters.

This configuration incurs one latency clock cycle for the first access of a burst after bus idle. Arbitration without the
default master may be used for masters that perform significant bursts or several transfers with no idle in between, or
if the slave bus bandwidth is widely used by one or more masters.

This configuration provides no benefit on access latency or bandwidth when reaching maximum slave bus throughput
regardless of the number of requesting masters.

26.5 Last Access Master

After the end of the current access, if no other request is pending, the slave remains connected to the last master that
performed an access request.

This allows the Bus Matrix to remove one latency cycle for the last master that accessed the slave. Other non-
privileged masters still get one latency clock cycle if they need to access the same slave. This technique is used for
masters that perform single accesses or short bursts with some idle cycles in between.

This configuration provides no benefit on access latency or bandwidth when reaching maximum slave bus throughput
whatever is the number of requesting masters.

26.6 Fixed Default Master

After the end of the current access, if no other request is pending, the slave connects to its fixed default master. Unlike
the last access master, the fixed default master does not change unless the user modifies it by software
(FIXED_DEFMSTR field of the related MATRIX_SCFG).

This allows the Bus Matrix arbiters to remove the one latency clock cycle for the fixed default master of the slave. All
requests attempted by the fixed default master do not cause any arbitration latency, whereas other non-privileged
masters will get one latency cycle. This technique is used for a master that mainly performs single accesses or short
bursts with idle cycles in between.

This configuration provides no benefit on access latency or bandwidth when reaching maximum slave bus throughput,
regardless of the number of requesting masters.

410 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

26.7 Arbitration

The Bus Matrix provides an arbitration mechanism that reduces latency when a conflict occurs, i.e., when two or more
masters try to access the same slave at the same time. One arbiter per AHB slave is provided, thus arbitrating each
slave specifically.

The Bus Matrix provides the user with the possibility of choosing between two arbitration types or mixing them for
each slave:

1.
2.

Round-robin arbitration (default)
Fixed priority arbitration

The resulting algorithm may be complemented by selecting a default master configuration for each slave.

When re-arbitration must be done, specific conditions apply. See Section 26.7.1 “Arbitration Scheduling”.

26.7.1 Arbitration Scheduling

Each arbiter has the ability to arbitrate between two or more master requests. In order to avoid burst breaking and
also to provide the maximum throughput for slave interfaces, arbitration may only take place during the following
cycles:

1.

Idle cycles: When a slave is not connected to any master or is connected to a master which is not currently
accessing it.

Single cycles: When a slave is currently doing a single access.

End of Burst cycles: When the current cycle is the last cycle of a burst transfer. For defined burst length, pre-
dicted end of burst matches the size of the transfer but is managed differently for undefined burst length. See
Section 26.7.1.1 “Undefined Length Burst Arbitration”.

Slot cycle limit: When the slot cycle counter has reached the limit value, indicating that the current master
access is too long and must be broken. See Section 26.7.1.2 “Slot Cycle Limit Arbitration”.

26.7.1.1 Undefined Length Burst Arbitration

In order to prevent long AHB burst lengths that can lock the access to the slave for an excessive period of time, the
user can trigger the re-arbitration before the end of the incremental bursts. The re-arbitration period can be selected
from the following Undefined Length Burst Type (ULBT) possibilities:

1.
2.
3.

Unlimited: no predetermined end of burst is generated. This value enables 1-kbyte burst lengths.

1-beat bursts: predetermined end of burst is generated at each single transfer during the INCR transfer.

4-beat bursts: predetermined end of burst is generated at the end of each 4-beat boundary during INCR
transfer.

8-beat bursts: predetermined end of burst is generated at the end of each 8-beat boundary during INCR
transfer.

16-beat bursts: predetermined end of burst is generated at the end of each 16-beat boundary during INCR
transfer.

32-beat bursts: predetermined end of burst is generated at the end of each 32-beat boundary during INCR
transfer.

64-beat bursts: predetermined end of burst is generated at the end of each 64-beat boundary during INCR
transfer.

128-beat bursts: predetermined end of burst is generated at the end of each 128-beat boundary during INCR
transfer.

The use of undefined length 8-beat bursts or less is discouraged since this may decrease the overall bus bandwidth
due to arbitration and slave latencies at each first access of a burst.

However, if the usual length of undefined length bursts is known for a master, it is recommended to configure the
ULBT according to this length.

This selection can be done through the ULBT field of the Master Configuration registers (MATRIX_MCFG).

Atmel

SAM4CP16C [DATASHEET] 411

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

26.7.1.2 Slot Cycle Limit Arbitration

The Bus Matrix contains specific logic to break long accesses, such as very long bursts on a very slow slave (i.e., an
external low speed memory). At each arbitration time, a counter is loaded with the value previously written in the
SLOT_CYCLE field of the related Slave Configuration register (MATRIX_SCFG) and decreased at each clock cycle.
When the counter elapses, the arbiter has the ability to re-arbitrate at the end of the current AHB bus access cycle.

Unless a master has a very tight access latency constraint, which could lead to data overflow or underflow due to a
badly undersized internal FIFO with respect to its throughput, the Slot Cycle Limit should be disabled
(SLOT_CYCLE = 0) or set to its default maximum value in order not to inefficiently break long bursts performed by
some Atmel masters.

In most cases, this feature is not needed and should be disabled for power saving.

Warning: This feature cannot prevent any slave from locking its access indefinitely.

26.7.2 Arbitration Priority Scheme

The Bus Matrix arbitration scheme is organized in priority pools. The corresponding access criticality class is assigned
to each priority pool as shown in the “Latency Quality of Service” column in Table 26-7. Latency Quality of Service is
determined through the Bus Matrix user interface. See Section 26.9.3 “Bus Matrix Priority Registers A For Slaves” for

details.
Table 26-7. Arbitration Priority Pools
Priority Pool Latency Quality of Service
3 Latency Critical
2 Latency Sensitive
1 Bandwidth Sensitive
0 Background Transfers

Round-robin priority is used in the highest and lowest priority pools 3 and 0, whereas fixed level priority is used
between priority pools and in the intermediate priority pools 2 and 1. See Section 26.7.2.2 “Round-robin Arbitration”.

For each slave, each master is assigned to one of the slave priority pools through the Latency Quality of Service
inputs or through the priority registers for slaves (MxPR fields of MATRIX_PRAS and MATRIX_PRBS). When
evaluating master requests, this priority pool level always takes precedence.

After reset, most of the masters belong to the lowest priority pool (MxPR = 0, Background Transfer) and, therefore,
are granted bus access in a true round-robin order.

The highest priority pool must be specifically reserved for masters requiring very low access latency. If more than one
master belongs to this pool, they will be granted bus access in a biased round-robin manner which allows tight and
deterministic maximum access latency from AHB bus requests. In the worst case, any currently occurring high-priority
master request will be granted after the current bus master access has ended and other high priority pool master
requests, if any, have been granted once each.

The lowest priority pool shares the remaining bus bandwidth between AHB Masters.

Intermediate priority pools allow fine priority tuning. Typically, a latency-sensitive master or a bandwidth-sensitive
master will use such a priority level. The higher the priority level (MxPR value), the higher the master priority.

To ensure a good level of CPU performance, it is recommended to configure the CPU priority with the default reset
value 2 (Latency Sensitive).

All combinations of MxPR values are allowed for all masters and slaves. For example, some masters might be
assigned the highest priority pool (round-robin), and remaining masters the lowest priority pool (round-robin), with no
master for intermediate fix priority levels.

412 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

26.7.2.1 Fixed Priority Arbitration

Fixed priority arbitration algorithm is the first and only arbitration algorithm applied between masters from distinct
priority pools. It is also used in priority pools other than the highest and lowest priority pools (intermediate priority
pools).

Fixed priority arbitration allows the Bus Matrix arbiters to dispatch the requests from different masters to the same
slave by using the fixed priority defined by the user in the MxPR field for each master in the Priority registers,
MATRIX_PRAS and MATRIX_PRBS. If two or more master requests are active at the same time, the master with the
highest priority MxPR number is serviced first.

In intermediate priority pools, if two or more master requests with the same priority are active at the same time, the
master with the highest number is serviced first.

26.7.2.2 Round-robin Arbitration

This algorithm is only used in the highest and lowest priority pools. It allows the Bus Matrix arbiters to properly
dispatch requests from different masters to the same slave. If two or more master requests are active at the same
time in the priority pool, they are serviced in a round-robin increasing master number order.

26.8 Register Write Protection
To prevent any single software error from corrupting the Bus Matrix behavior, certain registers in the address space
can be write-protected by setting the WPEN bit in the “Write Protection Mode Register” (MATRIX_WPMR).
If a write access to a write-protected register is detected, the WPVS flag in the “Write Protection Status Register”
(MATRIX_WPSR) is set and the field WPVSRC indicates the register in which the write access has been attempted.
The WPVS flag is reset by writing the Bus Matrix Write Protect Mode Register (MATRIX_WPMR) with the appropriate
access key WPKEY.
The following registers can be write-protected:
e “Bus Matrix Master Configuration Registers”
e “Bus Matrix Slave Configuration Registers”
e “Bus Matrix Priority Registers A For Slaves”
e “System I/O Configuration Register”
/ItmeL SAM4CP16C [DATASHEET] 413

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

26.9 AHB Bus Matrix (MATRIX) User Interface

Table 26-8. Register Mapping

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Offset Register Name Access Reset
0x0000 Master Configuration Register 0 MATRIX_MCFGO Read/Write 0x00000004
0x0004 Master Configuration Register 1 MATRIX_MCFG1 Read/Write 0x00000004
0x0008 Master Configuration Register 2 MATRIX_MCFG2 Read/Write 0x00000004
0x000C Master Configuration Register 3 MATRIX_MCFG3 Read/Write 0x00000004
0x0010 Master Configuration Register 4 MATRIX_MCFG4 Read/Write 0x00000004
0x0014 Master Configuration Register 5 MATRIX_MCFG5 Read/Write 0x00000004
0x0018 Master Configuration Register 6 MATRIX_MCFG6 Read/Write 0x00000004
0x001C - 0x003C | Reserved - - -
0x0040 Slave Configuration Register 0 MATRIX_SCFGO Read/Write 0x000001FF
0x0044 Slave Configuration Register 1 MATRIX_SCFG1 Read/Write 0x000001FF
0x0048 Slave Configuration Register 2 MATRIX_SCFG2 Read/Write 0x000001FF
0x004C Slave Configuration Register 3 MATRIX_SCFG3 Read/Write 0x000001FF
0x0050 Slave Configuration Register 4 MATRIX_SCFG4 Read/Write 0x000001FF
0x0054 Slave Configuration Register 5 MATRIX_SCFG5 Read/Write 0x000001FF
0x0058 Slave Configuration Register 6 MATRIX_SCFG6 Read/Write 0x000001FF
0x005C Slave Configuration Register 7 MATRIX_SCFG7 Read/Write 0x000001FF
0x0060 - 0x007C | Reserved - - -
0x0080 Priority Register A for Slave 0 MATRIX_PRASO Read/Write 0x00000000"
0x0084 Reserved - - -
0x0088 Priority Register A for Slave 1 MATRIX_PRAS1 Read/Write 0x00000000"
0x008C Reserved - - -
0x0090 Priority Register A for Slave 2 MATRIX_PRAS2 Read/Write 0x00000000("
0x0094 Reserved - - -
0x0098 Priority Register A for Slave 3 MATRIX_PRAS3 Read/Write 0x00000000"
0x009C Reserved - - -
0x00A0 Priority Register A for Slave 4 MATRIX_PRAS4 Read/Write 0x00000000"
0x00A4 Reserved - - -
0x00A8 Priority Register A for Slave 5 MATRIX_PRAS5 Read/Write 0x00000000"
0x00AC Reserved - - -
0x00B0 Priority Register A for Slave 6 MATRIX_PRAS6 Read/Write 0x00000000"
0x00B4 Reserved - - -
0x00B8 Priority Register A for Slave 7 MATRIX_PRAS7 Read/Write 0x00000000"
0x00BC - 0x0110 | Reserved - - -
0x0114 System 1/O Configuration Register MATRIX_SYSIO Read/Write 0x00000000
0x0118 Reserved - - -
414 SAM4CP16C [DATASHEET] AtmeL

Table 26-8. Register Mapping (Continued)

Offset Register Name Access Reset

0x0120 Reserved - - -

0x0124 Reserved - - -

0x0128 Core Debug Configuration Register MATRIX_CORE_DEBUG | Read/Write 0x00000000
0x012C - 0x01EO | Reserved - - -

0x01E4 Write Protection Mode Register MATRIX_WPMR Read/Write 0x00000000

0x01E8 Write Protection Status Register MATRIX_WPSR Read-only 0x00000000

Note: 1. Values in the Bus Matrix Priority Registers are product dependent.

SAMA4CP16C [DATASHEET] 415
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

26.9.1 Bus Matrix Master Configuration Registers

Name: MATRIX_MCFGx [x=0..6]
Address: 0x400E0200 (0), 0x48010000 (1)
Access: Read/Write
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I -
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I -
15 14 13 12 11 10 9 8
I - I - I - I - I - I - I - I -
7 6 5 4 3 2 1 0

| - | - | - | - | - | ULBT |

This register can only be written if the WPEN bit is cleared in the “Write Protection Mode Register” .

¢ ULBT: Undefined Length Burst Type
0: Unlimited Length Burst

No predicted end of burst is generated, therefore INCR bursts coming from this master can only be broken if the Slave Slot
Cycle Limit is reached. If the Slot Cycle Limit is not reached, the burst is normally completed by the master, at the latest, on the
next AHB 1 KByte address boundary, allowing up to 256-beat word bursts or 128-beat double-word bursts.

This value should not be used in the very particular case of a master capable of performing back-to-back undefined length
bursts on a single slave, since this could indefinitely freeze the slave arbitration and thus prevent another master from
accessing this slave.

1: Single Access

The undefined length burst is treated as a succession of single accesses, allowing re-arbitration at each beat of the INCR burst
or bursts sequence.

2: 4-beat Burst

The undefined length burst or bursts sequence is split into 4-beat bursts or less, allowing re-arbitration every 4 beats.

3: 8-beat Burst

The undefined length burst or bursts sequence is split into 8-beat bursts or less, allowing re-arbitration every 8 beats.
4: 16-beat Burst

The undefined length burst or bursts sequence is split into 16-beat bursts or less, allowing re-arbitration every 16 beats.
5: 32-beat Burst

The undefined length burst or bursts sequence is split into 32-beat bursts or less, allowing re-arbitration every 32 beats.
6: 64-beat Burst

The undefined length burst or bursts sequence is split into 64-beat bursts or less, allowing re-arbitration every 64 beats.
7: 128-beat Burst

The undefined length burst or bursts sequence is split into 128-beat bursts or less, allowing re-arbitration every 128 beats.

Unless duly needed, the ULBT should be left at its default 0 value for power saving.

416 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

26.9.2 Bus Matrix Slave Configuration Registers

Name: MATRIX_SCFGx [x=0..7]

Address: 0x400E0240 (0), 0x48010040 (1)

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| - | - | FIXED_DEFMSTR | DEFMSTR_TYPE |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | - | SLOT_CYCLE |
7 6 5 4 3 2 1 0

| SLOT_CYCLE |

This register can only be written if the WPEN bit is cleared in the “Write Protection Mode Register” .

e SLOT_CYCLE: Maximum Bus Grant Duration for Masters

When SLOT_CYCLE AHB clock cycles have elapsed since the last arbitration, a new arbitration takes place to let another
master access this slave. If another master is requesting the slave bus, then the current master burst is broken.

If SLOT_CYCLE = 0, the Slot Cycle Limit feature is disabled and bursts always complete unless broken according to the
ULBT.

This limit has been placed in order to enforce arbitration so as to meet potential latency constraints of masters waiting for slave
access.

This limit must not be too small. Unreasonably small values break every burst and the Bus Matrix arbitrates without performing
any data transfer. The default maximum value is usually an optimal conservative choice.

In most cases, this feature is not needed and should be disabled for power saving.
See Section 26.7.1.2 “Slot Cycle Limit Arbitration” for details.

* DEFMSTR_TYPE: Default Master Type

0: No Default Master

At the end of the current slave access, if no other master request is pending, the slave is disconnected from all masters.
This results in a one clock cycle latency for the first access of a burst transfer or for a single access.

1: Last Default Master

At the end of the current slave access, if no other master request is pending, the slave stays connected to the last master
having accessed it.

This results in not having one clock cycle latency when the last master tries to access the slave again.
2: Fixed Default Master

At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master the
number that has been written in the FIXED_DEFMSTR field.

This results in not having one clock cycle latency when the fixed master tries to access the slave again.

* FIXED_DEFMSTR: Fixed Default Master

This is the number of the Default Master for this slave. Only used if DEFMSTR_TYPE is 2. Specifying the number of a master
which is not connected to the selected slave is equivalent to setting DEFMSTR_TYPE to 0.

SAMACP16C [DATASHEET] 417
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

26.9.3 Bus Matrix Priority Registers A For Slaves
Name: MATRIX_PRASXx [x=0..7]

Address: 0x400E0280 (0)[0], O0x400E0288 (0)[1], O0x400E0290 (0)[2], O0x400E0298 (0)[3], Ox400E02A0 (0)[4],
0x400E02A8 (0)[5], 0x400E02B0 (0)[6], 0x400E02B8 (0)[7], 0x48010080 (1)[0], 0x48010088 (1)[1],
0x48010090 (1)[2], 0x48010098 (1)[3], 0x480100A0 (1)[4], 0x480100A8 (1)[5], 0x480100B0 (1)[6],
0x480100B8 (1)[7]

Access: Read/Write
31 30 29 28 27 26 25 24

| - | - | M7PR | - | - | M6PR |
23 22 21 20 19 18 17 16

| - | - | M5PR | - | - | M4PR |
15 14 13 12 1 10 9 8

| - | - | M3PR | - | - | M2PR |
7 6 5 4 3 2 1 0

| - | - | M1PR | - | - | MOPR |

This register can only be written if the WPE bit is cleared in the “Write Protection Mode Register” .

* MxPR: Master x Priority

Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.
All the masters programmed with the same MxPR value for the slave make up a priority pool.
Round-robin arbitration is used in the lowest (MxPR = 0) and highest (MxPR = 3) priority pools.

Fixed priority is used in intermediate priority pools (MxPR = 1) and (MxPR = 2).

See Section 26.7.2 “Arbitration Priority Scheme” for details.

418 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

26.9.4 System I/O Configuration Register

Name: MATRIX_SYSIO
Address: 0x400E0314 (0), 0x48010114 (1)
Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
. - ff - r --1r -+ -1 = ‘[sys0o9 | -]
7 6 5 4 3 2 1 0
| - | - | - | - | SYSIO3 | SYSIO2 | SYSIO1 | SYSIO0 |
This register can only be written if the WPEN bit is cleared in the “Write Protection Mode Register” .
» SYSIOO0: PBO or TDI Assignment
0 = TDI function selected.
1 = PBO function selected.
¢ SYSIO1: PB1 or TDO/TRACESWO Assignment
0 = TDO/TRACESWO function selected.
1 = PB1 function selected.
» SYSIO2: PB2 or TMS/SWDIO Assignment
0 = TMS/SWDIO function selected.
1 = PB2 function selected.
¢ SYSIO3: PB3 or TCK/SWCLK Assignment
0 = TCK/SWCLK function selected.
1 = PB3 function selected.
* SYSIO9: PC9 or ERASE Assignment
0 = ERASE function selected.
1 = PC9 function selected.
SAM4CP16C [DATASHEET 419
Atmel []

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

26.9.5 Core Debug Configuration Register
MATRIX_CORE_DEBUG
0x400E0328 (0), 0x48010128 (1)
Read/Write

Name:

Address:

Access:

Reset:

31

See Table 26-8

30

28

27

26

24

23

22

20

19

18

16

12

1"

10

2

1

[CROSS_TRGO| CROSS_TRG1|

* CROSS_TRG1: Core 1 --> Core 0 Cross Triggering
0 = Core 1 is not able to trigger an event on core 0.
1 = Core 1 is able to trigger an event on core 0.

¢ CROSS_TRGO: Core 0 --> Core 1 Cross Triggering
0 = Core 0 is not able to trigger an event on core 1.
1 = Core 0 is able to trigger an event on core 1.

420

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

26.9.6 Write Protection Mode Register

Name: MATRIX_WPMR
Address: 0x400E03E4 (0), 0x480101E4 (1)
Access: Read/Write

Reset: See Table 26-8

31 30 29 28 27 26 25 24
| WPKEY

23 22 21 20 19 18 17 16
| WPKEY

15 14 13 12 11 10 9 8
| WPKEY

7 6 5 4 3 2 1 0
- 1 - T - 1T - 1 =T =T - WPEN

For more information on Write Protection registers, refer to Section 26.8 “Register Write Protection”.

* WPEN: Write Protection Enable
0: Disables the write protection if WPKEY corresponds to 0x4D4154 (“MAT” in ASCII).
1: Enables the write protection if WPKEY corresponds to 0x4D4154 (“MAT” in ASCII).

See Section 26.8 “Register Write Protection” for the list of registers that can be protected.

 WPKEY: Write Protection Key

Value Name Description
0x4D4154 PASSWD Writing any other value in this field aborts the write operation of the WPEN bit. Always reads as 0.
SAM4CP16C [DATASHEET 421
Atmel []

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

26.9.7 Write Protection Status Register

Name: MATRIX_WPSR

Address: 0x400E03ES8 (0), 0x480101E8 (1)

Access: Read-only

Reset: See Table 26-8
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| WPVSRC |
15 14 13 12 11 10 9 8

| WPVSRC |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - WPvS |

For more information on Write Protection registers, refer to Section 26.8 “Register Write Protection”.

* WPVS: Write Protection Violation Status
0: No write protection violation has occurred since the last read of the MATRIX_WPMR register.

1: A write protection violation has occurred since the last write of the MATRIX_WPMR register. If this violation is an
unauthorized attempt to write a protected register, the associated violation is reported into field WPVSRC.

*« WPVSRC: Write Protection Violation Source
When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

422 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

27. G3 Power Line Communications (GPLC)

271 Description

GPLC is an embedded G3-PLC modem for Power Line Communication. Its flexible architecture, composed of
hardware accelerators and coprocessors, achieves a very efficient G3 PHY layer implementation.

27.2 Embedded Characteristics
e G3-PLC modem
e Implements G3 CENELEC-A, FCC and ARIB profiles (ITU-T G.9903, June '14)
e Power Line Carrier Modem for 50 Hz and 60 Hz mains
e G3-PLC coherent and differential modulation schemes available
Automatic Gain Control and continuous amplitude tracking in signal reception
Zero cross detection

Embedded PLC Analog Front End (AFE), requires only external discrete high efficient Class D Line Driver for
signal injection

27.2.1 GPLC Application Block Diagram

Figure 27-1. GPLC application example

L N

EMIT [0:11] >

TXRX [0:1] >
P
i’ —®
y PLC ®
P G P LC Coupling
< AGC [0:5] >
c VIPA [¢
o VRC >
0 VIMA |<
i
|
e P Zero Crossing —
r VEEROES External Circuit |

SAM4CP16C
SAM4CP16C [DATASHEET 423
Atmel []

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

27.3 Block Diagram

Figure 27-2. GPLC Functional Block Diagram

ARST
SRST
PLLINIT
CLKEA
CLKEB
CLKOUT

VDDIO
VDDOUT PLC
VDDPLL PLC
VDDIN PLC
VDDIN AN
VDDOUT AN
GND

AGND

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Converter/PAD b—

vy

Reed-Solomon
Coprocessor

)

MANAGEMENT

[T T8

!

A4

Syncro |<—| Preamble

u

Reed-Solomon
Coprocessor

M EMIT(0:11)

TXRX0
TXRX1

VZ CROSS

» AGC(0:5)

VIMA
VIPA
VRP
VRM
VRC

Atmel

27.4 Signal Description

Table 27-1. Signal Description

Signal Name Function Type
VIMA Negative Differential Voltage Input Input
VIPA Positive Differential Voltage Input Input
VRP Internal Reference “Plus” Voltage. Connect an external Outout
decoupling capacitor between VRP and VRM (1nF - 100nF) P
VRM Internal Reference “Minus” Voltage. Connect an external Outout
decoupling capacitor between VRP and VRM (1nF - 100nF) P
Common-mode Voltage. Bypass to analog ground with an
VRC external decoupling capacitor (100pF - 1nF) Output
EMITO - EMIT11 PLC Transmission ports Output
PLC Automatic Gain Control:
AGCO - AGC5 » These digital tri-state outputs are managed by ACG Output
hardware logic to drive external circuitry when input signal
attenuation is needed
TXRXO0 - TXRX1 PLC Ext. coupling TxRx control Output
Mains Zero-Cross Detection Signal:
VZ CROSS Input
» This input detects the zero-crossing of the mains voltage npd
PLC Asynchronous Reset:
ARST + ARST is active low Input
« Internal configuration: 33 kQ typ. pull up resistor
PLC Synchronous Reset
SRST + SRST is active low Input
« Internal configuration: 33 kQ typ. pull up resistor
PLL Initialization Signal
PLL INIT * PLL INIT is active low Input
+ Internal configuration: 33 kQ typ. pull up resistor
PLC External Clock Input
CLKEA + CLKEA must be connected to one terminal of a crystal Input
(when a crystal is being used) or used as input for
external clock signal
PLC External Clock Input/Output
CLKEB + CLKEB must be connected to one terminal of a crystal I/O
(when a crystal is being used) or must be floating when an
external clock signal is connected thru CLKEA
CLKOUT 12 MHz External CLK Output Output
VDDIO PLC Digital pads 3.3V Power Supply Power
VDDPLL PLC PLC PLL Power Supply Power
VDDIN PLC PLC Digital Regulator input Power
VDDOUT PLC PLC Digital Regulator output Power
VDDIN AN PLC Analog Regulator input Power
VDDOUT AN PLC Analog Regulator output Power
GND Digital Ground Power
AGND Analog Ground Power

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

425

27.5 Analog Front-End

27.5.1 PLC coupling circuitry description

Atmel PLC coupling reference designs have been designed to achieve high performance, low cost and simplicity.

With these values on mind, Atmel has developed a set of PLC couplings covering frequencies below 500 kHz
compliant with different applicable regulations.

Atmel PLC technology is purely digital and does not require external DAC/ADC, thus simplifying the external required
circuitry. Generally Atmel PLC coupling reference designs make use of few passive components plus a Class D
amplification stage for transmission.
All PLC coupling reference designs are generally composed by the same sub-circuits:

e Transmission Stage

e Reception Stage

e Filtering Stage

e Coupling Stage

Figure 27-3. PLC coupling block diagram

RECEPTION
STAGE
Voo
T
TO MAINS COUPLING STAGE FILTERING STAGE
—) bl Ll TRANSMISSION

STAGE

SAM4CP16C

A particular reference design can contain more than one sub-circuit of the same kind (i.e., two transmission stages).

27.5.1.1 Transmission Stage

426

The transmission stage adapts the EMIT signals and amplifies them if required. It can be composed by:

e Driver: A group of resistors which adapt the EMIT signals to either control the Class-D amplifier or to be filtered
by the next stage.

Amplifier: If required, a Class-D amplifier which generates a square waveform from 0 to Vp is included.
Bias and protection: A couple of resistors and a couple of Schottky barrier diodes provide a DC component and
provide protection from received disturbances.

Transmission stage shall be always followed by a filtering stage.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

27.5.1.2 Filtering Stage

The filtering stage is composed by band-pass filters which have been designed to achieve high performance in field
deployments complying at the same time with the proper normative and standards.

The in-band flat response filtering stage does not distort the injected signal, reduces spurious emission to the limits
set by the corresponding regulation and blocks potential interferences from other transmission channels.
The Filtering stage has three aims:

e Band-pass filtering of high frequency components of the square waveform generated by the Transmission
Stage.

e Adapt Input/Output impedances for optimal reception/transmission. This is controlled by TXRX signal.
e In some cases, Band-pass filtering for received signals.

When the system is intended to be connected to a physical channel with high voltage or which is not electrically
referenced to the same point then the filtering stage must be always followed by a coupling stage.

27.5.1.3 Coupling Stage

The coupling stage blocks the DC component of the line to/from which the signal is injected/received (i.e., 50/60 Hz of
the mains). This is carried out by a high voltage capacitor.

Coupling stage could also electrically isolate the coupling circuitry from the external world by means of a 1:1
transformer.

27.5.1.4 Reception Stage

The reception stage adapts the received analog signal to be properly captured by the GPLC internal reception chain.
Reception circuit is independent of the PLC channel which is being used. It basically consists of:

e Anti aliasing filter (RC Filter)
e Automatic Gain Control (AGC) circuit
e Driver of the internal ADC

The AGC circuit avoids distortion on the received signal that may arise when the input signal is high enough to
polarize the protective diodes in direct region.

The driver to the internal ADC comprises a couple of resistors and a couple of capacitors. This driver provides a DC
component and adapts the received signal to be properly converted by the internal reception chain.

SAMA4CP16C [DATASHEET] 427
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

27.5.1.5 Generic PLC Coupling
Please consider that this is a generic PLC Coupling design for a particular application please refer to Atmel doc43052
“PLC Coupling Reference Designs”.

Figure 27-4. PLC Coupling block diagram detailed

RECEPTION STAGE

T T | <IPR>
T VRS>
Y

TRANSMISSION STAGE

VDD

i s ﬁ@
e N [
e

3v3

FILTERING STAGE

27.5.2 ATPLCOUP reference designs

Atmel provides PLC coupling reference designs for different applications and frequency bands up to 500 kHz. Please
refer to Atmel doc43052 “PLC Coupling Reference Designs” for a detailed description.

428 SAMA4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

27.5.3 Zero-crossing detector

27.5.3.1 Overview

Zero Crossing Detector block works predicting future zero crossing in function of the past zero crossings. To achieve
this, the system embeds a configurable Input Signal Management (ISM) block and a PLL, both of which manage Zero
Crossing Detector Input Signal to calculate Zero Crossing Output Flag. The zero-cross detection of waves of 50 Hz
and 60 Hz with £10% of error is supported.

The PLL block interprets its input signal such a way that it indicates a zero cross in the middle of a positive pulse. It is
important to note that depending on the external circuit which implements the Zero Crossing Detector Input Signal this
interpretation is not always correct. So for these cases it is required to transform the Input Signal in a signal where the
middle of a positive pulse corresponds to a truly zero cross. This transformation is implemented through the Input
Signal Management (ISM) configured by MODE_INV and MODE_REP fields in ZC_CONFIG register.

Zero Crossing Detector Input Signal (VZ CROSS) must fulfil some requirements. The first requirement is that VZ
CROSS signal must be a pulse train which its duty cycle must be >60% or <40% (polarity is configurable). In addition,
if we have to detect Ascent or Descent zero-crossing, Zero Crossing Detector Input Signal period must be equal than
period of the wave we need to obtain zero-crossing. Ascent and Descent Zero Crossing Detection are configured by
setting MODE_MUX and MODE_ASC fields in ZC_CONFIG register.

Figure 27-5. Typical circuit, using a bidirectional optocoupler and a Schmitt trigger
3V3
c |
I

ulo

Rz
GND

RI . 1
I ul E>O VZ CROSS
y . .
3 Mains Signal
R2

ZC signal provided
Bidirectional Optocoupler R toVZCROSS —~
GND

The input signal “VZ CROSS”(wider line) generated by this circuit for Zero Cross Detection of the wave “L"-“N” (finer
line) is plotted in next figure. The digital signal at output of Input Signal Management (ISM) is plotted in Figure 27-6.

Figure 27-6. Digital signal (dashed line) at output of Input Signal Management (ISM) internal block

For this circuit, Zero Cross Internal registers should be configured this way:

ZC_CONFIG.MODE_MUX = ‘0’
ZC_CONFIG.MODE_ASC = ‘0’
ZC_CONFIG.MODE_INV = ‘1’
ZC_CONFIG.MODE_REP = ‘0’
ZC_CONFIG.FILTER_BP = ‘0’

SAMA4CP16C [DATASHEET] 429
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Some situations (for example in some protocols like G3) could require only ascent (or descent) mains signal zero-
crossings to be detected. When we have to detect Ascent or Descent Zero Cross of the wave (finer line), the circuit
should generate an input signal “VZ CROSS” (wider line) with the same period, as specified in next figure. This could
be easily implemented by using an unidirectional optocoupler or a Zener diode topology in the external circuitry.

Figure 27-7. Typical circuit, using a unidirectional optocoupler and a Schmitt trigger

R1 Ul
L Wi +
D1 + #
\\E g
R2
N A

Unidirectional Optocoupler

Re
1 ulo - gip

VZ CROSS

Mains Signal

ZC signal provided
GND to VZ CROSS -

The digital signal at output of Input Signal Management (ISM) is plotted in Figure 27-8:
Figure 27-8. Digital signal (dashed line) at output of Input Signal Management (ISM) internal block

For this case, Zero Cross Internal registers should be configured this way:

ZC_CONFIG.MODE_MUX = ‘1’
ZC_CONFIG.MODE_ASC = ‘O’(ascent) or ‘“1’(descent)
ZC_CONFIG.MODE_INV =1’
ZC_CONFIG.MODE_REP =1
ZC_CONFIG.FILTER_BP =0’

430 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

27.5.3.2 Zero Crossing Config register

Name: ZC_CONFIG
Address: 0x4A0
Access: Read/Write
Reset: 0x00023210
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
- - - - - Reserved PEAK2_ZC | PEAK1_ZC
_EN _EN
15 14 13 12 11 10 9 8
- FILTER_NUM [6:0]
7 6 5 4 3 2 1 0
- - - FILTER BP | MODE_RE | MODE_INV | MODE_AS | MODE_MU
P C X

MODE_MUX: Zero Crossing Mode

‘0’: Selection of both ascent and descent zero-crossing
‘1’: Selection of ascent or descent zero-crossing

MODE_ASC: Ascent-Descent Mode
‘0’: If MODE_MUX is 1, Ascent Zero Crossing
‘1: If MODE_MUX is 1, Descent Zero Crossing

MODE_INV: Inversion Mode
‘0’: No effect.
‘1’: Zero Crossing Detector Input Signal is inverted.

MODE_REP: Repetition Mode
‘0’: No effect.
‘1’: Zero Crossing Detector Input Signal period is down by half.

FILTER_BP: Zero Crossing Input Signal Filter Enable
‘0’: Filter enabled.
‘1’: Filter not enabled.

FILTER_NUM[6:0]: Zero Crossing Input Signal Filter Parameter

Time (counted in number of clock cycles) that the Zero Crossing Input Signal (1-bit) must be constant to set that
value as the input signal for Zero Crossing Detection. Used to refuse fast transitions in Zero Crossing Input Signal.

PEAK1_ZC_EN: indicates if PEAK_ZC_TIME updates its value with the last ZC_TIME when a PEAK1 is detected.

It is active high.

PEAK2_ZC_EN: indicates if PEAK_ZC_TIME updates its value with the last ZC_TIME when a PEAK2 is detected.

It is active high.

Atmel

SAM4CP16C [DATASHEET] 431

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

28. Peripheral DMA Controller (PDC)

28.1 Description
The Peripheral DMA Controller (PDC) transfers data between on-chip serial peripherals and the target memories. The
link between the PDC and a serial peripheral is operated by the AHB to APB bridge.

The user interface of each PDC channel is integrated into the user interface of the peripheral it serves. The user
interface of mono-directional channels (receive-only or transmit-only) contains two 32-bit memory pointers and two
16-bit counters, one set (pointer, counter) for the current transfer and one set (pointer, counter) for the next transfer.
The bidirectional channel user interface contains four 32-bit memory pointers and four 16-bit counters. Each set
(pointer, counter) is used by the current transmit, next transmit, current receive and next receive.

Using the PDC decreases processor overhead by reducing its intervention during the transfer. This lowers
significantly the number of clock cycles required for a data transfer, improving microcontroller performance.

To launch a transfer, the peripheral triggers its associated PDC channels by using transmit and receive signals. When
the programmed data is transferred, an end of transfer interrupt is generated by the peripheral itself.

28.2 Embedded Characteristics
e Performs Transfers to/from APB Communication Serial Peripherals.
e Supports Half-duplex and Full-duplex Peripherals.

432 SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

28.3 Block Diagram

Figure 28-1. Block Diagram

FULL DUPLEX PDC
PERIPHERAL
THR PDC Channel A
RHR > PDC Channel B

Status & Control
Control <€ >

HALF DUPLEX
PERIPHERAL Control

THR

PDC Channel C

RHR

Status & Control
Control <€ >

RECEIVE or TRANSMIT

PERIPHERAL
RHR or THR PDC Channel D
Status & Control
Control |- .

28.4 Functional Description

28.4.1 Configuration

The PDC channel user interface enables the user to configure and control data transfers for each channel. The user
interface of each PDC channel is integrated into the associated peripheral user interface.

The user interface of a serial peripheral, whether it is full- or half-duplex, contains four 32-bit pointers (RPR, RNPR,
TPR, TNPR) and four 16-bit counter registers (RCR, RNCR, TCR, TNCR). However, the transmit and receive parts of
each type are programmed differently: the transmit and receive parts of a full-duplex peripheral can be programmed at
the same time, whereas only one part (transmit or receive) of a half-duplex peripheral can be programmed at a time.

SAMA4CP16C [DATASHEET] 433
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

28.4.2

28.4.3

28.4.4

434

32-bit pointers define the access location in memory for the current and next transfer, whether it is for read (transmit)
or write (receive). 16-bit counters define the size of the current and next transfers. It is possible, at any moment, to
read the number of transfers remaining for each channel.

The PDC has dedicated status registers which indicate if the transfer is enabled or disabled for each channel. The
status for each channel is located in the associated peripheral status register. Transfers can be enabled and/or
disabled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in the peripheral’s Transfer Control register.

At the end of a transfer, the PDC channel sends status flags to its associated peripheral. These flags are visible in the
Peripheral Status register (ENDRX, ENDTX, RXBUFF, and TXBUFE). Refer to Section 28.4.3 and to the associated
peripheral user interface.

The peripheral where a PDC transfer is configured must have its peripheral clock enabled. The peripheral clock must
be also enabled to access the PDC register set associated to this peripheral.

Memory Pointers

Each full-duplex peripheral is connected to the PDC by a receive channel and a transmit channel. Both channels have
32-bit memory pointers that point to a receive area and to a transmit area, respectively, in the target memory.

Each half-duplex peripheral is connected to the PDC by a bidirectional channel. This channel has two 32-bit memory
pointers, one for current transfer and the other for next transfer. These pointers point to transmit or receive data
depending on the operating mode of the peripheral.

Depending on the type of transfer (byte, half-word or word), the memory pointer is incremented respectively by 1, 2 or
4 bytes.

If a memory pointer address changes in the middle of a transfer, the PDC channel continues operating using the new
address.

Transfer Counters

Each channel has two 16-bit counters, one for the current transfer and the one for the next transfer. These counters
define the size of data to be transferred by the channel. The current transfer counter is decremented first as the data
addressed by the current memory pointer starts to be transferred. When the current transfer counter reaches zero, the
channel checks its next transfer counter. If the value of the next counter is zero, the channel stops transferring data
and sets the appropriate flag. If the next counter value is greater than zero, the values of the next pointer/next counter
are copied into the current pointer/current counter and the channel resumes the transfer, whereas next pointer/next
counter get zero/zero as values. At the end of this transfer, the PDC channel sets the appropriate flags in the
Peripheral Status register.

The following list gives an overview of how status register flags behave depending on the counters’ values:
e ENDRX flag is set when the PDC Receive Counter Register (PERIPH_RCR) reaches zero.

e RXBUFF flag is set when both PERIPH_RCR and the PDC Receive Next Counter Register (PERIPH_RNCR)
reach zero.

ENDTX flag is set when the PDC Transmit Counter Register (PERIPH_TCR) reaches zero.
e TXBUFE flag is set when both PERIPH_TCR and the PDC Transmit Next Counter Register (PERIPH_TNCR)
reach zero.

These status flags are described in the Transfer Status Register (PERIPH_PTSR).

Data Transfers
The serial peripheral triggers its associated PDC channels’ transfers using transmit enable (TXEN) and receive
enable (RXEN) flags in the transfer control register integrated in the peripheral’s user interface.

When the peripheral receives external data, it sends a Receive Ready signal to its PDC receive channel which then
requests access to the Matrix. When access is granted, the PDC receive channel starts reading the peripheral
Receive Holding register (RHR). The read data are stored in an internal buffer and then written to memory.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

When the peripheral is about to send data, it sends a Transmit Ready to its PDC transmit channel which then requests
access to the Matrix. When access is granted, the PDC transmit channel reads data from memory and transfers the
data to the Transmit Holding register (THR) of its associated peripheral. The same peripheral sends data depending
on its mechanism.

28.4.5 PDC Flags and Peripheral Status Register

Each peripheral connected to the PDC sends out receive ready and transmit ready flags and the PDC returns flags to
the peripheral. All these flags are only visible in the Peripheral’s Status register.

Depending on whether the peripheral is half- or full-duplex, the flags belong to either one single channel or two
different channels.
28.4.5.1 Receive Transfer End

The receive transfer end flag is set when PERIPH_RCR reaches zero and the last data has been transferred to
memory.

This flag is reset by writing a non-zero value to PERIPH_RCR or PERIPH_RNCR.
28.4.5.2 Transmit Transfer End

The transmit transfer end flag is set when PERIPH_TCR reaches zero and the last data has been written to the
peripheral THR.

This flag is reset by writing a non-zero value to PERIPH_TCR or PERIPH_TNCR.

28.4.5.3 Receive Buffer Full

The receive buffer full flag is set when PERIPH_RCR reaches zero, with PERIPH_RNCR also set to zero and the last
data transferred to memory.

This flag is reset by writing a non-zero value to PERIPH_TCR or PERIPH_TNCR.

28.4.5.4 Transmit Buffer Empty

The transmit buffer empty flag is set when PERIPH_TCR reaches zero, with PERIPH_TNCR also set to zero and the
last data written to peripheral THR.

This flag is reset by writing a non-zero value to PERIPH_TCR or PERIPH_TNCR.

28.5 Peripheral DMA Controller (PDC) User Interface

Table 28-1. Register Mapping

Offset Register Name(" Access Reset
0x00 Receive Pointer Register PERIPH_RPR Read/Write 0
0x04 Receive Counter Register PERIPH_RCR Read/Write 0
0x08 Transmit Pointer Register PERIPH_TPR Read/Write 0
0x0C Transmit Counter Register PERIPH_TCR Read/Write 0
0x10 Receive Next Pointer Register PERIPH_RNPR Read/Write 0
0x14 Receive Next Counter Register PERIPH_RNCR Read/Write 0
0x18 Transmit Next Pointer Register PERIPH_TNPR Read/Write 0
0x1C Transmit Next Counter Register PERIPH_TNCR Read/Write 0
0x20 Transfer Control Register PERIPH_PTCR Write-only -
0x24 Transfer Status Register PERIPH_PTSR Read-only 0

Note: 1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be configured
by the user depending on the function and the desired peripheral.

SAMA4CP16C [DATASHEET] 435
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

28.5.1 Receive Pointer Register

Name: PERIPH_RPR
Access: Read/Write

31 30 29 28 27 26 25 24
| RXPTR

23 22 21 20 19 18 17 16
| RXPTR

15 14 13 12 11 10 9 8
| RXPTR

7 6 5 4 3 2 1 0
| RXPTR
* RXPTR: Receive Pointer Register
RXPTR must be set to receive buffer address.
When a half-duplex peripheral is connected to the PDC, RXPTR = TXPTR.
436 SAM4CP16C [DATASHEET

[] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

28.5.2 Receive Counter Register

Name: PERIPH_RCR
Access: Read/Write
31 30 29 28 27 26 25 24
- 1 - T - 1T = 71T =T - - — 1]
23 22 21 20 19 18 17 16
-~ 1T - T - T - T =T - - -
15 14 13 12 1 10 9 8
| RXCTR
7 6 5 4 3 2 1 0

| RXCTR

¢ RXCTR: Receive Counter Register
RXCTR must be set to receive buffer size.
When a half-duplex peripheral is connected to the PDC, RXCTR = TXCTR.

0: Stops peripheral data transfer to the receiver.

1 - 65535: Starts peripheral data transfer if the corresponding channel is active.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

437

28.5.3 Transmit Pointer Register

Name: PERIPH_TPR
Access: Read/Write

31 30 29 28 27 26 25 24
| TXPTR

23 22 21 20 19 18 17 16
| TXPTR

15 14 13 12 11 10 9 8
| TXPTR

7 6 5 4 3 2 1 0
| TXPTR
¢ TXPTR: Transmit Counter Register
TXPTR must be set to transmit buffer address.
When a half-duplex peripheral is connected to the PDC, RXPTR = TXPTR.
438 SAM4CP16C [DATASHEET

[] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

28.5.4 Transmit Counter Register

Name: PERIPH_TCR
Access: Read/Write
31 30 29 28 27 26 25 24
- 1 - T - 1T = 71T =T - - — 1]
23 22 21 20 19 18 17 16
-~ 1T - T - T - T =T - - -
15 14 13 12 1 10 9 8
| TXCTR
7 6 5 4 3 2 1 0

| TXCTR

¢ TXCTR: Transmit Counter Register
TXCTR must be set to transmit buffer size.
When a half-duplex peripheral is connected to the PDC, RXCTR = TXCTR.

0: Stops peripheral data transfer to the transmitter.

1 - 65535: Starts peripheral data transfer if the corresponding channel is active.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

439

28.5.5 Receive Next Pointer Register

Name: PERIPH_RNPR
Access: Read/Write

31 30 29 28 27 26 25 24
| RXNPTR

23 22 21 20 19 18 17 16
| RXNPTR

15 14 13 12 11 10 9 8
| RXNPTR

7 6 5 4 3 2 1 0
| RXNPTR
¢ RXNPTR: Receive Next Pointer
RXNPTR contains the next receive buffer address.
When a half-duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.
440 SAM4CP16C [DATASHEET

[] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

28.5.6 Receive Next Counter Register

Name: PERIPH_RNCR
Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8
| RXNCTR
7 6 5 4 3 2 1 0
RXNCTR

¢ RXNCTR: Receive Next Counter

Atmel

RXNCTR contains the next receive buffer size.
When a half-duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

441

28.5.7 Transmit Next Pointer Register

Name: PERIPH_TNPR
Access: Read/Write

31 30 29 28 27 26 25 24
| TXNPTR

23 22 21 20 19 18 17 16
| TXNPTR

15 14 13 12 11 10 9 8
| TXNPTR

7 6 5 4 3 2 1 0
| TXNPTR
¢ TXNPTR: Transmit Next Pointer
TXNPTR contains the next transmit buffer address.
When a half-duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.
442 SAM4CP16C [DATASHEET

[] Atmel

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

28.5.8 Transmit Next Counter Register

Name: PERIPH_TNCR
Access: Read/Write
31 30 29 28 27 26 25 24
I : I : - — 1]
23 22 21 20 19 18 17 16
I - S - - —]
15 14 13 12 1 10 9 8
| TXNCTR |
7 6 5 4 3 2 1 0
TXNCTR |

¢ TXNCTR: Transmit Counter Next

TXNCTR contains the next transmit buffer size.
When a half-duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

Atmel

SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

443

28.5.9 Transfer Control Register

Name: PERIPH_PTCR

Access: Write-only
31 30 29 28 27 26 25 24

. - r - - r -+ -+ - § - [- |
23 22 21 20 19 18 17 16

. - r -+ - - - r - | - [- |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - [TXTDIS [TXTEN |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | RXTDIS | RXTEN |

* RXTEN: Receiver Transfer Enable
0: No effect.
1: Enables PDC receiver channel requests if RXTDIS is not set.

When a half-duplex peripheral is connected to the PDC, enabling the receiver channel requests automatically disables the
transmitter channel requests. It is forbidden to set both TXTEN and RXTEN for a half-duplex peripheral.

¢ RXTDIS: Receiver Transfer Disable
0: No effect.
1: Disables the PDC receiver channel requests.

When a half-duplex peripheral is connected to the PDC, disabling the receiver channel requests also disables the transmitter
channel requests.

¢ TXTEN: Transmitter Transfer Enable
0: No effect.
1: Enables the PDC transmitter channel requests.

When a half-duplex peripheral is connected to the PDC, it enables the transmitter channel requests only if RXTEN is not set. It
is forbidden to set both TXTEN and RXTEN for a half-duplex peripheral.

¢ TXTDIS: Transmitter Transfer Disable
0: No effect.
1: Disables the PDC transmitter channel requests.

When a half-duplex peripheral is connected to the PDC, disabling the transmitter channel requests disables the receiver
channel requests.

444 SAM4CP16C [DATASHEET] /ItmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

28.5.10 Transfer Status Register

Name: PERIPH_PTSR
Access: Read-only

31 30 29 28 27 26 25 24
- T - 1T - T - - - - — 1
23 22 21 20 19 18 17 16
- T - T - T - - - - — 1]
15 14 13 12 11 10 9 8
| - | - | - | - - - - TXTEN |
7 6 5 4 3 2 1 0
- T - T - T - - - - RXTEN_]

RXTEN: Receiver Transfer Enable
: PDC receiver channel requests are disabled.

= O

: PDC receiver channel requests are enabled.

TXTEN: Transmitter Transfer Enable

0: PDC transmitter channel requests are disabled.

—_

Atmel

: PDC transmitter channel requests are enabled.

SAM4CP16C [DATASHEET] 445

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

29.

291

29.2

446

Clock Generator

Description

The Clock Generator User Interface is embedded within the Power Management Controller and is described in
Section 30.18 "Power Management Controller (PMC) User Interface”. However, the Clock Generator registers are
named CKGR _.

Embedded Characteristics

The Clock Generator is made up of:

A low-power 32.768 kHz crystal oscillator with Bypass mode.
A low-power embedded 32 kHz (typical) RC oscillator.
A 3 to 20 MHz crystal or ceramic resonator-based oscillator with Bypass mode.

A factory-trimmed embedded RC oscillator. Three output frequencies can be selected: 4/8/12 MHz. By default 4
MHz is selected.
Two programmable PLLs, (PLLA input from 32 kHz, output clock range 8 MHz and PLLB input from 3 to 32

MHz, output clock range 80 to 240 MHz), capable of providing the clock MCK to the processor and to the
peripherals.

It provides the following clocks:

e SLCK: Slow clock. The only permanent clock within the system.
e MAINCK: output of the Main clock oscillator selection: either the crystal or ceramic resonator-based oscillator or
4/8/12 MHz RC oscillator.
PLLACK: output of the 8 MHz programmable PLL (PLLA).
PLLBCK: output of the divider and 80 to 240 MHz programmable PLL (PLLB).
et AT AP 0 o 201 Atmel

29.3 Block Diagram

Figure 29-1. Clock Generator Block Diagram

Clock Generator

en
Embedded
32 kHz 0
RC Oscillator|
Slow Clock
J

XTALSEL (SUPC_CR)
OSCBYPASS (SUPC_MR)

SLCK
en
XIN32 D 32768 Hz
Crystal

XOUT32 D Oscillator
or external
oscillator

CKGR_MOR

Embedded
4/8/12 MHz

RC Oscillator 0

Main Clock

320 MHz MAINCK
Crystal
or 1
Ceramic
Resonator
PLLA __» PLLA Clock

Oscillator
PLLACK
PMC_MCKR

I: g PLLBand | |, PLLB Clock

XIN

XouT

101

Divider /2 PLLBCK

>

SRCB PLLBDIV2

CKGR_PLLBR PMC_MCKR

l Status T Control

Power
Management
Controller

29.4 Slow Clock
The Supply Controller embeds a Slow clock generator that is supplied with the VDDBU power supply. As soon as
VDDBU is supplied, both the 32.768 kHz crystal oscillator and the embedded 32 kHz (typical) RC oscillator are
powered up, but only the RC oscillator is enabled.
The Slow clock is generated either by the 32.768 kHz Crystal Oscillator or by the embedded 32 kHz (typical) RC
oscillator.
The selection of the Slow clock source is made via the XTALSEL bit in the Supply Controller Control register
(SUPC_CR).
The OSCSEL bit of the Supply Controller Status register (SUPC_SR) and the OSCSELS bit of the PMC Status
register (PMC_SR) report which oscillator is selected as the Slow clock source. PMC_SR.OSCSELS informs when
the switch sequence initiated by a new value written in SUPC_CR.XTALSEL is done.

SAMACP16C [DATASHEET] 447
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

2941

29.4.2

448

Embedded 32 kHz (typical) RC Oscillator

By default, the embedded 32 kHz (typical) RC oscillator is enabled and selected as a source of Slow clock. The user
has to take into account the possible drifts of this oscillator. Refer to the section “DC Characteristics”.

This oscillator is disabled by clearing SUPC_CR.XTALSEL.

32.768 kHz Crystal Oscillator

The Clock Generator integrates a low-power 32.768 kHz crystal oscillator. To use this oscillator, the XIN32 and
XOUT32 pins must be connected to a 32.768 kHz crystal. Refer to the section “Electrical Characteristics” for
appropriate loading capacitor selection on XIN32 and XOUT32.

Note that the user is not obliged to use the 32.768 kHz crystal oscillator and can use the 32 kHz (typical) RC oscillator
instead.

The 32.768 kHz crystal oscillator provides a more accurate frequency than the 32 kHz (typical) RC oscillator.

To select the 32.768 kHz crystal oscillator as the source of the Slow clock, the bit SUPC_CR.XTALSEL must be set.
This results in a sequence which enables the 32.768 kHz crystal oscillator and then disables the 32 kHz (typical) RC
oscillator to save power. The switch of the Slow clock source is glitch-free.

Reverting to the 32 kHz (typical) RC oscillator is only possible by shutting down the VDDBU power supply. If the user
does not need the 32.768 kHz crystal oscillator, the XIN32 and XOUT32 pins can be left unconnected.

The user can also set the 32.768 kHz crystal oscillator in Bypass mode instead of connecting a crystal. In this case,
the user must provide the external clock signal on XIN32. For input characteristics of the XIN32 pin, refer to the
section “Electrical Characteristics”. To enter Bypass mode, the OSCBYPASS bit of the Supply Controller Mode
register (SUPC_MR) must be set prior to setting SUPC_CR.XTALSEL.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

29.5 Main Clock

The Main clock has two sources:
e A 4/8/12 MHz RC oscillator with a fast startup time and that is selected by default to start the system.

e A 3to 20 MHz crystal or ceramic resonator-based oscillator with Bypass mode.
Figure 29-2 shows the Main clock block diagram.

Figure 29-2. Main Clock Block Diagram

CKGR_MOR CKGR_MOR

MOSCRCEN | | MOSCRCF |
| | PMC_SR
————— > MOSCRCS
RC CKGR_MOR PMC_SR
Oscillator MOSCSEL MOSCSELS
0
CKGR_MOR
MAINCK
MOSCXTEN .
Main Clock
3-20 MHz 1
XIN Di Crystal
or
XOUT | I Ceramic Resonator
Oscillator
CKGR_MOR
MOSCXTST
PMC_SR
3-20 MHz —
Oscillator MOSCXTS
Slow Clock Counter
CKGR_MOR
MOSCRCEN
CKGR_MOR CKGR_MCFR
| MOSCXTEN | | RCMEAS
CKGR_MOR
MOSCSEL
CKGR_MCFR
. MAINF
MAINCK Ref. Main Clock

Main Clock Frequency CKGR_MCFR
—

Counter MAINFRDY

Atmel SAM4CP16C [DATASHEET]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

449

29.5.1

29.5.2

29.5.3

450

Embedded 4/8/12 MHz RC Oscillator

After reset, the 4/8/12 MHz RC oscillator is enabled with the 4 MHz frequency selected. This oscillator is selected as
the source of MAINCK. MAINCK is the default clock selected to start the system.

The 4/8/12 MHz RC oscillator frequencies are calibrated in production except for the lowest frequency which is not
calibrated.

Refer to the section “DC Characteristics”.

The software can disable or enable the 4/8/12 MHz RC oscillator with the MOSCRCEN bit in the Clock Generator
Main Oscillator register (CKGR_MOR).

The output frequency of the RC oscillator can be selected among 4/8/12 MHz. The selection is done via the
CKGR_MOR.MOSCRCEF field. When changing the frequency selection, PMC_SR.MOSCRCS is automatically
cleared and MAINCK is stopped until the oscillator is stabilized. Once the oscillator is stabilized, MAINCK restarts and
PMC_SR.MOSCRCS is set.

When disabling the Main clock by clearing the CKGR_MOR.MOSCRCEN bit, the PMC_SR.MOSCRCS bit is
automatically cleared, indicating the Main clock is off.

Setting the MOSCRCS bit in the Power Management Controller Interrupt Enable register (PMC_IER) triggers an inter-
rupt to the processor.

When Main clock (MAINCK) is not used to drive the processor and frequency monitor (SLCK or PLLACK is used
instead), it is recommended to disable the 4/8/12 MHz RC oscillator and 3 to 20 MHz crystal oscillator.

The CAL4, CAL8 and CAL12 values in the PMC Oscillator Calibration register (PMC_OCR) are the default values set
by Atmel during production. These values are stored in a specific Flash memory area different from the memory plane
for code. These values cannot be modified by the user and cannot be erased by a Flash erase command or by the
ERASE pin. Values written by the user application in PMC_OCR are reset after each power up or peripheral reset.

4/8/12 MHz RC Oscillator Clock Frequency Adjustment

It is possible for the user to adjust the 4/8/12 MHz RC oscillator frequency through PMC_OCR. By default, SEL4/8/12
bits are cleared, so the RC oscillator will be driven with Flash calibration bits which are programmed during chip
production.

The user can adjust the trimming of the 4/8/12 MHz RC oscillator through this register. This can be used to
compensate derating factors such as temperature and voltage, thus providing greater accuracy.

In order to calibrate the RC oscillator lower frequency, SEL4 bit must be set to 1 and a frequency value must be
configured in the field CAL4. Likewise, SEL8/12 bits must be set to 1 and a trim value must be configured in the fields
CAL8/12 in order to adjust the other frequencies of the RC oscillator.

It is possible to adjust the RC oscillator frequency while operating from this clock. For example, when running on
lowest frequency it is possible to change the CAL4 value if PMC_OCR.SEL4 bit is set.

At any time, it is possible to restart a measurement of the frequency of the selected clock via the RCMEAS bit in Main
Clock Frequency register (CKGR_MCFR). Thus, when CKGR_MCFR.MAINFRDY reads 1, another read access on
CKGR_MCFR provides an image of the frequency on CKGR_MCFR.MAINF. The software can calculate the error
with an expected frequency and correct the CAL4 (or CAL8/CAL12) field accordingly. This may be used to
compensate frequency drift due to derating factors such as temperature and/or voltage.

3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator
After reset, the 3 to 20 MHz crystal or ceramic resonator-based oscillator is disabled and is not selected as the source
of MAINCK.

As the source of MAINCK, the 3 to 20 MHz crystal or ceramic resonator-based oscillator provides a very precise
frequency. The software enables or disables this oscillator in order to reduce power consumption via
CKGR_MOR.MOSCXTEN.

When disabling this oscillator by clearing the CKGR_MOR.MOSCXTEN, PMC_SR.MOSCXTS is automatically
cleared, indicating the 3 to 20 MHz crystal oscillator is off.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

When enabling this oscillator, the user must initiate the startup time counter. The startup time depends on the
characteristics of the external device connected to this oscillator. Refer to the section “Electrical Characteristics” for
the startup time.

When CKGR_MOR.MOSCXTEN and CKGR_MOR.MOSCXTST are written to enable this oscillator, the XIN and
XOUT pins are automatically switched into oscillator mode. PMC_SR.MOSCXTS is cleared and the counter starts
counting down on the Slow clock divided by 8 from the CKGR_MOR.MOSCXTST value. Since the
CKGR_MOR.MOSCXTST value is coded with 8 bits, the maximum startup time is about 62 ms.

When the startup time counter reaches 0, PMC_SR.MOSCXTS is set, indicating that the 3 to 20 MHz crystal oscillator
is stabilized. Setting the MOSCXTS bit in the Interrupt Mask register (PMC_IMR) triggers an interrupt to the
processor.

29.5.4 Main Clock Source Selection
The user can select the source of the Main clock from either the 4/8/12 MHz RC oscillator, the 3 to 20 MHz Crystal
Oscillator or the Ceramic Resonator-based oscillator.
The advantage of the 4/8/12 MHz RC oscillator is its fast startup time. By default, this oscillator is selected to start the
system and when entering Wait mode.
The advantage of the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator is its precise frequency.
The selection of the oscillator is made by writing CKGR_MOR.MOSCSEL. The switch of the Main clock source is
glitch-free, so there is no need to run out of SLCK, PLLACK or PLLBCK in order to change the selection.
PMC_SR.MOSCSELS indicates when the switch sequence is done.
Setting PMC_IMR.MOSCSELS triggers an interrupt to the processor.
Enabling the 4/8/12 MHz RC oscillator (MOSCRCEN = 1) and changing its frequency (MOSCCRF) at the same time
is not allowed.
This oscillator must be enabled first and its frequency changed in a second step.
29.5.5 Bypassing the 3 to 20 MHz Crystal Oscillator
Prior to bypassing the 3 to 20 MHz crystal oscillator, the external clock frequency provided on the XIN pin must be
stable and within the values specified in the XIN Clock characteristics. Refer to the section “Electrical Characteristics”.
The sequence is as follows:
1. Ensure that an external clock is connected on XIN.
2. Enable the bypass by writing a 1 to CKGR_MOR.MOSCXTBY.
3. Disable the 3 to 20 MHz crystal oscillator by writing a 0 to CKGR_MOR.MOSCXTEN.
29.5.6 Main Clock Frequency Counter
The frequency counter is managed by CKGR_MCFR.
During the measurement period, the frequency counter increments at the Main clock speed.
A measurement is started in the following cases:
e When CKGR_MCFR.RCMEAS is written to 1.
e When the 4/8/12 MHz RC oscillator is selected as the source of Main clock and when this oscillator becomes
stable (i.e., when the MOSCRCS bit is set).
e When the 3 to 20 MHz crystal or ceramic resonator-based oscillator is selected as the source of Main clock and
when this oscillator becomes stable (i.e., when the MOSCXTS bit is set).
e When the Main clock source selection is modified.
The measurement period ends at the 16th falling edge of Slow clock, CKGR_MCFR.MAINFRDY is set and the
counter stops counting. Its value can be read in CKGR_MCFR.MAINF and gives the number of clock cycles during 16
periods of Slow clock, so that the frequency of the 4/8/12 MHz RC oscillator or 3 to 20 MHz crystal or ceramic
resonator-based oscillator can be determined.
SAM4CP16C [DATASHEET 451
Atmel : :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

29.5.7 Switching Main Clock between the RC Oscillator and the Crystal Oscillator

When switching the source of the Main clock between the RC oscillator and the crystal oscillator, both oscillators must
be enabled. After completion of the switch, the unused oscillator can be disabled.

If switching to the crystal oscillator, a check must be carried out to ensure that the oscillator is present and that its
frequency is valid. Follow the sequence below:

1.

Select the Slow clock as MCK by configuring CSS = 0 in the Master Clock register (PMC_MCKR).

2. Wait for PMC_SR.MCKRDY flag in PMC_SR to rise.
3. Enable the crystal oscillator by setting CKGR_MOR.MOSCXTEN. Configure the CKGR_MOR. MOSCXTST
field with the crystal oscillator startup time as defined in the section “Electrical Characteristics”.
4. Wait for PMC_SR.MOSCXTS flag to rise, indicating the end of a startup period of the crystal oscillator.
5. Select the crystal oscillator as the source of the Main clock by setting CKGR_MOR.MOSCSEL.
6. Read CKGR_MOR.MOSCSEL until its value equals 1.
7. Check the status of PMC_SR.MOSCSELS flag:
e If MOSCSELS = 1: There is a crystal oscillator connected.
a. Initiate a new frequency measurement by setting CKGR_MCFR.RCMEAS.
b. Read CKGR_MCFR.MAINFRDY until its value equals 1.
c. Read CKGR_MCFR.MAINF and compute the value of the crystal frequency.
d. If the MAINF value is valid, the Main clock can be switched to the crystal oscillator.
e IfMOSCSELS =0:
a. There is no crystal oscillator connected or the crystal oscillator is out of specification.
b. Select the RC oscillator as the source of the Main clock by clearing CKGR_MOR.MOSCSEL.
452 SAM4CP16C [DATASHEET] /lt m eL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

29.6

Divider and PLL Blocks

The device features one divider block and two PLL blocks that permit a wide range of frequencies to be selected on
either the Master clock, the Processor clock or the Programmable clock outputs. Figure 29-3 shows the block diagram
of the divider and PLL blocks.

Figure 29-3. Divider and PLL Blocks Diagram

CKGR_PLLBR
SRCB
CKGR_PLLBR CKGR_PLLBR
DIVB MULB
MAINCK —— >0
Divider B PLL B — > PLLBCK
1
PLLBDIV2
PMC_MCKR
CKGR_PLLAR

PMC_MCKR
SLCK PLL A PLLADIV2 |—>PLLACK

CKGR_PLLBR

PLLBCOUNT
PMC_SR

PLL B
Counter LOCKB

CKGR_PLLAR
PLLACOUNT
PLL A PMC_SR
SLCK —>[__LockA]
Counter LOCKA

29.6.1 Divider and Phase Lock Loop Programming

The divider can be set between 1 and 255 in steps of 1. When a divider field (DIV) is cleared, the output of the
corresponding divider and the PLL output is a continuous signal at level 0. On reset, each DIV field is cleared, thus the
corresponding PLL input clock is stuck at 0.

The PLLs (PLLA, PLLB) allow multiplication of the SLCK clock source for PLLA or divided MAINCK or PLLA output
clock for PLLB. The PLL clock signal has a frequency that depends on the respective source signal frequency and on
the parameters DIV (DIVB) and MUL (MULA, MULB) and PLLEN (PLLAEN). The factor applied to the source signal
frequency is (MUL + 1)/DIV. When MUL is written to 0 or PLLEN=0, the PLL is disabled and its power consumption is
saved. Note that there is a delay of two SLCK clock cycles between the disable command and the real disable of the
PLL. Re-enabling the PLL can be performed by writing a value higher than 0 in the MUL field and PLLA(B)EN higher
than O.

To change the frequency of the PLLA, the PLLA must be first disabled by writing 0 in the MULA field and 0 in
PLLACOUNT field. Then, wait for two SLCK clock cycles before configuring the PLLA to generate the new frequency
by programming a new multiplier in MULA and the PLLACOUNT field in the same register access. See the “Electrical
Characteristics” to get the PLLACOUNT values covering the PLL transient time.

Whenever the PLL is re-enabled or one of its parameters is changed, PMC_SR.LOCK (LOCKA, LOCKB) is
automatically cleared. The values written in the PLLCOUNT field (PLLACOUNT, PLLBCOUNT) in CKGR_PLLR
(CKGR_PLLAR, CKGR_PLLBR) are loaded in the PLL counter. The PLL counter then decrements at the speed of the

SAMA4CP16C [DATASHEET] 453
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Slow clock until it reaches 0. At this time, PMC_SR.LOCK is set and triggers an interrupt to the processor. The user
has to load the number of Slow clock cycles required to cover the PLL transient time into the PLLCOUNT field.

The PLL clock can be divided by 2 by writing PMC_MCKR.PLLDIV2 (PLLADIV2, PLLBDIV2).
The PLLADIV2 has no effect on PLLB clock input because the output of the PLLA is directly routed to PLLB input
selection.
It is prohibited to change the frequency of the 4/8/12 MHz RC oscillator or to change the source of the Main clock in
CKGR_MOR while the Master clock source is the PLL and the PLL reference clock is the 4/8/12 MHz RC oscillator.
The user must:

1. Switch on the 4/8/12 MHz RC oscillator by writing a 1 to PMC_MCKR.CSS.
Change the frequency (MOSCRCF) or oscillator selection (MOSCSEL) in CKGR_MOR.
Wait for PMC_SR.MOSCRCS (if frequency changes) or PMC_SR.MOSCSELS (if oscillator selection changes).
Disable and then enable the PLL.
Wait for PMC_SR.LOCK flag.
Switch back to the PLL by writing the appropriate value to PMC_MCKR.CSS.

S

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30. Power Management Controller (PMC)

30.1 Description

The Power Management Controller (PMC) optimizes power consumption by controlling all system and user peripheral
clocks. The PMC enables/disables the clock inputs to many of the peripherals and the Cortex-M4 Processor.

The Supply Controller selects either the embedded 32 kHz RC oscillator or the 32.768 kHz crystal oscillator. The
unused oscillator is disabled automatically so that power consumption is optimized.

By default, at startup, the chip runs out of the Master clock using the 4/8/12 MHz RC oscillator running at 4 MHz.

The user can trim the 8 and 12 MHz RC oscillator frequencies by software.

30.2 Embedded Characteristics

The PMC provides the following clocks:

e Master Clock (MCK): programmable from a few hundred Hz to the maximum operating frequency of the device.
It is available to the modules running permanently, such as the Enhanced Embedded Flash Controller.

e Processor Clock (HCLK) and Coprocessor (second processor) Clock (CPHCLK): automatically switched off
when entering the processor in Sleep Mode.

Free running Processor Clock (FCLK) and Free running Coprocessor Clock (CPFCLK).
One SysTick external clock for each Cortex-M4 core.

e Peripheral Clocks: provided to the embedded peripherals (USART, SPI, TWI, TC, etc) and independently
controllable.

e Programmable Clock Outputs (PCKXx): selected from the clock generator outputs to drive the device PCK pins.

The PMC also provides the following features on clocks:

e A 3to 20 MHz crystal oscillator clock failure detector.

e A 32.768 kHz crystal oscillator frequency monitor.

e A frequency counter on Main clock.

e An on-the-fly adjustable 4/8/12 MHz RC oscillator frequency.

SAMA4CP16C [DATASHEET] 455
Atmel ;]

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.3 Block Diagram

Figure 30-1. General Clock Block Diagram

'
wejshg %0019 Ld-¥IND) | 810D '
. FE)
. Juswabeuely
%00[D Jalsey sng A : Jamod
108801
01000 Konado :
. _EEQO% mEEm.ﬁ
¥00|9 Buiuuny s814 : - mmmmma- mmmmma-
Jossasoidory € —" : ¢ WONONd ygTId o0
: ZNagTd ERES '
340/NO =4OW8dO ' H
%0019 o1 sAS A ¥a0SAI0S OWd . 0 H
108$8001d0D) MOILSASdD 8/4oping ' 2/ 4eping :
' wogmd 4 | PEM . u :
' '
” apopy dea|g : 30010 971d m
00|19 Jossaooido) A| Jalonuon A| . '
H1OHD #01 squdd0] [ssod0 : ' H
10ss8001d0) 440/NO =40d0 . H
¥A0S/A30S ONd ol UYOW ONd '
' '
_ J 9} 01 | Aq eping L AQYTId] '
[z+whpo”ydued / d Jojeoselq yoend MOVT1d H_l ML '
4400 WOQYTId * :
<«-4-- YovTid s '
: '
- SONVN '
duad wajsh: (440N "OIWd) '
Mﬂwuovcwooﬁwﬁow 19]|044UOD %000 Ja)SE MITS " " 10je|losQ :
X8pul UB S| W 8JaYM ' H Jojeuosay |-|D 1Nnox
B ' olwess) '
[wyo"yduad / : f 10 !
440INO ' [eyski) \]D NIX
.. '
ZHWN 02-¢
'
sEeees SEemeEEs N B I SomEeEs I MONIVIA
Wejshs Y00[0 0d-FNO) 0 8100 #0000 Uy)

[z+ulo"ydued

7
340/NO

[1+ul " yduad

slesayduad wayshs
J0ss8001d By} 1o}

3440/NO

xapu ue siuaseyp [ulyp yduad

\ -
4H0IN0 (404 ONd
/X430d OId)

10)€[19S0 DY

ZHN TL/8ly

Bppaqu:
13SOSON PepPequ3

HOW HOMO

T0Je[[I0S0

f |eyshin
ZH 89/2¢

€=fF=- 18]103U0D %00|)
sleJayduag
39010 Ja)se}y sng A
10859901
4 o
32010 Buiuuny sai4 p— MogTid *
108539014 Jueerau L
104 8/'vI'eIe L Movid
Jajeasald N
$00[9 1L SAS 8/49pING PNV]
108$8001d (4O OWd)
MOILSAS 18]1043U0D) ¥00[D JaISe) #018 "
apoy das|s '
U e "
10/j0AU0D A| '
390]0 10888201d A| %0019 :
M10H 108880014 H
'
'

poN)
30019 Mol

:

'

'

'

'

'

'

[BUIEIX® JO '
\.|D 2eLnox

s

'

'

'

'

'

'

H

'

'

CENIX

(4W~0dNS) SSVAABISO

L
L

10}eIauss) ¥20[D

(4970dNS) 13STVLX

Atmel

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22.

456

-Sep-16

30.4

30.5

30.6

30.7

Master Clock Controller

The Master Clock Controller provides selection and division of the Master clock (MCK) and coprocessor Master clock
(CPMCK). MCK is the source clock of the peripheral clocks in the subsystem 0 and CPMCK is the source of the
peripheral clocks in the subsystem 1. The Master Clock is selected from one of the clocks provided by the Clock
Generator.

Selecting the Slow clock provides a Slow clock signal to the whole device. Selecting the Main clock saves power
consumption of the PLLs. The Master Clock Controller is made up of a clock selector and a prescaler.

The Master clock selection is made by writing PMC_MCKR.CSS/CPCSS (Clock Source Selection/Coprocessor Clock
Source Selection). The prescaler supports the division by a power of 2 of the selected clock between 1 and 64, and
the division by 3. The PMC_MCKR.PRES/CPPRES programs the prescaler.

Each time PMC_MCKR is written to define a new Master clock, PMC_SR.MCKRDY is cleared. It reads 0 until the
Master clock is established. Then, MCKRDY is set and can trigger an interrupt to the processor. This feature is useful
when switching from a high-speed clock to a lower one to inform the software when the change is actually done.

Figure 30-2. Master Clock Controller
PMC_MCKR PMC_MCKR

SLCK

MAINCK ——
| Master Clock To the MCK Divider

PLLACK —— | Prescaler
PLLBCK

To the Processor
Clock Controller (PCK)

Processor Clock Controller

The PMC features a Processor Clock Controller (HCLK) and a Coprocessor Clock Controller (CPHCLK) that
implements the Processor Sleep mode. The processor clocks can be disabled by executing the WFI
(WaitForlInterrupt) or the WFE (WaitForEvent) processor instruction while the LPM bit is at 0 in the PMC Fast Startup
Mode register (PMC_FSMR).

The Processor Clock Controller is enabled after a reset and is automatically re-enabled by any enabled interrupt. The
Coprocessor Clock Controller is disabled after reset. It is up to the Master application to enable the CPHCLK. Similar
to HCLK, CPHCLK is automatically re-enabled by any enabled instruction after having executed a WFI instruction.
The Processor Sleep mode is entered by disabling the Processor clock, which is automatically re-enabled by any
enabled fast or normal interrupt, or by the reset of the product.

When Processor Sleep mode is entered, the current instruction is finished before the clock is stopped, but this does
not prevent data transfers from other masters of the system bus.

SysTick Clock

The SysTick calibration value is fixed to 8000 which allows the generation of a time base of 1 ms with SysTick clock to
the maximum frequency on MCK divided by 8.

Peripheral Clock Controller

The PMC controls the clocks of each embedded peripheral by means of the Peripheral Clock Controller. The user can
individually enable and disable the Clock on the peripherals.

The user can also enable and disable these clocks by writing Peripheral Clock Enable 0 (PMC_PCERO), Peripheral
Clock Disable 0 (PMC_PCDRO), Peripheral Clock Enable 1 (PMC_PCER1) and Peripheral Clock Disable 1

SAMA4CP16C [DATASHEET] 457
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.8

30.9

30.10

458

(PMC_PCDR1) registers. The status of the peripheral clock activity can be read in the Peripheral Clock Status register
(PMC_PCSRO) and Peripheral Clock Status register (PMC_PCSR1).

If the peripherals located on the coprocessor system bus require data exchange with the co-processor or the main
processor, the CPBMCK clock must be enabled prior to enable any co-processor peripheral clock.

When a peripheral clock is disabled, the clock is immediately stopped. The peripheral clocks are automatically
disabled after a reset.

To stop a peripheral, it is recommended that the system software wait until the peripheral has executed its last
programmed operation before disabling the clock. This is to avoid data corruption or erroneous behavior of the
system.

The bit number within the Peripheral Clock Control registers (PMC_PCERO0-1, PMC_PCDRO0-1, and PMC_PCSRO0-1)

is the Peripheral Identifier defined at the product level. The bit number corresponds to the interrupt source number
assigned to the peripheral.

Free Running Processor Clock

The Free Running Processor Clock (FCLK) together with the Free Running Coprocessor Master clock (CPFCLK)
used for sampling interrupts and clocking debug blocks ensures that interrupts can be sampled, and sleep events can
be traced, while the processors are sleeping. It is connected to Master clock (MCK)/Coprocessor Master clock
(CPMCK).

Programmable Clock Output Controller

The PMC controls 3 signals to be outputs on external pins, PCKx. Each signal can be independently programmed via
the Programmable Clock registers (PMC_PCKX).

PCKXx can be independently selected between the Slow clock (SLCK), the Main clock (MAINCK), the PLLA clock
(PLLACK), the PLLB clock (PLLBCK), and the Master clock (MCK) by writing PMC_PCKx.CSS. Each output signal
can also be divided by a power of 2 between 1 and 64 by writing PMC_PCKx.PRES.

Each output signal can be enabled and disabled by writing a 1 to the corresponding PMC_SCER.PCKx and
PMC_SCDR.PCKX, respectively. Status of the active programmable output clocks are given in PMC_SCSR.PCKXx.

PMC_SR.PCKRDYx status flag indicates that the Programmable clock is actually what has been programmed in the
Programmable clock registers.

As the Programmable Clock Controller does not manage with glitch prevention when switching clocks, it is strongly
recommended to disable the Programmable clock before any configuration change and to re-enable it after the
change is actually performed.

Main Processor Fast Startup
At exit from Wait mode, the device allows the main processor to restart in less than 10 microseconds only if the
C-code function that manages the Wait mode entry and exit is linked to and executed from on-chip SRAM.

The fast startup time cannot be achieved if the first instruction after an exit is located in the embedded Flash.
If fast startup is not required, or if the first instruction after a Wait mode exit is located in embedded Flash, see Section
30.11 "Main Processor Startup from Embedded Flash”.

Prior to instructing the device to enter Wait mode:
1. Select the 4/8/12 MHz RC oscillator as the Master clock source (PMC_MCKR.CSS must be written to 1).
2. Disable the PLL if enabled.
3. Clear the internal wake-up sources.
The system enters Wait mode either by setting CKGR_MOR.WAITMODE, or by executing the WaitForEvent (WFE)

instruction of the processor while the LPM bit is at 1 in the Fast Startup Mode register (PMC_FSMR). Immediately
after setting the WAITMODE bit or using the WFE instruction, wait for PMC_SR.MCKRDY to be set.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.11

In case of dual core activity, it is recommended to check the coprocessor state before instructing the main processor
to enter Wait mode.

A Fast Startup occurs upon the detection of a programmed level on one of the wake-up input pins WKUPXx (For the
number of inputs, refer to section “Peripheral Signal Multiplexing on 1/O Lines”) or upon an active alarm from the RTC
and RTT. The polarity of each wake-up input is programmable by writing the PMC Fast Startup Polarity register
(PMC_FSPR).

WARNING: The duration of the WKUPX pins active level must be greater than four Main clock cycles.

The Fast Startup circuitry, as shown in Figure 30-3, is fully asynchronous and provides a fast startup signal to the
PMC. As soon as the fast startup signal is asserted, the embedded 4/8/12MHz RC oscillator restarts automatically.

When entering Wait mode, the embedded Flash can be placed in one of the Low-power modes (Deep-power-down or
Standby modes) depending on the configuration of PMC_FSMR.FLPM. FLPM can be programmed at anytime and its
value will be applied to the next Wait mode period.

The power consumption reduction is optimal when configuring 1 (Deep-power-down mode) in PMC_FSMR.FLPM. If 0
is programmed (Standby mode), the power consumption is slightly higher than in Deep-power-down mode.

When programming 2 in PMC_FSMR.FLPM, the Wait mode Flash power consumption is equivalent to that of the
Active mode when there is no read access on the Flash.

Figure 30-3. Fast Startup Circuitry

WKUPO Di

WKUPL Di‘)

I

I FSTP1

o [ested]

! FSTT15
I

WKUP15 Di‘) 37 fast_restart
FSTP15 RTTAL

}

RTCAL

RTC Alarm ————] :

Each wake-up input pin and alarm can be enabled to generate a Fast Startup event by setting the corresponding bit in
PMC_FSMR.

The user interface does not provide any status for Fast Startup. The status can be read in the PIO Controller and the
status registers of the RTC and RTT.

m m
0 0
- H
— =
[o

Y

-

RTT Alarm

Hily

Main Processor Startup from Embedded Flash
The inherent startup time of the embedded Flash cannot provide a fast startup of the system.

If system fast startup time is not required, the first instruction after a Wait mode exit can be located in the embedded
Flash. Under these conditions, prior to entering Wait mode, the Flash controller must be programmed to perform
access in 0 wait-state. Refer to the Section 22. "Enhanced Embedded Flash Controller (EEFC)”.

The procedure and conditions to enter Wait mode and the circuitry to exit Wait mode are strictly the same as fast
startup (see Section 30.10 "Main Processor Fast Startup”).

SAMA4CP16C [DATASHEET] 459
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.12

30.13

460

Coprocessor Sleep Mode

The coprocessor enters Sleep mode by executing the WaitForlnterrupt (WFI) instruction of the coprocessor. Any
enabled interrupt can wake the processor up.

Main Clock Failure Detector

The clock failure detector monitors the 3 to 20 MHz crystal oscillator or ceramic resonator-based oscillator to identify a
failure of this oscillator when selected as Main clock.

The clock failure detector can be enabled or disabled by configuring CKGR_MOR.CFDEN. It is also disabled in either
of the following cases:

e after a VDDCORE reset

e when the 3 to 20 MHz crystal oscillator is disabled (MOSCXTEN = 0)

A failure is detected by means of a counter incrementing on the Main clock and detection logic is triggered by the 32
kHz (typical) RC oscillator which is automatically enabled when CFDEN = 1.

The counter is cleared when the 32 kHz (typical) RC oscillator clock signal is low and enabled when the signal is high.
Thus, the failure detection time is one RC oscillator period. If, during the high level period of the 32 kHz (typical) RC
oscillator clock signal, less than eight 3 to 20 MHz crystal oscillator clock periods have been counted, then a failure is
reported.

If a failure of the Main clock is detected, PMC_SR.CFDEYV indicates a failure event and generates an interrupt if the
corresponding interrupt source is enabled. The interrupt remains active until a read occurs in PMC_SR. The current
status of the clock failure detection can be read at any time from PMC_SR.CFDS.

Figure 30-4. Clock Failure Detection (Example)
Main Crystal Clock

d PMC_SR
a —
o b

CFDEV

CFDS

1

Note: ratio of clock periods is for illustration purposes only

If the 3 to 20 MHz crystal oscillator or ceramic resonator-based oscillator is selected as the source clock of MAINCK
(CKGR_MOR.MOSCSEL = 1), and if MCK source is PLLACK or PLLBCK (CSS = 2), a clock failure detection
automatically forces MAINCK to be the source clock for MCK. Then, regardless of the PMC configuration, a clock
failure detection automatically forces the 4/8/12 MHz RC oscillator to be the source clock for MAINCK. If this oscillator
is disabled when a clock failure detection occurs, it is automatically re-enabled by the clock failure detection
mechanism.

Two 32 kHz (typical) RC oscillator clock cycles are necessary to detect and switch from the 3 to 20 MHz crystal
oscillator, to the 4/8/12 MHz RC oscillator if the source Master clock (MCK) is Main clock (MAINCK), or three 32 kHz
(typical) RC oscillator clock cycles if the source of MCK is PLLACK or PLLBCK.

The current status of the clock failure detection can be read at any time from PMC_SR.FOS.

This fault output remains active until the defect is detected and until it is cleared by the bit FOCLR in the PMC Fault
Output Clear register (PMC_FOCR).

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.14 32.768 kHz Crystal Oscillator Frequency Monitor

The frequency of the 32.768 kHz crystal oscillator can be monitored by means of logic driven by the 4/8/12 MHz RC
oscillator known as a reliable clock source. This function is enabled by configuring CKGR_MOR.XT32KFME. The
PMC_OCR.SEL4/SEL8/SEL12 must be cleared.

An error flag (PMC_SR.XT32KERR) is asserted when the 32.768 kHz crystal oscillator frequency is out of the +/-10%
nominal frequency value (i.e., 32.768 kHz). The error flag can be cleared only if the Slow clock frequency monitoring
is disabled.

When the 4/8/12 MHz RC oscillator frequency is 4 MHz, the accuracy of the measurement is +/-40% as this frequency
is not trimmed during production. Therefore, +/-10% accuracy is obtained only if the RC oscillator frequency is
configured for 8 or 12 MHz.

The monitored clock frequency is declared invalid if at least 4 consecutive clock period measurement results are over
the nominal period +/-10%.

Due to the possible frequency variation of the embedded 4/8/12 MHz RC oscillator acting as reference clock for the
monitor logic, any 32.768 kHz crystal oscillator frequency deviation over +/-10% of the nominal frequency is
systematically reported as an error by the PMC_SR.XT32KERR. Between -1% and -10% and +1% and +10%, the
error is not systematically reported.

Thus only a crystal running at 32.768 kHz frequency ensures that the error flag will not be asserted. The permitted drift
of the crystal is 10000 ppm (1%), which allows any standard crystal to be used.

If the 4/8/12 MHz RC frequency needs to be changed while the frequency monitor is operating, the monitoring must
be stopped prior to changing the 4/8/12 MHz RC frequency. It can then be re-enabled as soon as
PMC_SR.MOSCRCS is set.

The error flag can be defined as an interrupt source of the PMC by setting PMC_IER.XT32KERR.

30.15 Programming Sequence

1. If the 3 to 20 MHz crystal oscillator is not required, the PLL and divider can be directly configured (Step 6.) else
this oscillator must be started (Step 2.).

2. Enable the 3 to 20 MHz crystal oscillator by setting CKGR_MOR.MOSCXTEN:
The user can define a startup time. This is done by writing a value in CKGR_MOR.MOSCXTST. Once this
register has been correctly configured, the user must wait for PMC_SR.MOSCXTS to be set. This is done either
by polling PMC_SR.MOSCXTS, or by waiting for the interrupt line to be raised if the associated interrupt source
(PMC_IER.MOSCXTS) has been enabled.

3. Switch the MAINCK to the 3 to 20 MHz crystal oscillator by setting CKGR_MOR.MOSCSEL.
4. Wait for PMC_SR.MOSCSELS to be set to ensure the switch is complete.
5. Check the Main clock frequency:

This Main clock frequency can be measured via CKGR_MCFR.

Read CKGR_MCFR until the MAINFRDY field is set, after which the user can read the MAINF field by
performing an additional read. This provides the number of Main clock cycles that have been counted during a
period of 16 Slow clock cycles.

If MAINF = 0, switch the MAINCK to the 4/8/12 MHz RC oscillator by clearing CKGR_MOR.MOSCSEL. If
MAINF # 0, proceed to Step 6.

6. Set PLLx and Divider (if not required, proceed to Step 7.):
In the names PLLx, DIVx, MULx, LOCKx, PLLXCOUNT, and CKGR_PLLxR, ‘X’ represents A or B.
All parameters needed to configure PLLx and the divider are located in CKGR_PLLxR.

The DIVx field is used to control the divider. This parameter can be programmed between 0 and 127. Divider
output is divider input divided by DIVx parameter. By default, DIVx field is cleared which means that the divider
and PLLx are turned off.

SAMA4CP16C [DATASHEET] 461
Atmel ; :

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

The MULX field is the PLLx multiplier factor. This parameter can be programmed between 0 and 254. If MULXx is
cleared, PLLx will be turned off, otherwise the PLLx output frequency is PLLx input frequency multiplied by
(MULx + 1).

The PLLXxCOUNT field specifies the number of Slow clock cycles before the LOCKXx bit is set in the PMC_SR
after CKGR_PLLxR has been written.

Once CKGR_PLLxR has been written, the user must wait for PMC_SR.LOCKXx to be set. This can be done
either by polling PMC_SR.LOCKXx or by waiting for the interrupt line to be raised if the associated interrupt
source (PMC_IER.LOCKX) has been enabled. All fields in CKGR_PLLxR can be programmed in a single write
operation. If at some stage one of the following parameters, MULx or DIVx is modified, the LOCKXx bit goes low
to indicate that PLLx is not yet ready. When PLLx is locked, LOCKX is set again. The user must wait for the
LOCKX bit to be set before using the PLLx output clock.

Select the Master clock and Processor clock:
The Master clock and the Processor clock are configurable via PMC_MCKR.

The CSS field is used to select the clock source of the Master clock and Processor clock dividers. By default,
the selected clock source is the Main clock.

The PRES field is used to define the Processor clock and Master clock prescaler. The user can choose
between different values (1, 2, 3, 4, 8, 16, 32, 64). Prescaler output is the selected clock source frequency
divided by the PRES value.

Once the PMC_MCKR has been written, the user must wait for PMC_SR.MCKRDY to be set. This can be done
either by polling PMC_SR.MCKRDY or by waiting for the interrupt line to be raised if the associated interrupt
source (PMC_IER.MCKRDY) has been enabled. PMC_MCKR must not be programmed in a single write
operation. The programming sequence for PMC_MCKR is as follows:

e |f a new value for CSS field corresponds to PLL clock,
e Program PMC_MCKR.PRES.
e Wait for PMC_SR.MCKRDY to be set.
e Program PMC_MCKR.CSS.
e Wait for PMC_SR.MCKRDY to be set.
e If a new value for CSS field corresponds to Main clock or Slow clock,
e Program PMC_MCKR.CSS.
e Wait for PMC_SR.MCKRDY to be set.
e Program PMC_MCKR.PRES.
e Wait for PMC_SR.MCKRDY to be set.

If CSS or PRES are modified at any stage, MCKRDY goes low to indicate that the Master clock and the
Processor clock are not yet ready. The user must wait for MCKRDY bit to be set again before using the master
and Processor clocks.

Note: If PLLx clock was selected as the Master clock and the user decides to modify it by writing in
CKGR_PLLxR, the MCKRDY flag will go low while PLLx is unlocked. Once PLLx is locked again,
LOCKXx goes high and MCKRDY is set. While PLLx is unlocked, the Master clock selection is automati-
cally changed to Slow clock for PLLA and Main clock for PLLB. For further information, see Section
30.16.2 "Clock Switching Waveforms”.

Code Example:
write_register(PMC_MCKR,0x00000001)
wait (MCKRDY=1)
write_register(PMC_MCKR,0x00000011)
wait (MCKRDY=1)

The Master clock is Main clock divided by 2.

SAM4CP16C [DATASHEET] /ltmeL

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

8. Select the Programmable clocks:
Programmable clocks are controlled via registers, PMC_SCER, PMC_SCDR and PMC_SCSR.

Programmabile clocks can be enabled and/or disabled via PMC_SCER and PMC_SCDR. Three Programmable
clocks can be used. PMC_SCSR indicates which Programmable clock is enabled. By default all Programmable
clocks are disabled.

PMC_PCKXx registers are used to configure Programmable clocks.

The CSS field is used to select the Programmable clock divider source. Several clock options are available:
Main clock, Slow clock, Master clock, PLLACK, PLLBCK. The Slow clock is the default clock source.

The PRES field is used to control the Programmable clock prescaler. It is possible to choose between different
values (1, 2, 4, 8, 16, 32, 64). Programmable clock output is prescaler input divided by PRES parameter. By
default, the PRES value is cleared which means that PCKXx is equal to Slow clock.

Once PMC_PCKXx has been configured, the corresponding Programmable clock must be enabled and the user
is constrained to wait for PMC_SR.PCKRDYXx to be set. This can be done either by polling PMC_SR.PCKRDYx
or by waiting for the interrupt line to be raised if the associated interrupt source (PMC_IER.PCKRDYx) has
been enabled. All parameters in PMC_PCKXx can be programmed in a single write operation.

If the CSS and PRES parameters are to be modified, the corresponding Programmable clock must be disabled
first. The parameters can then be modified. Once this has been done, the user must re-enable the Programma-
ble clock and wait for the PCKRDYx bit to be set.

9. Enable the peripheral clocks:

Once all of the previous steps have been completed, the peripheral clocks can be enabled and/or disabled via
registers PMC_PCERO, PMC_PCER, PMC_PCDRO0 and PMC_PCDR.

30.16 Clock Switching Details

30.16.1 Master Clock Switching Timings

Table 30-1 and Table 30-2 give the worst case timings required for the Master clock to switch from one selected clock
to another one. This is in the event that the prescaler is de-activated. When the prescaler is activated, an additional
time of 64 clock cycles of the newly selected clock has to be added.

Table 30-1. Clock Switching Timings (Worst Case)

From Main Clock SLCK PLL Clock
To
3xPLL Clock +
Main Clock -) 5“)("5;?:’2;"; i 4 x SLCK +
: 1 x Main Clock
0.5 x Main Clock + 3 x PLL Clock +
SLCK 45x SLCK - 5 x SLCK
0.5 : ygt‘&'i"k * 2.5 x PLL Clock + 2.5 x PLL Clock +
PLL Clock PLLCOUNT x SLCK + PLLg())(USlil_'? 5 ;LCK PLLé())(USlil_'? 5 ;LCK
2.5 x PLLx Clock
Notes: 1. PLL designates either the PLLA or the PLLB Clock.
2. PLLCOUNT designates either PLLACOUNT or PLLBCOUNT.
SAM4CP16C [DATASHEET 463
Atmel []

Atmel-430801-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Table 30-2. Clock Switching Timings between Two PLLs (Worst Case)

From PLLA Clock PLLB Clock
To
2.5 x PLLA Clock + 3 x PLLA Clock +
PLLA Clock 4 x SLCK + 4 x SLCK +
PLLACOUNT x SLCK 1.5 x PLLA Clock
3 x PLLB Clock + 2.5 x PLLB Clock +
PLLB Clock 4 x SLCK + 4 x SLCK+
1.5 x PLLB Clock PLLBCOUNT x SLCK

30.16.2 Clock Switching Waveforms

464

Figure 30-5. Switch Master Clock from Slow Clock to PLLx Clock

SIowCIock||||||||||||||||||||||||||||||||||

PLLxCIock|||

LOCK

—

MCKRDY

MasterCIock|||||||||||||||||||||||||||| |||||

Write PMC_MCKR |

SAM4CP16C [DATASHEET]

Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Atmel

Figure 30-6. Switch Master Clock from Main Clock to Slow Clock

Slow Clock | | | | | | | | | | |_

MCKRDY |

Write PMC_MCKR |

Figure 30-7. Change PLLx Programming

SIowCIock||
PLLx Clock ||| |||||||||||||||||| | | | | | | | | | | | | | | | I ||

LOCKx

MCKRDY

MasterCIock||||||||||||||||| |||||||||||||||| ||| ||
