
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Description

Atmel SAM4CP16C belongs to Atmel® │SMART energy portfolio. It is based on SAM4C, a high
performance 32-bit, dual core ARM® Cortex®-M4 RISC processor embedding a G3 PLC
[Power Line Communication] modem. The two cores Cortex-M4 are able to operate at a maxi-
mum speed of 120 MHz, featuring 1 Mbyte of embedded Flash, 128 kBytes of SRAM and on-
chip cache for each core.

SAM4CP16C is a flexible, compact and high-efficient device for a wide range of Smart Grid
applications such as Smart Metering (Smart Meters and Data Concentrators), Lighting, Indus-
trial / Home Automation, Home and Building Energy Management Systems, Solar Energy and
Plug-in Hybrid Electric Vehicle (PHEV) Charging Stations.

The unique dual ARM Cortex-M4 architecture allows implementation of signal processing,
application and communications firmware in independent partitions, supported by a powerful
embedded PLC modem and an extensive set of embedded cryptographic features.
SAM4CP16C can be combined with external Atmel devices for metrology, representing a flexi-
ble and highly efficient platform for smart metering applications.

The peripheral set includes advanced cryptographic engine, anti-tamper, floating point unit
(FPU), 5x USARTs, 2x UARTs, 2x TWIs, 6 x SPI, as well as 1 PWM timer, 2x three channel
general-purpose 16-bit timers, integrated true RTC, a 10-bit ADC, and a 46 x 5 Segmented
LCD controller.

SAM4CP16C operates from 1.62V to 3.6V and is available in 176-pin LQFP package.

SAM4CP16C

Atmel │SMART Power Line Communications Device

DATASHEET

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 2

1. Features
 Application/Master Core (CM4P0)

 ARM Cortex-M4 running at up to 120 MHz(1)

 Memory Protection Unit (MPU)
 DSP Instruction
 Thumb®-2 instruction set
 Instruction and Data Cache Controller with 2 Kbytes Cache Memory
 Memories

 1024 Kbytes of Embedded Flash for Program Code (I-Code bus) and Program Data (D-Code bus)
with Built-in ECC (2-bit error detection and 1-bit correction per 128 bits)

 128 Kbytes of Embedded SRAM (SRAM0) for Program Data (System bus)
 8 Kbytes of ROM with embedded boot loader routines (UART) and In-Application Programming

(IAP) routines
 Co-processor (CM4P1), provides ability to separate application, communication or metrology functions

 ARM Cortex-M4F running at up to 120 MHz(1)

 IEEE® 754 Compliant, Single-precision Floating-Point Unit (FPU)
 DSP Instruction
 Thumb-2 instruction set
 Instruction and Data Cache Controller with 2 Kbytes of Cache Memory
 Memories

 16 Kbytes of Embedded SRAM (SRAM1) for Program Code (I-Code bus) and Program Data (D-
Code bus and System bus)

 8 Kbytes of Embedded SRAM (SRAM2) for Program Data (System bus)
 Symmetrical/Asynchronous Dual Core Architecture

 Interrupt-based Interprocessor Communication
 Asynchronous Clocking
 One Interrupt Controller (NVIC) for each core
 Each Peripheral IRQ routed to each NVIC Input

 G3-PLC Modem
 Implements G3 CENELEC-A, FCC and ARIB profiles (ITU-T G.9903, June ’14)
 Power Line Carrier Modem for 50 Hz and 60 Hz mains
 G3-PLC coherent and differential modulation schemes available
 Automatic Gain Control and continuous amplitude tracking in signal reception
 Zero cross detection
 Embedded PLC Analog Front End (AFE), requires only external discrete high efficient Class D Line

Driver for signal injection
 Cryptography

 High-performance AES 128 to 256 with various modes (GCM, CBC, ECB, CFB, CBC-MAC, CTR)
 TRNG (up to 38 Mbit/s stream, with tested Diehard and FIPS)
 Classical Public Key Crypto accelerator and associated ROM library for RSA, ECC, DSA, ECDSA
 Integrity Check Module (ICM) based on Secure Hash Algorithm (SHA1, SHA224, SHA256), DMA-

assisted
 Safety

 Up to four Physical Anti-tamper Detection I/Os with Time Stamping and Immediate Clear of General
Backup Registers

 Security Bit for Device Protection from JTAG Accesses

 3SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 Shared System Controller
 Power Supply

 Embedded core and LCD voltage regulator for single-supply operation
 Power-on-Reset (POR), Brownout Detector (BOD) and Dual Watchdog for safe operation
 Ultra-low-power Backup mode (<0.5 μA Typical @ 25ºC)

 Clock
 Optional 3 to 20 MHz quartz or ceramic resonator oscillators with clock failure detection
 Ultra-low-power 32.768 kHz crystal oscillator for RTC with frequency monitoring
 24 MHz quartz or ceramic resonator for GPLC peripheral
 High-precision 4/8/12 MHz factory-trimmed internal RC oscillator with on-the-fly trimming

capability
 One high-frequency PLL up to 240 MHz, one 8 MHz PLL with internal 32 kHz input, as source for

high-frequency PLL
 Low-power slow clock internal RC oscillator as permanent clock

 Ultra low-power RTC with Gregorian and Persian Calendar, Waveform Generation in Backup mode and
Clock Calibration Circuitry for 32.768 kHz Crystal Frequency Compensation Circuitry

 Up to 23 Peripheral DMA (PDC) Channels
 Shared Peripherals

 One Low-power Segmented LCD Controller
 Display capacity of 46 Segments and 5 common terminals
 Software-selectable LCD output voltage (Contrast)
 Low current consumption in Low-power mode
 Can be used in Backup mode

 Up to five USARTs with ISO7816, IrDA®, RS-485, SPI and Manchester Mode
 Two 2-wire UARTs with one UART (UART1) supporting optical transceiver providing an electrically

isolated serial communication with hand-held equipment, such as calibrators, compliant with ANSI-
C12.18 or IEC62056-21 norms

 Two 400 kHz Master/Slave and Multi-Master Two-wire Interfaces (I2C compatible)
 Up to six Serial Peripheral Interfaces (SPI)
 Two 3-Channel 16-bit Timer/Counters with Capture, Waveform, Compare and PWM modes
 Quadrature Decoder Logic and 2-bit Gray Up/Down Counter for Stepper Motor
 4-channel 16-bit Pulse Width Modulator
 32-bit Real-time Timer

 Analog Conversion Block
 8-channel, 500 kS/s, Low-power 10-bit SAR ADC with Digital Averager providing 12-bit Resolution at 30

kS/s
 Software-controlled On-chip Reference ranging from 1.6V to 3.4V
 Temperature Sensor and Backup Battery Voltage Measurement Channel

 Debug
 Star Topology AHB-AP Debug Access Port Implementation with Common SW-DP / SWJ-DP Providing

Higher Performance than Daisy-chain Topology
 Debug Synchronization between both Cores (cross triggering to/from each core for Halt and Run Mode)

 I/O
 Up to 69 I/O lines with External Interrupt Capability (edge or level sensitivity), Schmitt Trigger, Internal

Pull-up/pull-down, Debouncing, Glitch Filtering and On-die Series Resistor Termination
 Packages

 176-lead LQFP, 24 x 24 mm, pitch 0.5 mm

Note: 1. 120 MHz: -40°C/+85°C, VDDCORE = 1.2V

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 4

1.1 Configuration Summary
Table 1-1 summarizes the SAM4CP16C device configurations.

Notes: 1. Using SPI mode of USARTs (1 SPI Controller + 5 USARTs with SPI mode).
2. One channel is reserved for internal temperature sensor and one channel for VDDBU measurement.

Table 1-1. Configuration Summary

Feature SAM4CP16C

Flash 1024 Kbytes

SRAM 128 + 16 + 8 Kbytes

Package LQFP 176

Number of PIOs 69

16-bit Timer 6 channels

16-bit PWM 4 channels

UART / USART 2/5

SPI (1) 6

TWI 2

10-bit ADC Channels(2) 7

Cryptography AES, CPKCC, ICM (SHA), TRNG

Segmented LCD 46 segments x 5 commons

Anti-Tampering Inputs 4

Flash Page Size 512

Flash Pages 2048

Flash Lock Region Size 8192

Flash Lock Bits 128

 5SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

1.2 SAM4CP application block diagram

Figure 1-1. Block diagram of example of SAM4CP application

SAM4CP16C

20MHz
Crystal

115/230 VAC

Zero Crossing

MAINS 3V3

TWI

RS485

Slow Clock
Crystal

BACK-UP BATTERY

2 kB EEPROM

PLC Coupling
PLC

SPI1 & USART1

JTAG

USART0

RS485
Transceiver

UART0 & UART1

SEGs

COMs

GPIOs

Xplained PRO

JTAG

UARTs CMOS

LCD

User LED´s

RESET

FWUP & TMP0

UART
to

USB
B Micro USB Port

RECTIFIER DC/DC

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 6

2. Block Diagram

Figure 2-1. SAM4CP16C 176-pin Block Diagram

Asynchronous
AHB / AHB

Bridge

TIOA[3:5]
TIOB[3:5]

TCLK[3:5]

URXD0
UTXD0

RXD[0..4]
TXD[0..4]
SCK[0..4]
RTS[0..4]
CTS[0..4]

TIOB[0:2]

TCLK[0:2]

TIOA[0:2]

ADVREF

AD[0..1]
ADTRG

Temp. Sensor
Digital Averager

10-bit ADC

PDC0

Voltage Reference
PI

O

UART1 URXD1

UTXD1
PDC1

Optical Port

PWM[0..3]PWM

AHB-AP

FPU

Cortex-M4F Processor
(CM4P1)

NVICDSP

System busICode / DCode bus

Serial Wire and JTAG Debug Port (SW-DP/SWJ-DP)

CMCC1

2 KB Cache
Memory

PDC1

SRAM2

8KB

S-Bus

SRAM1

16KB

I/D-Bus

AHB Multilayer Bus Matrix 1

M M M / S M

S S S

AHB1
/

APB1
Bridge 1

AHB-AP

MPU

Cortex-M4 Processor
(CM4P0)

NVICDSP

System busICode / DCode bus

ICM
(SHA)

DMA

Flash
1024 KB

User Sign.
Unique Id.

ECC

SRAM0

128KB

S-Bus

ROM
(SAM-BA
CPKCL)

S-Bus

AHB Multilayer Bus Matrix 0

PDC0
CMCC0

2 KB Cache
Memory

M M / S

M

M M

S S S S

CPKCC

S

M
/
S

AHB0
/

APB0
Bridge 0

TWD1
TWCK1 TWI1

UART0 PDC0

5 x
USART

PDC0

Timer Counter A

TC[0..2]

Timer Counter B

TC[3..5]

IPC0

AESPDC0

TRNG

SEG[3..47]
COM[0..4]

SLCDC

Powered by VDDLCD

M
/
S

TDI
TDO/TRACESWO
TMS/SWDIO
TCK/SWCLK

JTAGSEL

SUB-SYSTEM 0 SUB-SYSTEM 1

SAM4CP16C

VDDOUT

LCD Voltage
Regulator

CORE Voltage
Regulator

SYSTEM CONTROLLER

VDDLCD

VDDIN
XTAL OSC
32.768kHz

RC OSC
32kHz

XIN
32

XOUT32

RTC
Time Stamping

Calibration

GPBR
16 x 32bits

RTT

RSTC

PIO
A / B / C

RSWDT

Automatic
Power-Switch VDDBU

VDDIO

Powered by VDDBU_SW

Anti-
Tampering

TST

POR
VDDBU

Supply Mon.
VDDIO

POR
VDDCORE

POR
VDDIOSUPC

SHDN
FW

UP

RTCOUT0

W
KUP[1.

.15
]

TMP0

TMP[1.
.3]

NRST

PMC

XTAL OSC
3 - 20 MHz

RC OSC
4 / 8 / 12 MHz

PLLA
8 MHz

PLLB
80 - 240 MHz

XIN
XOUT

PCK[0.
.2]

WKUP[0..15]

CLOCK SOURCES

CLOCK GENERATOR

WDT

CORES & PERIPHERALS
CLOCKS

ERASE

SPI1_NPCS[1..3]
SPI1_NPCS0

W
KUP0

AD[3..5]

SEG49

Analog Voltage
Regulator

PLL

Digital Voltage
Regulator

VDDOUT AN
VDDIN AN

VDDIN PLC
VDDOUT PLC
VDDPLL PLC

VRM
VRP

VRC

VIPA
VIMA

CLKOUT

CLKEB
CLKEA

PLL INIT

SRST
ARST

VZ CROSS
INTEST[0..9]

EMIT[0..11]

TXRX[0..1]
AGC[0..5]

GPLC

P
r
o
x
y

P
L
C

C
o
n
t
r
o
l
l
e
r

PDC0

IPC1

SPI1

PDC1

SPI1_MISO
SPI1_MOSI
SPI1_SPCK

TWI0 PDC0TWD0
TWCK0

VDDPLL
VDDCORE

 7SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

3. Signal Description
Table 3-1 provides details on signal names classified by peripheral.

Table 3-1. Signal Description List

Signal Name Function Type
Active
Level

Voltage
reference Comments

Power Supplies

VDDIO

See Table 5-1 on page 14

Power 3.0V to 3.6V

VDDBU Power 1.6V to 3.6V

VDDIN Power 2.5V to 3.6V(1)

VDDLCD Power 2.4V to 3.6V(2)

VDDOUT Power 1.2V

VDDPLL Power 1.08V to 1.32V

VDDCORE Power 1.08V to 1.32V

VDDPLL PLC Power 1.2V

VDDIN PLC Power 3.0V to 3.6V

VDDOUT PLC Power 1.2V

VDDIN AN Power 3.0V to 3.6V

VDDOUT AN Power 1.2V

GND Power

AGND Power

Clocks, Oscillators and PLLs

XIN Main Crystal Oscillator Input Analog
Digital VDDIO

XOUT Main Crystal Oscillator Output

XIN32 Slow Clock Crystal Oscillator Input Analog
Digital VDDBU

XOUT32 Slow Clock Crystal Oscillator Output

PCK0 - PCK2 Programmable Clock Output Output VDDIO

CLKEA PLC External Clock Input Input VDDIO

CLKEB PLC External Clock Input/Output I/O VDDIO

CLKOUT 12 MHz External Clock Output Output VDDIO

Supply Controller

FWUP Force Wake-up input Input Low VDDBU External Pull-up needed

TMP0 Anti-tampering Input 0 Input VDDBU

TMP1 - TMP3 Anti-tampering Inputs 1 to 3 Input VDDIO

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 8

SHDN Active Low Shutdown Control Output VDDBU

0:The device is in
Backup mode

1:The device is running
(not in Backup mode)

WKUP0 Wake-up Input 0 Input VDDBU

WKUP1 - WKUP15 Wake-up Inputs 1 to 15 Input VDDIO

Real Time Clock

RTCOUT0 Programmable RTC waveform output Output VDDIO
To use this pin, the
JTAG interface must be
used in SWD mode

Serial Wire/JTAG Debug Port - SWJ-DP

TCK/SWCLK Test Clock/Serial Wire Clock Input

VDDIO

TDI Test Data In Input

TDO/TRACESWO
Test Data Out /

Trace Asynchronous Data Out
Output

TMS/SWDIO
Test Mode Select Input /

Serial Wire Input/Output
Input /

I/O

JTAGSEL JTAG Selection Input High VDDBU Permanent Internal pull-
down(3)

Flash Memory

ERASE
Flash and NVM Configuration Bits

Erase Command
Input High VDDIO Permanent Internal pull-

down(3)

Reset/Test

NRST Synchronous Microcontroller Reset I/O Low VDDIO Permanent Internal pull-
up(3)

TST Test Select Input VDDBU Permanent Internal pull-
down(3)

ARST PLC Asynchronous Reset Input Low VDDIO Permanent Internal pull-
up(4)

SRST PLC Synchronous Reset Input Low VDDIO Permanent Internal pull-
up(4)

PLL INIT PLC PLL Initialization Signal Input Low VDDIO Permanent Internal pull-
up(4)

GPLC (G3 Power Line Communications) Transceiver

EMIT0 - EMIT11 PLC Transmission ports(5) Output VDDIO

Different configurations
allowed depending on
external topology and
net behaviour

Table 3-1. Signal Description List (Continued)

Signal Name Function Type
Active
Level

Voltage
reference Comments

 9SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

AGC0 - AGC5 PLC Automatic Gain Control Output VDDIO

TXRX0 - TXRX1 PLC Ext. coupling TxRx control Output VDDIO

VZ CROSS Mains Zero-Cross Detection Signal(6) Input VDDIO Permanent Internal pull-
down(4)

VIMA Negative Differential Voltage Input Input VDDOUT AN

VIPA Positive Differential Voltage Input Input VDDOUT AN

VRP Internal Reference “Plus” Voltage Output VDDOUT AN

VRM Internal Reference “Minus” Voltage Output VDDOUT AN

VRC Common-mode Voltage Output VDDOUT AN

INTEST0 PLC Internal Test Input VDDIO

Permanent Internal pull-
up(4)

This pin must be
connected to INTEST5
(pin 144)

INTEST1 PLC Internal Test Input VDDIO

Permanent Internal pull-
up(4)

This pin must be
connected to INTEST6
(pin 45)

INTEST2 PLC Internal Test Input VDDIO

Permanent Internal pull-
up(4)

This pin must be
connected to INTEST7
(pin 176)

INTEST3 PLC Internal Test Output VDDIO
This pin must be
connected to INTEST8
(pin 111)

INTEST4 PLC Internal Test Output VDDIO
This pin must be
connected to INTEST9
(pin 20)

INTEST5 PLC Internal Test Output VDDIO
This pin must be
connected to INTEST0
(pin 94)

INTEST6 PLC Internal Test Output VDDIO
This pin must be
connected to INTEST1
(pin 95)

INTEST7 PLC Internal Test Output VDDIO
This pin must be
connected to INTEST2
(pin 97)

Table 3-1. Signal Description List (Continued)

Signal Name Function Type
Active
Level

Voltage
reference Comments

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 10

INTEST8 PLC Internal Test Input VDDIO
This pin must be
connected to INTEST3
(pin 99)

INTEST9 PLC Internal Test Input VDDIO
This pin must be
connected to INTEST4
(pin 4)

PIO Controller - PIOA - PIOB - PIOC

PA0 - PA4,

PA9 - PA31
Parallel IO Controller A

Digital

I/O
VDDIOPB0 - PB29,

PB31
Parallel IO Controller B

PC0 - PC9 Parallel IO Controller C

Universal Asynchronous Receiver Transmitter - UARTx

URXDx UART Receive Data Input
VDDIO

Analog Mode for Optical
Receiver

UTXDx UART Transmit Data Output

Universal Synchronous Asynchronous Receiver Transmitter - USARTx

SCKx USARTx Serial Clock I/O

VDDIO

TXDx USARTx Transmit Data I/O

RXDx USARTx Receive Data Input

RTSx USARTx Request To Send Output

CTSx USARTx Clear To Send Input

Timer/Counter - TC

TCLKx TC Channel x External Clock Input Input

VDDIOTIOAx TC Channel x I/O Line A I/O

TIOBx TC Channel x I/O Line B I/O

Serial Peripheral Interface - SPI

SPI1_MISO Master In Slave Out I/O

VDDIO

SPI1_MOSI Master Out Slave In I/O

SPI1_SPCK SPI Serial Clock I/O

SPI1_NPCS0 SPI Peripheral Chip Select 0 I/O Low NPCS0 is also NSS for
slave mode

SPI1_NPCS1 -

SPI1_NPCS3
SPI Peripheral Chip Select Output Low

Table 3-1. Signal Description List (Continued)

Signal Name Function Type
Active
Level

Voltage
reference Comments

 11SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Notes: 1. VDDLCD must be inferior or equals to (VDDIO/VDDIN - 100mv) if VDDLCD is powered externally.
2. See “Typical Powering Schematics” Section for restrictions on voltage range of Analog Cells.
3. See Table 45-5 on page 927.
4. See Table 45-11 on page 936.
5. Different configurations allowed depending on external topology and net behavior.
6. Depending on whether an isolated or a non-isolated power supply is being used, isolation of this pin should be

taken into account in the circuitry design. Please refer to the reference design of the evaluation board for further
information.

Pulse Width Modulation Controller - PWMC

PWMx PWM Waveform Output for channel x Output VDDIO

Segmented LCD Controller - SLCDC

COM[4:0] Common Terminals Output

VDDIOSEG49

SEG[47:3]
Segment Terminals Output

Two-Wire Interface - TWI

TWDx TWIx Two-wire Serial Data I/O
VDDIO

TWCKx TWIx Two-wire Serial Clock I/O

Analog

ADVREF External Voltage Reference for ADC
Analog

Input

10-bit Analog-to-Digital Converter - ADC

AD0 - AD1

AD3 - AD5
Analog Inputs Analog

Digital VDDIO

ADC input range limited
to [0 - ADVREF]

ADTRG ADC Trigger Input

Fast Flash Programming Interface - FFPI

PGMEN0-
PGMEN1 Programming Enabling

Input

VDDIO

PGMM0-PGMM3 Programming Mode

PGMD0-PGMD15 Programming Data I/O

PGMRDY Programming Ready
Output

High

PGMNVALID Data Direction Low

PGMNOE Programming Read
Input

Low

PGMNCMD Programming Command Low

Table 3-1. Signal Description List (Continued)

Signal Name Function Type
Active
Level

Voltage
reference Comments

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 12

4. Package and Pinout

4.1 SAM4CP16C Package and Pinout

4.1.1 176-Lead LQFP Package Outline
The 176-lead LQFP package has a 0.5 mm pitch and respects Green standards.
Figure 4-1 shows the orientation of the 176-lead LQFP package. Refer to the section “Mechanical Characteristics” for
the 176-lead LQFP package mechanical drawing.

Figure 4-1. Orientation of the 176-lead LQFP Package

1 44

45

88

89132

133

176

 13SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

4.1.2 176-lead LQFP Pinout
Table 4-1. SAM4CP16C 176-lead LQFP Pinout

1 VDDIO 45 INTEST6 89 PA30/XOUT 133 PA15

2 PA2 46 TDI/PB0 90 VDDIO 134 PA16

3 PB6 47 NC 91 NC 135 PA17

4 INTEST4 48 TCK/SWCLK/PB3 92 PA31/XIN 136 VDDIO

5 PB7 49 TMS/SWDIO/PB2 93 CLKOUT 137 ADVREF

6 PB18 50 ERASE/PC9 94 INTEST0 138 GND

7 GND 51
TDO/TRACESWO/

PB1/RTCOUT0
95 INTEST1 139 VDDIO

8 PB19 52 PC1 96 GND 140 PB31/AD5

9 PB8 53 NC 97 INTEST2 141 PB23/AD4

10 AGND 54 NC 98 GND 142 PB13/AD3

11 VDDOUT AN 55 NC 99 INTEST3 143 GND

12 VIMA 56 ARST 100 VDDPLL 144 INTEST5

13 VIPA 57 PLL INIT 101 PC8 145 PA4/AD1

14 VDDOUT AN 58 PC6 102 PC5 146 EMIT8

15 AGND 59 VDDIO 103 PC4 147 PA12/AD0

16 VRP 60 GND 104 PC3 148 VDDIN

17 VRM 61 CLKEA 105 VDDIO 149 EMIT9

18 VRC 62 VDDIO 106 PC2 150 VDDIN

19 PB22 63 CLKEB 107 PA29 151 EMIT10

20 INTEST9 64 VDDIO 108 PA28 152 VDDOUT

21 PB25 65 VDDBU 109 GND 153 EMIT11

22 VDDIN AN 66 FWUP 110 PA27 154 PB21

23 PB24 67 JTAGSEL 111 INTEST8 155 PB20

24 VDDCORE 68 SHDN 112 VDDCORE 156 VDDIO

25 AGND 69 TST 113 EMIT0 157 VDDCORE

26 PB29 70 VDDPLL PLC 114 PA3 158 PA0

27 PB9 71 TMP0/WKUP0 115 PA21 159 VDDOUT PLC

28 PB10 72 GND 116 PA22 160 TXRX0

29 PB11 73 XIN32 117 EMIT1 161 TXRX1

30 VDDIN AN 74 VDDIN PLC 118 EMIT2 162 AGC2

31 PB12 75 VDDIN PLC 119 EMIT3 163 PB27/TMP2

32 PB14 76 XOUT32 120 VDDIO 164 AGC5

33 PB15 77 GND 121 GND 165 VDDLCD

34 PA26 78 VDDOUT PLC 122 EMIT4 166 AGC1

35 GND 79 GND 123 EMIT5 167 AGC4

36 PA25 80 NC 124 PA23 168 AGC0

37 VDDIO 81 PB4 125 EMIT6 169 AGC3

38 PA24 82 VDDCORE 126 PA9 170 PB26

39 VZ CROSS 83 PB5 127 PA10 171 VDDIO

40 PA20 84 SRST 128 PA11 172 PB28/TMP3

41 NC 85 PC7 129 EMIT7 173 PB16/TMP1

42 PA19 86 PC0 130 PA13 174 PA1

43 PA18 87 NRST 131 PA14 175 PB17

44 NC 88 VDDIO 132 GND 176 INTEST7

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 14

5. Power Supply and Power Control

5.1 Power Supplies
The SAM4CP16C has several types of power supply pins. In most cases, a single supply scheme for all power
supplies (except VDDBU) is possible. Figure 5.1.1 below shows power domains according to the different power
supply pins.

Figure 5-1. Power Domains

Table 5-1. Power Supply Voltage Ranges

Power Supplies Ranges Comments

VDDIO 3.0V to 3.6V

Flash memory charge pumps supply for erase and program operations, and read
operation
Input/Output buffers supply
Oscillator pads supply
Restrictions on range may apply. Refer to the section “Electrical Characteristics”

VDDBU 1.6V to 3.6V
Backup area power supply
VDDBU is automatically disconnected when VDDIO is present (>1.9V)

VDDIN 2.5V to 3.6V

Core Voltage Regulator supply
LCD Regulator supply
ADC and Programmable Voltage Reference supply
Restrictions on range may apply. Refer to the section “Electrical Characteristics”

VDDLCD 2.4V to 3.6V
LCD Voltage Regulator output
External LCD power supply (LCD regulator not used)
VDDIO/VDDIN must be supplied when the LCD Controller is used

VDDOUT 1.2V Core Voltage Regulator Output. 120mA output current

VDDPLL 1.08V to 1.32V PLLA and PLLB supply

VDDCORE 1.08V to 1.32V Core logic, processors, memories and analog peripherals supply

VDDPLL PLC 1.2V PLC PLL

VDDCOREVDDPLL

Cortex-M4
(CM4P0)

Cortex-M4F
(CM4P1)

SRAM, ROM

Flash Logic

Peripherals
(SPI, USART, …)

PIO Controller

VDDIOVDDBU

VDDIN
LCD Voltage

Regulator

Core Voltage
Regulator

VDDLCD

VDDOUT

Input / Output
Buffers

AUTOMATIC POWER
SWITCH

Charge Pumps

Fast RC Osc
4/8/12 MHz

PLLA,
PLLB

10-bit ADC, Temp. Sensor,
Voltage Reference

XTAL OSC,
3 - 20 MHz

LCD Analog Buffers
+ Switch Array

PLC Analog
Voltage Regulator

PLC Digital
 Voltage Regulator

PLC PLL

VDDIN AN

VDDOUT AN

VDDIN PLC

VDDOUT PLC

VDDPLL PLC

VDDIOADVREF

RTC, RTT, RSTC,
Backup, Reg, ...

XTAL OSC 32 kHz

RC OSC 32 kHz

RTC, RTT, RSTC,
Backup, Reg, ...

XTAL OSC 32 kHz

VDDBU_SW (VDDIO or VDDBU)

 15SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Separate pins are provided for GND and AGND grounds. Layout considerations should be taken into account to
reduce interference. Ground pins should be connected as shortly as possible to the system ground plane.

5.1.1 Core Voltage Regulator
The core voltage regulator is managed by the Supply Controller.
It features two operating modes:
 In Normal mode, the quiescent current of the voltage regulator is less than 500 μA when sourcing maximum

load current, i.e., 120 mA. Internal adaptive biasing adjusts the regulator quiescent current depending on the
required load current. In Wait Mode, quiescent current is only 5 μA.

 In Backup mode, the voltage regulator consumes less than 100 nA while its output (VDDOUT) is driven
internally to GND.

The default output voltage is 1.20 V and the start-up time to reach Normal mode is less than 500 μs.
For further information, refer to “Core Voltage Regulator Characteristics” in the section “Electrical Characteristics”

5.1.2 LCD Voltage Regulator
The SAM4CP16C embeds an adjustable LCD voltage regulator that is managed by the Supply Controller.
This internal regulator is designed to supply the Segment LCD outputs. The LCD regulator output voltage is software
selectable with 16 levels to adjust the display contrast.
If not used, its output (VDDLCD) can be bypassed (Hi-z mode) and an external power supply can be provided onto the
VDDLCD pin. In this case, VDDIO still needs to be supplied.
The LCD voltage regulator can be used in all power modes (Backup, Wait, Sleep and Active).
For further information, refer to “LCD Voltage Regulator Characteristics” in the section “Electrical Characteristics”

5.1.3 PLC Voltage Regulators
The SAM4CP embeds two PLC-dedicated voltage regulators, PLC Analog Voltage Regulator (VDDIN AN) and PLC
Digital Voltage Regulator (VDDIN PLC). These internal regulators are designed to supply the PLC peripheral block in
an efficient way trying to minimize noise coupling in power supply.

5.1.4 Automatic Power Switch
The SAM4CP16C features an automatic power switch between VDDBU and VDDIO. When VDDIO is present, the
backup zone power supply is powered by VDDIO and current consumption on VDDBU is close to zero (around
100 nA, typ.). When VDDIO is removed, the backup area of the device is supplied from VDDBU. Switching between
VDDIO and VDDBU is transparent to the user.

5.1.5 Typical Powering Schematics
The SAM4CP supports 3.0V to 3.6V single-supply operation. Restrictions on this range may apply depending on
enabled features. Refer to the section Electrical Characteristics.
Figure 5-2, Figure 5-3 and Figure 5-4 show simplified schematics of the power section.

VDDIN PLC 3.0V to 3.6V PLC Digital LDO Regulator input

VDDOUT PLC 1.2V PLC Digital LDO Regulator output

VDDIN AN 3.0V to 3.6V PLC Analog LDO Regulator input

VDDOUT AN 1.2V PLC Analog LDO Regulator output

GND - Digital Ground

AGND - Analog Ground

Table 5-1. Power Supply Voltage Ranges (Continued)

Power Supplies Ranges Comments

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 16

5.1.5.1 Single Supply Operation
Figure 5-2 below shows a typical power supply scheme with a single power source. VDDIO, VDDIN, VDDBU, VDDIN
AN and VDDIN PLC are derived from the main power source (typically a 3.3V regulator output) while VDDCORE,
VDDPLL, VDDLCD and VDDPLL PLC are fed by the embedded regulator outputs.

Figure 5-2. Single Supply Operation

Notes: 1. Internal LCD Voltage Regulator can be disabled to save its operating current. VDDLCD must then be pro-
vided externally.

- 10-bit ADC
- Temp. Sensor
- Voltage Ref.

Automatic
Power Switch

VDDIN

Core Voltage
Regulator

VDDOUT

Main Supply
(3.0V-3.6V)

VDDCORE

VDDBU

VDDPLL

LCD Voltage
Regulator (1)

VDDLCD

VDDIOMain Supply

Voltage
Regulator

IN OUT

PLC
Transceiver

LCD Analog Buffers
+

 Switch Array

VDDIN AN
PLC Analog

Voltage
Regulator

PLC Digital
Voltage

Regulator

VDDOUT AN

ADC PLC

VDDIN PLC

VDDOUT PLC

VDDPLL PLC

SAM4CP

RC OSC 32 kHz

RTC, RTT, RSTC,
Backup, Reg, ...

XTAL OSC 32 kHz

Backup Region

 17SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

5.1.5.2 Single Supply Operation with Backup Battery
Figure 5-3 shows the single-supply operation schematic from Figure 5-2, improved by adding a backup capability.
VDDBU is supplied with a separate backup battery while VDDIO, VDDIN, VDDIN AN and VDDIN PLC are still
connected to the main power source. Note that the TMP1 to TMP3 and RTCOUT0 pins cannot be used in Backup
mode as they are referred to VDDIO, which is not powered in this application case. To keep using these pins in
Backup mode, VDDIO must be maintained.
Note that PLC transceiver is not functional when working in backup mode.

Figure 5-3. Single Supply Operation with Backup Battery

Notes: 1. Example with the SHDN pin used to control the main regulator enable pin. SHDN defaults to VDDBU at
startup and when the device wakes up from a wake-up event (external pin, RTC alarm, etc). When the
device is in Backup mode, SHDN defaults to 0.

- 10-bit ADC
- Temp. Sensor
- Voltage Ref.

Automatic
Power Switch

VDDIN

Core Voltage
Regulator

VDDOUT

Main Supply
(3.0V-3.6V)

VDDCORE

VDDBU

VDDPLL

LCD Voltage
Regulator

VDDLCD

VDDIOMain Supply

Voltage
Regulator

IN OUT

PLC
Transceiver

LCD Analog Buffers
+

 Switch Array

VDDIN AN
PLC Analog

Voltage
Regulator

PLC Digital
Voltage

Regulator

VDDOUT AN

ADC PLC

VDDIN PLC

VDDOUT PLC

VDDPLL PLC

Backup
Battery +

-

Backup Power Supply
(1.6V-3.6V)

Shutdown (SHDN)(1)

Force Wake-Up (FWUP)
External Wake-Up Signal

EN

SAM4CP

RC OSC 32 kHz

RTC, RTT, RSTC,
Backup, Reg, ...

XTAL OSC 32 kHz

Backup Region

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 18

5.1.5.3 Single Power Supply using One Main Battery and LCD Controller in Backup Mode
Figure 5-4 below shows a typical power supply scheme that maintains VDDBU, VDDIO, and VDDLCD when entering
Backup mode. This is useful to enable the display and/or some supplementary wake-up sources in Backup mode
when the main voltage is not present.
In this power supply scheme, the SAM4CP can wake up both from an internal wake-up source, such as RTT, RTC
and VDDIO Supply Monitor, and from an external source, such as generic wake-up pins (WKUPx), anti-tamper inputs
(TMPx) or force wake-up (FWUP).
Note that PLC transceiver is not functional when working in backup mode.
Note: The VDDIO supply monitor only wakes up the device from Backup mode on a negative-going VDDIO supply

(as system alert). As a result, the supply monitor cannot be used to wake up the device when the VDDIO sup-
ply is rising at power cycle. See the section “Supply Controller (SUPC)” for more information on the VDDIO
supply monitor.

Figure 5-4. Single Power Supply using Battery and LCD Controller in Backup Mode

- 10-bit ADC
- Temp. Sensor
- Voltage Ref.

Automatic
Power Switch

VDDIN

Core Voltage
Regulator

VDDOUT

Main Supply
(3.0V-3.6V)

VDDCORE

VDDBU

VDDPLL

LCD Voltage
Regulator

VDDLCD

VDDIO (2) Main Supply

Voltage
Regulator

IN OUT

EN

PLC
Transceiver

LCD Analog Buffers
+

 Switch Array

VDDIN AN
PLC Analog

 Voltage
RegulatorVDDOUT AN

ADC PLC

VDDIN PLC

VDDOUT PLC

VDDPLL PLC

Shutdown (SHDN)

Force Wake-Up (FWUP)(3)
STATE = 0 when main supply is OFF

Automatic
Power Switch

STATE

+

-

Battery

Generic Wake-Up pin (WKUPx)

VDDIO (1)

PLC Digital
 Voltage

Regulator

NRST(4)to PLL INIT

SAM4CP

RC OSC 32 kHz

RTC, RTT, RSTC,
Backup, Reg, ...

XTAL OSC 32 kHz

Backup Region

 19SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Notes: 1. VDDIO corresponds to the following pins: 37, 64, 90, 105, 120, 139, 156 and 171.
2. VDDIO corresponds to the following pins: 1, 59, 62, 88 and 136.
3. The STATE output of the automatic power switch indicates to the device that the main power is back and

forces its wake-up.
4. The NRST pin integrates a permanent pull-up resistor to VDDIO of typical 100 k. When used to control

PLL INIT as in the example, external design should take into account minimizing leakage currents.

5.1.5.4 Wake-up, Anti-tamper and RTCOUT0 Pins
In all power supply figures shown above, if generic wake-up pins other than WKUP0/TMP0 are used either as a wake-
up or a fast startup input, or as anti-tamper inputs, VDDIO must be present. This also applies to the RTCOUT0 pin.

5.1.5.5 General-purpose IO (GPIO) State in Low-power Modes
In dual-power supply schemes shown in Figure 5-3 and Figure 5-4, where Backup or Wait mode must be used,
configuration of the GPIO lines is maintained in the same state as before entering Backup or Wait mode. Thus, to
avoid extra current consumption on the VDDIO power rail, the user must configure the GPIOs either as an input with
pull-up or pull-down enabled, or as an output with low or high level to comply with external components.

5.1.5.6 Default General-purpose IOs (GPIO) State after Reset
The reset state of the GPIO lines after reset is given in Table 11-5, “Multiplexing on PIO Controller A (PIOA)”,
Table 11-6, “Multiplexing on PIO Controller B (PIOB)” and Table 11-7, “Multiplexing on PIO Controller C (PIOC)”. For
further details about the GPIO and system lines, wake-up sources and wake-up time, and typical power consumption
in different low-power modes, refer to Table 5-2, “Low-power Mode Configuration Summary”.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 20

5.2 Clock System
Figure 5-5 illustrates the SAM4CP16C clock system with single crystal operation:
 The 32 kHz crystal oscillator can be the source clock of the 8 MHz digital PLL (PLLA).
 The 8 MHz clock can feed the high frequency PLL (PLLB) input.
 The output of the PLLB can be used as a main clock for both cores and the peripherals.

Figure 5-5. SAM4CP16C Global Clock System

PL
LA

PL
LB

 a
nd

D

iv
id

er
 /2

PL
LA

D
IV

2

PL
LB

D
IV

2

M
an

ag
em

en
t

Co
nt

ro
lle

r

M
ai

n
Cl

oc
k

M
A

IN
CK

Co
nt

ro
l

St
at

us

M
O

SC
SE

L

XI
N

XO
U

T

XI
N

32

XO
U

T3
2

SL
CK

X
TA

LS
EL

(S
up

pl
y

Co
nt

ro
lle

r)

0 10 1

3-
20

 M
H

z
Cr

ys
ta

l
or

Ce
ra

m
ic

Re
so

na
to

r
O

sc
ill

at
or

Em
be

dd
ed

4/
8/

12
 M

H
z

Fa
st

RC
 O

sc
ill

at
or

32
76

8
H

z
Cr

ys
ta

l
O

sc
ill

at
or

Em
be

dd
ed

32
 k

H
z

RC
 O

sc
ill

at
or SR

CB

1 0

C
lo

ck
 G

en
er

at
or

Sl
ow

 C
lo

ck

Po
w

er

pe
rip

h_
cl

k[
n]

in
t

SL
CK

M
A

IN
CK

PL
LA

CK
Pr

es
ca

le
r

/1
,/2

,/3
,/4

,/8
,

/1
6,

/3
2,

/6
4

Pr
oc

es
so

r
Cl

oc
k

Co
nt

ro
lle

r

 S
le

ep
 M

od
e

M
as

te
r C

lo
ck

 C
on

tr
ol

le
r

 (P

M
C_

M
CK

R)

Pe
rip

he
ra

ls
Cl

oc
k

Co
nt

ro
lle

r
(P

M
C_

PC
ER

x)

PL
LB

CK

Co
re

 0
 (C

M
4-

P0
 C

lo
ck

 S
ys

te
m

)
Co

re
 0

 (C
M

4-
P0

 C
lo

ck
 S

ys
te

m
)

Co
re

 1
 (C

M
4-

P1
 C

lo
ck

 S
ys

te
m

)
Co

re
 1

 (C
M

4-
P1

 C
lo

ck
 S

ys
te

m
)

PR
ES

CS
S

O
N

/O
FF

O
N

/O
FF

O
N

/O
FF

pe
rip

h_
cl

k[
n+

1]

pe
rip

h_
cl

k[
n+

2]

SL
CK

M
A

IN
CK

PL
LA

CK
Pr

es
ca

le
r

di
vi

de
 b

y
1

to
 1

6

M
as

te
r C

lo
ck

 C
on

tr
ol

le
r

 (P

M
C_

M
CK

R)

PL
LB

CK

CP
PR

ES
CP

CS
S

O
N

/O
FF

pe
rip

h_
cl

k[
m

+2
]

in
t

Co
pr

oc
es

so
r C

lo
ck

CP
H

CL
K

W
he

re
 m

 is
 a

n
in

de
x

fo
r t

he
 c

op
ro

ce
ss

or
sy

st
em

 p
er

ip
he

ra
ls

CP
FC

LK
Co

pr
oc

es
so

r
Fr

ee
 R

un
ni

ng
 C

lo
ck

Co
pr

oc
es

so
r

Sy
sT

ic
k

 C
lo

ck
CP

SY
ST

IC
K

D
iv

id
er

 /
8

D
iv

id
er

 /
8

M
CK

PM
C_

SC
ER

/S
CD

R
 C

PC
K=

 O
N

/O
FF

W
he

re
 n

 is
 a

n
in

de
x

fo
r t

he
 p

ro
ce

ss
or

sy
st

em
 p

er
ip

he
ra

ls

O
N

/O
FF

pe
rip

h_
cl

k[
m

]

Co
pr

oc
es

so
r

Bu
s

M
as

te
r C

lo
ck

CP
BM

CK

Pr
oc

es
so

r C
lo

ck
H

CL
K

FC
LK

Pr
oc

es
so

r
Fr

ee
 R

un
ni

ng
 C

lo
ck

Pr
oc

es
so

r
Sy

sT
ic

k
 C

lo
ck

SY
ST

IC
K

Pr
oc

es
so

r
Bu

s
M

as
te

r C
lo

ck

M
CK

PM
C_

SC
ER

/S
CD

R
CP

BM
CK

=
O

N
/O

FF

Co
pr

oc
es

so
r

Cl
oc

k
Co

nt
ro

lle
r

 S
le

ep
 M

od
e

PL
LB

 C
lo

ck
PL

LB
CK

PL
LA

 C
lo

ck
PL

LA
CK

32
 k

H
z

U
p

to
12

0
M

H
z

8
M

H
z

 21SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

5.3 System State at Power-up

5.3.1 Device Configuration after the First Power-up
At the first power-up, the SAM4CP16C boots from the ROM. The device configuration is defined by SAM-BA® boot
program.

5.3.2 Device Configuration after a Power Cycle when Booting from Flash Memory
After a power cycle of all the power supply rails, the system peripherals, such as the Flash Controller, the Clock
Generator, the Power Management Controller and the Supply Controller, are in the following states:
 Slow Clock (SLCK) source is the internal 32 kHz RC Oscillator (32 kHz crystal oscillator is disabled).
 Main Clock (MAINCK) source is set to the 4 MHz internal RC Oscillator.
 3 - 20 MHz crystal oscillator and PLLs are disabled.
 Core Brownout Detector and Core Reset are enabled.
 Backup Power-on-reset is enabled.
 VDDIO Supply Monitor is disabled.
 Flash Wait State (FWS) bit in the EEFC Flash Mode Register is set to 0.
 Core 0 Cache Controller (CMCC0) is enabled (only used if the application link address for the Core 0 is

0x11000000).
 Sub-system 1 is in the reset state and not clocked.

5.3.3 Device Configuration after a Reset
After a reset or a wake-up from Backup mode, the following system peripherals default to the same state as after a
power cycle:
 Main Clock (MAINCK) source is set to the 4 MHz internal RC oscillator.
 3 - 20 MHz crystal oscillator and PLLs are disabled.
 Flash Wait State (FWS) bit in the EEFC Flash Mode Register is set to 0.
 Core 0 Cache Controller (CMCC0) is enabled (only used if the application link address for the Core 0 is

0x11000000).
 Sub-system 1 is in the reset state and not clocked.

The states of the other peripherals are saved in the backup area managed by the Supply Controller as long as
VDDBU is maintained during device reset:
 Slow Clock (SLCK) source selection is written in SUPC_CR.XTALSEL.
 Core Brownout Detector enable/disable is written in SUPC_MR.BODDIS.
 Backup Power-on-reset enable/disable is written in the SUPC_MR.BUPPOREN.
 VDDIO Supply Monitor mode is written in the SUPC_SMMR.

5.4 Active Mode
Active mode is the normal running mode, with the single core or the dual cores executing code. The system clock can
be the fast RC oscillator, the main crystal oscillator or the PLLs. The Power Management Controller (PMC) can be
used to adapt the frequency and to disable the peripheral clocks when unused.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 22

5.5 Low-power Modes
The various low-power modes (Backup, Wait and Sleep modes) of the SAM4CP16C are described below. Note that
the Segmented LCD Controller can be used in all low-power modes.
Note: The Wait For Event instruction (WFE) of the Cortex-M4 core can be used to enter any of the low-power

modes, however this may add complexity to the design of application state machines. This is due to the fact
that the WFE instruction is associated with an event flag of the Cortex core that cannot be managed by the
software application. The event flag can be set by interrupts, a debug event or an event signal from another
processor. When an event occurs just before WFE execution, the processor takes it into account and does
not enter Low-power mode. Atmel has made provision to avoid using the WFE instruction. The workarounds
to ease application design, including the use of the WFE instruction, are given in the following description of
the low-power mode sequences.

5.5.1 Backup Mode

The purpose of Backup mode is to achieve the lowest possible power consumption in a system that executes periodic
wake-ups to perform tasks but which does not require fast start-up time. The total current consumption is 0.5 μA
typical on VDDBU.

The Supply Controller, power-on reset, RTT, RTC, backup registers and the 32 kHz oscillator (RC or crystal oscillator
selected by software in the Supply Controller) are running. The regulator and the core supplies are off. The power-on-
reset on VDDBU can be deactivated by software.

Wake-up from Backup mode can be done through the Force Wake-up (FWUP) pin, WKUP0, WKUP1 to WKUP15
pins, the VDDIO Supply Monitor (SM) if VDDIO is supplied, or through an RTT or RTC wake-up event. Wake-up pins
multiplexed with anti-tampering functions are additional possible sources of a wake-up if an anti-tampering event is
detected. The TMP0 pad is supplied by the backup power supply (VDDBU). Other anti-tamper input pads are supplied
by VDDIO.

The LCD Controller can be used in Backup mode. The purpose is to maintain the displayed message on the LCD
display after entering Backup mode. The current consumption on VDDIN to maintain the LCD is 10 μA typical.

Please refer to the section “Electrical Characteristics”.

In case the VDDIO power supply is maintained with VDDBU when entering Backup mode, it is up to the application to
configure all PIO lines in a stable and known state to avoid extra power consumption or possible current path with the
input/output lines of the external on-board devices.

5.5.1.1 Entering and Exiting Backup Mode
To enter Backup mode, follow the steps in the sequence below:

1. Depending on the application, set the PIO lines in the correct mode and configuration (input pull-up or pull-
down, output low or high levels).

2. Disable the Main Crystal Oscillator (enabled by SAM-BA boot if the device is booting from ROM).
3. Configure PA30/PA31 (XIN/XOUT) into PIO mode depending on their use.
4. Disable the JTAG lines using the SFR1 register in Matrix 0 (by default, internal pull-up or pull-down is disabled

on JTAG lines).
5. Enable the RTT in 1 Hz mode.
6. Disable Normal mode of the RTT (RTT will run in 1 Hz mode).
7. To reduce power consumption, disable the POR backup if not needed.

Note: If VDDBU is likely to go below the POR threshold but not completely down to GND, disabling the PORBU cre-
ates unexpected behavior of the VDDBU domain logic. PORBU can be disabled if VDDBU is known to be
stable above the PORBU threshold.

8. Disable the Core brownout detector.
9. Select one of the following methods to complete the sequence:

a. To enter Backup mode using the VROFF bit:
 Write a 1 to the VROFF bit of SUPC_CR.

 23SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

b. To enter Backup mode using the WFE instruction:
 Write a 1 to the SLEEPDEEP bit of the Cortex-M4 processor.
 Execute the WFE instruction of the processor.

After this step, the core voltage regulator is shut down and the SHDN pin goes low. The digital internal logic (cores,
peripherals and memories) is not powered. The LCD controller can be enabled if needed before entering Backup
mode.

Whether the VROFF bit or the WFE instruction was used to enter Backup mode, the system exits Backup mode if one
of the following enabled wake-up events occurs:
 WKUP[0-15] pins.
 Force Wake-up pin.
 VDDIO Supply Monitor (if VDDIO is present, and VDDIO supply falling).
 Anti-tamper event detection.
 RTC alarm.
 RTT alarm.

After exiting Backup mode, the device is in the reset state. Only the configuration of the backup area peripherals
remains unchanged.

Note that the device does not automatically enter Backup mode if VDDIN is disconnected, or if it falls below minimum
voltage. The Shutdown pin (SHDN) remains high in this case.

For current consumption in Backup mode, refer to the section “Electrical Characteristics”.

5.5.2 Wait Mode

The purpose of Wait mode is to achieve very low power consumption while maintaining the whole device in a powered
state for a start-up time of less than 10 μs. For current consumption in Wait mode, refer to the section “Electrical
Characteristics”.

In Wait mode, the bus and peripheral clocks of Sub-system 0 and Sub-system 1 (MCK/CPBMCK), the clocks of Core
0 and Core 1 (HCLK/CPHCLK) are stopped when Wait mode is entered (see Section 5.5.2.1). However, the power
supply of core, peripherals and memories are maintained using Standby mode of the core voltage regulator.

The SAM4CP16C is able to handle external and internal events in order to perform a wake-up. This is done by
configuring the external WKUPx lines as fast startup wake-up pins (refer to Section 5.7 “Fast Start-up”). RTC alarm,
RTT alarm and anti-tamper events can also wake up the device.

Wait mode can be used together with Flash in Read-Idle mode, Standby mode or Deep Power-down mode to further
reduce the current consumption. Flash in Read-Idle mode provides a faster start-up; Standby mode offers lower
power consumption. For power consumption details, see subsection “Power Supply Current Consumption” in
“Electrical Characteristics” section.

5.5.2.1 Entering and Exiting Wait Mode
1. Stop Sub-system 1.
2. Select the 4/8/12 MHz fast RC Oscillator as Main Clock(1).
3. Depending on the application, set the PIO lines in the correct mode and configuration (input pull-up or pull-

down, output low or high level).
4. Disable the Main Crystal Oscillator (enabled by SAM-BA boot if device is booting from ROM).
5. Configure PA30/PA31 (XIN/XOUT) into PIO mode according to their use.
6. Disable the JTAG lines using the SFR1 register in Matrix 0 (by default, internal pull-up or pull-down is disabled

on JTAG lines).
7. Set the FLPM field in the PMC Fast Startup Mode Register (PMC_FSMR)(2).
8. Set the Flash Wait State (FWS) bit in the EEFC Flash Mode Register to 0.
9. Select one of the following methods to complete the sequence:

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 24

a. To enter Wait mode using the WAITMODE bit:
 Set the WAITMODE bit to 1 in the PMC Main Oscillator Register (CKGR_MOR).
 Wait for Master Clock Ready MCKRDY = 1 in the PMC Status Register (PMC_SR).

b. To enter Wait mode using the WFE instruction:
 Select the 4/8/12 MHz fast RC Oscillator as Main Clock.
 Set the FLPM field in the PMC Fast Startup Mode Register (PMC_FSMR).
 Set Flash Wait State at 0.
 Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR).
 Write a 0 to the SLEEPDEEP bit of the Cortex-M4 processor.
 Execute the Wait-For-Event (WFE) instruction of the processor.

Notes: 1. Any frequency can be chosen. The 12 MHz frequency will provide a faster start-up compared to the
4 MHz, but with the increased current consumption (in the μA range). See electrical characteristics of the
product.

2. Depending on the Flash Low-power Mode (FLPM) value, the Flash enters three different modes:
• If FLPM = 0, the Flash enters Stand-by mode (Low consumption).
• If FLPM = 1, the Flash enters Deep Power-down mode (Extra low consumption).
• If FLPM = 2, the Flash enters Idle mode. Memory is ready for Read access.

Whether the WAITMODE bit or the WFE instruction was used to enter Wait mode, the system exits Wait mode if one
of the following enabled wake-up events occurs:
 WKUP[0-15] pins in Fast wake-up mode.
 Anti-tamper event detection.
 RTC alarm.
 RTT alarm.

After exiting Wait mode, the PIO controller has the same configuration state as before entering Wait mode. The
SAM4CP16C is clocked back to the RC oscillator frequency which was used before entering Wait mode. The core will
start fetching from Flash at this frequency. Depending on the configuration of the Flash Low-power Mode (FLPM) bits
used to enter Wait mode, the application has to reconfigure it back to Read-idle mode.

5.5.3 Sleep Mode

The purpose of Sleep mode is to optimize power consumption of the device versus response time. In this mode, only
the core clocks of CM4P0 and/or CM4P1 are stopped. Some of the peripheral clocks can be enabled depending on
the application needs. The current consumption in this mode is application dependent. This mode is entered using
Wait for Interrupt (WFI) or Wait for Event (WFE) instructions of the Cortex-M4.

The processor can be awakened from an interrupt if the WFI instruction of the Cortex-M4 is used to enter Sleep mode,
or from a wake-up event if the WFE instruction is used. The WFI instruction can also be used to enter Sleep mode
with the SLEEPONEXIT bit set to 1 in the System Control Register (SCB_SCR) of the Cortex-M. If the SLEEPONEXIT
bit of the SCB_SCR is set to 1, when the processor completes the execution of an exception handler it returns to
Thread mode and immediately enters Sleep mode. This mechanism can be used in applications that require the
processor to run only when an exception occurs. Setting the SLEEPONEXIT bit to 1 enables an interrupt-driven
application in order to avoid returning to an empty main application.

 25SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

5.5.4 Low-power Mode Summary Table
The modes detailed above are the main low-power modes. Table 5-2 below provides a configuration summary of the
low-power modes. For more information on power consumption, refer to the section “Electrical Characteristics”.

Notes: 1. Refer to the note in Section 5.5 “Low-power Modes”.
2. When considering wake-up time, the time required to start the PLL is not taken into account. Once

started, the device works either from the 4, 8 or 12 MHz fast RC oscillator. The user has to add the PLL
start-up time if it is needed in the system. The wake-up time is defined as the time taken for wake-up until
the first instruction is fetched.

3. Refer to Table 3-1, “Signal Description List”. Some anti-tamper pin pads are VDDIO powered.
4. See PIO Controller Multiplexing tables in Section 11.4 “Peripheral Signal Multiplexing on I/O Lines”.
5. Fast RC Oscillator set to 4 MHz Frequency.
6. LCD voltage regulator can be OFF if VDDLCD is supplied externally thus saving current consumption of

the LCD voltage regulator.
7. In this mode, the core is supplied and not clocked but some peripherals can be clocked.
8. Depends on MCK frequency.

Table 5-2. Low-power Mode Configuration Summary

Mode

SUPC,
32 kHz

Oscillator,
RTC, RTT
Backup

Registers,
POR

(Backup
Region)

Core
Regulator

/
LCD

Regulator

Core 0/1
Memory

Peripherals Mode Entry(1)
Potential

Wake-up Sources

Core
at

Wake-up

PIO State
in Low-
power
Mode

PIO State
at

Wake-up
Wake-up
Time(2)

Backup Mode ON OFF/OFF
OFF / OFF
(Not powered)

VROFF bit = 1
or
SLEEPDEEP = 1
+ WFE

- FWUP pin
- WKUP0-15 pins(3)

- Supply Monitor
- Anti-tamper inputs(3)

- RTC or RTT alarm

Reset Previous
state saved Reset state(4) < 1,5 ms

Backup Mode
with LCD ON OFF/ON

OFF / OFF
(Not powered)

VROFF bit = 1
or
SLEEPDEEP = 1
+ WFE

- FWUP pin
- WKUP0-15 pins(3)

- Supply Monitor
- Anti-Tamper inputs(3)

- RTC or RTT alarm

Reset Previous
state saved

Unchanged
(LCD Pins) /
Inputs with
pull ups

< 1,5 ms

Wait Mode

Flash in
Standby
Mode(5)

ON ON/(6)

Core 0 and 1,
memories and
peripherals:
Powered, but
Not clocked

WAITMODE = 1 +
FLPM = 0
or
SLEEPDEEP = 0
+ LPM = 1
+ FLPM = 0
+ WFE

Any Event from:
- Fast start-up through
WKUP0-15 pins
- Anti-Tamper inputs(3)

- RTC or RTT alarm

Clocked
back

Previous
state saved Unchanged < 10 μs

Wait Mode

Flash in Deep
Power - down
Mode(5)

ON ON/(6)

Core 0 and 1,
memories and
peripherals:
Powered, but
Not clocked

WAITMODE = 1 +
FLPM = 1
or
SLEEPDEEP = 0
+ LPM = 1
+ FLPM = 1
+ WFE

Any Event from:
- Fast start-up through
WKUP0-15 pins
- Anti-Tamper inputs(3)

- RTC or RTT alarm

Clocked
back

Previous
state saved Unchanged < 75 μs

Sleep Mode ON ON/(6)

Core 0 and/or
Core 1:
Powered
(Not clocked)(7)

SLEEPDEEP = 0
+ LPM = 0
+ WFE or WFI

Entry mode = WFI
Any enabled Interrupts;

Entry mode = WFE
Any enabled events:
- Fast start-up through
WKUP0-15 pins
- Anti-Tamper inputs(3)

- RTC or RTT alarm

Clocked
back

Previous
state saved Unchanged (8)

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 26

5.6 Wake-up Sources
Wake-up events allow the device to exit Backup mode. When a wake-up event is detected, the Supply Controller
performs a sequence which automatically re-enables the core power supply and all digital logic.

5.7 Fast Start-up
The SAM4CP16C allows the processor to restart in a few microseconds while the processor is in Wait mode or in
Sleep mode. A fast start-up occurs upon detection of one of the wake-up inputs.

The fast restart circuitry is fully asynchronous and provides a fast start-up signal to the Power Management Controller.
As soon as the fast start-up signal is asserted, the PMC automatically restarts the embedded 4/8/12 MHz Fast RC
oscillator, switches the master clock on this 4 MHz clock and re-enables the processor clock.

 27SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

6. Input/Output Lines
The SAM4CP16C has two types of input/output (I/O) lines: general-purpose I/Os (GPIO) and system I/Os. GPIOs
have alternate functionality due to multiplexing capabilities of the PIO controllers. The same PIO line can be used
whether in I/O mode or by the multiplexed peripheral. System I/Os include pins such as test pins, oscillators, erase or
analog inputs.

6.1 General-Purpose I/O Lines
General-purpose I/O (GPIO) lines are managed by PIO Controllers. All I/Os have several input or output modes such
as pull-up or pull-down, input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input change
interrupt. Programming of these modes is performed independently for each I/O line through the PIO controller user
interface. For more details, refer to the “Parallel Input/Output (PIO) Controller” section of this datasheet.
The input/output buffers of the PIO lines are supplied through VDDIO power supply rail when used as GPIOs. When
used as extra functions such as LCD or Analog modes, GPIO lines have either VDDLCD or VDDIN voltage range.
Each I/O line embeds an ODT (On-die Termination), shown in Figure 6-1 below. ODT consists of an internal series
resistor termination scheme for impedance matching between the driver output (SAM4CP16C) and the PCB trace
impedance preventing signal reflection. The series resistor helps to reduce IOs switching current (di/dt) thereby
reducing EMI. It also decreases overshoot and undershoot (ringing) due to inductance of interconnect between
devices or between boards. Finally, ODT helps diminish signal integrity issues.

Figure 6-1. On-die Termination

6.2 System I/O Lines
System I/O lines are pins used by oscillators, test mode, reset, JTAG and other features. Table 6-1 describes the
SAM4CP16C system I/O lines shared with PIO lines.
These pins are software-configurable as general-purpose I/O or system pins. At start-up, the default function of these
pins is always used.

Notes: 1. If PC9 is used as PIO input in user applications, a low level must be ensured at start-up to prevent Flash
erase before the user application sets PC9 into PIO mode.

2. Refer to “3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator” in the section “Clock Generator”

PCB Trace
Z0 ~ 50 Ohms

Receiver
SAM4 Driver with

Rodt

Zout ~ 10 Ohms

Z0 ~ Zout + Rodt

ODT
36 Ohms Typ.

Table 6-1. System I/O Configuration Pin List
SYSTEM_IO
Bit Number

Default Function
after Reset

Other
Function

Constraints
for Normal Start Configuration

0 TDI PB0 -
In Matrix User Interface Registers

(Refer to the System I/O
Configuration Register in the “Bus
Matrix” section of this datasheet)

1 TDO/TRACESWO PB1 -
2 TMS/SWDIO PB2 -
3 TCK/SWCLK PB3 -
4 ERASE PC9 Low level at Start-up(1)

- PA31 XIN -
 (2)

- PA30 XOUT -

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 28

6.2.1 Serial Wire JTAG Debug Port (SWJ-DP) and Serial Wire Debug Port (SW-DP) Pins
The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/TRACESWO, TDI and commonly provided on a standard 20-
pin JTAG connector defined by ARM. For more details about voltage reference and reset state, refer to Table 11-6,
“Multiplexing on PIO Controller B (PIOB)”.
At start-up, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging probe. Refer to the
section “Debug and Test” of this datasheet.
SWJ-DP pins can be used as standard I/Os to provide users with more general input/output pins when the debug port
is not needed in the end application. Mode selection between SWJ-DP mode (System IO mode) and general IO mode
is performed through the AHB Matrix Special Function Registers (MATRIX_SFR). Configuration of the pad for pull-up,
triggers, debouncing and glitch filters is possible regardless of the mode.
The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It integrates a permanent
pull-down resistor of about 15 kΩ to GND, so that it can be left unconnected for normal operations.
By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial Wire Debug Port, it must
provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables the JTAG-DP and enables the
SW-DP. When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace.
The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be
used with SW-DP, not JTAG-DP. For more information about SW-DP and JTAG-DP switching, refer to the “Debug
and Test” section of this datasheet. The SW-DP/SWJ-DP pins are used for debug access to both cores.

6.3 TST Pin
The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming mode of the
SAM4CP16C series. For details on entering Fast Programming mode, see the “Fast Flash Programming Interface
(FFPI)” section of this datasheet. For more information on the manufacturing and test modes, refer to the section
“Debug and Test” of this datasheet.

6.4 NRST Pin
The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low to provide a reset
signal to the external components, or asserted low externally to reset the microcontroller. It resets the core and the
peripherals, with the exception of the GPLC peripheral and the Backup region (RTC, RTT and Supply Controller).
There is no constraint on the length of the reset pulse, and the Reset Controller can guarantee a minimum pulse
length. The NRST pin integrates a permanent pull-up resistor to VDDIO of about 100 kΩ. By default, the NRST pin is
configured as an input.

6.5 TMPx Pins: Anti-tamper Pins
Anti-tamper pins detect intrusion, for example, into a smart meter case. Upon detection through a tamper switch,
automatic, asynchronous and immediate clear of registers in the backup area, and time stamping in the RTC are
performed. Anti-tamper pins can be used in all modes. Date and number of tampering events are stored
automatically. Anti-tampering events can be programmed so that half of the General-purpose Backup Registers
(GPBR) are erased automatically. TMP1 to TMP3 signals are shared with a PIO pin which requires that VDDIO is
supplied, whereas TMP0 is in the VDDBU domain.

6.6 RTCOUT0 Pin
The RTCOUT0 pin shared in the PIO (supplied by VDDIO) can be used to generate waveforms from the RTC in order
to take advantage of the RTC inherent prescalers while the RTC is the only powered circuitry (Low-power mode,
Backup mode) or in any Active mode. Entering Backup or low-power operating modes does not affect the waveform
generation outputs (VDDIO still must be supplied). Anti-tampering pin detection can be synchronized with this signal.
Note: To use the RTCOUT0 signal during application development using JTAG-ICE interface, the programmer must

use Serial Wire Debug (SWD) mode. In this case, the TDO pin is not used as a JTAG signal by the ICE
interface.

 29SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

6.7 Shutdown (SHDN) Pin
The SHDN pin designates the Backup mode of operation. When the device is in Backup mode, SHDN = 0. In any
other mode, SHDN = 1 (VDDBU). This pin is designed to control the enable pin of the main external voltage regulator.
When the device enters Backup mode, the SHDN pin disables the external voltage regulator and, upon the wake-up
event, it re-enables the voltage regulator.

The SHDN pin is asserted low when the VROFF bit in the Supply Controller Control Register (SUPC_CR) is set to 1.

6.8 Force Wake-up (FWUP) Pin
The FWUP pin can be used as a wake-up source in all low-power modes as it is supplied by VDDBU.

6.9 ERASE Pin
The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased state (all bits read as
logic level 1). The ERASE pin and the ROM code ensure an in-situ reprogrammability of the Flash content without the
use of a debug tool. When the security bit is activated, the ERASE pin provides the capability to reprogram the Flash
content. The ERASE pin integrates a pull-down resistor of about 100 kΩ into GND, so that it can be left unconnected
for normal operations.

This pin is debounced by SLCK to improve the glitch tolerance. When the ERASE pin is tied high during less than
100 ms, it is not taken into account. The pin must be tied high during more than 220 ms to perform a Flash erase
operation.

The ERASE pin is a system I/O pin and can be used as a standard I/O. At start-up, the ERASE pin is not configured
as a PIO pin. If the ERASE pin is used as a standard I/O, the start-up level of this pin must be low to prevent unwanted
erasing. Refer to Section 11.3 “APB/AHB Bridge”. If the ERASE pin is used as a standard I/O output, asserting the pin
to low does not erase the Flash.
To avoid unexpected erase at power-up, a minimum ERASE pin assertion time is required. This time is defined in the
AC Flash Characteristics in the section “Electrical Characteristics”.
The erase operation is not performed when the system is in Wait mode with the Flash in Deep Power-down mode.
To make sure that the erase operation is performed after power-up, the system must not reconfigure the ERASE pin
as GPIO or enter Wait mode with Flash in Deep Power-down mode before the ERASE pin assertion time has elapsed.
With the following sequence, in any case, the erase operation is performed:

1. Assert the ERASE pin (High).
2. Assert the NRST pin (Low).
3. Power cycle the device.
4. Maintain the ERASE pin high for at least the minimum assertion time.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 30

7. Product Mapping and Peripheral Access
Figure 7-1 shows the default memory mapping of the ARM Cortex-M core.

Figure 7-1. Cortex-M Memory Mapping

Figure 7-2. SAM4CP16C Memory Mapping of CODE and SRAM Area

Notes: 1. Boot Memory for Core 0.
2. Boot Memory for Core 1 at 0x00000000.

CODE

SRAM

Reserved

Peripherals

0x00000000

0x1FFFFFFF

0x20000000

0x3FFFFFFF

0x40000000

0x5FFFFFFF

0x60000000

System level

0xDFFFFFFF

0xE0000000

0xFFFFFFFF

Mainly used for program
code. Also provides exception
vector table after power up

Mainly used as static RAM

Mainly used as peripherals

Private peripherals including
build-in interrupt controller
(NVIC), MPU control registers,
and debug components

Address memory space

Code

0x00000000

Internal SRAM

0x20000000

Peripherals

0x40000000

Reserved

0x60000000

Reserved

0xA0000000

Cortex-M
Private Peripheral Bus

0xE0000000

Reserved

0xE0100000

0xFFFFFFFF

Code

Boot Memory (1)
(Code - Non Cached)

0x00000000

Internal Flash
(Code - Non Cached)

0x01000000

Internal ROM
0x02000000

Reserved
0x03000000

Reserved
0x04000000

Reserved
0x05000000

Reserved
0x06000000

Undefined (Abort)
0x07000000

Undefined (Abort)
0x10000000

Internal Flash
(Code - Cached)

0x11000000

Undefined (Abort)
0x12000000

Reserved
0x13000000

Reserved
0x14000000

Reserved
0x15000000

Reserved
0x16000000

Undefined (Abort)
0x17000000

0x1FFFFFFF

Internal SRAM

SRAM0
0x20000000

SRAM1 (2)

0x20080000

SRAM2
0x20100000

CPKCC ROM
0x20180000

Reserved
0x20190000

CPKCC SRAM
0x20191000

Reserved
0x20192000

Undefined (Abort)
0x20200000

0x3FFFFFFF

offset

ID
(+ : wired-or)

peripheral
block

 31SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 7-3. SAM4CP16C Memory Mapping of the Peripherals Area

Address memory space

Code

0x00000000

Internal SRAM

0x20000000

Peripherals

0x40000000

Reserved

0x60000000

Reserved

0xA0000000

Cortex-M
Private Peripheral Bus

0xE0000000

Reserved

0xE0100000

0xFFFFFFFF

Peripherals

AES
36

0x40000000

Reserved
0x40004000

GPLC
21

0x40008000

Reserved
0x4000C000

TC0
TC0

0x40010000

23
TC0

TC1
+0x40

24
TC0

TC2
+0x80

25
TC1

TC3
0x40014000

26
TC1

TC4
+0x40

27
TC1

TC5
+0x80

28

TWI0
19

0x40018000

TWI1
20

0x4001C000

Reserved
0x40020000

USART0
14

0x40024000

USART1
15

0x40028000

USART2
16

0x4002C000

USART3
17

0x40030000

USART4
18

0x40034000

ADC
29

0x40038000

SLCDC
32

0x4003C000

CPKCC
35

0x40040000

ICM
34

0x40044000

TRNG
33

0x40048000

IPC0
31

0x4004C000

Reserved
0x40050000

CMCC0
0x4007C000

Reserved
0x40080000

System Controller
0x400E0000

Reserved
0x400E4000

SPI1
40

0x48000000

UART1
38

0x48004000

PWM
41

0x48008000

PIOC
37

0x4800C000

MATRIX1
0x48010000

IPC1
39

0x48014000

CMCC1
0x48018000

Reserved
0x4801C000

Reserved
0x48020000

0x5FFFFFFF

System Controller

Reserved
0x400E0000

MATRIX0
0x400E0200

PMC
5

0x400E0400

UART0
8

0x400E0600

CHIPID
0x400E0740

Reserved
0x400E0800

EFC
6

0x400E0A00

Reserved
0x400E0C00

PIOA
11

0x400E0E00

PIOB
12

0x400E1000

Reserved
0x400E1200

SYSC
RSTC

0x400E1400

1
SYSC

SUPC
+0x10

SYSC
RTT

+0x30

3
SYSC

WDT
+0x50

4
SYSC

RTC
+0x60

2
SYSC

GPBR
+0x90

SYSC
RSWDT

+0x100

reserved
0x400E1600

0x400E4000

0x48004000

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 32

In Figure 7-2, ‘Code’ means ‘Program Code over I-Code bus’ and ‘Program Data over D-Code bus’.
SRAM1 is at the address 0x20080000 (through S-bus) and the address 0x00000000 (through I/D Bus) for Core 1.
Instruction fetch from Core 1 to the SRAM address range is possible but leads to reduced performance due to the fact
that instructions and read/write data go through the System Bus (S-Bus). Maximum performance for Core 1 is
obtained by mapping the instruction code to the address 0x00000000 (SRAM1 through I/D-Code) and read/write data
from the address 0x20100000 (SRAM2 through S-Bus).
For Core 0 (Application Core), maximum performance is achieved when the instruction code is mapped to the Flash
address and read/write data is mapped into SRAM0.
Each core can access the following memories and peripherals:
 Core 0 (Application Core):

 All internal memories
 All internal peripherals

 Core 1 (Coprocessor Core):
 All internal memories
 All internal peripherals

Note that Peripheral DMA 0 on Matrix 0 cannot access SRAM1 or SRAM2, Peripheral DMA 1 on Matrix 1 cannot
access SRAM0, SRAM2 or SRAM0 can be the Data RAM for Inter-core Communication.
If Core 1 is not to be used (clock stopped and reset active), all the peripherals, SRAM1 and SRAM2 of the Sub-system
1 can be used by the Application Core (Core 0) as long as the peripheral bus clock and reset are configured.
Detailed memory mapping and memory access versus Matrix masters/slaves are given in the “Bus Matrix (MATRIX)”
section of this datasheet.

 33SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

8. Memories
The memory map shown in Figure 7-2, “SAM4CP16C Memory Mapping of CODE and SRAM Area” is common to
both Cortex-M4 processors with the exception of the “Boot Memory” block. For more information on Boot Memory,
refer to Section 8.1.5 “Boot Strategy” on page 37.
Each processor uses its own ARM Private Peripheral Bus (PPB) for the NVIC and other system functions.

8.1 Embedded Memories

8.1.1 Internal SRAM
The SAM4CP16C embeds a total of 152 Kbytes high-speed SRAM with zero wait state access time.
SRAM0 on Matrix0 is 128 Kbytes. It is dedicated to the application processor (CM4P0) or other peripherals on Matrix0
but can be identified and used by masters on Matrix1.
SRAM1 on Matrix1 is 16 Kbytes. It is mainly dedicated to be the code region of the CM4P1 processor but can be
identified and used by Matrix0.
SRAM2 on Matrix1 is 8 Kbytes. It is mainly dedicated to be the data region of the CM4P1 processor or other
peripherals on Matrix1 but can be identified and used by masters on Matrix0.
Refer to the section “Bus Matrix (MATRIX)” of this datasheet for more details.
If the CM4P1 processor is in the reset state and not used, the application core may use it.
The SRAM is located in the bit band region. The bit band alias region is from 0x2200 0000 to 0x23FF_FFFF.

8.1.2 System ROM
The SAM4CP16C embeds an Internal ROM for the master processor (CM4P0), which contains the SAM Boot
Assistant (SAM-BA), In Application Programming routines (IAP), and Fast Flash Programming Interface (FFPI).
The ROM is always mapped at the address 0x02000000.

8.1.3 CPKCC ROM
The ROM contains a cryptographic library using the CPKCC cryptographic accelerator peripheral (CPKCC) to provide
support for Rivest Shamir Adleman (RSA), Elliptic Curve Cryptography (ECC), Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA).

8.1.4 Embedded Flash

8.1.4.1 Flash Overview
The embedded Flash is the boot memory for the Cortex-M4 Core 0 (CM4P0).
The flash memory can be accessed through the Cache Memory Controller (CMCC0) of the CM4P0 and can also be
identified by the Cortex-M4F Core 1 (CM4P1) through its Cache Memory Controller (CMCC1).
The memory plane is organized in sectors. Each sector has a size of 64 Kbytes. The first sector of 64 Kbytes is
divided into 3 smaller sectors.
The three smaller sectors are organized in 2 sectors of 8 Kbytes and 1 sector of 48 Kbytes. Refer to Figure 8-1 below.
The Flash memory has built-in error code correction providing 2-bit error detection and 1-bit correction per 128 bits.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 34

Figure 8-1. Memory Plane Organization

Each sector is organized in pages of 512 bytes.
For sector 0:
 The small sector 0 has 16 pages of 512 bytes, 8 Kbytes in total.
 The small sector 1 has 16 pages of 512 bytes, 8 Kbytes in total.
 The larger sector has 96 pages of 512 bytes, 48 Kbytes in total.

From sector 1 to n:
The rest of the array is composed of 64-Kbyte sectors where each sector comprises 128 pages of 512 bytes. Refer to
Figure 8-2, “Flash Sector Organization” below.

Figure 8-2. Flash Sector Organization

In SAM4CP16C the flash size is 1024 Kbytes.

Small Sector 08 KBytes

Small Sector 18 KBytes

Larger Sector 48 KBytes

Sector 164 KBytes

64 KBytes Sector n

 Sector 0

Sector size Sector name

Sector 0

Sector n

Smaller sector 0

Smaller sector 1

Larger sector

A sector size is 64 Kbytes

16 pages of 512 Bytes16 pages of 512 Bytes

16 pages of 512 Bytes

96 pages of 512 Bytes

128 pages of 512 Bytes

 35SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 8-3 illustrates the organization of the Flash depending on its size.

Figure 8-3. Flash Size

The following erase commands can be used depending on the sector size:
 8 Kbyte small sector

 Erase and write page (EWP).
 Erase and write page and lock (EWPL).
 Erase sector (ES) with FARG set to a page number in the sector to erase.
 Erase pages (EPA) with FARG [1:0] = 0 to erase four pages or FARG [1:0] = 1 to erase eight pages.

FARG [1:0] = 2 and FARG [1:0] = 3 must not be used.
 48 Kbyte and 64 Kbyte sectors

 One block of 8 pages inside any sector, with the command Erase pages (EPA) with FARG[1:0] = 1.
 One block of 16 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 2.
 One block of 32 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 3.
 One sector with the command Erase sector (ES) and FARG set to a page number in the sector to erase.

 Entire memory plane
 The entire Flash, with the command Erase all (EA).

8.1.4.2 Enhanced Embedded Flash Controller
The Enhanced Embedded Flash Controller manages accesses performed by masters of the system. It enables
reading the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.
The Enhanced Embedded Flash Controller ensures the interface of the Flash block. It manages the programming,
erasing, locking and unlocking sequences of the Flash using the full set of commands.
One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash
organization, thus making the software generic.

8.1.4.3 Flash Speed
The user must set the number of wait states depending on the frequency used on the SAM4CP16C.
For more details, refer to “Embedded Flash” in the section “Electrical Characteristics”.

2 * 8 KBytes

1 * 48 KBytes

15 * 64 KBytes

Flash 1 MBytes

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 36

8.1.4.4 Lock Regions
Several lock bits are used to protect write and erase operations on lock regions. A lock region is composed of several
consecutive pages, and each lock region has its associated lock bit.

The lock bits are software programmable through the EEFC User Interface. The command “Set Lock Bit” enables the
protection. The command “Clear Lock Bit” unlocks the lock region.
Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

8.1.4.5 Security Bit
The SAM4CP16C features a security bit based on a specific General-purpose NVM bit (GPNVM bit 0). When the
security is enabled, any access to the Flash, SRAM, core registers and internal peripherals, either through the SW-
DP/JTAG-DP interface or through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality
of the code programmed in the Flash.
This security bit can only be enabled through the command “Set General-purpose NVM Bit 0” of the EEFC User
Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash erase
is performed. When the security bit is deactivated, all accesses to the Flash, SRAM, Core registers, Internal
Peripherals are permitted.

8.1.4.6 Unique Identifier
Each device integrates its own 128-bit unique identifier. These bits are factory-configured and cannot be changed by
the user. The ERASE pin has no effect on the unique identifier.

8.1.4.7 User Signature
The memory has one additional reprogrammable page that can be used as page signature by the user. It is
accessible through specific modes, for erase, write and read operations. Erase pin assertion will not erase the User
Signature page.

8.1.4.8 Fast Flash Programming Interface
The Fast Flash Programming Interface allows programming the device through either a serial JTAG interface or
through a multiplexed fully-handshaked parallel port. It allows gang programming with market-standard industrial
programmers.
The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

8.1.4.9 SAM-BA Boot
The SAM-BA Boot is a default Boot Program for the master processor (CM4P0) which provides an easy way to
program in-situ the on-chip Flash memory.
The SAM-BA Boot Assistant supports serial communication via the UART0.
The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).
The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set to 0.

8.1.4.10 GPNVM Bits
The SAM4CP16C features two GPNVM bits. These bits can be cleared or set respectively through the commands
“Clear GPNVM Bit” and “Set GPNVM Bit” of the EEFC User Interface (see the “EEFC Flash Command Register”
section of this datasheet).

Table 8-1. Lock bit number

Product Number of Lock Bits Lock Region Size

SAM4CP16C 128 8 Kbytes

Table 8-2. General-purpose Nonvolatile Memory Bits

GPNVMBit Function

0 Security bit

1 Boot mode selection

 37SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

8.1.5 Boot Strategy
Figure 8-4 below shows a load view of the memory at boot time.

Figure 8-4. Simplified Load View at Boot Time

8.1.5.1 Application Core (Core 0) Boot Process
The application processor (CM4P0) always boots at the address 0x0. To ensure maximum boot possibilities, the
memory layout can be changed using a General-purpose NVM (GPNVM) bit. A GPNVM bit is used to boot either on
the ROM (default) or from the Flash. The GPNVM bit can be cleared or set through the commands “Clear General-
purpose NVM Bit” and “Set General-purpose NVM Bit” of the EEFC User Interface. Setting GPNVM Bit 1 selects the
boot from Flash, whereas clearing this bit selects the boot from ROM. Asserting ERASE clears the GPNVM Bit 1 and
thus selects the boot from the ROM by default.

8.1.5.2 Coprocessor Core (Core 1) Boot Process
After reset, the Sub-system 1 is hold in reset and with no clock. It is up to the Master Application (Core 0 Application)
running on the Core 0 to enable the Sub-system 1. Then the application code can be downloaded into the CM4P1
Boot memory (SRAM1), and CM4P0 can afterwards de-assert the CM4P1 reset line. The secondary processor
(CM4P1) always identifies SRAM1 as “Boot memory”.

8.1.5.3 Sub-system 1 Startup Sequence
After the Core 0 is booted from Flash, the Core 0 application must perform the following steps:

1. Enable Core 1 System Clock (Bus and peripherals).
2. Enable Core 1 Clock.
3. Release Core 1 System Reset (Bus and peripherals).
4. Enable SRAM1 and SRAM2 Clock.
5. Copy Core 1 Application from Flash into SRAM1.
6. Release Core 1 Reset.

After Step 6, the Core 1 boots from SRAM1 memory.

SRAM0

SRAM1

Core 0
Application Core

(Cortex-M4)

ICode / DCode Bus

S-Bus

ICode / DCode Bus

S-Bus
SRAM2

Flash

Core 0
Application

Core1
Application
(Binary Img.)

Clock & Reset
Control

Core 1
 Coprocessor Core

(Cortex-M4F)

Sub-system 0 Sub-system 1

Note: Matrices, AHB and APB Bridges are not represented.

MPU NVIC

FPU NVIC

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 38

Pseudo-code
1- // Enable Coprocessor Bus Master Clock (PMC_SCER.CPBMCK).

2- // Enable Coprocessor Clocks (PMC_SCER.CPCK).
// Set Coprocessor Clock Prescaler and Source (PMC_MCKR.CPPRES).
// Choose coprocessor main clock source (PMC_MCKR.CPCSS).

3- // Release coprocessor peripheral reset (RSTC_CPMR.CPEREN).

4- // Enable Core 1 SRAM1 and SRAM2 Memories (PMC_PCER.PID42).

5- // Copy Core 1 application code from Flash into SRAM1.

6- // Release coprocessor reset (RSTC_CPMR.CPROCEN).

8.1.5.4 Sub-system 1 Start-up Time
Table 8-3 provides the start-up time of sub-system 1 in terms of the number of clock cycles for different CPU speeds.
The figures in this table take into account the time to copy 16 Kbytes of code from Flash into SRAM1 using the
‘memcopy’ function from the standard C library and to release Core 1 reset signal. The start-up time of the device from
power-up is not taken into account.

Table 8-3. Sub-system 1 Start-up Time

Core Clock (MHz) Flash Wait State Core Clock Cycles Time

21 0 44122 2.1 ms

42 1 45158 1.07 ms

63 2 46203 735 μs

85 3 47242 55 μs

106 4 48284 455 μs

120 5 49329 411 μs

 39SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

8.1.5.5 Typical Execution View
Figure 8-5 provides the code execution view for both Cortex-M4 cores. AHB to APB, AHB to AHB and Matrices are
not represented in this view.

Figure 8-5. Execution View

SRAM0

Core 0,
RW Data,

Stack, Heap

Core 0

Application
Core

(Cortex-M4)

Core 1

Coprocessor
Core

(Cortex-M4F)

Flash

Core 0
Code,

RO Data

Core 1
Code,

RO Data

Core 1
Application

Binary

Cache
Ctrl.

(CMCC0)

Cache
Ctrl.

(CMCC1)

SRAM1

SRAM2

Note: 1. SRAM0 can also be used as Message Buffer Exchange.
Note: Matrices, AHB and APB Bridges are not represented.

MPU NVIC FPU NVIC

Core 1,
RW Data,

Stack, Heap

Core 0 <--> Core 1
Msg. Buffer (1)

Core 1
Code,

RO Data

Sub-system 0 Sub-system 1

ICode / DCode Bus ICode / DCode Bus

S-Bus S-Bus

S-Bus ICode / DCode Bus

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 40

9. Real-time Event Management
The events generated by peripherals are designed to be directly routed to peripherals managing/using these events
without processor intervention. Peripherals receiving events contain logic to select the required event.

9.1 Embedded Characteristics
 Timers generate event triggers which are directly routed to event managers, such as ADC, to start

measurement/conversion without processor intervention.
 UART, USART, SPI, TWI, and PIO generate event triggers directly connected to Peripheral DMA controller

(PDC) for data transfer without processor intervention.
 PMC Security Event (Clock Failure Detection) can be programmed to switch the MCK on reliable main RC

internal clock.

9.2 Real-time Event Mapping List

Notes: 1. Refer to Section 30.13 “Main Clock Failure Detector”.
2. Refer to Section 20.4.9.3 “Low-power Debouncer Inputs (Tamper Detection Pins)” and Section 21.3.1 “General

Purpose Backup Register x”.
3. Refer to Section 40.7.2 “ADC Mode Register”.

Table 9-1. Real-time Event Mapping List

Function Application Description Event Source Event Destination

Safety General-purpose
Automatic switch to reliable main

RC oscillator in case of main
crystal clock failure(1)

Power Management Controller
(PMC) PMC

Security General-purpose
Immediate (asynchronous) clear
of first half of GPBR on tamper

detection through pins(2)
Anti-tamper Inputs (TMPx) GPBR

Measurement

trigger
General-purpose Trigger source selection in ADC(3)

IO (ADTRG)

ADC

TC Output 0

TC Output 1

TC Output 2

TC Output 3

TC Output 4

TC Output 5

 41SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

10. System Controller
The System Controller comprises a set of peripherals. It handles key elements of the system, such as power, resets,
clocks, time, interrupts, watchdog, reinforced safety watchdog, etc.

10.1 System Controller and Peripheral Mapping
Refer to “SAM4CP16C Memory Mapping of CODE and SRAM Area” .
All the peripherals are in the bit band region and are mapped in the bit band alias region.

10.2 Power Supply Monitoring
The SAM4CP16C embeds Supply Monitor, Power-on-Reset and Brownout detectors for power supplies monitoring
allowing to warn and/or reset the chip.

10.2.1 Power-on-Reset on VDDCORE
The Power-on-Reset monitors VDDCORE. It is always activated and monitors voltage at start-up but also during
power-down. If VDDCORE goes below the threshold voltage, the entire chip (except VDDBU domain) is reset. For
more information, refer to the “Electrical Characteristics” section of the product datasheet.

10.2.2 Brownout Detector on VDDCORE
The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by software through the
Supply Controller (SUPC_MR).
If VDDCORE goes below the threshold voltage, the reset of the core is asserted.

10.2.3 Power-on-Reset on VDDIO
The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start-up but also during power-
down. If VDDIO goes below the threshold voltage, the IOs are reset but the core continues to run. Voltage detection is
fixed.

10.2.4 Supply Monitor on VDDIO
The supply monitor on VDDIO is fully programmable with 4 steps for the threshold (between 3.0V to 3.4V). It provides
the user the flexibility to set a voltage level detection higher then the power-on-reset on VDDIO. Either a reset or an
interrupt can be generated upon detection. It can be activated by software and it is controlled by the Supply Controller
(SUPC). A sample mode is possible. It divides the supply monitor power consumption by a factor of up to 2048.
The supply monitor is used as “system alert” in case VDDIO supply is falling. It can be used while the device is in
Backup mode to wake up the device if VDDIO is falling.

10.2.5 Power-on-Reset and Brownout Detector on VDDBU
The Power-on-Reset monitors VDDBU. It is active by default and monitors voltage at start-up but also during power-
down. It can be deactivated by software through the Supply Controller (SUPC_MR). If VDDBU goes below the
threshold voltage, the entire chip is reset.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 42

10.3 Reset Controller
The Reset Controller uses the Power-on-Reset, supply monitor and brownout detector cells.
The Reset Controller returns the source of the last reset to the software. Refer to the description of the field RSTTYP
in the section “Reset Controller (RSTC)”.
The Reset Controller controls the internal resets of the system (or independent reset of CM4P1 processor) and the
NRST pin input/output. It shapes a reset signal for the external devices, simplifying to a minimum connection of a
push-button on the NRST pin to implement a manual reset.
The configuration of the Reset Controller is saved during Backup mode as it is supplied by VDDBU.

10.4 Supply Controller (SUPC)
The Supply Controller controls the power supplies of each section of the processor.
The Supply Controller starts up the device by sequentially enabling the internal power switches and the Voltage
Regulator, then it generates the proper reset signals to the core power supply.
It also sets the system in different low-power modes, wakes it up from a wide range of events.

 43SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

11. Peripherals

11.1 Peripheral Identifiers
Table 11-1 defines the Peripheral Identifiers. A peripheral identifier is required for the control of the peripheral interrupt
with the Nested Vectored Interrupt Controller, and for the control of the peripheral clock with the Power Management
Controller.
The two ARM Cortex-M4 processors share the same interrupt mapping, and thus, they share all the interrupts of the
peripherals.
Note: Some peripherals are on the Bus Matrix 0/AHB to APB Bridge 0 and other peripherals are on the Bus Matrix

1/AHB to APB Bridge 1. If Core 0 needs to access a peripheral on the Bus Matrix 1/AHB to APB Bridge 1, the
Core 0 application must enable the Core 1 System Clock (Bus and peripherals) and release Core 1 System
Reset (Bus and peripherals). Peripherals on Sub-system 0 or Sub-system 1 are mentioned in the Instance
description table that follows.

Table 11-1. Peripheral Identifiers

Instance ID Instance Name NVIC Interrupt
PMC

Clock Control Instance Description

0 SUPC X - Supply Controller

1 RSTC X - Reset Controller

2 RTC X - Real-time Clock

3 RTT X - Real-time Timer

4 WDT X - Watchdog Timer

5 PMC X - Power Management Controller

6 EFC X - Enhanced Embedded Flash Controller 0

7 - - - Reserved

8 UART0 X X UART 0 (Sub-system 0 Clock)

9 - - - Reserved

10 - - - Reserved

11 PIOA X X Parallel I/O Controller A (Sub-system 0 Clock)

12 PIOB X X Parallel I/O Controller B (Sub-system 0 Clock)

13 - - - Reserved

14 USART0 X X USART 0 (Sub-system 0 Clock)

15 USART1 X X USART 1 (Sub-system 0 Clock)

16 USART2 X X USART 2 (Sub-system 0 Clock)

17 USART3 X X USART 3 (Sub-system 0 Clock)

18 USART4 X X USART 4 (Sub-system 0 Clock)

19 TWI0 X X Two Wire Interface 0 (Sub-system 0 Clock)

20 TWI1 X X Two Wire Interface 1 (Sub-system 0 Clock)

21 GPLC X X Power Line Communication (Sub-system 0 Clock)

22 - - - Reserved

23 TC0 X X Timer/Counter 0 (Sub-system 0 Clock)

24 TC1 X X Timer/Counter 1 (Sub-system 0 Clock)

25 TC2 X X Timer/Counter 2 (Sub-system 0 Clock)

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 44

11.2 Peripheral DMA Controller (PDC)
Two Peripheral DMA Controllers (PDC) are available:
 PDC0: dedicated to peripherals on APB0
 PDC1: dedicated to peripherals on APB1

Features of the PDC include:
 Data transfer handling between peripherals and memories
 Low bus arbitration overhead

 One master clock cycle needed for a transfer from memory to peripheral
 Two master clock cycles needed for a transfer from peripheral to memory

 Next Pointer management to reduce interrupt latency requirement
Note that Peripheral DMA 0 on Matrix 0 cannot access SRAM1 or SRAM2. Peripheral DMA 1 on Matrix 1 cannot
access SRAM0.

26 TC3 X X Timer/Counter 3 (Sub-system 0 Clock)

27 TC4 X X Timer/Counter 4 (Sub-system 0 Clock)

28 TC5 X X Timer/Counter 5 (Sub-system 0 Clock)

29 ADC X X Analog To Digital Converter (Sub-system 0 Clock)

30 ARM X - FPU signals (only on CM4P1 core): FPIXC, FPOFC,
FPUFC, FPIOC, FPDZC, FPIDC, FPIXC

31 IPC0 X X Interprocessor communication 0 (Sub-system 0
Clock)

32 SLCDC X X Segment LCD Controller (Sub-system 0 Clock)

33 TRNG X X True Random Generator (Sub-system 0 Clock)

34 ICM X X Integrity Check Module (Sub-system 0 Clock)

35 CPKCC X X Classical Public Key Cryptography Controller (Sub-
system 0 Clock)

36 AES X X Advanced Enhanced Standard (Sub-system 0 Clock)

37 PIOC X X Parallel I/O Controller C (Sub-system 1 Clock)

38 UART1 X X UART 1 (Sub-system 1 Clock)

39 IPC1 X X Interprocessor communication 1 (Sub-system 1
Clock)

40 SPI1 X X Serial Peripheral Interface 1 (Sub-system 1 Clock)

41 PWM X X Pulse Width Modulation (Sub-system 1 Clock)

42 SRAM - X SRAM1 (I/D Code bus of CM4P1), SRAM2 (System
bus of CM4P1) (Sub-system 1 Clock)

43 - - - Reserved

Table 11-1. Peripheral Identifiers (Continued)

Instance ID Instance Name NVIC Interrupt
PMC

Clock Control Instance Description

 45SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

The PDC handles transfer requests from the channel according to the following priorities (Low to High priorities):

11.3 APB/AHB Bridge
The SAM4CP16C embeds two peripheral bridges: one on each Matrix, with Matrix 0 for CM4P0 and Matrix 1 for
CM4P1.
The peripherals of the bridge corresponding to CM4P0 (APB0) are clocked by MCK, and the peripherals of the bridge
corresponding to CM4P1 (APB1) are clocked by CPBMCK.

11.4 Peripheral Signal Multiplexing on I/O Lines
The SAM4CP16C can multiplex the I/O lines of the peripheral set.
The SAM4CP16C PIO Controllers control up to 32 lines. Each line can be assigned to one of two peripheral functions:
A or B. The multiplexing tables that follow define how the I/O lines of the peripherals A, B and C are multiplexed on the
PIO Controllers. The column “Comments” has been inserted in this table for the user’s own comments; it may be used
to track how pins are defined in an application.
Note that some peripheral functions which are output only may be duplicated within the tables.

Table 11-2. Peripheral DMA Controller (PDC0)
Instance name Channel T/R

AES Transmit

TWI0 Transmit

UART0 Transmit

USART1 Transmit

USART0 Transmit

USART2 Transmit

USART3 Transmit

USART4 Transmit

GPLC Transmit

AES Receive

TWI0 Receive

UART0 Receive

USART4 Receive

USART3 Receive

USART2 Receive

USART1 Receive

USART0 Receive

ADC Receive

GPLC Receive

Table 11-3. Peripheral DMA Controller (PDC1)
Instance name Channel T/R

UART1 Transmit

SPI1 Transmit

UART1 Receive

SPI1 Receive

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 46

11.4.1 Pad Features
In Table 11-5 to Table 11-7, the column “Feature” indicates whether the corresponding I/O line has programmable
Pull-up, Pull-down and/or Schmitt Trigger. Table 11-4 provides the key to the abbreviations used.

11.4.2 Reset State
In Table 11-5 to Table 11-7, the column “Reset State” indicates the reset state of the line.
 PIO or signal name: Indicates whether the PIO line resets in I/O mode or in peripheral mode.

If “PIO” is mentioned, the PIO line is in general-purpose I/O (GPIO). If a signal name is mentioned in the “Reset
State” column, the PIO line is assigned to this function.

 I or O: Indicates whether the signal is input or output state.
 PU or PD: Indicates whether Pull-up, Pull-down or nothing is enabled.
 ST: Indicates that Schmitt Trigger is enabled.

Table 11-4. I/O Line Features Abbreviations

Abbreviation Definition

PUP (P) Programmable Pull-up

PUP (NP) Non-programmable Pull-up

PDN (P) Programmable Pull-down

PDN (NP) Non-programmable Pull-down

ST (P) Programmable Schmitt Trigger

ST (NP) Non-programmable Schmitt Trigger

LDRV (P) Programmable Low Drive

LDRV (NP) Non-programmable Low Drive

HDRV (P) Programmable High Drive

HDRV (NP) Non-programmable High Drive

MaxDRV (NP) Non-programmable Maximum Drive

 47SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

11.4.3 PIO Controller A Multiplexing

Table 11-5. Multiplexing on PIO Controller A (PIOA)

I/O Line Peripheral A Peripheral B Peripheral C
Extra

Function
System

Function Feature Reset State Comments

PA0 RTS3 PCK2 – COM0 WKUP5
- PUP(P) / PDN(P)
- ST(P)
- MaxDRV(NP)

PIO, I, PU

PA1 CTS3 – – COM1 –
- PUP(P) / PDN(P)
- ST(P)
- LDRV(P) / HDRV(P)

PA2 SCK3 – – COM2 –

PA3 RXD3 – – COM3 WKUP6

PA4 TXD3 – – COM4/AD1 –

PA9 RXD2 – – SEG3 WKUP2

- PUP(P) / PDN(P)
- ST(P)
- LDRV(P) / HDRV(P)

PA10 TXD2 – – SEG4 –

PA11 RXD1 – – SEG5 WKUP9

PA12 TXD1 – – SEG6/AD0 –

PA13 SCK2 TIOA0 – SEG7 –

PA14 RTS2 TIOB0 – SEG8 WKUP3

PA15 CTS2 TIOA4 – SEG9 –

PA16 SCK1 TIOB4 – SEG10 –

PA17 RTS1 TCLK4 – SEG11 WKUP7

PA18 CTS1 TIOA5 – SEG12 –

PA19 RTS0 TCLK5 – SEG13 WKUP4

PA20 CTS0 TIOB5 – SEG14 –

PA21 – – – SEG15 –

PA22 – – – SEG16 –

PA23 – – – SEG17 –

PA24 TWD0 – – SEG18 WKUP1

PA25 TWCK0 – – SEG19 –

PA26 CTS4 – – SEG20 –

PA27 – – – SEG21 –

PA28 – – – SEG22 –

PA29 PCK1 – – SEG23 –
- PUP(P) / PDN(P)
- ST(P)
- MaxDRV(NP)

PA30 PCK1 – – – XOUT
- PUP(P) / PDN(P)
- ST(P)
- LDRV(P) / HDRV(P)

XOUT

PA31 PCK0 – – – XIN
- PUP(P) / PDN(P)
- ST(P)
- LDRV(P) / HDRV(P)

XIN

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 48

11.4.4 PIO Controller B Multiplexing

Table 11-6. Multiplexing on PIO Controller B (PIOB)
I/O

Line Peripheral A Peripheral B Peripheral C
Extra

Function
System

Function Feature Reset State Comments

PB0 TWD1 – – – TDI
- PUP(P) / PDN(P)
- ST(P)
- LDRV(P) / HDRV(P)

JTAG, I

PB1 TWCK1 – – RTCOUT0 TDO/
TRACESWO

- PUP(P) / PDN(P)
- LDRV(NP)

JTAG, O

PB2 – – – – TMS/SWDIO

- PUP(P) / PDN(P)
- ST(P)
- LDRV(P) / HDRV(P)

JTAG, I
PB3 – – – – TCK/SWCLK

PB4 URXD0 TCLK0 – – WKUP8

PIO, I, PU

PB5 UTXD0 – – – –

PB6 – – – SEG24 –

PB7 TIOA1 – – SEG25 –

PB8 TIOB1 – – SEG26 –

PB9 TCLK1 – – SEG27 –

PB10 TIOA2 – – SEG28 –

PB11 TIOB2 – – SEG29 –

PB12 TCLK2 – – SEG30 –

PB13 PCK0 – – SEG31/AD3 –
- PUP(P) / PDN(P)
- ST(P)
- MaxDRV(NP)

PB14 – – – SEG32 –

- PUP(P) / PDN(P)
- ST(P)
- LDRV(P) / HDRV(P)

PB15 – – – SEG33 –

PB16 RXD0 – – SEG34 WKUP10/
TMP1

PIO, I, PD

PB17 TXD0 – – SEG35 –

PB18 SCK0 PCK2 – SEG36 –

PB19 RXD4 – – SEG37 –

PB20 TXD4 – – SEG38 –

PB21 SCK4 – – SEG39 WKUP11

PB22 RTS4 – – SEG40 –

PIO, I, PU

PB23 ADTRG – – SEG41/AD4 –

PB24 TIOA3 – – SEG42 –

PB25 TIOB3 – – SEG43 –

PB26 TCLK3 – – SEG44 WKUP13

PB27 – – – SEG45 WKUP14/
TMP2

PB28 – – – SEG46 WKUP15/
TMP3

PB29 – – – SEG47 –

PB31 – – – SEG49/AD5 –

 49SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

11.4.5 PIO Controller C Multiplexing

Table 11-7. Multiplexing on PIO Controller C (PIOC)
I/O

Line Peripheral A Peripheral B Peripheral C
Extra

Function
System

Function Feature Reset State Comments

PC0 UTXD1 PWM0 – – – - PUP(P)
- MaxDRV(NP)

PIO, I, PU

PC1 URXD1 PWM1 – – WKUP12

- PUP(P) / PDN(P)
- ST(P)
- LDRV(P) / HDRV(P)

PC2 SPI1_NPCS0 PWM2 – – –

PC3 SPI1_MISO PWM3 – – –

PC4 SPI1_MOSI – – – –

PC5 SPI1_SPCK – – – – - PUP(P)
- MaxDRV(NP)

PC6 PWM0 SPI1_NPCS1 – – –
- PUP(P) / PDN(P)
- ST(P)
- LDRV(P) / HDRV(P)

PC7 PWM1 SPI1_NPCS2 – – –

PC8 PWM2 SPI1_NPCS3 – – –

PC9 PWM3 – – – ERASE ERASE, PD

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 50

12. ARM Cortex-M4 Processor

12.1 Description
The Cortex-M4 processor is a high performance 32-bit processor designed for the microcontroller market. It offers
significant benefits to developers, including outstanding processing performance combined with fast interrupt han-
dling, enhanced system debug with extensive breakpoint and trace capabilities, efficient processor core, system and
memories, ultra-low power consumption with integrated sleep modes, and platform security robustness, with inte-
grated memory protection unit (MPU).

The Cortex-M4 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard architecture,
making it ideal for demanding embedded applications. The processor delivers exceptional power efficiency through an
efficient instruction set and extensively optimized design, providing high-end processing hardware including IEEE754-
compliant single-precision floating-point computation, a range of single-cycle and SIMD multiplication and multiply-
with-accumulate capabilities, saturating arithmetic and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M4 processor implements tightly-coupled system compo-
nents that reduce processor area while significantly improving interrupt handling and system debug capabilities. The
Cortex-M4 processor implements a version of the Thumb instruction set based on Thumb-2 technology, ensuring high
code density and reduced program memory requirements. The Cortex-M4 instruction set provides the exceptional
performance expected of a modern 32-bit architecture, with the high code density of 8-bit and 16-bit microcontrollers.

The Cortex-M4 processor closely integrates a configurable NVIC, to deliver industry-leading interrupt performance.
The NVIC includes a non-maskable interrupt (NMI), and provides up to 256 interrupt priority levels. The tight integra-
tion of the processor core and NVIC provides fast execution of interrupt service routines (ISRs), dramatically reducing
the interrupt latency. This is achieved through the hardware stacking of registers, and the ability to suspend load-mul-
tiple and store-multiple operations. Interrupt handlers do not require wrapping in assembler code, removing any code
overhead from the ISRs. A tail-chain optimization also significantly reduces the overhead when switching from one
ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that
enables the entire device to be rapidly powered down while still retaining program state.

12.1.1 System Level Interface
The Cortex-M4 processor provides multiple interfaces using AMBA® technology to provide high speed, low latency
memory accesses. It supports unaligned data accesses and implements atomic bit manipulation that enables faster
peripheral controls, system spinlocks and thread-safe Boolean data handling.

The Cortex-M4 processor has a Memory Protection Unit (MPU) that provides fine grain memory control, enabling
applications to utilize multiple privilege levels, separating and protecting code, data and stack on a task-by-task basis.
Such requirements are becoming critical in many embedded applications such as automotive.

12.1.2 Integrated Configurable Debug
The Cortex-M4 processor implements a complete hardware debug solution. This provides high system visibility of the
processor and memory through either a traditional JTAG port or a 2-pin Serial Wire Debug (SWD) port that is ideal for
microcontrollers and other small package devices.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside data watchpoints and
a profiling unit. To enable simple and cost-effective profiling of the system events these generate, a Serial Wire
Viewer (SWV) can export a stream of software-generated messages, data trace, and profiling information through a
single pin.

The Flash Patch and Breakpoint Unit (FPB) provides up to 8 hardware breakpoint comparators that debuggers can
use. The comparators in the FPB also provide remap functions of up to 8 words in the program code in the CODE
memory region. This enables applications stored on a non-erasable, ROM-based microcontroller to be patched if a
small programmable memory, for example flash, is available in the device. During initialization, the application in ROM
detects, from the programmable memory, whether a patch is required. If a patch is required, the application programs
the FPB to remap a number of addresses. When those addresses are accessed, the accesses are redirected to a
remap table specified in the FPB configuration, which means the program in the non-modifiable ROM can be patched.

 51SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.2 Embedded Characteristics
 Tight integration of system peripherals reduces area and development costs
 Thumb instruction set combines high code density with 32-bit performance
 IEEE754-compliant single-precision FPU
 Code-patch ability for ROM system updates
 Power control optimization of system components
 Integrated sleep modes for low power consumption
 Fast code execution permits slower processor clock or increases sleep mode time
 Hardware division and fast digital-signal-processing oriented multiply accumulate
 Saturating arithmetic for signal processing
 Deterministic, high-performance interrupt handling for time-critical applications
 Memory Protection Unit (MPU) for safety-critical applications
 Extensive debug and trace capabilities:

 Serial Wire Debug and Serial Wire Trace reduce the number of pins required for debugging, tracing, and
code profiling.

12.3 Block Diagram

Figure 12-1. Typical Cortex-M4F Implementation

NVIC

Debug
Access

Port

Memory
Protection Unit

Serial
Wire

Viewer

Bus Matrix

Code
Interface

SRAM and
Peripheral Interface

Data
Watchpoints

Flash
Patch

FPU

Processor
Core

Cortex-M4F
Processor

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 52

12.4 Cortex-M4 Models

12.4.1 Programmers Model
This section describes the Cortex-M4 programmers model. In addition to the individual core register descriptions, it
contains information about the processor modes and privilege levels for software execution and stacks.

12.4.1.1 Processor Modes and Privilege Levels for Software Execution
The processor modes are:

 Thread mode
Used to execute application software. The processor enters the Thread mode when it comes out of reset.

 Handler mode
Used to handle exceptions. The processor returns to the Thread mode when it has finished exception
processing.

The privilege levels for software execution are:

 Unprivileged
The software:
 Has limited access to the MSR and MRS instructions, and cannot use the CPS instruction
 Cannot access the System Timer, NVIC, or System Control Block
 Might have a restricted access to memory or peripherals

Unprivileged software executes at the unprivileged level.

 Privileged
The software can use all the instructions and has access to all resources. Privileged software executes at the
privileged level.

In Thread mode, the Control Register controls whether the software execution is privileged or unprivileged, see “Con-
trol Register”. In Handler mode, software execution is always privileged.

Only privileged software can write to the Control Register to change the privilege level for software execution in
Thread mode. Unprivileged software can use the SVC instruction to make a supervisor call to transfer control to privi-
leged software.

12.4.1.2 Stacks
The processor uses a full descending stack. This means the stack pointer holds the address of the last stacked item in
memory When the processor pushes a new item onto the stack, it decrements the stack pointer and then writes the
item to the new memory location. The processor implements two stacks, the main stack and the process stack, with a
pointer for each held in independent registers, see “Stack Pointer”.

In Thread mode, the Control Register controls whether the processor uses the main stack or the process stack, see
“Control Register”.

In Handler mode, the processor always uses the main stack.

The options for processor operations are:

Note: 1. See “Control Register”.

Table 12-1. Summary of processor mode, execution privilege level, and stack use options

Processor Mode Used to Execute Privilege Level for Software Execution Stack Used

Thread Applications Privileged or unprivileged (1) Main stack or process stack(1)

Handler Exception handlers Always privileged Main stack

 53SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.1.3 Core Registers

Figure 12-2. Processor Core Registers

Notes: 1. Describes access type during program execution in thread mode and Handler mode. Debug access can differ.
2. An entry of Either means privileged and unprivileged software can access the register.

SP (R13)

LR (R14)

PC (R15)

R5

R6

R7

R 0

R 1

R 3

R 4

R 2

R10

R11

R12

R8

R9

Low registers

High registers

MSP‡PSP‡

PSR

PRIMASK

FAULTMASK

BASEPRI

CONTROL

General-purpose registers

Stack Pointer

Link Register

Program Counter

Program status register

Exception mask registers

CONTROL register

Special registers

‡Banked version of SP

Table 12-2. Core Processor Registers

Register Name Access(1) Required
Privilege(2)

Reset

General-purpose registers R0-R12 Read/Write Either Unknown

Stack Pointer MSP Read/Write Privileged See description

Stack Pointer PSP Read/Write Either Unknown

Link Register LR Read/Write Either 0xFFFFFFFF

Program Counter PC Read/Write Either See description

Program Status Register PSR Read/Write Privileged 0x01000000

Application Program Status Register APSR Read/Write Either 0x00000000

Interrupt Program Status Register IPSR Read-only Privileged 0x00000000

Execution Program Status Register EPSR Read-only Privileged 0x01000000

Priority Mask Register PRIMASK Read/Write Privileged 0x00000000

Fault Mask Register FAULTMASK Read/Write Privileged 0x00000000

Base Priority Mask Register BASEPRI Read/Write Privileged 0x00000000

Control Register CONTROL Read/Write Privileged 0x00000000

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 54

12.4.1.4 General-purpose Registers
R0 - R12 are 32-bit general-purpose registers for data operations.

12.4.1.5 Stack Pointer
The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the Control Register indicates the stack pointer
to use:

 0 = Main Stack Pointer (MSP). This is the reset value
 1 = Process Stack Pointer (PSP)

On reset, the processor loads the MSP with the value from address 0x00000000.

12.4.1.6 Link Register
The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and exceptions.
On reset, the processor loads the LR value 0xFFFFFFFF.

12.4.1.7 Program Counter
The Program Counter (PC) is register R15. It contains the current program address. On reset, the processor loads the
PC with the value of the reset vector, which is at address 0x00000004. Bit[0] of the value is loaded into the
EPSR T-bit at reset and must be 1.

 55SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.1.8 Program Status Register
Name: PSR

Access: Read/Write

Reset: 0x00000000

The Program Status Register (PSR) combines:

• Application Program Status Register (APSR).
• Interrupt Program Status Register (IPSR).
• Execution Program Status Register (EPSR).

These registers are mutually exclusive bitfields in the 32-bit PSR.

The PSR accesses these registers individually or as a combination of any two or all three registers, using the register name as
an argument to the MSR or MRS instructions. For example:

• Read of all the registers using PSR with the MRS instruction.
• Write to the APSR N, Z, C, V and Q bits using APSR_nzcvq with the MSR instruction.

The PSR combinations and attributes are:

Notes: 1. The processor ignores writes to the IPSR bits.
2. Reads of the EPSR bits return zero, and the processor ignores writes to these bits.

See the instruction descriptions “MRS” and “MSR” for more information about how to access the program status registers.

31 30 29 28 27 26 25 24
N Z C V Q ICI/IT T

23 22 21 20 19 18 17 16
–

15 14 13 12 11 10 9 8
ICI/IT – ISR_NUMBER

7 6 5 4 3 2 1 0
ISR_NUMBER

Name Access Combination

PSR Read/Write(1)(2) APSR, EPSR, and IPSR

IEPSR Read-only EPSR and IPSR

IAPSR Read/Write(1) APSR and IPSR

EAPSR Read/Write(2) APSR and EPSR

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 56

12.4.1.9 Application Program Status Register
Name: APSR

Access: Read/Write

Reset: 0x00000000

The APSR contains the current state of the condition flags from previous instruction executions.

• N: Negative Flag
0: Operation result was positive, zero, greater than, or equal.

1: Operation result was negative or less than.

• Z: Zero Flag
0: Operation result was not zero.

1: Operation result was zero.

• C: Carry or Borrow Flag
Carry or borrow flag:

0: Add operation did not result in a carry bit or subtract operation resulted in a borrow bit.

1: Add operation resulted in a carry bit or subtract operation did not result in a borrow bit.

• V: Overflow Flag
0: Operation did not result in an overflow.

1: Operation resulted in an overflow.

• Q: DSP Overflow and Saturation Flag
Sticky saturation flag:

0: Indicates that saturation has not occurred since reset or since the bit was last cleared to zero.

1: Indicates when an SSAT or USAT instruction results in saturation.

This bit is cleared to zero by software using an MRS instruction.

• GE[19:16]: Greater Than or Equal Flags
See “SEL” for more information.

31 30 29 28 27 26 25 24
N Z C V Q –

23 22 21 20 19 18 17 16
– GE[3:0]

15 14 13 12 11 10 9 8
–

7 6 5 4 3 2 1 0
–

 57SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.1.10 Interrupt Program Status Register
Name: IPSR

Access: Read/Write

Reset: 0x00000000

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR).

• ISR_NUMBER: Number of the Current Exception
0 = Thread mode

1 = Reserved

2 = NMI

3 = Hard fault

4 = Memory management fault

5 = Bus fault

6 = Usage fault

7 - 10 = Reserved

11 = SVCall

12 = Reserved for Debug

13 = Reserved

14 = PendSV

15 = SysTick

16 = IRQ0

56 = IRQ40

See “Exception Types” for more information.

31 30 29 28 27 26 25 24
–

23 22 21 20 19 18 17 16
–

15 14 13 12 11 10 9 8
– ISR_NUMBER

7 6 5 4 3 2 1 0
ISR_NUMBER

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 58

12.4.1.11 Execution Program Status Register
Name: EPSR

Access: Read/Write

Reset: 0x00000000

The EPSR contains the Thumb state bit, and the execution state bits for either the If-Then (IT) instruction, or the Interruptible-
Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction.

Attempts to read the EPSR directly through application software using the MSR instruction always return zero. Attempts to
write the EPSR using the MSR instruction in the application software are ignored. Fault handlers can examine the EPSR value
in the stacked PSR to indicate the operation that is at fault. See “Exception Entry and Return”.

• ICI: Interruptible-continuable Instruction
When an interrupt occurs during the execution of an LDM, STM, PUSH, POP, VLDM, VSTM, VPUSH, or VPOP instruction, the
processor:

– Stops the load multiple or store multiple instruction operation temporarily.
– Stores the next register operand in the multiple operation to EPSR bits[15:12].

After servicing the interrupt, the processor:

– Returns to the register pointed to by bits[15:12].
– Resumes the execution of the multiple load or store instruction.

When the EPSR holds the ICI execution state, bits[26:25,11:10] are zero.

• IT: If-Then Instruction
Indicates the execution state bits of the IT instruction.

The If-Then block contains up to four instructions following an IT instruction. Each instruction in the block is conditional. The
conditions for the instructions are either all the same, or some can be the inverse of others. See “IT” for more information.

• T: Thumb State
The Cortex-M4 processor only supports the execution of instructions in Thumb state. The following can clear the T bit to 0:

– Instructions BLX, BX and POP{PC}.
– Restoration from the stacked xPSR value on an exception return.
– Bit[0] of the vector value on an exception entry or reset.

Attempting to execute instructions when the T bit is 0 results in a fault or lockup. See “Lockup” for more information.

12.4.1.12 Exception Mask Registers
The exception mask registers disable the handling of exceptions by the processor. Disable exceptions where they
might impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruction to change the
value of PRIMASK or FAULTMASK. See “MRS”, “MSR”, and “CPS” for more information.

31 30 29 28 27 26 25 24
– ICI/IT T

23 22 21 20 19 18 17 16
–

15 14 13 12 11 10 9 8
ICI/IT –

7 6 5 4 3 2 1 0
–

 59SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.1.13 Priority Mask Register
Name: PRIMASK

Access: Read/Write

Reset: 0x00000000

The PRIMASK register prevents the activation of all exceptions with a configurable priority.

• PRIMASK
0: No effect.

1: Prevents the activation of all exceptions with a configurable priority.

31 30 29 28 27 26 25 24
–

23 22 21 20 19 18 17 16
–

15 14 13 12 11 10 9 8
–

7 6 5 4 3 2 1 0
– PRIMASK

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 60

12.4.1.14 Fault Mask Register
Name: FAULTMASK

Access: Read/Write

Reset: 0x00000000

The FAULTMASK register prevents the activation of all exceptions except for Non-Maskable Interrupt (NMI).

• FAULTMASK
0: No effect.

1: Prevents the activation of all exceptions except for NMI.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.

31 30 29 28 27 26 25 24
–

23 22 21 20 19 18 17 16
–

15 14 13 12 11 10 9 8
–

7 6 5 4 3 2 1 0
– FAULTMASK

 61SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.1.15 Base Priority Mask Register
Name: BASEPRI

Access: Read/Write

Reset: 0x00000000

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a nonzero value, it
prevents the activation of all exceptions with same or lower priority level as the BASEPRI value.

• BASEPRI
Priority mask bits:

0x0000: No effect.

Nonzero: Defines the base priority for exception processing.

The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this field,
bits[3:0] read as zero and ignore writes. See “Interrupt Priority Registers” for more information. Remember that higher priority
field values correspond to lower exception priorities.

31 30 29 28 27 26 25 24
–

23 22 21 20 19 18 17 16
–

15 14 13 12 11 10 9 8
–

7 6 5 4 3 2 1 0
BASEPRI

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 62

12.4.1.16 Control Register
Name: CONTROL

Access: Read/Write

Reset: 0x00000000

The Control Register controls the stack used and the privilege level for software execution when the processor is in Thread
mode and indicates whether the FPU state is active.

• FPCA: Floating-point Context Active
Indicates whether the floating-point context is currently active:

0: No floating-point context active.

1: Floating-point context active.

The Cortex-M4 uses this bit to determine whether to preserve the floating-point state when processing an exception.

• SPSEL: Active Stack Pointer
Defines the current stack:

0: MSP is the current stack pointer.

1: PSP is the current stack pointer.

In Handler mode, this bit reads as zero and ignores writes. The Cortex-M4 updates this bit automatically on exception return.

• nPRIV: Thread Mode Privilege Level
Defines the Thread mode privilege level:

0: Privileged.

1: Unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the Control
Register when in Handler mode. The exception entry and return mechanisms update the Control Register based on the
EXC_RETURN value.

In an OS environment, ARM recommends that threads running in Thread mode use the process stack, and the kernel and
exception handlers use the main stack.

By default, the Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, either:

• Use the MSR instruction to set the Active stack pointer bit to 1, see “MSR”, or
• Perform an exception return to Thread mode with the appropriate EXC_RETURN value, see Table 12-10.

Note: When changing the stack pointer, the software must use an ISB instruction immediately after the MSR instruction.
This ensures that instructions after the ISB execute using the new stack pointer. See “ISB”.

31 30 29 28 27 26 25 24
–

23 22 21 20 19 18 17 16
–

15 14 13 12 11 10 9 8
–

7 6 5 4 3 2 1 0
– FPCA SPSEL nPRIV

 63SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.1.17 Exceptions and Interrupts
The Cortex-M4 processor supports interrupts and system exceptions. The processor and the Nested Vectored
Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software con-
trol. The processor uses the Handler mode to handle all exceptions except for reset. See “Exception Entry” and
“Exception Return” for more information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller (NVIC)” for more information.

12.4.1.18 Data Types
The processor supports the following data types:

 32-bit words.
 16-bit halfwords.
 8-bit bytes.
 The processor manages all data memory accesses as little-endian. Instruction memory and Private Peripheral

Bus (PPB) accesses are always little-endian. See “Memory Regions, Types and Attributes” for more
information.

12.4.1.19 Cortex Microcontroller Software Interface Standard (CMSIS)
For a Cortex-M4 microcontroller system, the Cortex Microcontroller Software Interface Standard (CMSIS) defines:

 A common way to:
 Access peripheral registers.
 Define exception vectors.

 The names of:
 The registers of the core peripherals.
 The core exception vectors.

 A device-independent interface for RTOS kernels, including a debug channel.
The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M4 processor.

The CMSIS simplifies the software development by enabling the reuse of template code and the combination of
CMSIS-compliant software components from various middleware vendors. Software vendors can expand the CMSIS
to include their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS
functions that address the processor core and the core peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few cases, these differ from the
architectural short names that might be used in other documents.

The following sections give more information about the CMSIS:

 Section 12.5.3 ”Power Management Programming Hints”
 Section 12.6.2 ”CMSIS Functions”
 Section 12.8.2.1 ”NVIC Programming Hints”

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 64

12.4.2 Memory Model
This section describes the processor memory map, the behavior of memory accesses, and the bit-banding features.
The processor has a fixed memory map that provides up to 4 GB of addressable memory.

Figure 12-3. Memory Map

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic operations to bit data,
see “Bit-banding”.

The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral registers.

This memory mapping is generic to ARM Cortex-M4 products. To get the specific memory mapping of this product,
refer to section Memories.

Vendor-specific
memory

External device

External RAM

Peripheral

SRAM

Code

0xFFFFFFFF

Private peripheral
bus

0xE0100000
0xE00FFFFF

0x9FFFFFFF
0xA0000000

0x5FFFFFFF
0x60000000

0x3FFFFFFF
0x40000000

0x1FFFFFFF
0x20000000

0x00000000

0x40000000

32 MB Bit band alias

0x400FFFFF

0x42000000

0x43FFFFFF

1 MB Bit Band region

32 MB Bit band alias

0x20000000
0x200FFFFF

0x22000000

0x23FFFFFF

1.0GB

1.0GB

0.5GB

0.5GB

0.5GB

0x DFFFFFFF
0xE000 0000

1.0MB

511MB

1 MB Bit Band region

 65SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.2.1 Memory Regions, Types and Attributes
The memory map and the programming of the MPU split the memory map into regions. Each region has a defined
memory type, and some regions have additional memory attributes. The memory type and attributes determine the
behavior of accesses to the region.

Memory Types

 Normal
The processor can re-order transactions for efficiency, or perform speculative reads.

 Device
The processor preserves transaction order relative to other transactions to Device or Strongly-ordered memory.

 Strongly-ordered
The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the memory system can
buffer a write to Device memory, but must not buffer a write to Strongly-ordered memory.

Additional Memory Attributes

 Shareable
For a shareable memory region, the memory system provides data synchronization between bus masters in a
system with multiple bus masters, for example, a processor with a DMA controller.
Strongly-ordered memory is always shareable.
If multiple bus masters can access a non-shareable memory region, the software must ensure data coherency
between the bus masters.

 Execute Never (XN)
Means the processor prevents instruction accesses. A fault exception is generated only on execution of an
instruction executed from an XN region.

12.4.2.2 Memory System Ordering of Memory Accesses
For most memory accesses caused by explicit memory access instructions, the memory system does not guarantee
that the order in which the accesses complete matches the program order of the instructions, providing this does not
affect the behavior of the instruction sequence. Normally, if correct program execution depends on two memory
accesses completing in program order, the software must insert a memory barrier instruction between the memory
access instructions, see “Software Ordering of Memory Accesses”.

However, the memory system does guarantee some ordering of accesses to Device and Strongly-ordered memory.
For two memory access instructions A1 and A2, if A1 occurs before A2 in program order, the ordering of the memory
accesses is described below.

Where:

– Means that the memory system does not guarantee the ordering of the accesses.

< Means that accesses are observed in program order, that is, A1 is always observed before A2.

Table 12-3. Ordering of the Memory Accesses Caused by Two Instructions

A2 Normal
Access

Device Access

Strongly-ordered AccessA1 Non-shareable Shareable

Normal Access – – – –

Device access, non-shareable – < – <

Device access, shareable – – < <

Strongly-ordered access – < < <

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 66

12.4.2.3 Behavior of Memory Accesses
The following table describes the behavior of accesses to each region in the memory map.

Note: 1. See “Memory Regions, Types and Attributes” for more information.

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends that programs always
use the Code region. This is because the processor has separate buses that enable instruction fetches and data
accesses to occur simultaneously.

The MPU can override the default memory access behavior described in this section. For more information, see
“Memory Protection Unit (MPU)”.

Additional Memory Access Constraints For Shared Memory

When a system includes shared memory, some memory regions have additional access constraints, and some
regions are subdivided, as Table 12-5 shows:

Notes: 1. See “Memory Regions, Types and Attributes” for more information.

Table 12-4. Memory Access Behavior

Address Range Memory Region Memory
Type

XN Description

0x00000000 - 0x1FFFFFFF Code Normal(1) - Executable region for program code. Data can
also be put here.

0x20000000 - 0x3FFFFFFF SRAM Normal (1) -

Executable region for data. Code can also be
put here.

This region includes bit band and bit band
alias areas, see Table 12-6.

0x40000000 - 0x5FFFFFFF Peripheral Device (1) XN This region includes bit band and bit band
alias areas, see Table 12-6.

0x60000000 - 0x9FFFFFFF External RAM Normal (1) - Executable region for data.

0xA0000000 - 0xDFFFFFFF External device Device (1) XN External Device memory.

0xE0000000 - 0xE00FFFFF Private Peripheral
Bus

Strongly-
ordered (1) XN This region includes the NVIC, System timer,

and system control block.

0xE0100000 - 0xFFFFFFFF Reserved Device (1) XN Reserved.

Table 12-5. Memory Region Shareability Policies

Address Range Memory Region Memory Type Shareability

0x00000000 - 0x1FFFFFFF Code Normal (1) -

0x20000000 - 0x3FFFFFFF SRAM Normal (1) -

0x40000000 - 0x5FFFFFFF Peripheral Device (1) -

0x60000000 - 0x7FFFFFFF
External RAM Normal (1) -

0x80000000 - 0x9FFFFFFF

0xA0000000 - 0xBFFFFFFF
External device Device (1)

Shareable (1)

0xC0000000 - 0xDFFFFFFF Non-shareable (1)

0xE0000000 - 0xE00FFFFF Private Peripheral Bus Strongly- ordered(1) Shareable (1)

0xE0100000 - 0xFFFFFFFF Vendor-specific device Device (1) -

 67SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Instruction Prefetch and Branch Prediction

The Cortex-M4 processor:

 Prefetches instructions ahead of execution.
 Speculatively prefetches from branch target addresses.

12.4.2.4 Software Ordering of Memory Accesses
The order of instructions in the program flow does not always guarantee the order of the corresponding memory
transactions. This is because:

 The processor can reorder some memory accesses to improve efficiency, providing this does not affect the
behavior of the instruction sequence.

 The processor has multiple bus interfaces.
 Memory or devices in the memory map have different wait states.
 Some memory accesses are buffered or speculative.

“Memory System Ordering of Memory Accesses” describes the cases where the memory system guarantees the
order of memory accesses. Otherwise, if the order of memory accesses is critical, the software must include memory
barrier instructions to force that ordering. The processor provides the following memory barrier instructions:

DMB
The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before subse-
quent memory transactions. See “DMB”.

DSB
The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete before
subsequent instructions execute. See “DSB”.

ISB
The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory transactions is
recognizable by subsequent instructions. See “ISB”.

MPU Programming

Use a DSB followed by an ISB instruction or exception return to ensure that the new MPU configuration is used by
subsequent instructions.

12.4.2.5 Bit-banding
A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region. The bit-band regions
occupy the lowest 1 MB of the SRAM and peripheral memory regions.

The memory map has two 32 MB alias regions that map to two 1 MB bit-band regions:

 Accesses to the 32 MB SRAM alias region map to the 1 MB SRAM bit-band region, as shown in Table 12-6.
 Accesses to the 32 MB peripheral alias region map to the 1 MB peripheral bit-band region, as shown in

Table 12-7.

Table 12-6. SRAM Memory Bit-banding Regions

Address Range Memory Region Instruction and Data Accesses

0x20000000 - 0x200FFFFF SRAM bit-band region
Direct accesses to this memory range behave as SRAM
memory accesses, but this region is also bit-addressable
through bit-band alias.

0x22000000 - 0x23FFFFFF SRAM bit-band alias
Data accesses to this region are remapped to bit-band
region. A write operation is performed as read-modify-
write. Instruction accesses are not remapped.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 68

 Notes: 1. A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the SRAM or
peripheral bit-band region.

2. Bit-band accesses can use byte, halfword, or word transfers. The bit-band transfer size matches the
transfer size of the instruction making the bit-band access.

The following formula shows how the alias region maps onto the bit-band region:

bit_word_offset = (byte_offset x 32) + (bit_number x 4)
bit_word_addr = bit_band_base + bit_word_offset

where:

 Bit_word_offset is the position of the target bit in the bit-band memory region.
 Bit_word_addr is the address of the word in the alias memory region that maps to the targeted bit.
 Bit_band_base is the starting address of the alias region.
 Byte_offset is the number of the byte in the bit-band region that contains the targeted bit.
 Bit_number is the bit position, 0-7, of the targeted bit.

Figure 12-4 shows examples of bit-band mapping between the SRAM bit-band alias region and the SRAM bit-band
region:

 The alias word at 0x23FFFFE0 maps to bit[0] of the bit-band byte at 0x200FFFFF: 0x23FFFFE0 = 0x22000000
+ (0xFFFFF*32) + (0*4).

 The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at 0x200FFFFF: 0x23FFFFFC = 0x22000000
+ (0xFFFFF*32) + (7*4).

 The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000: 0x22000000 = 0x22000000 +
(0*32) + (0*4).

 The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000: 0x2200001C = 0x22000000 +
(0*32) + (7*4).

Table 12-7. Peripheral Memory Bit-banding Regions

Address Range Memory Region Instruction and Data Accesses

0x40000000 - 0x400FFFFF Peripheral bit-band alias
Direct accesses to this memory range behave as
peripheral memory accesses, but this region is also bit-
addressable through bit-band alias.

0x42000000 - 0x43FFFFFF Peripheral bit-band region
Data accesses to this region are remapped to bit-band
region. A write operation is performed as read-modify-
write. Instruction accesses are not permitted.

 69SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 12-4. Bit-band Mapping

Directly Accessing an Alias Region

Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the targeted bit in the bit-band
region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit, and writing a value with bit[0] set to 0 writes a 0
to the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as writing 0xFF.
Writing 0x00 has the same effect as writing 0x0E.

Reading a word in the alias region:

 0x00000000 indicates that the targeted bit in the bit-band region is set to 0.
 0x00000001 indicates that the targeted bit in the bit-band region is set to 1.

Directly Accessing a Bit-band Region

“Behavior of Memory Accesses” describes the behavior of direct byte, halfword, or word accesses to the bit-band
regions.

12.4.2.6 Memory Endianness
The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example,
bytes 0 - 3 hold the first stored word, and bytes 4 - 7 hold the second stored word. “Little-endian Format” describes
how words of data are stored in memory.

Little-endian Format

In little-endian format, the processor stores the least significant byte of a word at the lowest-numbered byte, and the
most significant byte at the highest-numbered byte. For example:

Figure 12-5. Little-endian Format

0x23FFFFE4

0x22000004

0x23FFFFE00x23FFFFE80x23FFFFEC0x23FFFFF00x23FFFFF40x23FFFFF80x23FFFFFC

0x220000000x220000140x220000180x2200001C 0x220000080x22000010 0x2200000C

32 MB alias region

0

7 0

07

0x200000000x200000010x200000020x20000003

6 5 4 3 2 1 07 6 5 4 3 2 1 7 6 5 4 3 2 1 07 6 5 4 3 2 1

07 6 5 4 3 2 1 6 5 4 3 2 107 6 5 4 3 2 1 07 6 5 4 3 2 1

0x200FFFFC0x200FFFFD0x200FFFFE0x200FFFFF

1 MB SRAM bit-band region

Memory Register

Address A

A+1

lsbyte

msbyte

A+2

A+3

07

B0B1B3 B2

31 24 23 16 15 8 7 0

B0

B1

B2

B3

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 70

12.4.2.7 Synchronization Primitives
The Cortex-M4 instruction set includes pairs of synchronization primitives. These provide a non-blocking mechanism
that a thread or process can use to obtain exclusive access to a memory location. The software can use them to per-
form a guaranteed read-modify-write memory update sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

A Load-exclusive Instruction, used to read the value of a memory location, requesting exclusive access to that
location.

A Store-Exclusive instruction, used to attempt to write to the same memory location, returning a status bit to a
register. If this bit is:

 0: It indicates that the thread or process gained exclusive access to the memory, and the write succeeds.
 1: It indicates that the thread or process did not gain exclusive access to the memory, and no write is

performed.
The pairs of Load-Exclusive and Store-Exclusive instructions are:

 The word instructions LDREX and STREX.
 The halfword instructions LDREXH and STREXH.
 The byte instructions LDREXB and STREXB.

The software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.

To perform an exclusive read-modify-write of a memory location, the software must:

1. Use a Load-Exclusive instruction to read the value of the location.
2. Update the value, as required.
3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory location.
4. Test the returned status bit. If this bit is:

0: The read-modify-write completed successfully.

1: No write was performed. This indicates that the value returned at step 1 might be out of date. The software
must retry the read-modify-write sequence.

The software can use the synchronization primitives to implement a semaphore as follows:

1. Use a Load-Exclusive instruction to read from the semaphore address to check whether the semaphore is free.
2. If the semaphore is free, use a Store-Exclusive instruction to write the claim value to the semaphore address.
3. If the returned status bit from step 2 indicates that the Store-Exclusive instruction succeeded then the software

has claimed the semaphore. However, if the Store-Exclusive instruction failed, another process might have
claimed the semaphore after the software performed the first step.

The Cortex-M4 includes an exclusive access monitor, that tags the fact that the processor has executed a Load-
Exclusive instruction. If the processor is part of a multiprocessor system, the system also globally tags the memory
locations addressed by exclusive accesses by each processor.

The processor removes its exclusive access tag if:

 It executes a CLREX instruction.
 It executes a Store-Exclusive instruction, regardless of whether the write succeeds.
 An exception occurs. This means that the processor can resolve semaphore conflicts between different

threads.
In a multiprocessor implementation:

 Executing a CLREX instruction removes only the local exclusive access tag for the processor.
 Executing a Store-Exclusive instruction, or an exception, removes the local exclusive access tags, and all

global exclusive access tags for the processor.
For more information about the synchronization primitive instructions, see “LDREX and STREX” and “CLREX”.

 71SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.4.2.8 Programming Hints for the Synchronization Primitives
ISO/IEC C cannot directly generate the exclusive access instructions. CMSIS provides intrinsic functions for genera-
tion of these instructions:

The actual exclusive access instruction generated depends on the data type of the pointer passed to the intrinsic
function. For example, the following C code generates the required LDREXB operation:

__ldrex((volatile char *) 0xFF);

12.4.3 Exception Model
This section describes the exception model.

12.4.3.1 Exception States
Each exception is in one of the following states:

Inactive

The exception is not active and not pending.

Pending

The exception is waiting to be serviced by the processor.

An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to pending.

Active

An exception is being serviced by the processor but has not completed.

An exception handler can interrupt the execution of another exception handler. In this case, both exceptions are in the
active state.

Active and Pending

The exception is being serviced by the processor and there is a pending exception from the same source.

12.4.3.2 Exception Types
The exception types are:

Reset

Reset is invoked on power up or a warm reset. The exception model treats reset as a special form of exception. When
reset is asserted, the operation of the processor stops, potentially at any point in an instruction. When reset is
deasserted, execution restarts from the address provided by the reset entry in the vector table. Execution restarts as
privileged execution in Thread mode.

Table 12-8. CMSIS Functions for Exclusive Access Instructions

Instruction CMSIS Function

LDREX uint32_t __LDREXW (uint32_t *addr)

LDREXH uint16_t __LDREXH (uint16_t *addr)

LDREXB uint8_t __LDREXB (uint8_t *addr)

STREX uint32_t __STREXW (uint32_t value, uint32_t *addr)

STREXH uint32_t __STREXH (uint16_t value, uint16_t *addr)

STREXB uint32_t __STREXB (uint8_t value, uint8_t *addr)

CLREX void __CLREX (void)

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 72

Non Maskable Interrupt (NMI)

A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is the highest priority
exception other than reset. It is permanently enabled and has a fixed priority of -2.

NMIs cannot be:

 Masked or prevented from activation by any other exception.
 Preempted by any exception other than Reset.

Hard Fault

A hard fault is an exception that occurs because of an error during exception processing, or because an exception
cannot be managed by any other exception mechanism. Hard Faults have a fixed priority of -1, meaning they have
higher priority than any exception with configurable priority.

Memory Management Fault (MemManage)

A Memory Management Fault is an exception that occurs because of a memory protection related fault. The MPU or
the fixed memory protection constraints determines this fault, for both instruction and data memory transactions. This
fault is used to abort instruction accesses to Execute Never (XN) memory regions, even if the MPU is disabled.

Bus Fault

A Bus Fault is an exception that occurs because of a memory related fault for an instruction or data memory
transaction. This might be from an error detected on a bus in the memory system.

Usage Fault

A Usage Fault is an exception that occurs because of a fault related to an instruction execution. This includes:

 An undefined instruction.
 An illegal unaligned access.
 An invalid state on instruction execution.
 An error on exception return.

The following can cause a Usage Fault when the core is configured to report them:

 An unaligned address on word and halfword memory access.
 A division by zero.

SVCall

A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment, applications
can use SVC instructions to access OS kernel functions and device drivers.

PendSV

PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for context
switching when no other exception is active.

SysTick

A SysTick exception is an exception the system timer generates when it reaches zero. Software can also generate a
SysTick exception. In an OS environment, the processor can use this exception as system tick.

Interrupt (IRQ)

A interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software request. All interrupts are
asynchronous to instruction execution. In the system, peripherals use interrupts to communicate with the processor.

 73SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Notes: 1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for excep-
tions other than interrupts. The IPSR returns the Exception number, see “Interrupt Program Status Register”.

2. See “Vector Table” for more information.
3. See “System Handler Priority Registers”.
4. See “Interrupt Priority Registers”.
5. Increasing in steps of 4.

For an asynchronous exception, other than reset, the processor can execute another instruction between when the
exception is triggered and when the processor enters the exception handler.

Privileged software can disable the exceptions that Table 12-9 shows as having configurable priority, see:

 “System Handler Control and State Register”.
 “Interrupt Clear-enable Registers”.

For more information about hard faults, memory management faults, bus faults, and usage faults, see “Fault
Handling”.

12.4.3.3 Exception Handlers
The processor handles exceptions using:

 Interrupt Service Routines (ISRs)
Interrupts IRQ0 to IRQ40 are the exceptions handled by ISRs.

 Fault Handlers
Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by the fault handlers.

 System Handlers
NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are handled by system
handlers.

Table 12-9. Properties of the Different Exception Types

Exception
Number (1)

Irq Number (1) Exception Type Priority Vector Address
or Offset (2)

Activation

1 – Reset -3, the highest 0x00000004 Asynchronous

2 -14 NMI -2 0x00000008 Asynchronous

3 -13 Hard fault -1 0x0000000C –

4 -12 Memory
management fault Configurable (3) 0x00000010 Synchronous

5 -11 Bus fault Configurable (3) 0x00000014 Synchronous when precise,
asynchronous when imprecise

6 -10 Usage fault Configurable (3) 0x00000018 Synchronous

7 - 10 – – – Reserved –

11 -5 SVCall Configurable (3) 0x0000002C Synchronous

12 - 13 – – – Reserved –

14 -2 PendSV Configurable (3) 0x00000038 Asynchronous

15 -1 SysTick Configurable (3) 0x0000003C Asynchronous

16 and above 0 and above Interrupt (IRQ) Configurable(4) 0x00000040
and above (5) Asynchronous

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 74

12.4.3.4 Vector Table
The vector table contains the reset value of the stack pointer, and the start addresses, also called exception vectors,
for all exception handlers. Figure 12-6 shows the order of the exception vectors in the vector table. The least-signifi-
cant bit of each vector must be 1, indicating that the exception handler is Thumb code.

Figure 12-6. Vector Table

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to the SCB_VTOR to
relocate the vector table start address to a different memory location, in the range 0x00000080 to 0x3FFFFF80, see
“Vector Table Offset Register”.

12.4.3.5 Exception Priorities
As Table 12-9 shows, all exceptions have an associated priority, with:

 A lower priority value indicating a higher priority.
 Configurable priorities for all exceptions except Reset, Hard fault and NMI.

If the software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0. For
information about configuring exception priorities see “System Handler Priority Registers”, and “Interrupt Priority
Registers”.

 Note: Configurable priority values are in the range 0 - 15. This means that the Reset, Hard fault, and NMI excep-
tions, with fixed negative priority values, always have higher priority than any other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has
higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number takes
precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[0] is processed
before IRQ[1].

Initial SP value

Reset

Hard fault

NMI

Memory management fault

Usage fault

Bus fault

0x0000
0x0004
0x0008
0x000C
0x0010
0x0014
0x0018

Reserved

SVCall

PendSV

Reserved for Debug

SysTick

IRQ0

Reserved

0x002C

0x0038
0x003C
0x0040

OffsetException number

2

3

4

5

6

11

12

14

15

16

18

13

7

10

1

Vector

.

.

.

8

9

IRQ1

IRQ2

0x0044

IRQ239

17
0x0048
0x004C

255

.

.

.

.

.

.

0x03FC

IRQ number

-14

-13

-12

-11

-10

-5

-2

-1

0

2

1

239

 75SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

When the processor is executing an exception handler, the exception handler is preempted if a higher priority excep-
tion occurs. If an exception occurs with the same priority as the exception being handled, the handler is not
preempted, irrespective of the exception number. However, the status of the new interrupt changes to pending.

12.4.3.6 Interrupt Priority Grouping
To increase priority control in systems with interrupts, the NVIC supports priority grouping. This divides each interrupt
priority register entry into two fields:

 An upper field that defines the group priority.
 A lower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor is executing an interrupt
exception handler, another interrupt with the same group priority as the interrupt being handled does not preempt the
handler.

If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they are
processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the lowest
IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see “Application Interrupt
and Reset Control Register”.

12.4.3.7 Exception Entry and Return
Descriptions of exception handling use the following terms:

Preemption

When the processor is executing an exception handler, an exception can preempt the exception handler if its priority
is higher than the priority of the exception being handled. See “Interrupt Priority Grouping” for more information about
preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See “Exception Entry” more
information.

Return

This occurs when the exception handler is completed, and:

 There is no pending exception with sufficient priority to be serviced.
 The completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the interrupt occurred. See
“Exception Return” for more information.

Tail-chaining

This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending excep-
tion that meets the requirements for exception entry, the stack pop is skipped and control transfers to the new
exception handler.

Late-arriving

This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous excep-
tion, the processor switches to handle the higher priority exception and initiates the vector fetch for that exception.
State saving is not affected by late arrival because the state saved is the same for both exceptions. Therefore the
state saving continues uninterrupted. The processor can accept a late arriving exception until the first instruction of
the exception handler of the original exception enters the execute stage of the processor. On return from the excep-
tion handler of the late-arriving exception, the normal tail-chaining rules apply.

Exception Entry

An Exception entry occurs when there is a pending exception with sufficient priority and either the processor is in
Thread mode, or the new exception is of a higher priority than the exception being handled, in which case the new
exception preempts the original exception.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 76

When one exception preempts another, the exceptions are nested.

Sufficient priority means that the exception has more priority than any limits set by the mask registers, see “Exception
Mask Registers”. An exception with less priority than this is pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the pro-
cessor pushes information onto the current stack. This operation is referred as stacking and the structure of eight data
words is referred to as stack frame.

When using floating-point routines, the Cortex-M4 processor automatically stacks the architected floating-point state
on exception entry. Figure 12-7 shows the Cortex-M4 stack frame layout when floating-point state is preserved on the
stack as the result of an interrupt or an exception.

Note: Where stack space for floating-point state is not allocated, the stack frame is the same as that of ARMv7-M
implementations without an FPU. Figure 12-7 shows this stack frame also.

Figure 12-7. Exception Stack Frame

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The alignment of the
stack frame is controlled via the STKALIGN bit of the Configuration Control Register (CCR).

The stack frame includes the return address. This is the address of the next instruction in the interrupted program.
This value is restored to the PC at exception return so that the interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the exception handler start
address from the vector table. When stacking is complete, the processor starts executing the exception handler. At
the same time, the processor writes an EXC_RETURN value to the LR. This indicates which stack pointer
corresponds to the stack frame and what operation mode the processor was in before the entry occurred.

If no higher priority exception occurs during the exception entry, the processor starts executing the exception handler
and automatically changes the status of the corresponding pending interrupt to active.

If another higher priority exception occurs during the exception entry, the processor starts executing the exception
handler for this exception and does not change the pending status of the earlier exception. This is the late arrival case.

Pre-IRQ top of stack

xPSR
PC
LR
R12
R3
R2
R1
R0

{aligner}

IRQ top of stack

Decreasing
memory
address

xPSR
PC
LR
R12
R3
R2
R1
R0

S7
S6
S5
S4
S3
S2
S1
S0

S9
S8

FPSCR
S15
S14
S13
S12
S11
S10

{aligner}

IRQ top of stack

...

Exception frame with
floating-point storage

Exception frame without
floating-point storage

Pre-IRQ top of stack
...

 77SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Exception Return

An Exception return occurs when the processor is in Handler mode and executes one of the following instructions to
load the EXC_RETURN value into the PC:

 An LDM or POP instruction that loads the PC.
 An LDR instruction with the PC as the destination.
 A BX instruction using any register.

EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism relies on this value to
detect when the processor has completed an exception handler. The lowest five bits of this value provide information
on the return stack and processor mode. Table 12-10 shows the EXC_RETURN values with a description of the
exception return behavior.

All EXC_RETURN values have bits[31:5] set to one. When this value is loaded into the PC, it indicates to the
processor that the exception is complete, and the processor initiates the appropriate exception return sequence.

12.4.3.8 Fault Handling
Faults are a subset of the exceptions, see “Exception Model”. The following generate a fault:

 A bus error on:
 An instruction fetch or vector table load.
 A data access.

 An internally-detected error such as an undefined instruction.
 An attempt to execute an instruction from a memory region marked as Non-Executable (XN).
 A privilege violation or an attempt to access an unmanaged region causing an MPU fault.

Fault Types

Table 12-11 shows the types of fault, the handler used for the fault, the corresponding fault status register, and the
register bit that indicates that the fault has occurred. See “Configurable Fault Status Register” for more information
about the fault status registers.

Table 12-10. Exception Return Behavior

EXC_RETURN[31:0] Description

0xFFFFFFF1 Return to Handler mode, exception return uses non-floating-point state from the MSP and
execution uses MSP after return.

0xFFFFFFF9 Return to Thread mode, exception return uses state from MSP and execution uses MSP after
return.

0xFFFFFFFD Return to Thread mode, exception return uses state from the PSP and execution uses PSP after
return.

0xFFFFFFE1 Return to Handler mode, exception return uses floating-point-state from MSP and execution uses
MSP after return.

0xFFFFFFE9 Return to Thread mode, exception return uses floating-point state from MSP and execution uses
MSP after return.

0xFFFFFFED Return to Thread mode, exception return uses floating-point state from PSP and execution uses
PSP after return.

Table 12-11. Faults
Fault Handler Bit Name Fault Status Register
Bus error on a vector read

Hard fault
VECTTBL

“Hard Fault Status Register”
Fault escalated to a hard fault FORCED

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 78

Notes: 1. Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is
disabled.

2. Attempt to use an instruction set other than the Thumb instruction set, or return to a non load/store-multi-
ple instruction with ICI continuation.

3. Only present in a Cortex-M4F device.
Fault Escalation and Hard Faults

All faults exceptions except for hard fault have configurable exception priority, see “System Handler Priority Regis-
ters”. The software can disable the execution of the handlers for these faults, see “System Handler Control and State
Register”.

Usually, the exception priority, together with the values of the exception mask registers, determines whether the
processor enters the fault handler, and whether a fault handler can preempt another fault handler, as described in
“Exception Model”.

In some situations, a fault with configurable priority is treated as a hard fault. This is called priority escalation, and the
fault is described as escalated to hard fault. Escalation to hard fault occurs when:

 A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard fault occurs
because a fault handler cannot preempt itself; it must have the same priority as the current priority level.

 A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is because the
handler for the new fault cannot preempt the currently executing fault handler.

 An exception handler causes a fault for which the priority is the same as or lower than the currently executing
exception.

 A fault occurs and the handler for that fault is not enabled.
If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not escalate to a hard
fault. This means that if a corrupted stack causes a fault, the fault handler executes even though the stack push for
the handler failed. The fault handler operates but the stack contents are corrupted.

Note: Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any exception other
than Reset, NMI, or another hard fault.

MPU or default memory map mismatch:

Memory
management
fault

- -
on instruction access IACCVIOL(1)

“MMFSR: Memory Management
Fault Status Subregister”

on data access DACCVIOL(2)

during exception stacking MSTKERR
during exception unstacking MUNSTKERR
during lazy floating-point state preservation MLSPERR(3)

Bus error:

Bus fault

- -
during exception stacking STKERR

“BFSR: Bus Fault Status
Subregister”

during exception unstacking UNSTKERR
during instruction prefetch IBUSERR
during lazy floating-point state preservation LSPERR(3)

Precise data bus error PRECISERR
Imprecise data bus error IMPRECISERR
Attempt to access a coprocessor

Usage fault

NOCP

“UFSR: Usage Fault Status
Subregister”

Undefined instruction UNDEFINSTR
Attempt to enter an invalid instruction set state INVSTATE
Invalid EXC_RETURN value INVPC
Illegal unaligned load or store UNALIGNED
Divide By 0 DIVBYZERO

Table 12-11. Faults (Continued)
Fault Handler Bit Name Fault Status Register

 79SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Fault Status Registers and Fault Address Registers

The fault status registers indicate the cause of a fault. For bus faults and memory management faults, the fault
address register indicates the address accessed by the operation that caused the fault, as shown in Table 12-12.

Lockup

The processor enters a lockup state if a hard fault occurs when executing the NMI or hard fault handlers. When the
processor is in lockup state, it does not execute any instructions. The processor remains in lockup state until either:

 It is reset.
 An NMI occurs.
 It is halted by a debugger.

Note: If the lockup state occurs from the NMI handler, a subsequent NMI does not cause the processor to leave the
lockup state.

12.5 Power Management
The Cortex-M4 processor sleep modes reduce the power consumption:

 Sleep mode stops the processor clock.
 Deep sleep mode stops the system clock and switches off the PLL and flash memory.

The SLEEPDEEP bit of the SCR selects which sleep mode is used; see “System Control Register”.

This section describes the mechanisms for entering sleep mode, and the conditions for waking up from sleep mode.

12.5.1 Entering Sleep Mode
This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the processor. There-
fore, the software must be able to put the processor back into sleep mode after such an event. A program might have
an idle loop to put the processor back to sleep mode.

12.5.1.1 Wait for Interrupt
The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the processor executes a WFI
instruction it stops executing instructions and enters sleep mode. See “WFI” for more information.

12.5.1.2 Wait for Event
The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of an one-bit event register.
When the processor executes a WFE instruction, it checks this register:

 If the register is 0, the processor stops executing instructions and enters sleep mode.
 If the register is 1, the processor clears the register to 0 and continues executing instructions without entering

sleep mode.
See “WFE” for more information.

Table 12-12. Fault Status and Fault Address Registers

Handler Status Register
Name

Address
Register Name

Register Description

Hard fault SCB_HFSR - “Hard Fault Status Register”

Memory
management fault MMFSR SCB_MMFAR

“MMFSR: Memory Management Fault
Status Subregister”
“MemManage Fault Address Register”

Bus fault BFSR SCB_BFAR
“BFSR: Bus Fault Status Subregister”

“Bus Fault Address Register”

Usage fault UFSR - “UFSR: Usage Fault Status Subregister”

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 80

12.5.1.3 Sleep-on-exit
If the SLEEPONEXIT bit of the SCR is set to 1 when the processor completes the execution of an exception handler,
it returns to Thread mode and immediately enters sleep mode. Use this mechanism in applications that only require
the processor to run when an exception occurs.

12.5.2 Wakeup from Sleep Mode
The conditions for the processor to wake up depend on the mechanism that cause it to enter sleep mode.

12.5.2.1 Wakeup from WFI or Sleep-on-exit
Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception entry.

Some embedded systems might have to execute system restore tasks after the processor wakes up, and before it
executes an interrupt handler. To achieve this, set the PRIMASK bit to 1 and the FAULTMASK bit to 0. If an interrupt
arrives that is enabled and has a higher priority than the current exception priority, the processor wakes up but does
not execute the interrupt handler until the processor sets PRIMASK to zero. For more information about PRIMASK
and FAULTMASK, see “Exception Mask Registers”.

12.5.2.2 Wakeup from WFE
The processor wakes up if:

 It detects an exception with sufficient priority to cause an exception entry.
 It detects an external event signal. See “External Event Input”.
 In a multiprocessor system, another processor in the system executes an SEV instruction.

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event and wakes up
the processor, even if the interrupt is disabled or has insufficient priority to cause an exception entry. For more infor-
mation about the SCR, see “System Control Register”.

12.5.2.3 External Event Input
The processor provides an external event input signal. Peripherals can drive this signal, either to wake the processor
from WFE, or to set the internal WFE event register to 1 to indicate that the processor must not enter sleep mode on a
later WFE instruction. See “Wait for Event” for more information.

12.5.3 Power Management Programming Hints
ISO/IEC C cannot directly generate the WFI and WFE instructions. The CMSIS provides the following functions for
these instructions:

void __WFE(void) // Wait for Event
void __WFI(void) // Wait for Interrupt

 81SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6 Cortex-M4 Instruction Set

12.6.1 Instruction Set Summary
The processor implements a version of the Thumb instruction set. Table 12-13 lists the supported instructions.

 Angle brackets, <>, enclose alternative forms of the operand.
 Braces, {}, enclose optional operands.
 The Operands column is not exhaustive.
 Op2 is a flexible second operand that can be either a register or a constant.
 Most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 12-13. Cortex-M4 Instructions

Mnemonic Operands Description Flags

ADC, ADCS {Rd,} Rn, Op2 Add with Carry N,Z,C,V

ADD, ADDS {Rd,} Rn, Op2 Add N,Z,C,V

ADD, ADDW {Rd,} Rn, #imm12 Add N,Z,C,V

ADR Rd, label Load PC-relative address -

AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C

ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,Z,C

B label Branch -

BFC Rd, #lsb, #width Bit Field Clear -

BFI Rd, Rn, #lsb, #width Bit Field Insert -

BIC, BICS {Rd,} Rn, Op2 Bit Clear N,Z,C

BKPT #imm Breakpoint -

BL label Branch with Link -

BLX Rm Branch indirect with Link -

BX Rm Branch indirect -

CBNZ Rn, label Compare and Branch if Non Zero -

CBZ Rn, label Compare and Branch if Zero -

CLREX - Clear Exclusive -

CLZ Rd, Rm Count leading zeros -

CMN Rn, Op2 Compare Negative N,Z,C,V

CMP Rn, Op2 Compare N,Z,C,V

CPSID i Change Processor State, Disable Interrupts -

CPSIE i Change Processor State, Enable Interrupts -

DMB - Data Memory Barrier -

DSB - Data Synchronization Barrier -

EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C

ISB - Instruction Synchronization Barrier -

IT - If-Then condition block -

LDM Rn{!}, reglist Load Multiple registers, increment after -

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 82

LDMDB, LDMEA Rn{!}, reglist Load Multiple registers, decrement before -

LDMFD, LDMIA Rn{!}, reglist Load Multiple registers, increment after -

LDR Rt, [Rn, #offset] Load Register with word -

LDRB, LDRBT Rt, [Rn, #offset] Load Register with byte -

LDRD Rt, Rt2, [Rn, #offset] Load Register with two bytes -

LDREX Rt, [Rn, #offset] Load Register Exclusive -

LDREXB Rt, [Rn] Load Register Exclusive with byte -

LDREXH Rt, [Rn] Load Register Exclusive with halfword -

LDRH, LDRHT Rt, [Rn, #offset] Load Register with halfword -

LDRSB, DRSBT Rt, [Rn, #offset] Load Register with signed byte -

LDRSH, LDRSHT Rt, [Rn, #offset] Load Register with signed halfword -

LDRT Rt, [Rn, #offset] Load Register with word -

LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,Z,C

LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C

MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result -

MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result -

MOV, MOVS Rd, Op2 Move N,Z,C

MOVT Rd, #imm16 Move Top -

MOVW, MOV Rd, #imm16 Move 16-bit constant N,Z,C

MRS Rd, spec_reg Move from special register to general register -

MSR spec_reg, Rm Move from general register to special register N,Z,C,V

MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,Z

MVN, MVNS Rd, Op2 Move NOT N,Z,C

NOP - No Operation -

ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N,Z,C

ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C

PKHTB, PKHBT {Rd,} Rn, Rm, Op2 Pack Halfword -

POP reglist Pop registers from stack -

PUSH reglist Push registers onto stack -

QADD {Rd,} Rn, Rm Saturating double and Add Q

QADD16 {Rd,} Rn, Rm Saturating Add 16 -

QADD8 {Rd,} Rn, Rm Saturating Add 8 -

QASX {Rd,} Rn, Rm Saturating Add and Subtract with Exchange -

QDADD {Rd,} Rn, Rm Saturating Add Q

QDSUB {Rd,} Rn, Rm Saturating double and Subtract Q

QSAX {Rd,} Rn, Rm Saturating Subtract and Add with Exchange -

QSUB {Rd,} Rn, Rm Saturating Subtract Q

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags

 83SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

QSUB16 {Rd,} Rn, Rm Saturating Subtract 16 -

QSUB8 {Rd,} Rn, Rm Saturating Subtract 8 -

RBIT Rd, Rn Reverse Bits -

REV Rd, Rn Reverse byte order in a word -

REV16 Rd, Rn Reverse byte order in each halfword -

REVSH Rd, Rn Reverse byte order in bottom halfword and sign extend -

ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,Z,C

RRX, RRXS Rd, Rm Rotate Right with Extend N,Z,C

RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,C,V

SADD16 {Rd,} Rn, Rm Signed Add 16 GE

SADD8 {Rd,} Rn, Rm Signed Add 8 and Subtract with Exchange GE

SASX {Rd,} Rn, Rm Signed Add GE

SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C,V

SBFX Rd, Rn, #lsb, #width Signed Bit Field Extract -

SDIV {Rd,} Rn, Rm Signed Divide -

SEL {Rd,} Rn, Rm Select bytes -

SEV - Send Event -

SHADD16 {Rd,} Rn, Rm Signed Halving Add 16 -

SHADD8 {Rd,} Rn, Rm Signed Halving Add 8 -

SHASX {Rd,} Rn, Rm Signed Halving Add and Subtract with Exchange -

SHSAX {Rd,} Rn, Rm Signed Halving Subtract and Add with Exchange -

SHSUB16 {Rd,} Rn, Rm Signed Halving Subtract 16 -

SHSUB8 {Rd,} Rn, Rm Signed Halving Subtract 8 -

SMLABB, SMLABT,
SMLATB, SMLATT Rd, Rn, Rm, Ra Signed Multiply Accumulate Long (halfwords) Q

SMLAD, SMLADX Rd, Rn, Rm, Ra Signed Multiply Accumulate Dual Q

SMLAL RdLo, RdHi, Rn, Rm Signed Multiply with Accumulate (32 x 32 + 64), 64-bit result -

SMLALBB, SMLALBT,
SMLALTB, SMLALTT RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long, halfwords -

SMLALD, SMLALDX RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long Dual -

SMLAWB, SMLAWT Rd, Rn, Rm, Ra Signed Multiply Accumulate, word by halfword Q

SMLSD Rd, Rn, Rm, Ra Signed Multiply Subtract Dual Q

SMLSLD RdLo, RdHi, Rn, Rm Signed Multiply Subtract Long Dual -

SMMLA Rd, Rn, Rm, Ra Signed Most significant word Multiply Accumulate -

SMMLS, SMMLR Rd, Rn, Rm, Ra Signed Most significant word Multiply Subtract -

SMMUL, SMMULR {Rd,} Rn, Rm Signed Most significant word Multiply -

SMUAD {Rd,} Rn, Rm Signed dual Multiply Add Q

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 84

SMULBB, SMULBT
SMULTB, SMULTT {Rd,} Rn, Rm Signed Multiply (halfwords) -

SMULL RdLo, RdHi, Rn, Rm Signed Multiply (32 x 32), 64-bit result -

SMULWB, SMULWT {Rd,} Rn, Rm Signed Multiply word by halfword -

SMUSD, SMUSDX {Rd,} Rn, Rm Signed dual Multiply Subtract -

SSAT Rd, #n, Rm {,shift #s} Signed Saturate Q

SSAT16 Rd, #n, Rm Signed Saturate 16 Q

SSAX {Rd,} Rn, Rm Signed Subtract and Add with Exchange GE

SSUB16 {Rd,} Rn, Rm Signed Subtract 16 -

SSUB8 {Rd,} Rn, Rm Signed Subtract 8 -

STM Rn{!}, reglist Store Multiple registers, increment after -

STMDB, STMEA Rn{!}, reglist Store Multiple registers, decrement before -

STMFD, STMIA Rn{!}, reglist Store Multiple registers, increment after -

STR Rt, [Rn, #offset] Store Register word -

STRB, STRBT Rt, [Rn, #offset] Store Register byte -

STRD Rt, Rt2, [Rn, #offset] Store Register two words -

STREX Rd, Rt, [Rn, #offset] Store Register Exclusive -

STREXB Rd, Rt, [Rn] Store Register Exclusive byte -

STREXH Rd, Rt, [Rn] Store Register Exclusive halfword -

STRH, STRHT Rt, [Rn, #offset] Store Register halfword -

STRT Rt, [Rn, #offset] Store Register word -

SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C,V

SUB, SUBW {Rd,} Rn, #imm12 Subtract N,Z,C,V

SVC #imm Supervisor Call -

SXTAB {Rd,} Rn, Rm,{,ROR #} Extend 8 bits to 32 and add -

SXTAB16 {Rd,} Rn, Rm,{,ROR #} Dual extend 8 bits to 16 and add -

SXTAH {Rd,} Rn, Rm,{,ROR #} Extend 16 bits to 32 and add -

SXTB16 {Rd,} Rm {,ROR #n} Signed Extend Byte 16 -

SXTB {Rd,} Rm {,ROR #n} Sign extend a byte -

SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword -

TBB [Rn, Rm] Table Branch Byte -

TBH [Rn, Rm, LSL #1] Table Branch Halfword -

TEQ Rn, Op2 Test Equivalence N,Z,C

TST Rn, Op2 Test N,Z,C

UADD16 {Rd,} Rn, Rm Unsigned Add 16 GE

UADD8 {Rd,} Rn, Rm Unsigned Add 8 GE

USAX {Rd,} Rn, Rm Unsigned Subtract and Add with Exchange GE

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags

 85SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

UHADD16 {Rd,} Rn, Rm Unsigned Halving Add 16 -

UHADD8 {Rd,} Rn, Rm Unsigned Halving Add 8 -

UHASX {Rd,} Rn, Rm Unsigned Halving Add and Subtract with Exchange -

UHSAX {Rd,} Rn, Rm Unsigned Halving Subtract and Add with Exchange -

UHSUB16 {Rd,} Rn, Rm Unsigned Halving Subtract 16 -

UHSUB8 {Rd,} Rn, Rm Unsigned Halving Subtract 8 -

UBFX Rd, Rn, #lsb, #width Unsigned Bit Field Extract -

UDIV {Rd,} Rn, Rm Unsigned Divide -

UMAAL RdLo, RdHi, Rn, Rm Unsigned Multiply Accumulate Accumulate Long (32 x 32 + 32 +
32), 64-bit result -

UMLAL RdLo, RdHi, Rn, Rm Unsigned Multiply with Accumulate
(32 x 32 + 64), 64-bit result -

UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply (32 x 32), 64-bit result -

UQADD16 {Rd,} Rn, Rm Unsigned Saturating Add 16 -

UQADD8 {Rd,} Rn, Rm Unsigned Saturating Add 8 -

UQASX {Rd,} Rn, Rm Unsigned Saturating Add and Subtract with Exchange -

UQSAX {Rd,} Rn, Rm Unsigned Saturating Subtract and Add with Exchange -

UQSUB16 {Rd,} Rn, Rm Unsigned Saturating Subtract 16 -

UQSUB8 {Rd,} Rn, Rm Unsigned Saturating Subtract 8 -

USAD8 {Rd,} Rn, Rm Unsigned Sum of Absolute Differences -

USADA8 {Rd,} Rn, Rm, Ra Unsigned Sum of Absolute Differences and Accumulate -

USAT Rd, #n, Rm {,shift #s} Unsigned Saturate Q

USAT16 Rd, #n, Rm Unsigned Saturate 16 Q

UASX {Rd,} Rn, Rm Unsigned Add and Subtract with Exchange GE

USUB16 {Rd,} Rn, Rm Unsigned Subtract 16 GE

USUB8 {Rd,} Rn, Rm Unsigned Subtract 8 GE

UXTAB {Rd,} Rn, Rm,{,ROR #} Rotate, extend 8 bits to 32 and Add -

UXTAB16 {Rd,} Rn, Rm,{,ROR #} Rotate, dual extend 8 bits to 16 and Add -

UXTAH {Rd,} Rn, Rm,{,ROR #} Rotate, unsigned extend and Add Halfword -

UXTB {Rd,} Rm {,ROR #n} Zero extend a byte -

UXTB16 {Rd,} Rm {,ROR #n} Unsigned Extend Byte 16 -

UXTH {Rd,} Rm {,ROR #n} Zero extend a halfword -

VABS.F32 Sd, Sm Floating-point Absolute -

VADD.F32 {Sd,} Sn, Sm Floating-point Add -

VCMP.F32 Sd, <Sm | #0.0> Compare two floating-point registers, or one floating-point register
and zero FPSCR

VCMPE.F32 Sd, <Sm | #0.0> Compare two floating-point registers, or one floating-point register
and zero with Invalid Operation check FPSCR

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 86

VCVT.S32.F32 Sd, Sm Convert between floating-point and integer -

VCVT.S16.F32 Sd, Sd, #fbits Convert between floating-point and fixed point -

VCVTR.S32.F32 Sd, Sm Convert between floating-point and integer with rounding -

VCVT<B|H>.F32.F16 Sd, Sm Converts half-precision value to single-precision -

VCVTT<B|T>.F32.F16 Sd, Sm Converts single-precision register to half-precision -

VDIV.F32 {Sd,} Sn, Sm Floating-point Divide -

VFMA.F32 {Sd,} Sn, Sm Floating-point Fused Multiply Accumulate -

VFNMA.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Accumulate -

VFMS.F32 {Sd,} Sn, Sm Floating-point Fused Multiply Subtract -

VFNMS.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Subtract -

VLDM.F<32|64> Rn{!}, list Load Multiple extension registers -

VLDR.F<32|64> <Dd|Sd>, [Rn] Load an extension register from memory -

VLMA.F32 {Sd,} Sn, Sm Floating-point Multiply Accumulate -

VLMS.F32 {Sd,} Sn, Sm Floating-point Multiply Subtract -

VMOV.F32 Sd, #imm Floating-point Move immediate -

VMOV Sd, Sm Floating-point Move register -

VMOV Sn, Rt Copy ARM core register to single precision -

VMOV Sm, Sm1, Rt, Rt2 Copy 2 ARM core registers to 2 single precision -

VMOV Dd[x], Rt Copy ARM core register to scalar -

VMOV Rt, Dn[x] Copy scalar to ARM core register -

VMRS Rt, FPSCR Move FPSCR to ARM core register or APSR N,Z,C,V

VMSR FPSCR, Rt Move to FPSCR from ARM Core register FPSCR

VMUL.F32 {Sd,} Sn, Sm Floating-point Multiply -

VNEG.F32 Sd, Sm Floating-point Negate -

VNMLA.F32 Sd, Sn, Sm Floating-point Multiply and Add -

VNMLS.F32 Sd, Sn, Sm Floating-point Multiply and Subtract -

VNMUL {Sd,} Sn, Sm Floating-point Multiply -

VPOP list Pop extension registers -

VPUSH list Push extension registers -

VSQRT.F32 Sd, Sm Calculates floating-point Square Root -

VSTM Rn{!}, list Floating-point register Store Multiple -

VSTR.F<32|64> Sd, [Rn] Stores an extension register to memory -

VSUB.F<32|64> {Sd,} Sn, Sm Floating-point Subtract -

WFE - Wait For Event -

WFI - Wait For Interrupt -

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags

 87SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.2 CMSIS Functions
ISO/IEC cannot directly access some Cortex-M4 instructions. This section describes intrinsic functions that can
generate these instructions, provided by the CMIS and that might be provided by a C compiler. If a C compiler does
not support an appropriate intrinsic function, the user might have to use inline assembler to access some instructions.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C code cannot directly
access:

The CMSIS also provides a number of functions for accessing the special registers using MRS and MSR instructions:

Table 12-14. CMSIS Functions to Generate some Cortex-M4 Instructions

Instruction CMSIS Function

CPSIE I void __enable_irq(void)

CPSID I void __disable_irq(void)

CPSIE F void __enable_fault_irq(void)

CPSID F void __disable_fault_irq(void)

ISB void __ISB(void)

DSB void __DSB(void)

DMB void __DMB(void)

REV uint32_t __REV(uint32_t int value)

REV16 uint32_t __REV16(uint32_t int value)

REVSH uint32_t __REVSH(uint32_t int value)

RBIT uint32_t __RBIT(uint32_t int value)

SEV void __SEV(void)

WFE void __WFE(void)

WFI void __WFI(void)

Table 12-15. CMSIS Intrinsic Functions to Access the Special Registers

Special Register Access CMSIS Function

PRIMASK
Read uint32_t __get_PRIMASK (void)

Write void __set_PRIMASK (uint32_t value)

FAULTMASK
Read uint32_t __get_FAULTMASK (void)

Write void __set_FAULTMASK (uint32_t value)

BASEPRI
Read uint32_t __get_BASEPRI (void)

Write void __set_BASEPRI (uint32_t value)

CONTROL
Read uint32_t __get_CONTROL (void)

Write void __set_CONTROL (uint32_t value)

MSP
Read uint32_t __get_MSP (void)

Write void __set_MSP (uint32_t TopOfMainStack)

PSP
Read uint32_t __get_PSP (void)

Write void __set_PSP (uint32_t TopOfProcStack)

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 88

12.6.3 Instruction Descriptions

12.6.3.1 Operands
An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions act
on the operands and often store the result in a destination register. When there is a destination register in the instruc-
tion, it is usually specified before the operands.

Operands in some instructions are flexible, can either be a register or a constant. See “Flexible Second Operand”.

12.6.3.2 Restrictions when Using PC or SP
Many instructions have restrictions on whether the Program Counter (PC) or Stack Pointer (SP) for the operands or
destination register can be used. See instruction descriptions for more information.

Note: Bit[0] of any address written to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1 for correct
execution, because this bit indicates the required instruction set, and the Cortex-M4 processor only supports
Thumb instructions.

12.6.3.3 Flexible Second Operand
Many general data processing instructions have a flexible second operand. This is shown as Operand2 in the descrip-
tions of the syntax of each instruction.

Operand2 can be a:

 “Constant”.
 “Register with Optional Shift”.

Constant

Specify an Operand2 constant in the form:

#constant
where constant can be:

 Any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-bit word.
 Any constant of the form 0x00XY00XY.
 Any constant of the form 0xXY00XY00.
 Any constant of the form 0xXYXYXYXY.

 Note: In the constants shown above, X and Y are hexadecimal digits.
In addition, in a small number of instructions, constant can take a wider range of values. These are described in the
individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ
or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can be produced by
shifting an 8-bit value. These instructions do not affect the carry flag if Operand2 is any other constant.

Instruction Substitution

The assembler might be able to produce an equivalent instruction in cases where the user specifies a constant that is
not permitted. For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the equivalent
instruction CMN Rd, #0x2.

Register with Optional Shift

Specify an Operand2 register in the form:

Rm {, shift}
where:

Rm is the register holding the data for the second operand.

shift is an optional shift to be applied to Rm. It can be one of:

ASR #n arithmetic shift right n bits, 1  n  32.

LSL #n logical shift left n bits, 1  n  31.

 89SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

LSR #n logical shift right n bits, 1  n  32.

ROR #n rotate right n bits, 1 n  31.

RRX rotate right one bit, with extend.

- if omitted, no shift occurs, equivalent to LSL #0.

If the user omits the shift, or specifies LSL #0, the instruction uses the value in Rm.

If the user specifies a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the instruc-
tion. However, the contents in the register Rm remains unchanged. Specifying a register with shift also updates the
carry flag when used with certain instructions. For information on the shift operations and how they affect the carry
flag, see “Flexible Second Operand”.

12.6.3.4 Shift Operations
Register shift operations move the bits in a register left or right by a specified number of bits, the shift length. Register
shift can be performed:

 Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination register.
 During the calculation of Operand2 by the instructions that specify the second operand as a register with shift.

See “Flexible Second Operand”. The result is used by the instruction.
The permitted shift lengths depend on the shift type and the instruction. If the shift length is 0, no shift occurs. Register
shift operations update the carry flag except when the specified shift length is 0. The following subsections describe
the various shift operations and how they affect the carry flag. In these descriptions, Rm is the register containing the
value to be shifted, and n is the shift length.

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register, Rm, to the right by n places, into the right-
hand 32-n bits of the result. And it copies the original bit[31] of the register into the left-hand n bits of the result. See
Figure 12-8.

The ASR #n operation can be used to divide the value in the register Rm by 2n, with the result being rounded towards
negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the register
Rm.

  If n is 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
 If n is 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 12-8. ASR #3

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand
32-n bits of the result. And it sets the left-hand n bits of the result to 0. See Figure 12-9.

The LSR #n operation can be used to divide the value in the register Rm by 2n, if the value is regarded as an unsigned
integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the register
Rm.

  If n is 32 or more, then all the bits in the result are cleared to 0.
 If n is 33 or more and the carry flag is updated, it is updated to 0.

Carry
Flag

031 5 4 3 2 1

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 90

Figure 12-9. LSR #3

LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the left-hand
32-n bits of the result; and it sets the right-hand n bits of the result to 0. See Figure 12-10.

The LSL #n operation can be used to multiply the value in the register Rm by 2n, if the value is regarded as an
unsigned integer or a two’s complement signed integer. Overflow can occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[32-n],
of the register Rm. These instructions do not affect the carry flag when used with LSL #0.

  If n is 32 or more, then all the bits in the result are cleared to 0.
 If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 12-10. LSL #3

ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand 32-
n bits of the result; and it moves the right-hand n bits of the register into the left-hand n bits of the result. See Figure
12-11.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of the register Rm.

  If n is 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is updated to
bit[31] of Rm.

 ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 12-11. ROR #3

Carry
Flag

031

0

5 4 3 2 1

0 0

031

0

5 4 3 2 1

0 0

Carry
Flag

Carry
Flag

031 5 4 3 2 1

 91SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

RRX

Rotate right with extend moves the bits of the register Rm to the right by one bit; and it copies the carry flag into bit[31]
of the result. See Figure 12-12.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

Figure 12-12. RRX

12.6.3.5 Address Alignment
An aligned access is an operation where a word-aligned address is used for a word, dual word, or multiple word
access, or where a halfword-aligned address is used for a halfword access. Byte accesses are always aligned.

The Cortex-M4 processor supports unaligned access only for the following instructions:

 LDR, LDRT.
 LDRH, LDRHT.
 LDRSH, LDRSHT.
 STR, STRT.
 STRH, STRHT.

All other load and store instructions generate a usage fault exception if they perform an unaligned access, and there-
fore their accesses must be address-aligned. For more information about usage faults, see “Fault Handling”.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions might not support
unaligned accesses. Therefore, ARM recommends that programmers ensure that accesses are aligned. To avoid
accidental generation of unaligned accesses, use the UNALIGN_TRP bit in the Configuration and Control Register to
trap all unaligned accesses, see “Configuration and Control Register”.

12.6.3.6 PC-relative Expressions
A PC-relative expression or label is a symbol that represents the address of an instruction or literal data. It is repre-
sented in the instruction as the PC value plus or minus a numeric offset. The assembler calculates the required offset
from the label and the address of the current instruction. If the offset is too big, the assembler produces an error.

  For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current instruction plus 4
bytes.

 For all other instructions that use labels, the value of the PC is the address of the current instruction plus 4
bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

 Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus a
number, or an expression of the form [PC, #number].

12.6.3.7 Conditional Execution
Most data processing instructions can optionally update the condition flags in the Application Program Status Register
(APSR) according to the result of the operation, see “Application Program Status Register”. Some instructions update
all flags, and some only update a subset. If a flag is not updated, the original value is preserved. See the instruction
descriptions for the flags they affect.

An instruction can be executed conditionally, based on the condition flags set in another instruction, either:

 Immediately after the instruction that updated the flags.
 After any number of intervening instructions that have not updated the flags.

Carry
Flag

031 130

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 92

Conditional execution is available by using conditional branches or by adding condition code suffixes to instructions.
See Table 12-16 for a list of the suffixes to add to instructions to make them conditional instructions. The condition
code suffix enables the processor to test a condition based on the flags. If the condition test of a conditional instruction
fails, the instruction:

 Does not execute.
 Does not write any value to its destination register.
 Does not affect any of the flags.
 Does not generate any exception.

Conditional instructions, except for conditional branches, must be inside an If-Then instruction block. See “IT” for more
information and restrictions when using the IT instruction. Depending on the vendor, the assembler might automati-
cally insert an IT instruction if there are conditional instructions outside the IT block.

The CBZ and CBNZ instructions are used to compare the value of a register against zero and branch on the result.

This section describes:

 “Condition Flags”.
 “Condition Code Suffixes”.

Condition Flags

The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.

Z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.

V Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR, see “Program Status Register”.

A carry occurs:

 If the result of an addition is greater than or equal to 232.
 If the result of a subtraction is positive or zero.
 As the result of an inline barrel shifter operation in a move or logical instruction.

An overflow occurs when the sign of the result, in bit[31], does not match the sign of the result, had the operation been
performed at infinite precision, for example:

 If adding two negative values results in a positive value.
 If adding two positive values results in a negative value.
 If subtracting a positive value from a negative value generates a positive value.
 If subtracting a negative value from a positive value generates a negative value.

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is discarded.
See the instruction descriptions for more information.

Note: Most instructions update the status flags only if the S suffix is specified. See the instruction descriptions for
more information.

Condition Code Suffixes

The instructions that can be conditional have an optional condition code, shown in syntax descriptions as {cond}. Con-
ditional execution requires a preceding IT instruction. An instruction with a condition code is only executed if the
condition code flags in the APSR meet the specified condition. Table 12-16 shows the condition codes to use.

A conditional execution can be used with the IT instruction to reduce the number of branch instructions in code.

 93SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Table 12-16 also shows the relationship between condition code suffixes and the N, Z, C, and V flags.

Absolute Value

The example below shows the use of a conditional instruction to find the absolute value of a number. R0 = ABS(R1).

 MOVS R0, R1 ; R0 = R1, setting flags
 IT MI ; IT instruction for the negative condition
 RSBMI R0, R1, #0 ; If negative, R0 = -R1

Compare and Update Value

The example below shows the use of conditional instructions to update the value of R4 if the signed values R0 is
greater than R1 and R2 is greater than R3.

 CMP R0, R1 ; Compare R0 and R1, setting flags
 ITT GT ; IT instruction for the two GT conditions
 CMPGT R2, R3 ; If 'greater than', compare R2 and R3, setting flags
 MOVGT R4, R5 ; If still 'greater than', do R4 = R5

12.6.3.8 Instruction Width Selection
There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding depending on the
operands and destination register specified. For some of these instructions, the user can force a specific instruction
size by using an instruction width suffix. The .W suffix forces a 32-bit instruction encoding. The .N suffix forces a 16-bit
instruction encoding.

If the user specifies an instruction width suffix and the assembler cannot generate an instruction encoding of the
requested width, it generates an error.

Note: In some cases, it might be necessary to specify the .W suffix, for example if the operand is the label of an
instruction or literal data, as in the case of branch instructions. This is because the assembler might not auto-
matically generate the right size encoding.

Table 12-16. Condition Code Suffixes

Suffix Flags Meaning

EQ Z = 1 Equal

NE Z = 0 Not equal

CS or HS C = 1 Higher or same, unsigned 

CC or LO C = 0 Lower, unsigned <

MI N = 1 Negative

PL N = 0 Positive or zero

VS V = 1 Overflow

VC V = 0 No overflow

HI C = 1 and Z = 0 Higher, unsigned >

LS C = 0 or Z = 1 Lower or same, unsigned 

GE N = V Greater than or equal, signed 

LT N = V Less than, signed <

GT Z = 0 and N = V Greater than, signed >

LE Z = 1 and N  V Less than or equal, signed 

AL Can have any value Always. This is the default when no suffix is specified.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 94

To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any. The
example below shows instructions with the instruction width suffix.

 BCS.W label ;creates a 32-bit instruction even for a short
 ;branch
 ADDS.W R0, R0, R1 ;creates a 32-bit instruction even though the same
 ;operation can be done by a 16-bit instruction

12.6.4 Memory Access Instructions
The table below shows the memory access instructions:

12.6.4.1 ADR
Load PC-relative address.

Syntax

ADR{cond} Rd, label
where:

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

label is a PC-relative expression. See “PC-relative Expressions”.

Operation

ADR determines the address by adding an immediate value to the PC, and writes the result to the destination register.

ADR produces position-independent code, because the address is PC-relative.

If ADR is used to generate a target address for a BX or BLX instruction, ensure that bit[0] of the address generated is
set to 1 for correct execution.

Values of label must be within the range of -4095 to +4095 from the address in the PC.

Note: The user might have to use the .W suffix to get the maximum offset range or to generate addresses that are
not word-aligned. See “Instruction Width Selection”.

Table 12-17. Memory Access Instructions

Mnemonic Description

ADR Load PC-relative address

CLREX Clear Exclusive

LDM{mode} Load Multiple registers

LDR{type} Load Register using immediate offset

LDR{type} Load Register using register offset

LDR{type}T Load Register with unprivileged access

LDR Load Register using PC-relative address

LDRD Load Register Dual

LDREX{type} Load Register Exclusive

POP Pop registers from stack

PUSH Push registers onto stack

STM{mode} Store Multiple registers

STR{type} Store Register using immediate offset

STR{type} Store Register using register offset

STR{type}T Store Register with unprivileged access

STREX{type} Store Register Exclusive

 95SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples

ADR R1, TextMessage ; Write address value of a location labelled as
 ; TextMessage to R1

12.6.4.2 LDR and STR, Immediate Offset
Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

Syntax

op{type}{cond} Rt, [Rn {, #offset}] ; immediate offset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed
op{type}{cond} Rt, [Rn], #offset ; post-indexed
opD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, two words
opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, two words

where:

op is one of:

LDR Load Register.

STR Store Register.

type is one of:

B unsigned byte, zero extend to 32 bits on loads.

SB signed byte, sign extend to 32 bits (LDR only).

H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional Execution”.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.

Rt2 is the additional register to load or store for two-word operations.

Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:

Offset Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access. The register Rn is unaltered. The assembly language syntax for this mode is:

[Rn, #offset]

Pre-indexed Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access and written back into the register Rn. The assembly language syntax for this mode is:

[Rn, #offset]!

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 96

Post-indexed Addressing

The address obtained from the register Rn is used as the address for the memory access. The offset value is added to
or subtracted from the address, and written back into the register Rn. The assembly language syntax for this mode is:

[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can either be signed or
unsigned. See “Address Alignment”.

The table below shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Restrictions

For load instructions:

 Rt can be SP or PC for word loads only.
 Rt must be different from Rt2 for two-word loads.
 Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

When Rt is PC in a word load instruction:

 Bit[0] of the loaded value must be 1 for correct execution.
 A branch occurs to the address created by changing bit[0] of the loaded value to 0.
 If the instruction is conditional, it must be the last instruction in the IT block.

For store instructions:

 Rt can be SP for word stores only.
 Rt must not be PC.
 Rn must not be PC.
 Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

Condition Flags

These instructions do not change the flags.

Examples

 LDR R8, [R10] ; Loads R8 from the address in R10.
 LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 from a word
 ; 960 bytes above the address in R5, and
 ; increments R5 by 960.
 STR R2, [R9,#const-struc] ; const-struc is an expression evaluating
 ; to a constant in the range 0-4095.
 STRH R3, [R4], #4 ; Store R3 as halfword data into address in
 ; R4, then increment R4 by 4
 LDRD R8, R9, [R3, #0x20] ; Load R8 from a word 32 bytes above the
 ; address in R3, and load R9 from a word 36
 ; bytes above the address in R3
 STRD R0, R1, [R8], #-16 ; Store R0 to address in R8, and store R1 to
 ; a word 4 bytes above the address in R8,
 ; and then decrement R8 by 16.

Table 12-18. Offset Ranges

Instruction Type Immediate Offset Pre-indexed Post-indexed

Word, halfword, signed
halfword, byte, or signed byte -255 to 4095 -255 to 255 -255 to 255

Two words multiple of 4 in the
range -1020 to 1020

multiple of 4 in the
range -1020 to 1020

multiple of 4 in the
range -1020 to 1020

 97SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.4.3 LDR and STR, Register Offset
Load and Store with register offset.

Syntax

op{type}{cond} Rt, [Rn, Rm {, LSL #n}]
where:

op is one of:

LDR Load Register.

STR Store Register.

type is one of:

B unsigned byte, zero extend to 32 bits on loads.

SB signed byte, sign extend to 32 bits (LDR only).

H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional Execution”.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

Rm is a register containing a value to be used as the offset.

LSL #n is an optional shift, with n in the range 0 to 3.

Operation

LDR instructions load a register with a value from memory.

STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is specified by the register
Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either be
signed or unsigned. See “Address Alignment”.

Restrictions

In these instructions:

 Rn must not be PC.
 Rm must not be SP and must not be PC.
 Rt can be SP only for word loads and word stores.
 Rt can be PC only for word loads.

When Rt is PC in a word load instruction:

 Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned address.
 If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags

These instructions do not change the flags.

Examples

 STR R0, [R5, R1] ; Store value of R0 into an address equal to
 ; sum of R5 and R1
 LDRSB R0, [R5, R1, LSL #1] ; Read byte value from an address equal to
 ; sum of R5 and two times R1, sign extended it
 ; to a word value and put it in R0
 STR R0, [R1, R2, LSL #2] ; Stores R0 to an address equal to sum of R1
 ; and four times R2

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 98

12.6.4.4 LDR and STR, Unprivileged
Load and Store with unprivileged access.

Syntax

op{type}T{cond} Rt, [Rn {, #offset}] ; immediate offset
where:

op is one of:

LDR Load Register.

STR Store Register.

type is one of:

B unsigned byte, zero extend to 32 bits on loads.

SB signed byte, sign extend to 32 bits (LDR only).

H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional Execution”.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset from Rn and can be 0 to 255.

If offset is omitted, the address is the value in Rn.

Operation

These load and store instructions perform the same function as the memory access instructions with immediate offset,
see “LDR and STR, Immediate Offset”. The difference is that these instructions have only unprivileged access even
when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as normal memory access
instructions with immediate offset.

Restrictions

In these instructions:

 Rn must not be PC.
 Rt must not be SP and must not be PC.

Condition Flags

These instructions do not change the flags.

Examples

 STRBTEQ R4, [R7] ; Conditionally store least significant byte in
 ; R4 to an address in R7, with unprivileged access
 LDRHT R2, [R2, #8] ; Load halfword value from an address equal to
 ; sum of R2 and 8 into R2, with unprivileged access

 99SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.4.5 LDR, PC-relative
Load register from memory.

Syntax

LDR{type}{cond} Rt, label
LDRD{cond} Rt, Rt2, label ; Load two words

where:

type is one of:

B unsigned byte, zero extend to 32 bits.

SB signed byte, sign extend to 32 bits.

H unsigned halfword, zero extend to 32 bits.

SH signed halfword, sign extend to 32 bits.

- omit, for word.

cond is an optional condition code, see “Conditional Execution”.

Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a PC-relative expression. See “PC-relative Expressions”.

Operation

LDR loads a register with a value from a PC-relative memory address. The memory address is specified by a label or
by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either be
signed or unsigned. See “Address Alignment”.

label must be within a limited range of the current instruction. The table below shows the possible offsets between
label and the PC.

The user might have to use the .W suffix to get the maximum offset range. See “Instruction Width Selection”.

Restrictions

In these instructions:

 Rt can be SP or PC only for word loads.
 Rt2 must not be SP and must not be PC.
 Rt must be different from Rt2.

When Rt is PC in a word load instruction:

 Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned address.
 If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags

These instructions do not change the flags.

Examples

 LDR R0, LookUpTable ; Load R0 with a word of data from an address
 ; labelled as LookUpTable
 LDRSB R7, localdata ; Load a byte value from an address labelled
 ; as localdata, sign extend it to a word
 ; value, and put it in R7

Table 12-19. Offset Ranges
Instruction Type Offset Range
Word, halfword, signed halfword, byte, signed byte -4095 to 4095

Two words -1020 to 1020

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 100

12.6.4.6 LDM and STM
Load and Store Multiple registers.

Syntax

op{addr_mode}{cond} Rn{!}, reglist
where:

op is one of:

LDM Load Multiple registers.

STM Store Multiple registers.

addr_mode is any one of the following:

IA Increment address After each access. This is the default.

DB Decrement address Before each access.

cond is an optional condition code, see “Conditional Execution”.

Rn is the register on which the memory addresses are based.

! is an optional writeback suffix.
If ! is present, the final address, that is loaded from or stored to, is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It can contain register
ranges. It must be comma separated if it contains more than one register or register range, see
“Examples”.

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full Descending stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty Ascending stacks.

STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks.

Operation

LDM instructions load the registers in reglist with word values from memory addresses based on Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-byte
intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses happens in
order of increasing register numbers, with the lowest numbered register using the lowest memory address and the
highest number register using the highest memory address. If the writeback suffix is specified, the value of
Rn + 4 * (n-1) is written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at 4-byte intervals
ranging from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist. The accesses happen in order of
decreasing register numbers, with the highest numbered register using the highest memory address and the lowest
number register using the lowest memory address. If the writeback suffix is specified, the value of Rn - 4 * (n-1) is
written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP” for details.

Restrictions

In these instructions:

 Rn must not be PC.
 reglist must not contain SP.
 In any STM instruction, reglist must not contain PC.
 In any LDM instruction, reglist must not contain PC if it contains LR.
 reglist must not contain Rn if the writeback suffix is specified.

 101SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

When PC is in reglist in an LDM instruction:

 Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-
aligned address.

 If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags

These instructions do not change the flags.

Examples

 LDM R8,{R0,R2,R9} ; LDMIA is a synonym for LDM
 STMDB R1!,{R3-R6,R11,R12}

Incorrect Examples

 STM R5!,{R5,R4,R9} ; Value stored for R5 is unpredictable
 LDM R2, {} ; There must be at least one register in the list

12.6.4.7 PUSH and POP
Push registers onto, and pop registers off a full-descending stack.

Syntax

PUSH{cond} reglist
POP{cond} reglist

where:

cond is an optional condition code, see “Conditional Execution”.

reglist is a non-empty list of registers, enclosed in braces. It can contain register ranges. It must be comma
separated if it contains more than one register or register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access based on
SP, and with the final address for the access written back to the SP. PUSH and POP are the preferred mnemonics in
these cases.

Operation

PUSH stores registers on the stack in order of decreasing the register numbers, with the highest numbered register
using the highest memory address and the lowest numbered register using the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest numbered register using
the lowest memory address and the highest numbered register using the highest memory address.

See “LDM and STM” for more information.

Restrictions

In these instructions:

 reglist must not contain SP.
 For the PUSH instruction, reglist must not contain PC.
 For the POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglist in a POP instruction:

 Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-
aligned address.

 If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags

These instructions do not change the flags.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 102

Examples

PUSH {R0,R4-R7}
PUSH {R2,LR}
POP {R0,R10,PC}

12.6.4.8 LDREX and STREX
Load and Store Register Exclusive.

Syntax

LDREX{cond} Rt, [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{cond} Rt, [Rn]
STREXB{cond} Rd, Rt, [Rn]
LDREXH{cond} Rt, [Rn]
STREXH{cond} Rd, Rt, [Rn]

where:

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register for the returned status.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.

Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory address. The
address used in any Store-Exclusive instruction must be the same as the address in the most recently executed Load-
exclusive instruction. The value stored by the Store-Exclusive instruction must also have the same data size as the
value loaded by the preceding Load-exclusive instruction. This means software must always use a Load-exclusive
instruction and a matching Store-Exclusive instruction to perform a synchronization operation, see “Synchronization
Primitives”.

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does not perform the
store, it writes 1 to its destination register. If the Store-Exclusive instruction writes 0 to the destination register, it is
guaranteed that no other process in the system has accessed the memory location between the Load-exclusive and
Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive and Store-
Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that used in the preceding
Load-Exclusive instruction is unpredictable.

Restrictions

In these instructions:

 Do not use PC.
 Do not use SP for Rd and Rt.
 For STREX, Rd must be different from both Rt and Rn.
 The value of offset must be a multiple of four in the range 0-1020.

Condition Flags

These instructions do not change the flags.

 103SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Examples

 MOV R1, #0x1 ; Initialize the ‘lock taken’ value try
 LDREX R0, [LockAddr] ; Load the lock value
 CMP R0, #0 ; Is the lock free?
 ITT EQ ; IT instruction for STREXEQ and CMPEQ
 STREXEQ R0, R1, [LockAddr] ; Try and claim the lock
 CMPEQ R0, #0 ; Did this succeed?
 BNE try ; No – try again
 ; Yes – we have the lock

12.6.4.9 CLREX
Clear Exclusive.

Syntax

CLREX{cond}
where:

cond is an optional condition code, see “Conditional Execution”.

Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write a 1 to its destination register and fail to
perform the store. It is useful in exception handler code to force the failure of the store exclusive if the exception
occurs between a load exclusive instruction and the matching store exclusive instruction in a synchronization
operation.

See “Synchronization Primitives” for more information.

Condition Flags

These instructions do not change the flags.

Examples

CLREX

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 104

12.6.5 General Data Processing Instructions
The table below shows the data processing instructions:

Table 12-20. Data Processing Instructions

Mnemonic Description

ADC Add with Carry

ADD Add

ADDW Add

AND Logical AND

ASR Arithmetic Shift Right

BIC Bit Clear

CLZ Count leading zeros

CMN Compare Negative

CMP Compare

EOR Exclusive OR

LSL Logical Shift Left

LSR Logical Shift Right

MOV Move

MOVT Move Top

MOVW Move 16-bit constant

MVN Move NOT

ORN Logical OR NOT

ORR Logical OR

RBIT Reverse Bits

REV Reverse byte order in a word

REV16 Reverse byte order in each halfword

REVSH Reverse byte order in bottom halfword and sign extend

ROR Rotate Right

RRX Rotate Right with Extend

RSB Reverse Subtract

SADD16 Signed Add 16

SADD8 Signed Add 8

SASX Signed Add and Subtract with Exchange

SSAX Signed Subtract and Add with Exchange

SBC Subtract with Carry

SHADD16 Signed Halving Add 16

SHADD8 Signed Halving Add 8

SHASX Signed Halving Add and Subtract with Exchange

SHSAX Signed Halving Subtract and Add with Exchange

SHSUB16 Signed Halving Subtract 16

 105SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.5.1 ADD, ADC, SUB, SBC, and RSB
Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

Syntax

op{S}{cond} {Rd,} Rn, Operand2
op{cond} {Rd,} Rn, #imm12 ; ADD and SUB only

where:

op is one of:

ADD Add.

ADC Add with Carry.

SUB Subtract.

SBC Subtract with Carry.

RSB Reverse Subtract.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the opera-
tion, see “Conditional Execution”.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn is the register holding the first operand.

SHSUB8 Signed Halving Subtract 8

SSUB16 Signed Subtract 16

SSUB8 Signed Subtract 8

SUB Subtract

SUBW Subtract

TEQ Test Equivalence

TST Test

UADD16 Unsigned Add 16

UADD8 Unsigned Add 8

UASX Unsigned Add and Subtract with Exchange

USAX Unsigned Subtract and Add with Exchange

UHADD16 Unsigned Halving Add 16

UHADD8 Unsigned Halving Add 8

UHASX Unsigned Halving Add and Subtract with Exchange

UHSAX Unsigned Halving Subtract and Add with Exchange

UHSUB16 Unsigned Halving Subtract 16

UHSUB8 Unsigned Halving Subtract 8

USAD8 Unsigned Sum of Absolute Differences

USADA8 Unsigned Sum of Absolute Differences and Accumulate

USUB16 Unsigned Subtract 16

USUB8 Unsigned Subtract 8

Table 12-20. Data Processing Instructions (Continued)

Mnemonic Description

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 106

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the options.

imm12 is any value in the range 0 - 4095.

Operation

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.

The ADC instruction adds the values in Rn and Operand2, together with the carry flag.

The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is clear, the result is
reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of the wide range of
options for Operand2.

Use ADC and SBC to synthesize multiword arithmetic, see Multiword arithmetic examples on.

See also “ADR”.

Note: ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the SUB syntax
that uses the imm12 operand.

Restrictions

In these instructions:

 Operand2 must not be SP and must not be PC.
 Rd can be SP only in ADD and SUB, and only with the additional restrictions:

 Rn must also be SP.
 Any shift in Operand2 must be limited to a maximum of 3 bits using LSL.

 Rn can be SP only in ADD and SUB.
 Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:

 The user must not specify the S suffix.
 Rm must not be PC and must not be SP.
 If the instruction is conditional, it must be the last instruction in the IT block.

 With the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and SUB, and only
with the additional restrictions:
 The user must not specify the S suffix.
 The second operand must be a constant in the range 0 to 4095.
 Note: When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded to 0b00 before

performing the calculation, making the base address for the calculation word-aligned.
 Note: To generate the address of an instruction, the constant based on the value of the PC must be

adjusted. ARM recommends to use the ADR instruction instead of ADD or SUB with Rn equal to the PC,
because the assembler automatically calculates the correct constant for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:

 Bit[0] of the value written to the PC is ignored.
 A branch occurs to the address created by forcing bit[0] of that value to 0.

Condition Flags

If S is specified, these instructions update the N, Z, C and V flags according to the result.

Examples

 ADD R2, R1, R3 ; Sets the flags on the result
 SUBS R8, R6, #240 ; Subtracts contents of R4 from 1280
 RSB R4, R4, #1280 ; Only executed if C flag set and Z
 ADCHI R11, R0, R3 ; flag clear.

 107SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Multiword Arithmetic Examples

The example below shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit integer
contained in R0 and R1, and place the result in R4 and R5.

64-bit Addition Example

 ADDS R4, R0, R2 ; add the least significant words
 ADC R5, R1, R3 ; add the most significant words with carry

Multiword values do not have to use consecutive registers. The example below shows instructions that subtract a
96-bit integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The example stores the result
in R6, R9, and R2.

96-bit Subtraction Example

 SUBS R6, R6, R9 ; subtract the least significant words
 SBCS R9, R2, R1 ; subtract the middle words with carry
 SBC R2, R8, R11 ; subtract the most significant words with carry

12.6.5.2 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

Syntax

op{S}{cond} {Rd,} Rn, Operand2
where:

op is one of:

AND logical AND.

ORR logical OR, or bit set.

EOR logical Exclusive OR.

BIC logical AND NOT, or bit clear.

ORN logical OR NOT.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the opera-
tion, see “Conditional Execution”.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the options.

Operation

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the values in Rn
and Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the corresponding bits in
the value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the corresponding bits in the
value of Operand2.

Restrictions

Do not use SP and do not use PC.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 108

Condition Flags

If S is specified, these instructions:

 Update the N and Z flags according to the result.
 Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”.
 Do not affect the V flag.

Examples

AND R9, R2, #0xFF00
ORREQ R2, R0, R5
ANDS R9, R8, #0x19
EORS R7, R11, #0x18181818
BIC R0, R1, #0xab
ORN R7, R11, R14, ROR #4
ORNS R7, R11, R14, ASR #32

12.6.5.3 ASR, LSL, LSR, ROR, and RRX
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with Extend.

Syntax

op{S}{cond} Rd, Rm, Rs
op{S}{cond} Rd, Rm, #n
RRX{S}{cond} Rd, Rm

where:

op is one of:

ASR Arithmetic Shift Right.

LSL Logical Shift Left.

LSR Logical Shift Right.

ROR Rotate Right.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the opera-
tion, see “Conditional Execution”.

Rd is the destination register.

Rm is the register holding the value to be shifted.

Rs is the register holding the shift length to apply to the value in Rm. Only the least significant byte is used
and can be in the range 0 to 255.

n is the shift length. The range of shift length depends on the instruction:

ASR shift length from 1 to 32

LSL shift length from 0 to 31

LSR shift length from 1 to 32

ROR shift length from 0 to 31

MOVS Rd, Rm is the preferred syntax for LSLS Rd, Rm, #0.

Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places specified by
constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged. For details on
what result is generated by the different instructions, see “Shift Operations”.

 109SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Restrictions

Do not use SP and do not use PC.

Condition Flags

If S is specified:

 These instructions update the N and Z flags according to the result.
 The C flag is updated to the last bit shifted out, except when the shift length is 0, see “Shift Operations”.

Examples

ASR R7, R8, #9 ; Arithmetic shift right by 9 bits
SLS R1, R2, #3 ; Logical shift left by 3 bits with flag update
LSR R4, R5, #6 ; Logical shift right by 6 bits
ROR R4, R5, R6 ; Rotate right by the value in the bottom byte of R6
RRX R4, R5 ; Rotate right with extend.

12.6.5.4 CLZ
Count Leading Zeros.

Syntax

CLZ{cond} Rd, Rm
where:

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rm is the operand register.

Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd. The result
value is 32 if no bits are set and zero if bit[31] is set.

Restrictions

Do not use SP and do not use PC.

Condition Flags

This instruction does not change the flags.

Examples

CLZ R4,R9
CLZNE R2,R3

12.6.5.5 CMP and CMN
Compare and Compare Negative.

Syntax

CMP{cond} Rn, Operand2
CMN{cond} Rn, Operand2

where:

cond is an optional condition code, see “Conditional Execution”.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the options.

Operation

These instructions compare the value in a register with Operand2. They update the condition flags on the result, but
do not write the result to a register.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 110

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS instruction,
except that the result is discarded.

The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an ADDS instruction, except
that the result is discarded.

Restrictions

In these instructions:
 Do not use PC.
 Operand2 must not be SP.

Condition Flags

These instructions update the N, Z, C and V flags according to the result.

Examples

CMP R2, R9
CMN R0, #6400
CMPGT SP, R7, LSL #2

12.6.5.6 MOV and MVN
Move and Move NOT.

Syntax

MOV{S}{cond} Rd, Operand2
MOV{cond} Rd, #imm16
MVN{S}{cond} Rd, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional Execution”.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the options.

imm16 is any value in the range 0-65535.

Operation

The MOV instruction copies the value of Operand2 into Rd.

When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax is the
corresponding shift instruction:

 ASR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n.
 LSL{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL #n if n != 0.
 LSR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n.
 ROR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n.
 RRX{S}{cond} Rd, Rm is the preferred syntax for MOV{S}{cond} Rd, Rm, RRX.

Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift instructions:

 MOV{S}{cond} Rd, Rm, ASR Rs is a synonym for ASR{S}{cond} Rd, Rm, Rs.
 MOV{S}{cond} Rd, Rm, LSL Rs is a synonym for LSL{S}{cond} Rd, Rm, Rs.
 MOV{S}{cond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs.
 MOV{S}{cond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs.

See “ASR, LSL, LSR, ROR, and RRX”.

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the value, and places
the result into Rd.

 111SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16 operand.

Restrictions

SP and PC only can be used in the MOV instruction, with the following restrictions:

 The second operand must be a register without shift.
 The S suffix must not be specified.

When Rd is PC in a MOV instruction:

 Bit[0] of the value written to the PC is ignored.
 A branch occurs to the address created by forcing bit[0] of that value to 0.

 Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of a BX or BLX instruc-
tion to branch for software portability to the ARM instruction set.

Condition Flags

If S is specified, these instructions:

 Update the N and Z flags according to the result.
 Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”.
 Do not affect the V flag.

Examples

MOVS R11, #0x000B ; Write value of 0x000B to R11, flags get updated
MOV R1, #0xFA05 ; Write value of 0xFA05 to R1, flags are not updated
MOVS R10, R12 ; Write value in R12 to R10, flags get updated
MOV R3, #23 ; Write value of 23 to R3
MOV R8, SP ; Write value of stack pointer to R8
MVNS R2, #0xF ; Write value of 0xFFFFFFF0 (bitwise inverse of 0xF)
 ; to the R2 and update flags.

12.6.5.7 MOVT
Move Top.

Syntax

MOVT{cond} Rd, #imm16
where:

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

imm16 is a 16-bit immediate constant.

Operation

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination register. The write
does not affect Rd[15:0].

The MOV, MOVT instruction pair enables to generate any 32-bit constant.

Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples

 MOVT R3, #0xF123 ; Write 0xF123 to upper halfword of R3, lower halfword
 ; and APSR are unchanged.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 112

12.6.5.8 REV, REV16, REVSH, and RBIT
Reverse bytes and Reverse bits.

Syntax

op{cond} Rd, Rn
where:

op is any of:

REV Reverse byte order in a word.

REV16 Reverse byte order in each halfword independently.

REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.

RBIT Reverse the bit order in a 32-bit word.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the register holding the operand.

Operation

Use these instructions to change endianness of data:

REV converts either:

 32-bit big-endian data into little-endian data.
 32-bit little-endian data into big-endian data.

REV16 converts either:

 16-bit big-endian data into little-endian data.
 16-bit little-endian data into big-endian data.

REVSH converts either:

 16-bit signed big-endian data into 32-bit signed little-endian data.
 16-bit signed little-endian data into 32-bit signed big-endian data.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

REV R3, R7 ; Reverse byte order of value in R7 and write it to R3
REV16 R0, R0 ; Reverse byte order of each 16-bit halfword in R0
REVSH R0, R5 ; Reverse Signed Halfword
REVHS R3, R7 ; Reverse with Higher or Same condition
RBIT R7, R8 ; Reverse bit order of value in R8 and write the result to R7.

 113SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.5.9 SADD16 and SADD8
Signed Add 16 and Signed Add 8

Syntax

op{cond}{Rd,} Rn, Rm
where:

op is any of:

SADD16 Performs two 16-bit signed integer additions.

SADD8 Performs four 8-bit signed integer additions.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

Use these instructions to perform a halfword or byte add in parallel:

The SADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the result in the corresponding halfwords of the destination register.

The SADD8 instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.

Writes the result in the corresponding bytes of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

SADD16 R1, R0 ; Adds the halfwords in R0 to the corresponding
 ; halfwords of R1 and writes to corresponding halfword
 ; of R1.
SADD8 R4, R0, R5 ; Adds bytes of R0 to the corresponding byte in R5 and
 ; writes to the corresponding byte in R4.

12.6.5.10 SHADD16 and SHADD8
Signed Halving Add 16 and Signed Halving Add 8

Syntax

op{cond}{Rd,} Rn, Rm
where:

op is any of:

SHADD16 Signed Halving Add 16.

SHADD8 Signed Halving Add 8.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the first operand register.

Rm is the second operand register.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 114

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destina-
tion register:

The SHADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halfword results in the destination register.

The SHADDB8 instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

SHADD16 R1, R0 ;Adds halfwords in R0 to corresponding halfword of R1
 ;and writes halved result to corresponding halfword in
 ;R1
SHADD8 R4, R0, R5 ;Adds bytes of R0 to corresponding byte in R5 and
 ;writes halved result to corresponding byte in R4.

12.6.5.11 SHASX and SHSAX
Signed Halving Add and Subtract with Exchange and Signed Halving Subtract and Add with Exchange.

Syntax

op{cond} {Rd}, Rn, Rm
where:

op is any of:

SHASX Add and Subtract with Exchange and Halving.

SHSAX Subtract and Add with Exchange and Halving.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The SHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.
2. Writes the halfword result of the addition to the top halfword of the destination register, shifted by one bit to the

right causing a divide by two, or halving.
3. Subtracts the top halfword of the second operand from the bottom highword of the first operand.
4. Writes the halfword result of the division in the bottom halfword of the destination register, shifted by one bit to

the right causing a divide by two, or halving.

 115SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

The SHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Writes the halfword result of the addition to the bottom halfword of the destination register, shifted by one bit to

the right causing a divide by two, or halving.
3. Adds the bottom halfword of the first operand with the top halfword of the second operand.
4. Writes the halfword result of the division in the top halfword of the destination register, shifted by one bit to the

right causing a divide by two, or halving.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

SHASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2
 ; and writes halved result to top halfword of R7
 ; Subtracts top halfword of R2 from bottom halfword of
 ; R4 and writes halved result to bottom halfword of R7
SHSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword
 ; of R3 and writes halved result to top halfword of R0
 ; Adds top halfword of R5 to bottom halfword of R3 and
 ; writes halved result to bottom halfword of R0.

12.6.5.12 SHSUB16 and SHSUB8
Signed Halving Subtract 16 and Signed Halving Subtract 8

Syntax

op{cond}{Rd,} Rn, Rm
where:

op is any of:

SHSUB16 Signed Halving Subtract 16.

SHSUB8 Signed Halving Subtract 8.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the first operand register.

Rm is the second operand register.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destina-
tion register:

The SHSUB16 instruction:
1. Subtracts each halfword of the second operand from the corresponding halfwords of the first operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halved halfword results in the destination register.

The SHSUB8 instruction:
1. Subtracts each byte of the second operand from the corresponding byte of the first operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the corresponding signed byte results in the destination register.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 116

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

SHSUB16 R1, R0 ; Subtracts halfwords in R0 from corresponding halfword
 ; of R1 and writes to corresponding halfword of R1
SHSUB8 R4, R0, R5 ; Subtracts bytes of R0 from corresponding byte in R5,
 ; and writes to corresponding byte in R4.

12.6.5.13 SSUB16 and SSUB8
Signed Subtract 16 and Signed Subtract 8

Syntax

op{cond}{Rd,} Rn, Rm
where:

op is any of:

SSUB16 Performs two 16-bit signed integer subtractions.

SSUB8 Performs four 8-bit signed integer subtractions.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the first operand register.

Rm is the second operand register.

Operation

Use these instructions to change endianness of data:

The SSUB16 instruction:
1. Subtracts each halfword from the second operand from the corresponding halfword of the first operand.
2. Writes the difference result of two signed halfwords in the corresponding halfword of the destination register.

The SSUB8 instruction:
1. Subtracts each byte of the second operand from the corresponding byte of the first operand.
2. Writes the difference result of four signed bytes in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

SSUB16 R1, R0 ; Subtracts halfwords in R0 from corresponding halfword
 ; of R1 and writes to corresponding halfword of R1
SSUB8 R4, R0, R5 ; Subtracts bytes of R5 from corresponding byte in
 ; R0, and writes to corresponding byte of R4.

 117SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.5.14 SASX and SSAX
Signed Add and Subtract with Exchange and Signed Subtract and Add with Exchange.

Syntax

op{cond} {Rd}, Rm, Rn
where:

op is any of:

SASX Signed Add and Subtract with Exchange.

SSAX Signed Subtract and Add with Exchange.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The SASX instruction:

1. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
2. Writes the signed result of the addition to the top halfword of the destination register.
3. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first operand.
4. Writes the signed result of the subtraction to the bottom halfword of the destination register.

The SSAX instruction:

1. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first operand.
2. Writes the signed result of the addition to the bottom halfword of the destination register.
3. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
4. Writes the signed result of the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

SASX R0, R4, R5 ; Adds top halfword of R4 to bottom halfword of R5 and
 ; writes to top halfword of R0
 ; Subtracts bottom halfword of R5 from top halfword of R4
 ; and writes to bottom halfword of R0
SSAX R7, R3, R2 ; Subtracts top halfword of R2 from bottom halfword of R3
 ; and writes to bottom halfword of R7
 ; Adds top halfword of R3 with bottom halfword of R2 and
 ; writes to top halfword of R7.

12.6.5.15 TST and TEQ
Test bits and Test Equivalence.

Syntax

TST{cond} Rn, Operand2
TEQ{cond} Rn, Operand2

where

cond is an optional condition code, see “Conditional Execution”.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the options.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 118

Operation

These instructions test the value in a register against Operand2. They update the condition flags based on the result,
but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2. This is the same
as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand2 constant that has that bit set to 1 and
all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of Operand2. This is
the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical Exclusive OR of the
sign bits of the two operands.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions:

 Update the N and Z flags according to the result.
 Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”.
 Do not affect the V flag.

Examples

 TST R0, #0x3F8 ; Perform bitwise AND of R0 value to 0x3F8,
 ; APSR is updated but result is discarded
 TEQEQ R10, R9 ; Conditionally test if value in R10 is equal to
 ; value in R9, APSR is updated but result is discarded.

12.6.5.16 UADD16 and UADD8
Unsigned Add 16 and Unsigned Add 8

Syntax

op{cond}{Rd,} Rn, Rm
where:

op is any of:

UADD16 Performs two 16-bit unsigned integer additions.

UADD8 Performs four 8-bit unsigned integer additions.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

Use these instructions to add 16- and 8-bit unsigned data:

The UADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the unsigned result in the corresponding halfwords of the destination register.

 119SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

The UADD8 instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Writes the unsigned result in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

UADD16 R1, R0 ; Adds halfwords in R0 to corresponding halfword of R1,
 ; writes to corresponding halfword of R1
UADD8 R4, R0, R5 ; Adds bytes of R0 to corresponding byte in R5 and
 ; writes to corresponding byte in R4.

12.6.5.17 UASX and USAX
Add and Subtract with Exchange and Subtract and Add with Exchange.

Syntax

op{cond} {Rd}, Rn, Rm
where:

op is one of:

UASX Add and Subtract with Exchange.

USAX Subtract and Add with Exchange.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The UASX instruction:

1. Subtracts the top halfword of the second operand from the bottom halfword of the first operand.
2. Writes the unsigned result from the subtraction to the bottom halfword of the destination register.
3. Adds the top halfword of the first operand with the bottom halfword of the second operand.
4. Writes the unsigned result of the addition to the top halfword of the destination register.

The USAX instruction:

1. Adds the bottom halfword of the first operand with the top halfword of the second operand.
2. Writes the unsigned result of the addition to the bottom halfword of the destination register.
3. Subtracts the bottom halfword of the second operand from the top halfword of the first operand.
4. Writes the unsigned result from the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 120

Examples

UASX R0, R4, R5 ; Adds top halfword of R4 to bottom halfword of R5 and
 ; writes to top halfword of R0
 ; Subtracts bottom halfword of R5 from top halfword of R0
 ; and writes to bottom halfword of R0
USAX R7, R3, R2 ; Subtracts top halfword of R2 from bottom halfword of R3
 ; and writes to bottom halfword of R7
 ; Adds top halfword of R3 to bottom halfword of R2 and
 ; writes to top halfword of R7.

12.6.5.18 UHADD16 and UHADD8
Unsigned Halving Add 16 and Unsigned Halving Add 8

Syntax

op{cond}{Rd,} Rn, Rm
where:

op is any of:

UHADD16 Unsigned Halving Add 16.

UHADD8 Unsigned Halving Add 8.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the register holding the first operand.

Rm is the register holding the second operand.

Operation

Use these instructions to add 16- and 8-bit data and then to halve the result before writing the result to the destination
register:

The UHADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the halfword result by one bit to the right, halving the data.
3. Writes the unsigned results to the corresponding halfword in the destination register.

The UHADD8 instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the byte result by one bit to the right, halving the data.
3. Writes the unsigned results in the corresponding byte in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

UHADD16 R7, R3 ; Adds halfwords in R7 to corresponding halfword of R3
 ; and writes halved result to corresponding halfword
 ; in R7
UHADD8 R4, R0, R5 ; Adds bytes of R0 to corresponding byte in R5 and
 ; writes halved result to corresponding byte in R4.

 121SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.5.19 UHASX and UHSAX
Unsigned Halving Add and Subtract with Exchange and Unsigned Halving Subtract and Add with Exchange.

Syntax

op{cond} {Rd}, Rn, Rm
where:

op is one of:

UHASX Add and Subtract with Exchange and Halving.

UHSAX Subtract and Add with Exchange and Halving.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The UHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.
2. Shifts the result by one bit to the right causing a divide by two, or halving.
3. Writes the halfword result of the addition to the top halfword of the destination register.
4. Subtracts the top halfword of the second operand from the bottom highword of the first operand.
5. Shifts the result by one bit to the right causing a divide by two, or halving.
6. Writes the halfword result of the division in the bottom halfword of the destination register.

The UHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Shifts the result by one bit to the right causing a divide by two, or halving.
3. Writes the halfword result of the subtraction in the top halfword of the destination register.
4. Adds the bottom halfword of the first operand with the top halfword of the second operand.
5. Shifts the result by one bit to the right causing a divide by two, or halving.
6. Writes the halfword result of the addition to the bottom halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UHASX R7, R4, R2 ; Adds top halfword of R4 with bottom halfword of R2
 ; and writes halved result to top halfword of R7
 ; Subtracts top halfword of R2 from bottom halfword of
 ; R7 and writes halved result to bottom halfword of R7
UHSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of
 ; R3 and writes halved result to top halfword of R0
 ; Adds top halfword of R5 to bottom halfword of R3 and
 ; writes halved result to bottom halfword of R0.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 122

12.6.5.20 UHSUB16 and UHSUB8
Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8

Syntax

op{cond}{Rd,} Rn, Rm
where:

op is any of:

UHSUB16 Performs two unsigned 16-bit integer additions, halves the results, and writes the results to
the destination register.

UHSUB8 Performs four unsigned 8-bit integer additions, halves the results, and writes the results to
the destination register.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destina-
tion register:

The UHSUB16 instruction:

1. Subtracts each halfword of the second operand from the corresponding halfword of the first operand.
2. Shuffles each halfword result to the right by one bit, halving the data.
3. Writes each unsigned halfword result to the corresponding halfwords in the destination register.

The UHSUB8 instruction:

1. Subtracts each byte of second operand from the corresponding byte of the first operand.
2. Shuffles each byte result by one bit to the right, halving the data.
3. Writes the unsigned byte results to the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

UHSUB16 R1, R0 ; Subtracts halfwords in R0 from corresponding halfword of
 ; R1 and writes halved result to corresponding halfword in R1
UHSUB8 R4, R0, R5 ; Subtracts bytes of R5 from corresponding byte in R0 and
 ; writes halved result to corresponding byte in R4.

 123SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.5.21 SEL
Select Bytes. Selects each byte of its result from either its first operand or its second operand, according to the values
of the GE flags.

Syntax

SEL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>
where:

c, q are standard assembler syntax fields.

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

The SEL instruction:

1. Reads the value of each bit of APSR.GE.
2. Depending on the value of APSR.GE, assigns the destination register the value of either the first or second

operand register.
Restrictions

None.

Condition Flags

These instructions do not change the flags.

Examples

SADD16 R0, R1, R2 ; Set GE bits based on result
SEL R0, R0, R3 ; Select bytes from R0 or R3, based on GE.

12.6.5.22 USAD8
Unsigned Sum of Absolute Differences

Syntax

USAD8{cond}{Rd,} Rn, Rm
where:

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the first operand register.

Rm is the second operand register.

Operation

The USAD8 instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Adds the absolute values of the differences together.
3. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 124

Examples

USAD8 R1, R4, R0 ; Subtracts each byte in R0 from corresponding byte of R4
 ; adds the differences and writes to R1
USAD8 R0, R5 ; Subtracts bytes of R5 from corresponding byte in R0
 ; adds the differences and writes to R0.

12.6.5.23 USADA8
Unsigned Sum of Absolute Differences and Accumulate

Syntax

USADA8{cond}{Rd,} Rn, Rm, Ra
where:

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the first operand register.

Rm is the second operand register.

Ra is the register that contains the accumulation value.

Operation

The USADA8 instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Adds the unsigned absolute differences together.
3. Adds the accumulation value to the sum of the absolute differences.
4. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

USADA8 R1, R0, R6 ; Subtracts bytes in R0 from corresponding halfword of R1
 ; adds differences, adds value of R6, writes to R1
USADA8 R4, R0, R5, R2 ; Subtracts bytes of R5 from corresponding byte in R0
 ; adds differences, adds value of R2 writes to R4.

 125SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.5.24 USUB16 and USUB8
Unsigned Subtract 16 and Unsigned Subtract 8

Syntax

op{cond}{Rd,} Rn, Rm
where

op is any of:

USUB16 Unsigned Subtract 16.

USUB8 Unsigned Subtract 8.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the first operand register.

Rm is the second operand register.

Operation

Use these instructions to subtract 16-bit and 8-bit data before writing the result to the destination register:

The USUB16 instruction:

1. Subtracts each halfword from the second operand register from the corresponding halfword of the first operand
register.

2. Writes the unsigned result in the corresponding halfwords of the destination register.
The USUB8 instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Writes the unsigned byte result in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

USUB16 R1, R0 ; Subtracts halfwords in R0 from corresponding halfword of R1
 ; and writes to corresponding halfword in R1USUB8 R4, R0, R5
 ; Subtracts bytes of R5 from corresponding byte in R0 and
 ; writes to the corresponding byte in R4.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 126

12.6.6 Multiply and Divide Instructions
The table below shows the multiply and divide instructions:

Table 12-21. Multiply and Divide Instructions

Mnemonic Description

MLA Multiply with Accumulate, 32-bit result

MLS Multiply and Subtract, 32-bit result

MUL Multiply, 32-bit result

SDIV Signed Divide

SMLA[B,T] Signed Multiply Accumulate (halfwords)

SMLAD, SMLADX Signed Multiply Accumulate Dual

SMLAL Signed Multiply with Accumulate (32 x 32 + 64), 64-bit result

SMLAL[B,T] Signed Multiply Accumulate Long (halfwords)

SMLALD, SMLALDX Signed Multiply Accumulate Long Dual

SMLAW[B|T] Signed Multiply Accumulate (word by halfword)

SMLSD Signed Multiply Subtract Dual

SMLSLD Signed Multiply Subtract Long Dual

SMMLA Signed Most Significant Word Multiply Accumulate

SMMLS, SMMLSR Signed Most Significant Word Multiply Subtract

SMUAD, SMUADX Signed Dual Multiply Add

SMUL[B,T] Signed Multiply (word by halfword)

SMMUL, SMMULR Signed Most Significant Word Multiply

SMULL Signed Multiply (32 x 32), 64-bit result

SMULWB, SMULWT Signed Multiply (word by halfword)

SMUSD, SMUSDX Signed Dual Multiply Subtract

UDIV Unsigned Divide

UMAAL Unsigned Multiply Accumulate Accumulate Long (32 x 32 + 32 + 32), 64-bit result

UMLAL Unsigned Multiply with Accumulate (32 x 32 + 64), 64-bit result

UMULL Unsigned Multiply (32 x 32), 64-bit result

 127SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.6.1 MUL, MLA, and MLS
Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and producing a 32-bit result.

Syntax

MUL{S}{cond} {Rd,} Rn, Rm ; Multiply
MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate
MLS{cond} Rd, Rn, Rm, Ra ; Multiply with subtract

where:

cond is an optional condition code, see “Conditional Execution”.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the opera-
tion, see “Conditional Execution”.

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of the result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the least significant 32
bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value from Ra, and places
the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or unsigned.

Restrictions

In these instructions, do not use SP and do not use PC.

If the S suffix is used with the MUL instruction:

 Rd, Rn, and Rm must all be in the range R0 to R7.
 Rd must be the same as Rm.
 The cond suffix must not be used.

Condition Flags

If S is specified, the MUL instruction:

 Updates the N and Z flags according to the result.
 Does not affect the C and V flags.

Examples

MUL R10, R2, R5 ; Multiply, R10 = R2 x R5
MLA R10, R2, R1, R5 ; Multiply with accumulate, R10 = (R2 x R1) + R5
MULS R0, R2, R2 ; Multiply with flag update, R0 = R2 x R2
MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 x R2
MLS R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 x R6)

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 128

12.6.6.2 UMULL, UMAAL, UMLAL
Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.

Syntax

op{cond} RdLo, RdHi, Rn, Rm
where:

op is one of:

UMULL Unsigned Long Multiply.

UMAAL Unsigned Long Multiply with Accumulate Accumulate.

UMLAL Unsigned Long Multiply, with Accumulate.

cond is an optional condition code, see “Conditional Execution”.

RdHi, RdLo are the destination registers. For UMAAL, UMLAL and UMLAL they also hold the accumulating value.

Rn, Rm are registers holding the first and second operands.

Operation

These instructions interpret the values from Rn and Rm as unsigned 32-bit integers.
The UMULL instruction:

 Multiplies the two unsigned integers in the first and second operands.
 Writes the least significant 32 bits of the result in RdLo.
 Writes the most significant 32 bits of the result in RdHi.

The UMAAL instruction:

 Multiplies the two unsigned 32-bit integers in the first and second operands.
 Adds the unsigned 32-bit integer in RdHi to the 64-bit result of the multiplication.
 Adds the unsigned 32-bit integer in RdLo to the 64-bit result of the addition.
 Writes the top 32-bits of the result to RdHi.
 Writes the lower 32-bits of the result to RdLo.

The UMLAL instruction:

 Multiplies the two unsigned integers in the first and second operands.
 Adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo.
 Writes the result back to RdHi and RdLo.

Restrictions

In these instructions:

 Do not use SP and do not use PC.
 RdHi and RdLo must be different registers.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UMULL R0, R4, R5, R6 ; Multiplies R5 and R6, writes the top 32 bits to R4
 ; and the bottom 32 bits to R0
UMAAL R3, R6, R2, R7 ; Multiplies R2 and R7, adds R6, adds R3, writes the
 ; top 32 bits to R6, and the bottom 32 bits to R3
UMLAL R2, R1, R3, R5 ; Multiplies R5 and R3, adds R1:R2, writes to R1:R2.

 129SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.6.3 SMLA and SMLAW
Signed Multiply Accumulate (halfwords).

Syntax

op{XY}{cond} Rd, Rn, Rm
op{Y}{cond} Rd, Rn, Rm, Ra

where:

op is one of:

SMLA Signed Multiply Accumulate Long (halfwords).

X and Y specifies which half of the source registers Rn and Rm are used as the first and second multi-
ply operand.

If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X is T, then the top halfword, bits [31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMLAW Signed Multiply Accumulate (word by halfword).

Y specifies which half of the source register Rm is used as the second multiply operand.

If Y is T, then the top halfword, bits [31:16] of Rm is used.

If Y is B, then the bottom halfword, bits [15:0] of Rm is used.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

Operation

The SMALBB, SMLABT, SMLATB, SMLATT instructions:

 Multiplies the specified signed halfword, top or bottom, values from Rn and Rm.
 Adds the value in Ra to the resulting 32-bit product.
 Writes the result of the multiplication and addition in Rd.

The non-specified halfwords of the source registers are ignored.

The SMLAWB and SMLAWT instructions:

 Multiply the 32-bit signed values in Rn with:
 The top signed halfword of Rm, T instruction suffix.
 The bottom signed halfword of Rm, B instruction suffix.

 Add the 32-bit signed value in Ra to the top 32 bits of the 48-bit product.
 Writes the result of the multiplication and addition in Rd.

The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR. No overflow
can occur during the multiplication.

Restrictions

In these instructions, do not use SP and do not use PC.

Condition Flags

If an overflow is detected, the Q flag is set.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 130

Examples

SMLABB R5, R6, R4, R1 ; Multiplies bottom halfwords of R6 and R4, adds
 ; R1 and writes to R5
SMLATB R5, R6, R4, R1 ; Multiplies top halfword of R6 with bottom halfword
 ; of R4, adds R1 and writes to R5
SMLATT R5, R6, R4, R1 ; Multiplies top halfwords of R6 and R4, adds
 ; R1 and writes the sum to R5
SMLABT R5, R6, R4, R1 ; Multiplies bottom halfword of R6 with top halfword
 ; of R4, adds R1 and writes to R5
SMLABT R4, R3, R2 ; Multiplies bottom halfword of R4 with top halfword of
 ; R3, adds R2 and writes to R4
SMLAWB R10, R2, R5, R3 ; Multiplies R2 with bottom halfword of R5, adds
 ; R3 to the result and writes top 32-bits to R10
SMLAWT R10, R2, R1, R5 ; Multiplies R2 with top halfword of R1, adds R5
 ; and writes top 32-bits to R10.

12.6.6.4 SMLAD
Signed Multiply Accumulate Long Dual

Syntax

op{X}{cond} Rd, Rn, Rm, Ra ;
where:

op is one of:

SMLAD Signed Multiply Accumulate Dual.

SMLADX Signed Multiply Accumulate Dual Reverse.

X specifies which halfword of the source register Rn is used as the multiply operand.
If X is omitted, the multiplications are bottom × bottom and top × top.
If X is present, the multiplications are bottom × top and top × bottom.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the first operand register holding the values to be multiplied.

Rm the second operand register.

Ra is the accumulate value.

Operation

The SMLAD and SMLADX instructions regard the two operands as four halfword 16-bit values. The SMLAD and
SMLADX instructions:

 If X is not present, multiply the top signed halfword value in Rn with the top signed halfword of Rm and the
bottom signed halfword values in Rn with the bottom signed halfword of Rm.

 Or if X is present, multiply the top signed halfword value in Rn with the bottom signed halfword of Rm and the
bottom signed halfword values in Rn with the top signed halfword of Rm.

 Add both multiplication results to the signed 32-bit value in Ra.
 Writes the 32-bit signed result of the multiplication and addition to Rd.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

 131SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Examples

SMLAD R10, R2, R1, R5 ; Multiplies two halfword values in R2 with
 ; corresponding halfwords in R1, adds R5 and
 ; writes to R10
SMLALDX R0, R2, R4, R6 ; Multiplies top halfword of R2 with bottom
 ; halfword of R4, multiplies bottom halfword of R2
 ; with top halfword of R4, adds R6 and writes to
 ; R0.

12.6.6.5 SMLAL and SMLALD
Signed Multiply Accumulate Long, Signed Multiply Accumulate Long (halfwords) and Signed Multiply Accumulate
Long Dual.

Syntax

op{cond} RdLo, RdHi, Rn, Rm
op{XY}{cond} RdLo, RdHi, Rn, Rm
op{X}{cond} RdLo, RdHi, Rn, Rm

where:

op is one of:

MLAL Signed Multiply Accumulate Long.

SMLAL Signed Multiply Accumulate Long (halfwords, X and Y).

X and Y specify which halfword of the source registers Rn and Rm are used as the first and second
multiply operand:

If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X is T, then the top halfword, bits [31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMLALD Signed Multiply Accumulate Long Dual.

SMLALDX Signed Multiply Accumulate Long Dual Reversed.

If the X is omitted, the multiplications are bottom × bottom and top × top.

If X is present, the multiplications are bottom × top and top × bottom.

cond is an optional condition code, see “Conditional Execution”.

RdHi, RdLo are the destination registers.
RdLo is the lower 32 bits and RdHi is the upper 32 bits of the 64-bit integer.
For SMLAL, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD and SMLALDX, they also hold the
accumulating value.

Rn, Rm are registers holding the first and second operands.

Operation

The SMLAL instruction:

 Multiplies the two’s complement signed word values from Rn and Rm.
 Adds the 64-bit value in RdLo and RdHi to the resulting 64-bit product.
 Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The SMLALBB, SMLALBT, SMLALTB and SMLALTT instructions:

 Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.
 Adds the resulting sign-extended 32-bit product to the 64-bit value in RdLo and RdHi.
 Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The non-specified halfwords of the source registers are ignored.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 132

The SMLALD and SMLALDX instructions interpret the values from Rn and Rm as four halfword two’s complement
signed 16-bit integers. These instructions:

 If X is not present, multiply the top signed halfword value of Rn with the top signed halfword of Rm and the
bottom signed halfword values of Rn with the bottom signed halfword of Rm.

 Or if X is present, multiply the top signed halfword value of Rn with the bottom signed halfword of Rm and the
bottom signed halfword values of Rn with the top signed halfword of Rm.

 Add the two multiplication results to the signed 64-bit value in RdLo and RdHi to create the resulting 64-bit
product.

 Write the 64-bit product in RdLo and RdHi.
Restrictions

In these instructions:

 Do not use SP and do not use PC.
 RdHi and RdLo must be different registers.

Condition Flags

These instructions do not affect the condition code flags.

Examples

 SMLAL R4, R5, R3, R8 ; Multiplies R3 and R8, adds R5:R4 and writes to
 ; R5:R4
 SMLALBT R2, R1, R6, R7 ; Multiplies bottom halfword of R6 with top
 ; halfword of R7, sign extends to 32-bit, adds
 ; R1:R2 and writes to R1:R2
 SMLALTB R2, R1, R6, R7 ; Multiplies top halfword of R6 with bottom
 ; halfword of R7,sign extends to 32-bit, adds R1:R2
 ; and writes to R1:R2
 SMLALD R6, R8, R5, R1 ; Multiplies top halfwords in R5 and R1 and bottom
 ; halfwords of R5 and R1, adds R8:R6 and writes to
 ; R8:R6
 SMLALDX R6, R8, R5, R1 ; Multiplies top halfword in R5 with bottom
 ; halfword of R1, and bottom halfword of R5 with
 ; top halfword of R1, adds R8:R6 and writes to
 ; R8:R6.

12.6.6.6 SMLSD and SMLSLD
Signed Multiply Subtract Dual and Signed Multiply Subtract Long Dual

Syntax

op{X}{cond} Rd, Rn, Rm, Ra
where:

op is one of:

SMLSD Signed Multiply Subtract Dual.

SMLSDX Signed Multiply Subtract Dual Reversed.

SMLSLD Signed Multiply Subtract Long Dual.

SMLSLDX Signed Multiply Subtract Long Dual Reversed.

SMLAW Signed Multiply Accumulate (word by halfword).

If X is present, the multiplications are bottom × top and top × bottom.
If the X is omitted, the multiplications are bottom × bottom and top × top.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

 133SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Ra is the register holding the accumulate value.

Operation

The SMLSD instruction interprets the values from the first and second operands as four signed halfwords. This
instruction:

 Optionally rotates the halfwords of the second operand.
 Performs two signed 16 × 16-bit halfword multiplications.
 Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.
 Adds the signed accumulate value to the result of the subtraction.
 Writes the result of the addition to the destination register.

The SMLSLD instruction interprets the values from Rn and Rm as four signed halfwords.

This instruction:

 Optionally rotates the halfwords of the second operand.
 Performs two signed 16 × 16-bit halfword multiplications.
 Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.
 Adds the 64-bit value in RdHi and RdLo to the result of the subtraction.
 Writes the 64-bit result of the addition to the RdHi and RdLo.

Restrictions

In these instructions:

 Do not use SP and do not use PC.
Condition Flags

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the multiplications
or subtraction.

For the Thumb instruction set, these instructions do not affect the condition code flags.

Examples

SMLSD R0, R4, R5, R6 ; Multiplies bottom halfword of R4 with bottom
 ; halfword of R5, multiplies top halfword of R4
 ; with top halfword of R5, subtracts second from
 ; first, adds R6, writes to R0
SMLSDX R1, R3, R2, R0 ; Multiplies bottom halfword of R3 with top
 ; halfword of R2, multiplies top halfword of R3
 ; with bottom halfword of R2, subtracts second from
 ; first, adds R0, writes to R1
SMLSLD R3, R6, R2, R7 ; Multiplies bottom halfword of R6 with bottom
 ; halfword of R2, multiplies top halfword of R6
 ; with top halfword of R2, subtracts second from
 ; first, adds R6:R3, writes to R6:R3
SMLSLDX R3, R6, R2, R7 ; Multiplies bottom halfword of R6 with top
 ; halfword of R2, multiplies top halfword of R6
 ; with bottom halfword of R2, subtracts second from
 ; first, adds R6:R3, writes to R6:R3.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 134

12.6.6.7 SMMLA and SMMLS
Signed Most Significant Word Multiply Accumulate and Signed Most Significant Word Multiply Subtract

Syntax

op{R}{cond} Rd, Rn, Rm, Ra
where:

op is one of:

SMMLA Signed Most Significant Word Multiply Accumulate.

SMMLS Signed Most Significant Word Multiply Subtract.

If the X is omitted, the multiplications are bottom × bottom and top × top.

R is a rounding error flag. If R is specified, the result is rounded instead of being truncated. In this case
the constant 0x80000000 is added to the product before the high word is extracted.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second multiply operands.

Ra is the register holding the accumulate value.

Operation

The SMMLA instruction interprets the values from Rn and Rm as signed 32-bit words.

The SMMLA instruction:

 Multiplies the values in Rn and Rm.
 Optionally rounds the result by adding 0x80000000.
 Extracts the most significant 32 bits of the result.
 Adds the value of Ra to the signed extracted value.
 Writes the result of the addition in Rd.

The SMMLS instruction interprets the values from Rn and Rm as signed 32-bit words.

The SMMLS instruction:

 Multiplies the values in Rn and Rm.
 Optionally rounds the result by adding 0x80000000.
 Extracts the most significant 32 bits of the result.
 Subtracts the extracted value of the result from the value in Ra.
 Writes the result of the subtraction in Rd.

Restrictions

In these instructions:

 Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the condition code flags.

Examples

SMMLA R0, R4, R5, R6 ; Multiplies R4 and R5, extracts top 32 bits, adds
 ; R6, truncates and writes to R0
SMMLAR R6, R2, R1, R4 ; Multiplies R2 and R1, extracts top 32 bits, adds
 ; R4, rounds and writes to R6
SMMLSR R3, R6, R2, R7 ; Multiplies R6 and R2, extracts top 32 bits,
 ; subtracts R7, rounds and writes to R3
SMMLS R4, R5, R3, R8 ; Multiplies R5 and R3, extracts top 32 bits,
 ; subtracts R8, truncates and writes to R4.

 135SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.6.8 SMMUL
Signed Most Significant Word Multiply

Syntax

op{R}{cond} Rd, Rn, Rm
where:

op is one of:

SMMUL Signed Most Significant Word Multiply.

R is a rounding error flag. If R is specified, the result is rounded instead of being truncated. In this case
the constant 0x80000000 is added to the product before the high word is extracted.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The SMMUL instruction interprets the values from Rn and Rm as two’s complement 32-bit signed integers. The
SMMUL instruction:

 Multiplies the values from Rn and Rm.
 Optionally rounds the result, otherwise truncates the result.
 Writes the most significant signed 32 bits of the result in Rd.

Restrictions

In this instruction:

 Do not use SP and do not use PC.
Condition Flags

This instruction does not affect the condition code flags.

Examples

SMULL R0, R4, R5 ; Multiplies R4 and R5, truncates top 32 bits
 ; and writes to R0
SMULLR R6, R2 ; Multiplies R6 and R2, rounds the top 32 bits
 ; and writes to R6.

12.6.6.9 SMUAD and SMUSD
Signed Dual Multiply Add and Signed Dual Multiply Subtract

Syntax

op{X}{cond} Rd, Rn, Rm
where:

op is one of:

SMUAD Signed Dual Multiply Add.

SMUADX Signed Dual Multiply Add Reversed.

SMUSD Signed Dual Multiply Subtract.

SMUSDX Signed Dual Multiply Subtract Reversed.

If X is present, the multiplications are bottom × top and top × bottom.
If the X is omitted, the multiplications are bottom × bottom and top × top.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 136

Operation

The SMUAD instruction interprets the values from the first and second operands as two signed halfwords in each
operand. This instruction:

 Optionally rotates the halfwords of the second operand.
 Performs two signed 16 × 16-bit multiplications.
 Adds the two multiplication results together.
 Writes the result of the addition to the destination register.

The SMUSD instruction interprets the values from the first and second operands as two’s complement signed inte-
gers. This instruction:

 Optionally rotates the halfwords of the second operand.
 Performs two signed 16 × 16-bit multiplications.
 Subtracts the result of the top halfword multiplication from the result of the bottom halfword multiplication.
 Writes the result of the subtraction to the destination register.

Restrictions

In these instructions:

 Do not use SP and do not use PC.
Condition Flags

Sets the Q flag if the addition overflows. The multiplications cannot overflow.

Examples

SMUAD R0, R4, R5 ; Multiplies bottom halfword of R4 with the bottom
 ; halfword of R5, adds multiplication of top halfword
 ; of R4 with top halfword of R5, writes to R0
SMUADX R3, R7, R4 ; Multiplies bottom halfword of R7 with top halfword
 ; of R4, adds multiplication of top halfword of R7
 ; with bottom halfword of R4, writes to R3
SMUSD R3, R6, R2 ; Multiplies bottom halfword of R4 with bottom halfword
 ; of R6, subtracts multiplication of top halfword of R6
 ; with top halfword of R3, writes to R3
SMUSDX R4, R5, R3 ; Multiplies bottom halfword of R5 with top halfword of
 ; R3, subtracts multiplication of top halfword of R5
 ; with bottom halfword of R3, writes to R4.

12.6.6.10 SMUL and SMULW
Signed Multiply (halfwords) and Signed Multiply (word by halfword).

Syntax

op{XY}{cond} Rd, Rn, Rm
op{Y}{cond} Rd. Rn, Rm

For SMULXY only:

op is one of:

SMUL{XY} Signed Multiply (halfwords).

X and Y specify which halfword of the source registers Rn and Rm is used as the first and second mul-
tiply operand.
If X is B, then the bottom halfword, bits [15:0] of Rn is used.
If X is T, then the top halfword, bits [31:16] of Rn is used. If Y is B, then the bottom halfword, bits
[15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMULW{Y} Signed Multiply (word by halfword).

 137SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Y specifies which halfword of the source register Rm is used as the second multiply operand.
If Y is B, then the bottom halfword (bits [15:0]) of Rm is used.
If Y is T, then the top halfword (bits [31:16]) of Rm is used.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The SMULBB, SMULTB, SMULBT and SMULTT instructions interprets the values from Rn and Rm as four signed 16-
bit integers. These instructions:

 Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.
 Writes the 32-bit result of the multiplication in Rd.

The SMULWT and SMULWB instructions interprets the values from Rn as a 32-bit signed integer and Rm as two
halfword 16-bit signed integers. These instructions:

 Multiplies the first operand and the top, T suffix, or the bottom, B suffix, halfword of the second operand.
 Writes the signed most significant 32 bits of the 48-bit result in the destination register.

Restrictions

In these instructions:

 Do not use SP and do not use PC.
 RdHi and RdLo must be different registers.

Examples

SMULBT R0, R4, R5 ; Multiplies the bottom halfword of R4 with the
 ; top halfword of R5, multiplies results and
 ; writes to R0
SMULBB R0, R4, R5 ; Multiplies the bottom halfword of R4 with the
 ; bottom halfword of R5, multiplies results and
 ; writes to R0
SMULTT R0, R4, R5 ; Multiplies the top halfword of R4 with the top
 ; halfword of R5, multiplies results and writes
 ; to R0
SMULTB R0, R4, R5 ; Multiplies the top halfword of R4 with the
 ; bottom halfword of R5, multiplies results and
 ; and writes to R0
SMULWT R4, R5, R3 ; Multiplies R5 with the top halfword of R3,
 ; extracts top 32 bits and writes to R4
SMULWB R4, R5, R3 ; Multiplies R5 with the bottom halfword of R3,
 ; extracts top 32 bits and writes to R4.

12.6.6.11 UMULL, UMLAL, SMULL, and SMLAL
Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.

Syntax

op{cond} RdLo, RdHi, Rn, Rm
where:

op is one of:

UMULL Unsigned Long Multiply.
UMLAL Unsigned Long Multiply, with Accumulate.
SMULL Signed Long Multiply.
SMLAL Signed Long Multiply, with Accumulate.

cond is an optional condition code, see “Conditional Execution”.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 138

RdHi, RdLo are the destination registers. For UMLAL and SMLAL they also hold the accumulating value.
Rn, Rm are registers holding the operands.
Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers and
places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers, adds
the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo, and writes the result back to RdHi and
RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies these
integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in
RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies these
integers, adds the 64-bit result to the 64-bit signed integer contained in RdHi and RdLo, and writes the result back to
RdHi and RdLo.

Restrictions

In these instructions:

 Do not use SP and do not use PC.
 RdHi and RdLo must be different registers.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UMULL R0, R4, R5, R6 ; Unsigned (R4,R0) = R5 x R6
SMLAL R4, R5, R3, R8 ; Signed (R5,R4) = (R5,R4) + R3 x R8

12.6.6.12 SDIV and UDIV
Signed Divide and Unsigned Divide.

Syntax

SDIV{cond} {Rd,} Rn, Rm
UDIV{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the value to be divided.
Rm is a register holding the divisor.
Operation

SDIV performs a signed integer division of the value in Rn by the value in Rm.
UDIV performs an unsigned integer division of the value in Rn by the value in Rm.
For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded towards zero.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

 SDIV R0, R2, R4 ; Signed divide, R0 = R2/R4
 UDIV R8, R8, R1 ; Unsigned divide, R8 = R8/R1

 139SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.7 Saturating Instructions
The table below shows the saturating instructions:

For signed n-bit saturation, this means that:

 If the value to be saturated is less than -2n-1, the result returned is -2n-1.
 If the value to be saturated is greater than 2n-1-1, the result returned is 2n-1-1.
 Otherwise, the result returned is the same as the value to be saturated.

For unsigned n-bit saturation, this means that:

 If the value to be saturated is less than 0, the result returned is 0.
 If the value to be saturated is greater than 2n-1, the result returned is 2n-1.
 Otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the instruc-
tion sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. To clear the Q flag to 0, the MSR
instruction must be used; see “MSR”.

To read the state of the Q flag, the MRS instruction must be used; see “MRS”.

Table 12-22. Saturating Instructions

Mnemonic Description

SSAT Signed Saturate

SSAT16 Signed Saturate Halfword

USAT Unsigned Saturate

USAT16 Unsigned Saturate Halfword

QADD Saturating Add

QSUB Saturating Subtract

QSUB16 Saturating Subtract 16

QASX Saturating Add and Subtract with Exchange

QSAX Saturating Subtract and Add with Exchange

QDADD Saturating Double and Add

QDSUB Saturating Double and Subtract

UQADD16 Unsigned Saturating Add 16

UQADD8 Unsigned Saturating Add 8

UQASX Unsigned Saturating Add and Subtract with Exchange

UQSAX Unsigned Saturating Subtract and Add with Exchange

UQSUB16 Unsigned Saturating Subtract 16

UQSUB8 Unsigned Saturating Subtract 8

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 140

12.6.7.1 SSAT and USAT
Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

Syntax

op{cond} Rd, #n, Rm {, shift #s}
where:

op is one of:

SSAT Saturates a signed value to a signed range.

USAT Saturates a signed value to an unsigned range.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

n specifies the bit position to saturate to:

n ranges from 1 n ranges from 0 to 31 for USAT.

to 32 for SSAT

Rm is the register containing the value to saturate.

shift #s is an optional shift applied to Rm before saturating. It must be one of the following:

ASR #s where s is in the range 1 to 31.

LSL #s where s is in the range 0 to 31.

Operation

These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range -2n–1 ≤ x ≤ 2n–1-1.

The USAT instruction applies the specified shift, then saturates to the unsigned range 0 ≤ x ≤ 2n-1.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then
 ; saturate it as a signed 16-bit value and
 ; write it back to R7
USATNE R0, #7, R5 ; Conditionally saturate value in R5 as an
 ; unsigned 7 bit value and write it to R0.

 141SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.7.2 SSAT16 and USAT16
Signed Saturate and Unsigned Saturate to any bit position for two halfwords.

Syntax

op{cond} Rd, #n, Rm
where:

op is one of:

SSAT16 Saturates a signed halfword value to a signed range.

USAT16 Saturates a signed halfword value to an unsigned range.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

n specifies the bit position to saturate to:

n ranges from 1 n ranges from 0 to 15 for USAT.

to 16 for SSAT

Rm is the register containing the value to saturate.

Operation

The SSAT16 instruction:

Saturates two signed 16-bit halfword values of the register with the value to saturate from selected by the bit position
in n.

Writes the results as two signed 16-bit halfwords to the destination register.

The USAT16 instruction:

Saturates two unsigned 16-bit halfword values of the register with the value to saturate from selected by the bit posi-
tion in n.

Writes the results as two unsigned halfwords in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

SSAT16 R7, #9, R2 ; Saturates the top and bottom highwords of R2
 ; as 9-bit values, writes to corresponding halfword
 ; of R7
USAT16NE R0, #13, R5 ; Conditionally saturates the top and bottom
 ; halfwords of R5 as 13-bit values, writes to
 ; corresponding halfword of R0.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 142

12.6.7.3 QADD and QSUB
Saturating Add and Saturating Subtract, signed.

Syntax

op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:

op is one of:

QADD Saturating 32-bit add.

QADD8 Saturating four 8-bit integer additions.

QADD16 Saturating two 16-bit integer additions.

QSUB Saturating 32-bit subtraction.

QSUB8 Saturating four 8-bit integer subtraction.

QSUB16 Saturating two 16-bit integer subtraction.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

These instructions add or subtract two, four or eight values from the first and second operands and then writes a
signed saturated value in the destination register.

The QADD and QSUB instructions apply the specified add or subtract, and then saturate the result to the signed
range -2n–1  x  2n–1-1, where x is given by the number of bits applied in the instruction, 32, 16 or 8.

If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the QADD
and QSUB instructions set the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. The 8-bit and
16-bit QADD and QSUB instructions always leave the Q flag unchanged.

To clear the Q flag to 0, the MSR instruction must be used; see “MSR”.

To read the state of the Q flag, the MRS instruction must be used; see “MRS”.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

QADD16 R7, R4, R2 ; Adds halfwords of R4 with corresponding halfword of
 ; R2, saturates to 16 bits and writes to
 ; corresponding halfword of R7
QADD8 R3, R1, R6 ; Adds bytes of R1 to the corresponding bytes of R6,
 ; saturates to 8 bits and writes to corresponding
 ; byte of R3
QSUB16 R4, R2, R3 ; Subtracts halfwords of R3 from corresponding
 ; halfword of R2, saturates to 16 bits, writes to
 ; corresponding halfword of R4
QSUB8 R4, R2, R5 ; Subtracts bytes of R5 from the corresponding byte
 ; in R2, saturates to 8 bits, writes to corresponding
 ; byte of R4.

 143SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.7.4 QASX and QSAX
Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, signed.

Syntax

op{cond} {Rd}, Rm, Rn
where:

op is one of:

QASX Add and Subtract with Exchange and Saturate.

QSAX Subtract and Add with Exchange and Saturate.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The QASX instruction:

1. Adds the top halfword of the source operand with the bottom halfword of the second operand.
2. Subtracts the top halfword of the second operand from the bottom highword of the first operand.
3. Saturates the result of the subtraction and writes a 16-bit signed integer in the range –215  x  215 – 1, where x

equals 16, to the bottom halfword of the destination register.
4. Saturates the results of the sum and writes a 16-bit signed integer in the range –215  x  215 – 1, where x

equals 16, to the top halfword of the destination register.
The QSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Adds the bottom halfword of the source operand with the top halfword of the second operand.
3. Saturates the results of the sum and writes a 16-bit signed integer in the range –215  x  215 – 1, where x

equals 16, to the bottom halfword of the destination register.
4. Saturates the result of the subtraction and writes a 16-bit signed integer in the range –215  x  215 – 1, where x

equals 16, to the top halfword of the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

QASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2,
 ; saturates to 16 bits, writes to top halfword of R7
 ; Subtracts top highword of R2 from bottom halfword of
 ; R4, saturates to 16 bits and writes to bottom halfword
 ; of R7
QSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of
 ; R3, saturates to 16 bits, writes to top halfword of R0
 ; Adds bottom halfword of R3 to top halfword of R5,
 ; saturates to 16 bits, writes to bottom halfword of R0.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 144

12.6.7.5 QDADD and QDSUB
Saturating Double and Add and Saturating Double and Subtract, signed.

Syntax

op{cond} {Rd}, Rm, Rn
where:

op is one of:

QDADD Saturating Double and Add.

QDSUB Saturating Double and Subtract.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rm, Rn are registers holding the first and second operands.

Operation

The QDADD instruction:

 Doubles the second operand value.
 Adds the result of the doubling to the signed saturated value in the first operand.
 Writes the result to the destination register.

The QDSUB instruction:

 Doubles the second operand value.
 Subtracts the doubled value from the signed saturated value in the first operand.
 Writes the result to the destination register.

Both the doubling and the addition or subtraction have their results saturated to the 32-bit signed integer range
–231  x  231– 1. If saturation occurs in either operation, it sets the Q flag in the APSR.

Restrictions

Do not use SP and do not use PC.

Condition Flags

If saturation occurs, these instructions set the Q flag to 1.

Examples

QDADD R7, R4, R2 ; Doubles and saturates R4 to 32 bits, adds R2,
 ; saturates to 32 bits, writes to R7
QDSUB R0, R3, R5 ; Subtracts R3 doubled and saturated to 32 bits
 ; from R5, saturates to 32 bits, writes to R0.

 145SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.7.6 UQASX and UQSAX
Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, unsigned.

Syntax

op{cond} {Rd}, Rm, Rn
where:

type is one of:

UQASX Add and Subtract with Exchange and Saturate.

UQSAX Subtract and Add with Exchange and Saturate.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The UQASX instruction:

1. Adds the bottom halfword of the source operand with the top halfword of the second operand.
2. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
3. Saturates the results of the sum and writes a 16-bit unsigned integer in the range 0  x  216 – 1, where x

equals 16, to the top halfword of the destination register.
4. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0  x  216 – 1, where x

equals 16, to the bottom halfword of the destination register.
The UQSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Adds the bottom halfword of the first operand with the top halfword of the second operand.
3. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0  x  216 – 1, where x

equals 16, to the top halfword of the destination register.
4. Saturates the results of the addition and writes a 16-bit unsigned integer in the range 0  x  216 – 1, where x

equals 16, to the bottom halfword of the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UQASX R7, R4, R2 ; Adds top halfword of R4 with bottom halfword of R2,
 ; saturates to 16 bits, writes to top halfword of R7
 ; Subtracts top halfword of R2 from bottom halfword of
 ; R4, saturates to 16 bits, writes to bottom halfword of R7
UQSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of R3,
 ; saturates to 16 bits, writes to top halfword of R0
 ; Adds bottom halfword of R4 to top halfword of R5
 ; saturates to 16 bits, writes to bottom halfword of R0.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 146

12.6.7.7 UQADD and UQSUB
Saturating Add and Saturating Subtract Unsigned.

Syntax

op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:

op is one of:

UQADD8 Saturating four unsigned 8-bit integer additions.
UQADD16 Saturating two unsigned 16-bit integer additions.
UDSUB8 Saturating four unsigned 8-bit integer subtractions.
UQSUB16 Saturating two unsigned 16-bit integer subtractions.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

These instructions add or subtract two or four values and then writes an unsigned saturated value in the destination
register.

The UQADD16 instruction:

 Adds the respective top and bottom halfwords of the first and second operands.
 Saturates the result of the additions for each halfword in the destination register to the unsigned range

0 x  216-1, where x is 16.
The UQADD8 instruction:

 Adds each respective byte of the first and second operands.
 Saturates the result of the addition for each byte in the destination register to the unsigned range 0  x  28-1,

where x is 8.
The UQSUB16 instruction:

 Subtracts both halfwords of the second operand from the respective halfwords of the first operand.
 Saturates the result of the differences in the destination register to the unsigned range 0  x  216-1, where x is

16.
The UQSUB8 instructions:

 Subtracts the respective bytes of the second operand from the respective bytes of the first operand.
 Saturates the results of the differences for each byte in the destination register to the unsigned range

0  x  28-1, where x is 8.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UQADD16 R7,R4,R2 ; Adds halfwords in R4 to corresponding halfword in R2,
 ; saturates to 16 bits, writes to corresponding halfword of R7
UQADD8 R4,R2,R5 ; Adds bytes of R2 to corresponding byte of R5, saturates
 ; to 8 bits, writes to corresponding bytes of R4
UQSUB16 R6,R3,R0 ; Subtracts halfwords in R0 from corresponding halfword
 ; in R3, saturates to 16 bits, writes to corresponding
 ; halfword in R6
UQSUB8 R1,R5,R6 ; Subtracts bytes in R6 from corresponding byte of R5,
 ; saturates to 8 bits, writes to corresponding byte of R1.

 147SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.8 Packing and Unpacking Instructions

The table below shows the instructions that operate on packing and unpacking data.

Table 12-23. Packing and Unpacking Instructions

Mnemonic Description

PKH Pack Halfword

SXTAB Extend 8 bits to 32 and add

SXTAB16 Dual extend 8 bits to 16 and add

SXTAH Extend 16 bits to 32 and add

SXTB Sign extend a byte

SXTB16 Dual extend 8 bits to 16 and add

SXTH Sign extend a halfword

UXTAB Extend 8 bits to 32 and add

UXTAB16 Dual extend 8 bits to 16 and add

UXTAH Extend 16 bits to 32 and add

UXTB Zero extend a byte

UXTB16 Dual zero extend 8 bits to 16 and add

UXTH Zero extend a halfword

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 148

12.6.8.1 PKHBT and PKHTB
Pack Halfword

Syntax

op{cond} {Rd}, Rn, Rm {, LSL #imm}
op{cond} {Rd}, Rn, Rm {, ASR #imm}

where:

op is one of:

PKHBT Pack Halfword, bottom and top with shift.

PKHTB Pack Halfword, top and bottom with shift.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the first operand register.

Rm is the second operand register holding the value to be optionally shifted.

imm is the shift length. The type of shift length depends on the instruction:
For PKHBT
LSL a left shift with a shift length from 1 to 31, 0 means no shift.
For PKHTB
ASR an arithmetic shift right with a shift length from 1 to 32, a shift of 32-bits is encoded as 0b00000.

Operation

The PKHBT instruction:

1. Writes the value of the bottom halfword of the first operand to the bottom halfword of the destination register.
2. If shifted, the shifted value of the second operand is written to the top halfword of the destination register.

The PKHTB instruction:

1. Writes the value of the top halfword of the first operand to the top halfword of the destination register.
2. If shifted, the shifted value of the second operand is written to the bottom halfword of the destination register.

Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples

PKHBT R3, R4, R5 LSL #0 ; Writes bottom halfword of R4 to bottom halfword of
 ; R3, writes top halfword of R5, unshifted, to top

 ; halfword of R3
PKHTB R4, R0, R2 ASR #1 ; Writes R2 shifted right by 1 bit to bottom halfword
 ; of R4, and writes top halfword of R0 to top
 ; halfword of R4.

 149SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.8.2 SXT and UXT
Sign extend and Zero extend.

Syntax

op{cond} {Rd,} Rm {, ROR #n}
op{cond} {Rd}, Rm {, ROR #n}

where:

op is one of:

SXTB Sign extends an 8-bit value to a 32-bit value.

SXTH Sign extends a 16-bit value to a 32-bit value.

SXTB16 Sign extends two 8-bit values to two 16-bit values.

UXTB Zero extends an 8-bit value to a 32-bit value.

UXTH Zero extends a 16-bit value to a 32-bit value.

UXTB16 Zero extends two 8-bit values to two 16-bit values.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rm is the register holding the value to extend.

ROR #n is one of:

ROR #8 Value from Rm is rotated right 8 bits.

Operation

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:

 SXTB extracts bits[7:0] and sign extends to 32 bits.
 UXTB extracts bits[7:0] and zero extends to 32 bits.
 SXTH extracts bits[15:0] and sign extends to 32 bits.
 UXTH extracts bits[15:0] and zero extends to 32 bits.
 SXTB16 extracts bits[7:0] and sign extends to 16 bits, and extracts bits [23:16] and sign extends to 16

bits.
 UXTB16 extracts bits[7:0] and zero extends to 16 bits, and extracts bits [23:16] and zero extends to 16

bits.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples

SXTH R4, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom halfword of
 ; of result, sign extends to 32 bits and writes to R4
UXTB R3, R10 ; Extracts lowest byte of value in R10, zero extends, and
 ; writes to R3.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 150

12.6.8.3 SXTA and UXTA
Signed and Unsigned Extend and Add

Syntax

op{cond} {Rd,} Rn, Rm {, ROR #n}
op{cond} {Rd,} Rn, Rm {, ROR #n}

where:

op is one of:

SXTAB Sign extends an 8-bit value to a 32-bit value and add.

SXTAH Sign extends a 16-bit value to a 32-bit value and add.

SXTAB16 Sign extends two 8-bit values to two 16-bit values and add.

UXTAB Zero extends an 8-bit value to a 32-bit value and add.

UXTAH Zero extends a 16-bit value to a 32-bit value and add.

UXTAB16 Zero extends two 8-bit values to two 16-bit values and add.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the first operand register.

Rm is the register holding the value to rotate and extend.

ROR #n is one of:

ROR #8 Value from Rm is rotated right 8 bits.

ROR #16 Value from Rm is rotated right 16 bits.

ROR #24 Value from Rm is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

Operation

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:

 SXTAB extracts bits[7:0] from Rm and sign extends to 32 bits.
 UXTAB extracts bits[7:0] from Rm and zero extends to 32 bits.
 SXTAH extracts bits[15:0] from Rm and sign extends to 32 bits.
 UXTAH extracts bits[15:0] from Rm and zero extends to 32 bits.
 SXTAB16 extracts bits[7:0] from Rm and sign extends to 16 bits, and extracts bits [23:16] from Rm and

sign extends to 16 bits.
 UXTAB16 extracts bits[7:0] from Rm and zero extends to 16 bits, and extracts bits [23:16] from Rm and

zero extends to 16 bits.
3. Adds the signed or zero extended value to the word or corresponding halfword of Rn and writes the result in Rd.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples

SXTAH R4, R8, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom
 ; halfword, sign extends to 32 bits, adds
 ; R8,and writes to R4
UXTAB R3, R4, R10 ; Extracts bottom byte of R10 and zero extends
 ; to 32 bits, adds R4, and writes to R3.

 151SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.9 Bitfield Instructions
The table below shows the instructions that operate on adjacent sets of bits in registers or bitfields.

12.6.9.1 BFC and BFI
Bit Field Clear and Bit Field Insert.

Syntax

BFC{cond} Rd, #lsb, #width
BFI{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the source register.

lsb is the position of the least significant bit of the bitfield. lsb must be in the range 0 to 31.

width is the width of the bitfield and must be in the range 1 to 32-lsb.

Operation

BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position lsb. Other bits in Rd are
unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at the low bit position
lsb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples

BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to 0
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of R9 with
 ; bit 0 to bit 11 from R2.

Table 12-24. Packing and Unpacking Instructions

Mnemonic Description

BFC Bit Field Clear

BFI Bit Field Insert

SBFX Signed Bit Field Extract

SXTB Sign extend a byte

SXTH Sign extend a halfword

UBFX Unsigned Bit Field Extract

UXTB Zero extend a byte

UXTH Zero extend a halfword

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 152

12.6.9.2 SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

Syntax

SBFX{cond} Rd, Rn, #lsb, #width
UBFX{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the source register.

lsb is the position of the least significant bit of the bitfield. lsb must be in the range 0 to 31.

width is the width of the bitfield and must be in the range 1 to 32-lsb.

Operation

SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the destination register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples

SBFX R0, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) from R1 and sign
 ; extend to 32 bits and then write the result to R0.
UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from R11 and zero
 ; extend to 32 bits and then write the result to R8.

12.6.9.3 SXT and UXT
Sign extend and Zero extend.

Syntax

SXTextend{cond} {Rd,} Rm {, ROR #n}
UXTextend{cond} {Rd}, Rm {, ROR #n}

where:

extend is one of:

B Extends an 8-bit value to a 32-bit value.

H Extends a 16-bit value to a 32-bit value.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rm is the register holding the value to extend.

ROR #n is one of:

ROR #8 Value from Rm is rotated right 8 bits.

ROR #16 Value from Rm is rotated right 16 bits.

ROR #24 Value from Rm is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

 153SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Operation

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:

 SXTB extracts bits[7:0] and sign extends to 32 bits.
 UXTB extracts bits[7:0] and zero extends to 32 bits.
 SXTH extracts bits[15:0] and sign extends to 32 bits.
 UXTH extracts bits[15:0] and zero extends to 32 bits.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples

SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the lower
 ; halfword of the result and then sign extend to
 ; 32 bits and write the result to R4.
UXTB R3, R10 ; Extract lowest byte of the value in R10 and zero
 ; extend it, and write the result to R3.

12.6.10 Branch and Control Instructions
The table below shows the branch and control instructions.

Table 12-25. Branch and Control Instructions

Mnemonic Description

B Branch

BL Branch with Link

BLX Branch indirect with Link

BX Branch indirect

CBNZ Compare and Branch if Non Zero

CBZ Compare and Branch if Zero

IT If-Then

TBB Table Branch Byte

TBH Table Branch Halfword

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 154

12.6.10.1 B, BL, BX, and BLX
Branch instructions.

Syntax

B{cond} label
BL{cond} label
BX{cond} Rm
BLX{cond} Rm

where:

B is branch (immediate).

BL is branch with link (immediate).

BX is branch indirect (register).

BLX is branch indirect with link (register).

cond is an optional condition code, see “Conditional Execution”.

label is a PC-relative expression. See “PC-relative Expressions”.

Rm is a register that indicates an address to branch to. Bit[0] of the value in Rm must be 1, but the address
to branch to is created by changing bit[0] to 0.

Operation

All these instructions cause a branch to label, or to the address indicated in Rm. In addition:

 The BL and BLX instructions write the address of the next instruction to LR (the link register, R14).
 The BX and BLX instructions result in a UsageFault exception if bit[0] of Rm is 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block. All other branch instruc-
tions must be conditional inside an IT block, and must be unconditional outside the IT block, see “IT”.

The table below shows the ranges for the various branch instructions.

 The .W suffix might be used to get the maximum branch range. See “Instruction Width Selection”.

Restrictions

The restrictions are:

 Do not use PC in the BLX instruction.
 For BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target address created

by changing bit[0] to 0.
 When any of these instructions is inside an IT block, it must be the last instruction of the IT block.

 Bcond is the only conditional instruction that is not required to be inside an IT block. However, it has a longer branch
range when it is inside an IT block.

Condition Flags

These instructions do not change the flags.

Table 12-26. Branch Ranges

Instruction Branch Range

B label -16 MB to +16 MB

Bcond label (outside IT block) -1 MB to +1 MB

Bcond label (inside IT block) -16 MB to +16 MB

BL{cond} label -16 MB to +16 MB

BX{cond} Rm Any value in register

BLX{cond} Rm Any value in register

 155SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Examples

B loopA ; Branch to loopA
BLE ng ; Conditionally branch to label ng
B.W target ; Branch to target within 16MB range
BEQ target ; Conditionally branch to target
BEQ.W target ; Conditionally branch to target within 1MB
BL funC ; Branch with link (Call) to function funC, return address
 ; stored in LR
BX LR ; Return from function call
BXNE R0 ; Conditionally branch to address stored in R0
BLX R0 ; Branch with link and exchange (Call) to a address stored in R0

12.6.10.2 CBZ and CBNZ
Compare and Branch on Zero, Compare and Branch on Non-Zero.

Syntax

CBZ Rn, label
CBNZ Rn, label

where:

Rn is the register holding the operand.

label is the branch destination.

Operation

Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the number of
instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:

 CMP Rn, #0
 BEQ label

CBNZ Rn, label does not change condition flags but is otherwise equivalent to:

 CMP Rn, #0
 BNE label

Restrictions

The restrictions are:

 Rn must be in the range of R0 to R7.
 The branch destination must be within 4 to 130 bytes after the instruction.
 These instructions must not be used inside an IT block.

Condition Flags

These instructions do not change the flags.

Examples

CBZ R5, target ; Forward branch if R5 is zero
CBNZ R0, target ; Forward branch if R0 is not zero

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 156

12.6.10.3 IT
If-Then condition instruction.

Syntax

IT{x{y{z}}} cond
where:

x specifies the condition switch for the second instruction in the IT block.

y specifies the condition switch for the third instruction in the IT block.

z specifies the condition switch for the fourth instruction in the IT block.

cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:

T Then. Applies the condition cond to the instruction.

E Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of the instructions in the IT
block must be unconditional, and each of x, y, and z must be T or omitted but not E.

Operation

The IT instruction makes up to four following instructions conditional. The conditions can be all the same, or some of
them can be the logical inverse of the others. The conditional instructions following the IT instruction form the IT block.

The instructions in the IT block, including any branches, must specify the condition in the {cond} part of their syntax.

The assembler might be able to generate the required IT instructions for conditional instructions automatically, so that
the user does not have to write them. See the assembler documentation for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an IT block. Such an
exception results in entry to the appropriate exception handler, with suitable return information in LR and stacked
PSR.

Instructions designed for use for exception returns can be used as normal to return from the exception, and execution
of the IT block resumes correctly. This is the only way that a PC-modifying instruction is permitted to branch to an
instruction in an IT block.

Restrictions

The following instructions are not permitted in an IT block:

 IT.
 CBZ and CBNZ.
 CPSID and CPSIE.

Other restrictions when using an IT block are:

 A branch or any instruction that modifies the PC must either be outside an IT block or must be the last
instruction inside the IT block. These are:
 ADD PC, PC, Rm.
 MOV PC, Rm.
 B, BL, BX, BLX.
 Any LDM, LDR, or POP instruction that writes to the PC.
 TBB and TBH.

 Do not branch to any instruction inside an IT block, except when returning from an exception handler.
 All conditional instructions except Bcond must be inside an IT block. Bcond can be either outside or inside an IT

block but has a larger branch range if it is inside one.
 Each instruction inside the IT block must specify a condition code suffix that is either the same or logical inverse

as for the other instructions in the block.

 157SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the use of assembler direc-
tives within them.

Condition Flags

This instruction does not change the flags.

Example

ITTE NE ; Next 3 instructions are conditional
ANDNE R0, R0, R1 ; ANDNE does not update condition flags
ADDSNE R2, R2, #1 ; ADDSNE updates condition flags
MOVEQ R2, R3 ; Conditional move

CMP R0, #9 ; Convert R0 hex value (0 to 15) into ASCII
 ; ('0'-'9', 'A'-'F')
ITE GT ; Next 2 instructions are conditional
ADDGT R1, R0, #55 ; Convert 0xA -> 'A'
ADDLE R1, R0, #48 ; Convert 0x0 -> '0'

IT GT ; IT block with only one conditional instruction
ADDGT R1, R1, #1 ; Increment R1 conditionally

ITTEE EQ ; Next 4 instructions are conditional
MOVEQ R0, R1 ; Conditional move
ADDEQ R2, R2, #10 ; Conditional add
ANDNE R3, R3, #1 ; Conditional AND
BNE.W dloop ; Branch instruction can only be used in the last
 ; instruction of an IT block

IT NE ; Next instruction is conditional
ADD R0, R0, R1 ; Syntax error: no condition code used in IT block

12.6.10.4 TBB and TBH
Table Branch Byte and Table Branch Halfword.

Syntax

TBB [Rn, Rm]
TBH [Rn, Rm, LSL #1]

where:

Rn is the register containing the address of the table of branch lengths.

If Rn is PC, then the address of the table is the address of the byte immediately following the TBB or
TBH instruction.

Rm is the index register. This contains an index into the table. For halfword tables, LSL #1 doubles the
value in Rm to form the right offset into the table.

Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets for TBB, or halfword offsets
for TBH. Rn provides a pointer to the table, and Rm supplies an index into the table. For TBB the branch offset is twice
the unsigned value of the byte returned from the table. and for TBH the branch offset is twice the unsigned value of
the halfword returned from the table. The branch occurs to the address at that offset from the address of the byte
immediately after the TBB or TBH instruction.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 158

Restrictions

The restrictions are:

 Rn must not be SP.
 Rm must not be SP and must not be PC.
 When any of these instructions is used inside an IT block, it must be the last instruction of the IT block.

Condition Flags

These instructions do not change the flags.

Examples

 ADR.W R0, BranchTable_Byte
 TBB [R0, R1] ; R1 is the index, R0 is the base address of the
 ; branch table
Case1
; an instruction sequence follows
Case2
; an instruction sequence follows
Case3
; an instruction sequence follows
BranchTable_Byte
 DCB 0 ; Case1 offset calculation
 DCB ((Case2-Case1)/2) ; Case2 offset calculation
 DCB ((Case3-Case1)/2) ; Case3 offset calculation

 TBH [PC, R1, LSL #1] ; R1 is the index, PC is used as base of the
 ; branch table
BranchTable_H
 DCI ((CaseA - BranchTable_H)/2) ; CaseA offset calculation
 DCI ((CaseB - BranchTable_H)/2) ; CaseB offset calculation
 DCI ((CaseC - BranchTable_H)/2) ; CaseC offset calculation

CaseA
; an instruction sequence follows
CaseB
; an instruction sequence follows
CaseC
; an instruction sequence follows

 159SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.11 Floating-point Instructions

The table below shows the floating-point instructions.

These instructions are only available if the FPU is included, and enabled, in the system. See “Enabling the FPU” for
information about enabling the floating-point unit.

Table 12-27. Floating-point Instructions
Mnemonic Description
VABS Floating-point Absolute
VADD Floating-point Add
VCMP Compare two floating-point registers, or one floating-point register and zero
VCMPE Compare two floating-point registers, or one floating-point register and zero with Invalid Operation check
VCVT Convert between floating-point and integer
VCVT Convert between floating-point and fixed point
VCVTR Convert between floating-point and integer with rounding
VCVTB Converts half-precision value to single-precision
VCVTT Converts single-precision register to half-precision
VDIV Floating-point Divide
VFMA Floating-point Fused Multiply Accumulate
VFNMA Floating-point Fused Negate Multiply Accumulate
VFMS Floating-point Fused Multiply Subtract
VFNMS Floating-point Fused Negate Multiply Subtract
VLDM Load Multiple extension registers
VLDR Loads an extension register from memory
VLMA Floating-point Multiply Accumulate
VLMS Floating-point Multiply Subtract
VMOV Floating-point Move Immediate
VMOV Floating-point Move Register
VMOV Copy ARM core register to single precision
VMOV Copy 2 ARM core registers to 2 single precision
VMOV Copies between ARM core register to scalar
VMOV Copies between Scalar to ARM core register
VMRS Move to ARM core register from floating-point System Register
VMSR Move to floating-point System Register from ARM Core register
VMUL Multiply floating-point
VNEG Floating-point negate
VNMLA Floating-point multiply and add
VNMLS Floating-point multiply and subtract
VNMUL Floating-point multiply
VPOP Pop extension registers
VPUSH Push extension registers
VSQRT Floating-point square root
VSTM Store Multiple extension registers
VSTR Stores an extension register to memory
VSUB Floating-point Subtract

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 160

12.6.11.1 VABS
Floating-point Absolute.

Syntax

VABS{cond}.F32 Sd, Sm
where:

cond is an optional condition code, see “Conditional Execution”.

Sd, Sm are the destination floating-point value and the operand floating-point value.

Operation

This instruction:

1. Takes the absolute value of the operand floating-point register.

2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition Flags

The floating-point instruction clears the sign bit.

Examples

VABS.F32 S4, S6

12.6.11.2 VADD
Floating-point Add

Syntax

VADD{cond}.F32 {Sd,} Sn, Sm
where:

cond is an optional condition code, see “Conditional Execution”.

Sd is the destination floating-point value.

Sn, Sm are the operand floating-point values.

Operation

This instruction:

1. Adds the values in the two floating-point operand registers.

2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition Flags

This instruction does not change the flags.

Examples

VADD.F32 S4, S6, S7

12.6.11.3 VCMP, VCMPE
Compares two floating-point registers, or one floating-point register and zero.

Syntax

VCMP{E}{cond}.F32 Sd, Sm
VCMP{E}{cond}.F32 Sd, #0.0

where:

cond is an optional condition code, see “Conditional Execution”.

 161SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

E If present, any NaN operand causes an Invalid Operation exception.
Otherwise, only a signaling NaN causes the exception.

Sd is the floating-point operand to compare.

Sm is the floating-point operand that is compared with.

Operation

This instruction:

1. Compares:

 Two floating-point registers.
 One floating-point register and zero.

2. Writes the result to the FPSCR flags.

Restrictions

This instruction can optionally raise an Invalid Operation exception if either operand is any type of NaN. It always raises
an Invalid Operation exception if either operand is a signaling NaN.

Condition Flags

When this instruction writes the result to the FPSCR flags, the values are normally transferred to the ARM flags by a
subsequent VMRS instruction. See “VMRS”.

Examples

VCMP.F32 S4, #0.0
VCMP.F32 S4, S2

12.6.11.4 VCVT, VCVTR between Floating-point and Integer
Converts a value in a register from floating-point to a 32-bit integer.

Syntax

VCVT{R}{cond}.Tm.F32 Sd, Sm
VCVT{cond}.F32.Tm Sd, Sm

where:

R If R is specified, the operation uses the rounding mode specified by the FPSCR. If R is
omitted, the operation uses the Round towards Zero rounding mode.

cond is an optional condition code, see “Conditional Execution”.

Tm is the data type for the operand. It must be one of:

S32 signed 32- U32 unsigned 32-bit value.

Sd, Sm are the destination register and the operand register.

Operation

These instructions:

1. Either

 Convert a value in a register from floating-point value to a 32-bit integer.
 Convert from a 32-bit integer to floating-point value.

2. Place the result in a second register.

The floating-point to integer operation normally uses the Round towards Zero rounding mode, but can optionally use
the rounding mode specified by the FPSCR.

The integer to floating-point operation uses the rounding mode specified by the FPSCR.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 162

12.6.11.5 VCVT between Floating-point and Fixed-point
Converts a value in a register from floating-point to and from fixed-point.

Syntax

VCVT{cond}.Td.F32 Sd, Sd, #fbits
VCVT{cond}.F32.Td Sd, Sd, #fbits

where:

cond is an optional condition code, see “Conditional Execution”.

Td is the data type for the fixed-point number. It must be one of:

S16 signed 16-bit value.
U16 unsigned 16-bit value.

S32 signed 32-bit value.
U32 unsigned 32-bit value.

Sd is the destination register and the operand register.

fbits is the number of fraction bits in the fixed-point number:

If Td is S16 or U16, fbits must be in the range 0 - 16.
If Td is S32 or U32, fbits must be in the range 1 - 32.

Operation

These instructions:

1. Either

 Converts a value in a register from floating-point to fixed-point.
 Converts a value in a register from fixed-point to floating-point.

2. Places the result in a second register.

The floating-point values are single-precision.

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their operand from the low-
order bits of the source register and ignore any remaining bits.

Signed conversions to fixed-point values sign-extend the result value to the destination register width.

Unsigned conversions to fixed-point values zero-extend the result value to the destination register width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to floating-
point operation uses the Round to Nearest rounding mode.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

12.6.11.6 VCVTB, VCVTT
Converts between a half-precision value and a single-precision value.

Syntax

VCVT{y}{cond}.F32.F16 Sd, Sm
VCVT{y}{cond}.F16.F32 Sd, Sm

where:

y Specifies which half of the operand register Sm or destination register Sd is used for the operand or
destination:

- If y is B, then the bottom half, bits [15:0], of Sm or Sd is used.
- If y is T, then the top half, bits [31:16], of Sm or Sd is used.

cond is an optional condition code, see “Conditional Execution”.

 163SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Sd is the destination register.

Sm is the operand register.

Operation

This instruction with the .F16.32 suffix:

1. Converts the half-precision value in the top or bottom half of a single-precision. register to single-precision.

2. Writes the result to a single-precision register.

This instruction with the .F32.F16 suffix:

1. Converts the value in a single-precision register to half-precision.

2. Writes the result into the top or bottom half of a single-precision register, preserving the other half of the target
register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

12.6.11.7 VDIV
Divides floating-point values.

Syntax

VDIV{cond}.F32 {Sd,} Sn, Sm
where:

cond is an optional condition code, see “Conditional Execution”.

Sd is the destination register.

Sn, Sm are the operand registers.

Operation

This instruction:

1. Divides one floating-point value by another floating-point value.

2. Writes the result to the floating-point destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

12.6.11.8 VFMA, VFMS
Floating-point Fused Multiply Accumulate and Subtract.

Syntax

VFMA{cond}.F32 {Sd,} Sn, Sm
VFMS{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution”.

Sd is the destination register.

Sn, Sm are the operand registers.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 164

Operation

The VFMA instruction:

1. Multiplies the floating-point values in the operand registers.

2. Accumulates the results into the destination register.

The result of the multiply is not rounded before the accumulation.

The VFMS instruction:

1. Negates the first operand register.

2. Multiplies the floating-point values of the first and second operand registers.

3. Adds the products to the destination register.

4. Places the results in the destination register.

The result of the multiply is not rounded before the addition.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

12.6.11.9 VFNMA, VFNMS
Floating-point Fused Negate Multiply Accumulate and Subtract.

Syntax

VFNMA{cond}.F32 {Sd,} Sn, Sm
VFNMS{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution”.

Sd is the destination register.

Sn, Sm are the operand registers.

Operation

The VFNMA instruction:

1. Negates the first floating-point operand register.

2. Multiplies the first floating-point operand with second floating-point operand.

3. Adds the negation of the floating-point destination register to the product.

4. Places the result into the destination register.

The result of the multiply is not rounded before the addition.

The VFNMS instruction:

1. Multiplies the first floating-point operand with second floating-point operand.

2. Adds the negation of the floating-point value in the destination register to the product.

3. Places the result in the destination register.

The result of the multiply is not rounded before the addition.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

 165SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.11.10 VLDM
Floating-point Load Multiple

Syntax

VLDM{mode}{cond}{.size} Rn{!}, list
where:

mode is the addressing mode:
- IA Increment After. The consecutive addresses start at the address specified in Rn.
- DB Decrement Before. The consecutive addresses end just before the address specified in Rn.

cond is an optional condition code, see “Conditional Execution”.

size is an optional data size specifier.

Rn is the base register. The SP can be used.

! is the command to the instruction to write a modified value back to Rn. This is required if mode == DB,
and is optional if mode == IA.

list is the list of extension registers to be loaded, as a list of consecutively numbered doubleword or single-
word registers, separated by commas and surrounded by brackets.

Operation

This instruction loads:

 Multiple extension registers from consecutive memory locations using an address from an ARM core
register as the base address.

Restrictions

The restrictions are:

 If size is present, it must be equal to the size in bits, 32 or 64, of the registers in list.
 For the base address, the SP can be used.

In the ARM instruction set, if ! is not specified the PC can be used.
 List must contain at least one register. If it contains doubleword registers, it must not contain more than

16 registers.
 If using the Decrement Before addressing mode, the write back flag, !, must be appended to the base

register specification.
Condition Flags

These instructions do not change the flags.

12.6.11.11 VLDR
Loads a single extension register from memory

Syntax

VLDR{cond}{.64} Dd, [Rn{#imm}]
VLDR{cond}{.64} Dd, label
VLDR{cond}{.64} Dd, [PC, #imm}]
VLDR{cond}{.32} Sd, [Rn {, #imm}]
VLDR{cond}{.32} Sd, label
VLDR{cond}{.32} Sd, [PC, #imm]

where:

cond is an optional condition code, see “Conditional Execution”.

64, 32 are the optional data size specifiers.

Dd is the destination register for a doubleword load.

Sd is the destination register for a singleword load.

Rn is the base register. The SP can be used.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 166

imm is the + or - immediate offset used to form the address. Permitted address values are multiples of 4 in
the range 0 to 1020.

label is the label of the literal data item to be loaded.

Operation

This instruction:

 Loads a single extension register from memory, using a base address from an ARM core register, with an
optional offset.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

12.6.11.12 VLMA, VLMS
Multiplies two floating-point values, and accumulates or subtracts the results.

Syntax

VLMA{cond}.F32 Sd, Sn, Sm
VLMS{cond}.F32 Sd, Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution”.

Sd is the destination floating-point value.

Sn, Sm are the operand floating-point values.

Operation

The floating-point Multiply Accumulate instruction:

1. Multiplies two floating-point values.

2. Adds the results to the destination floating-point value.

The floating-point Multiply Subtract instruction:

1. Multiplies two floating-point values.

2. Subtracts the products from the destination floating-point value.

3. Places the results in the destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

12.6.11.13 VMOV Immediate
Move floating-point Immediate

Syntax

VMOV{cond}.F32 Sd, #imm
where:

cond is an optional condition code, see “Conditional Execution”.

Sd is the branch destination.

imm is a floating-point constant.

 167SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Operation

This instruction copies a constant value to a floating-point register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

12.6.11.14 VMOV Register
Copies the contents of one register to another.

Syntax

VMOV{cond}.F64 Dd, Dm
VMOV{cond}.F32 Sd, Sm

where:

cond is an optional condition code, see “Conditional Execution”.

Dd is the destination register, for a doubleword operation.

Dm is the source register, for a doubleword operation.

Sd is the destination register, for a singleword operation.

Sm is the source register, for a singleword operation.

Operation

This instruction copies the contents of one floating-point register to another.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

12.6.11.15 VMOV Scalar to ARM Core Register
Transfers one word of a doubleword floating-point register to an ARM core register.

Syntax

VMOV{cond} Rt, Dn[x]
where:

cond is an optional condition code, see “Conditional Execution”.

Rt is the destination ARM core register.

Dn is the 64-bit doubleword register.

x Specifies which half of the doubleword register to use:
- If x is 0, use lower half of doubleword register.
- If x is 1, use upper half of doubleword register.

Operation

This instruction transfers:

 One word from the upper or lower half of a doubleword floating-point register to an ARM core register.
Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 168

12.6.11.16 VMOV ARM Core Register to Single Precision
Transfers a single-precision register to and from an ARM core register.

Syntax

VMOV{cond} Sn, Rt
VMOV{cond} Rt, Sn

where:

cond is an optional condition code, see “Conditional Execution”.

Sn is the single-precision floating-point register.

Rt is the ARM core register.

Operation

This instruction transfers:

 The contents of a single-precision register to an ARM core register.
 The contents of an ARM core register to a single-precision register.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.

12.6.11.17 VMOV Two ARM Core Registers to Two Single Precision
Transfers two consecutively numbered single-precision registers to and from two ARM core registers.

Syntax

VMOV{cond} Sm, Sm1, Rt, Rt2
VMOV{cond} Rt, Rt2, Sm, Sm

where:

cond is an optional condition code, see “Conditional Execution”.

Sm is the first single-precision register.

Sm1 is the second single-precision register.
This is the next single-precision register after Sm.

Rt is the ARM core register that Sm is transferred to or from.

Rt2 is the The ARM core register that Sm1 is transferred to or from.

Operation

This instruction transfers:

 The contents of two consecutively numbered single-precision registers to two ARM core registers.
 The contents of two ARM core registers to a pair of single-precision registers.

Restrictions

The restrictions are:

 The floating-point registers must be contiguous, one after the other.
 The ARM core registers do not have to be contiguous.
 Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.

 169SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.11.18 VMOV ARM Core Register to Scalar
Transfers one word to a floating-point register from an ARM core register.

Syntax

VMOV{cond}{.32} Dd[x], Rt
where:

cond is an optional condition code, see “Conditional Execution”.

32 is an optional data size specifier.

Dd[x] is the destination, where [x] defines which half of the doubleword is transferred, as follows:
If x is 0, the lower half is extracted.
If x is 1, the upper half is extracted.

Rt is the source ARM core register.

Operation

This instruction transfers one word to the upper or lower half of a doubleword floating-point register from an ARM core
register.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.

12.6.11.19 VMRS
Move to ARM Core register from floating-point System Register.

Syntax

VMRS{cond} Rt, FPSCR
VMRS{cond} APSR_nzcv, FPSCR

where:

cond is an optional condition code, see “Conditional Execution”.

Rt is the destination ARM core register. This register can be R0 - R14.

APSR_nzcv transfers floating-point flags to the APSR flags.

Operation

This instruction performs one of the following actions:

 Copies the value of the FPSCR to a general-purpose register.
 Copies the value of the FPSCR flag bits to the APSR N, Z, C, and V flags.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions optionally change the flags: N, Z, C, V.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 170

12.6.11.20 VMSR
Move to floating-point System Register from ARM Core register.

Syntax

VMSR{cond} FPSCR, Rt
where:

cond is an optional condition code, see “Conditional Execution”.

Rt is the general-purpose register to be transferred to the FPSCR.

Operation

This instruction moves the value of a general-purpose register to the FPSCR. See “Floating-point Status Control
Register” for more information.

Restrictions

The restrictions are:

 Rt cannot be PC or SP.
Condition Flags

This instruction updates the FPSCR.

12.6.11.21 VMUL
Floating-point Multiply.

Syntax

VMUL{cond}.F32 {Sd,} Sn, Sm
where:

cond is an optional condition code, see “Conditional Execution”.

Sd is the destination floating-point value.

Sn, Sm are the operand floating-point values.

Operation

This instruction:

1. Multiplies two floating-point values.

2. Places the results in the destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

12.6.11.22 VNEG
Floating-point Negate.

Syntax

VNEG{cond}.F32 Sd, Sm
where:

cond is an optional condition code, see “Conditional Execution”.

Sd is the destination floating-point value.

Sm is the operand floating-point value.

 171SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Operation

This instruction:

1. Negates a floating-point value.

2. Places the results in a second floating-point register.

The floating-point instruction inverts the sign bit.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

12.6.11.23 VNMLA, VNMLS, VNMUL
Floating-point multiply with negation followed by add or subtract.

Syntax

VNMLA{cond}.F32 Sd, Sn, Sm
VNMLS{cond}.F32 Sd, Sn, Sm
VNMUL{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution”.

Sd is the destination floating-point register.

Sn, Sm are the operand floating-point registers.

Operation

The VNMLA instruction:

1. Multiplies two floating-point register values.

2. Adds the negation of the floating-point value in the destination register to the negation of the product.

3. Writes the result back to the destination register.

The VNMLS instruction:

1. Multiplies two floating-point register values.

2. Adds the negation of the floating-point value in the destination register to the product.

3. Writes the result back to the destination register.

The VNMUL instruction:

1. Multiplies together two floating-point register values.

2. Writes the negation of the result to the destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

12.6.11.24 VPOP
Floating-point extension register Pop.

Syntax

VPOP{cond}{.size} list
where:

cond is an optional condition code, see “Conditional Execution”.

size is an optional data size specifier.
If present, it must be equal to the size in bits, 32 or 64, of the registers in list.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 172

list is the list of extension registers to be loaded, as a list of consecutively numbered doubleword or single-
word registers, separated by commas and surrounded by brackets.

Operation

This instruction loads multiple consecutive extension registers from the stack.

Restrictions

The list must contain at least one register, and not more than sixteen registers.

Condition Flags

These instructions do not change the flags.

12.6.11.25 VPUSH
Floating-point extension register Push.

Syntax

VPUSH{cond}{.size} list
where:

cond is an optional condition code, see “Conditional Execution”.

size is an optional data size specifier.
If present, it must be equal to the size in bits, 32 or 64, of the registers in list.

list is a list of the extension registers to be stored, as a list of consecutively numbered doubleword or sin-
gleword registers, separated by commas and surrounded by brackets.

Operation

This instruction:

 Stores multiple consecutive extension registers to the stack.
Restrictions

The restrictions are:

 List must contain at least one register, and not more than sixteen.
Condition Flags

These instructions do not change the flags.

12.6.11.26 VSQRT
Floating-point Square Root.

Syntax

VSQRT{cond}.F32 Sd, Sm
where:

cond is an optional condition code, see “Conditional Execution”.

Sd is the destination floating-point value.

Sm is the operand floating-point value.

Operation

This instruction:

 Calculates the square root of the value in a floating-point register.
 Writes the result to another floating-point register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

 173SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.11.27 VSTM
Floating-point Store Multiple.

Syntax

VSTM{mode}{cond}{.size} Rn{!}, list
where:

mode is the addressing mode:
- IA Increment After. The consecutive addresses start at the address specified in Rn. This is the
default and can be omitted.
- DB Decrement Before. The consecutive addresses end just before the address specified in Rn.

cond is an optional condition code, see “Conditional Execution”.

size is an optional data size specifier.
If present, it must be equal to the size in bits, 32 or 64, of the registers in list.

Rn is the base register. The SP can be used.

! is the function that causes the instruction to write a modified value back to Rn.
Required if mode == DB.

list is a list of the extension registers to be stored, as a list of consecutively numbered doubleword or sin-
gleword registers, separated by commas and surrounded by brackets.

Operation

This instruction:

 Stores multiple extension registers to consecutive memory locations using a base address from an ARM
core register.

Restrictions

The restrictions are:

 List must contain at least one register.
If it contains doubleword registers it must not contain more than 16 registers.

 Use of the PC as Rn is deprecated.
Condition Flags

These instructions do not change the flags.

12.6.11.28 VSTR
Floating-point Store.

Syntax

VSTR{cond}{.32} Sd, [Rn{, #imm}]
VSTR{cond}{.64} Dd, [Rn{, #imm}]

where

cond is an optional condition code, see “Conditional Execution”.

32, 64 are the optional data size specifiers.

Sd is the source register for a singleword store.

Dd is the source register for a doubleword store.

Rn is the base register. The SP can be used.

imm is the + or - immediate offset used to form the address. Values are multiples of 4 in the range 0 - 1020.
imm can be omitted, meaning an offset of +0.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 174

Operation

This instruction:

 Stores a single extension register to memory, using an address from an ARM core register, with an
optional offset, defined in imm.

Restrictions

The restrictions are:

 The use of PC for Rn is deprecated.
Condition Flags

These instructions do not change the flags.

12.6.11.29 VSUB
Floating-point Subtract.

Syntax

VSUB{cond}.F32 {Sd,} Sn, Sm
where:

cond is an optional condition code, see “Conditional Execution”.

Sd is the destination floating-point value.

Sn, Sm are the operand floating-point value.

Operation

This instruction:

1. Subtracts one floating-point value from another floating-point value.

2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

 175SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.12 Miscellaneous Instructions
The table below shows the remaining Cortex-M4 instructions:

12.6.12.1 BKPT
Breakpoint.

Syntax

BKPT #imm
where:

imm is an expression evaluating to an integer in the range 0 - 255 (8-bit value).

Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate system state
when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional information about the
breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaffected by the condition
specified by the IT instruction.

Condition Flags

This instruction does not change the flags.

Examples

BKPT 0xAB ; Breakpoint with immediate value set to 0xAB (debugger can
 ; extract the immediate value by locating it using the PC)

Note: ARM does not recommend the use of the BKPT instruction with an immediate value set to 0xAB for any pur-
pose other than Semi-hosting.

Table 12-28. Miscellaneous Instructions

Mnemonic Description

BKPT Breakpoint

CPSID Change Processor State, Disable Interrupts

CPSIE Change Processor State, Enable Interrupts

DMB Data Memory Barrier

DSB Data Synchronization Barrier

ISB Instruction Synchronization Barrier

MRS Move from special register to register

MSR Move from register to special register

NOP No Operation

SEV Send Event

SVC Supervisor Call

WFE Wait For Event

WFI Wait For Interrupt

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 176

12.6.12.2 CPS
Change Processor State.

Syntax

CPSeffect iflags
where:

effect is one of:

IE Clears the special purpose register.

ID Sets the special purpose register.

iflags is a sequence of one or more flags:

i Set or clear PRIMASK.

f Set or clear FAULTMASK.

Operation

CPS changes the PRIMASK and FAULTMASK special register values. See “Exception Mask Registers” for more
information about these registers.

Restrictions

The restrictions are:

 Use CPS only from privileged software, it has no effect if used in unprivileged software.
 CPS cannot be conditional and so must not be used inside an IT block.

Condition Flags

This instruction does not change the condition flags.

Examples

CPSID i ; Disable interrupts and configurable fault handlers (set PRIMASK)
CPSID f ; Disable interrupts and all fault handlers (set FAULTMASK)
CPSIE i ; Enable interrupts and configurable fault handlers (clear PRIMASK)
CPSIE f ; Enable interrupts and fault handlers (clear FAULTMASK)

12.6.12.3 DMB
Data Memory Barrier.

Syntax

DMB{cond}
where:

cond is an optional condition code, see “Conditional Execution”.

Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in program order,
before the DMB instruction are completed before any explicit memory accesses that appear, in program order, after
the DMB instruction. DMB does not affect the ordering or execution of instructions that do not access memory.

Condition Flags

This instruction does not change the flags.

Examples

DMB ; Data Memory Barrier

 177SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.12.4 DSB
Data Synchronization Barrier.

Syntax

DSB{cond}
where:

cond is an optional condition code, see “Conditional Execution”.

Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in program order,
do not execute until the DSB instruction completes. The DSB instruction completes when all explicit memory
accesses before it complete.

Condition Flags

This instruction does not change the flags.

Examples

DSB ; Data Synchronisation Barrier

12.6.12.5 ISB
Instruction Synchronization Barrier.

Syntax

ISB{cond}
where:

cond is an optional condition code, see “Conditional Execution”.

Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions
following the ISB are fetched from memory again, after the ISB instruction has been completed.

Condition Flags

This instruction does not change the flags.

Examples

ISB ; Instruction Synchronisation Barrier

12.6.12.6 MRS
Move the contents of a special register to a general-purpose register.

Syntax

MRS{cond} Rd, spec_reg
where:

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK, BASEPRI,
BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR, for example to clear
the Q flag.

In process swap code, the programmers model state of the process being swapped out must be saved, including
relevant PSR contents. Similarly, the state of the process being swapped in must also be restored. These operations
use MRS in the state-saving instruction sequence and MSR in the state-restoring instruction sequence.

Note: BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.
See “MSR”.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 178

Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples

MRS R0, PRIMASK ; Read PRIMASK value and write it to R0

12.6.12.7 MSR
Move the contents of a general-purpose register into the specified special register.

Syntax

MSR{cond} spec_reg, Rn
where:

cond is an optional condition code, see “Conditional Execution”.

Rn is the source register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK, BASEPRI,
BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

The register access operation in MSR depends on the privilege level. Unprivileged software can only access the
APSR. See “Application Program Status Register”. Privileged software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

Note: When the user writes to BASEPRI_MAX, the instruction writes to BASEPRI only if either:
Rn is non-zero and the current BASEPRI value is 0.
Rn is non-zero and less than the current BASEPRI value.

See “MRS”.

Restrictions

Rn must not be SP and must not be PC.

Condition Flags

This instruction updates the flags explicitly based on the value in Rn.

Examples

MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register

12.6.12.8 NOP
No Operation.

Syntax

NOP{cond}
where:

cond is an optional condition code, see “Conditional Execution”.

Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might remove it from the pipeline
before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.

Condition Flags

This instruction does not change the flags.

Examples

NOP ; No operation

 179SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.6.12.9 SEV
Send Event.

Syntax

SEV{cond}
where:

cond is an optional condition code, see “Conditional Execution”.

Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a multiprocessor system. It also
sets the local event register to 1, see “Power Management”.

Condition Flags

This instruction does not change the flags.

Examples

SEV ; Send Event

12.6.12.10 SVC
Supervisor Call.

Syntax

SVC{cond} #imm
where:

cond is an optional condition code, see “Conditional Execution”.

imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

Operation

The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine what service is
being requested.

Condition Flags

This instruction does not change the flags.

Examples

SVC 0x32 ; Supervisor Call (SVC handler can extract the immediate value
 ; by locating it via the stacked PC)

12.6.12.11 WFE
Wait For Event.

Syntax

WFE{cond}
where:

cond is an optional condition code, see “Conditional Execution”.

Operation

WFE is a hint instruction.

If the event register is 0, WFE suspends execution until one of the following events occurs:

 An exception, unless masked by the exception mask registers or the current priority level.
 An exception enters the Pending state, if SEVONPEND in the System Control Register is set.
 A Debug Entry request, if Debug is enabled.
 An event signaled by a peripheral or another processor in a multiprocessor system using the SEV instruction.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 180

If the event register is 1, WFE clears it to 0 and returns immediately.

For more information, see “Power Management”.

Condition Flags

This instruction does not change the flags.

Examples

WFE ; Wait for event

12.6.12.12 WFI
Wait for Interrupt.

Syntax

WFI{cond}
where:

cond is an optional condition code, see “Conditional Execution”.

Operation

WFI is a hint instruction that suspends execution until one of the following events occurs:

 An exception.
 A Debug Entry request, regardless of whether Debug is enabled.

Condition Flags

This instruction does not change the flags.

Examples

WFI ; Wait for interrupt

12.7 Cortex-M4 Core Peripherals

12.7.1 Peripherals
 Nested Vectored Interrupt Controller (NVIC)

The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that supports low latency
interrupt processing. See Section 12.8 ”Nested Vectored Interrupt Controller (NVIC)”

 System Control Block (SCB)
The System Control Block (SCB) is the programmers model interface to the processor. It provides system
implementation information and system control, including configuration, control, and reporting of system
exceptions. See Section 12.9 ”System Control Block (SCB)”

 System Timer (SysTick)
The System Timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating System (RTOS)
tick timer or as a simple counter. See Section 12.10 ”System Timer (SysTick)”

 Memory Protection Unit (MPU)
The Memory Protection Unit (MPU) improves system reliability by defining the memory attributes for different
memory regions. It provides up to eight different regions, and an optional predefined background region. See
Section 12.11 ”Memory Protection Unit (MPU)”

 Floating-point Unit (FPU)
The Floating-point Unit (FPU) provides IEEE754-compliant operations on single-precision, 32-bit, floating-point
values. See Section 12.12 ”Floating Point Unit (FPU)”

 181SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.7.2 Address Map
The address map of the Private peripheral bus (PPB) is given in the following table:

In register descriptions:

 The required privilege gives the privilege level required to access the register, as follows:
 Privileged: Only privileged software can access the register.
 Unprivileged: Both unprivileged and privileged software can access the register.

12.8 Nested Vectored Interrupt Controller (NVIC)
This section describes the NVIC and the registers it uses. The NVIC supports:

 Up to 41 interrupts.
 A programmable priority level of 0 - 15 for each interrupt. A higher level corresponds to a lower priority, so level

0 is the highest interrupt priority.
 Level detection of interrupt signals.
 Dynamic reprioritization of interrupts.
 Grouping of priority values into group priority and subpriority fields.
 Interrupt tail-chaining.
 An external Non-maskable interrupt (NMI).

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no
instruction overhead. This provides low latency exception handling.

12.8.1 Level-sensitive Interrupts
The processor supports level-sensitive interrupts. A level-sensitive interrupt is held asserted until the peripheral
deasserts the interrupt signal. Typically, this happens because the ISR accesses the peripheral, causing it to clear the
interrupt request.

When the processor enters the ISR, it automatically removes the pending state from the interrupt (see “Hardware and
Software Control of Interrupts”). For a level-sensitive interrupt, if the signal is not deasserted before the processor
returns from the ISR, the interrupt becomes pending again, and the processor must execute its ISR again. This means
that the peripheral can hold the interrupt signal asserted until it no longer requires servicing.

12.8.1.1 Hardware and Software Control of Interrupts
The Cortex-M4 latches all interrupts. A peripheral interrupt becomes pending for one of the following reasons:

 The NVIC detects that the interrupt signal is HIGH and the interrupt is not active.
 The NVIC detects a rising edge on the interrupt signal.
 A software writes to the corresponding interrupt set-pending register bit, see “Interrupt Set-pending Registers”,

or to the NVIC_STIR to make an interrupt pending, see “Software Trigger Interrupt Register”.

Table 12-29. Core Peripheral Register Regions

Address Core Peripheral

0xE000E008 - 0xE000E00F System Control Block

0xE000E010 - 0xE000E01F System Timer

0xE000E100 - 0xE000E4EF Nested Vectored Interrupt Controller

0xE000ED00 - 0xE000ED3F System Control block

0xE000ED90 - 0xE000EDB8 Memory Protection Unit

0xE000EF00 - 0xE000EF03 Nested Vectored Interrupt Controller

0xE000EF30 - 0xE000EF44 Floating-point Unit

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 182

A pending interrupt remains pending until one of the following:

 The processor enters the ISR for the interrupt. This changes the state of the interrupt from pending to active.
Then:
 For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the interrupt

signal. If the signal is asserted, the state of the interrupt changes to pending, which might cause the
processor to immediately re-enter the ISR. Otherwise, the state of the interrupt changes to inactive.

 Software writes to the corresponding interrupt clear-pending register bit.
For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not change.
Otherwise, the state of the interrupt changes to inactive.

12.8.2 NVIC Design Hints and Tips
Ensure that the software uses correctly aligned register accesses. The processor does not support unaligned
accesses to NVIC registers. See the individual register descriptions for the supported access sizes.

A interrupt can enter a pending state even if it is disabled. Disabling an interrupt only prevents the processor from
taking that interrupt.

Before programming SCB_VTOR to relocate the vector table, ensure that the vector table entries of the new vector
table are set up for fault handlers, NMI and all enabled exception like interrupts. For more information, see the “Vector
Table Offset Register”.

12.8.2.1 NVIC Programming Hints
The software uses the CPSIE I and CPSID I instructions to enable and disable the interrupts. The CMSIS provides the
following intrinsic functions for these instructions:

void __disable_irq(void) // Disable Interrupts

void __enable_irq(void) // Enable Interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including:

The input parameter IRQn is the IRQ number. For more information about these functions, see the CMSIS
documentation.

To improve software efficiency, the CMSIS simplifies the NVIC register presentation. In the CMSIS:

 The Set-enable, Clear-enable, Set-pending, Clear-pending and Active Bit registers map to arrays of 32-bit
integers, so that:
 The array ISER[0] to ISER[1] corresponds to the registers ISER0 - ISER1.
 The array ICER[0] to ICER[1] corresponds to the registers ICER0 - ICER1.
 The array ISPR[0] to ISPR[1] corresponds to the registers ISPR0 - ISPR1.

Table 12-30. CMSIS Functions for NVIC Control

CMSIS Interrupt Control Function Description

void NVIC_SetPriorityGrouping(uint32_t priority_grouping) Set the priority grouping

void NVIC_EnableIRQ(IRQn_t IRQn) Enable IRQn

void NVIC_DisableIRQ(IRQn_t IRQn) Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQn) Return true (IRQ-Number) if IRQn is pending

void NVIC_SetPendingIRQ (IRQn_t IRQn) Set IRQn pending

void NVIC_ClearPendingIRQ (IRQn_t IRQn) Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQn) Return the IRQ number of the active interrupt

void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority) Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQn) Read priority of IRQn

void NVIC_SystemReset (void) Reset the system

 183SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 The array ICPR[0] to ICPR[1] corresponds to the registers ICPR0 - ICPR1.
 The array IABR[0] to IABR[1] corresponds to the registers IABR0 - IABR1.

 The Interrupt Priority Registers (IPR0 - IPR10) provide an 8-bit priority field for each interrupt and each register
holds four priority fields.

The CMSIS provides thread-safe code that gives atomic access to the Interrupt Priority Registers. Table 12-31 shows
how the interrupts, or IRQ numbers, map onto the interrupt registers and corresponding CMSIS variables that have
one bit per interrupt.

Note: 1. Each array element corresponds to a single NVIC register, for example the ICER[0] element corresponds
to the ICER0.

12.8.3 Nested Vectored Interrupt Controller (NVIC) User Interface

Table 12-31. Mapping of Interrupts

Interrupts CMSIS Array Elements (1)

Set-enable Clear-enable Set-pending Clear-pending Active Bit

0 - 31 ISER[0] ICER[0] ISPR[0] ICPR[0] IABR[0]

32 - 41 ISER[1] ICER[1] ISPR[1] ICPR[1] IABR[1]

Table 12-32. Nested Vectored Interrupt Controller (NVIC) Register Mapping

Offset Register Name Access Reset

0xE000E100 Interrupt Set-enable Register 0 NVIC_ISER0 Read/Write 0x00000000

...

0xE000E11C Interrupt Set-enable Register 7 NVIC_ISER7 Read/Write 0x00000000

0XE000E180 Interrupt Clear-enable Register 0 NVIC_ICER0 Read/Write 0x00000000

...

0xE000E19C Interrupt Clear-enable Register 7 NVIC_ICER7 Read/Write 0x00000000

0XE000E200 Interrupt Set-pending Register 0 NVIC_ISPR0 Read/Write 0x00000000

...

0xE000E21C Interrupt Set-pending Register 7 NVIC_ISPR7 Read/Write 0x00000000

0XE000E280 Interrupt Clear-pending Register 0 NVIC_ICPR0 Read/Write 0x00000000

...

0xE000E29C Interrupt Clear-pending Register 7 NVIC_ICPR7 Read/Write 0x00000000

0xE000E300 Interrupt Active Bit Register 0 NVIC_IABR0 Read/Write 0x00000000

...

0xE000E31C Interrupt Active Bit Register 7 NVIC_IABR7 Read/Write 0x00000000

0xE000E400 Interrupt Priority Register 0 NVIC_IPR0 Read/Write 0x00000000

...

0xE000E428 Interrupt Priority Register 10 NVIC_IPR10 Read/Write 0x00000000

0xE000EF00 Software Trigger Interrupt Register NVIC_STIR Write-only 0x00000000

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 184

12.8.3.1 Interrupt Set-enable Registers
Name: NVIC_ISERx [x=0..7]

Access: Read/Write

Reset: 0x00000000

These registers enable interrupts and show which interrupts are enabled.

• SETENA: Interrupt Set-enable
Write:

0: No effect.

1: Enables the interrupt.

Read:

0: Interrupt disabled.

1: Interrupt enabled.

Notes: 1. If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority.
2. If an interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, the NVIC never

activates the interrupt, regardless of its priority.

31 30 29 28 27 26 25 24
SETENA

23 22 21 20 19 18 17 16
SETENA

15 14 13 12 11 10 9 8
SETENA

7 6 5 4 3 2 1 0
SETENA

 185SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.8.3.2 Interrupt Clear-enable Registers
Name: NVIC_ICERx [x=0..7]

Access: Read/Write

Reset: 0x00000000

These registers disable interrupts, and show which interrupts are enabled.

• CLRENA: Interrupt Clear-enable
Write:

0: No effect.

1: Disables the interrupt.

Read:

0: Interrupt disabled.

1: Interrupt enabled.

31 30 29 28 27 26 25 24
CLRENA

23 22 21 20 19 18 17 16
CLRENA

15 14 13 12 11 10 9 8
CLRENA

7 6 5 4 3 2 1 0
CLRENA

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 186

12.8.3.3 Interrupt Set-pending Registers
Name: NVIC_ISPRx [x=0..7]

Access: Read/Write

Reset: 0x00000000

These registers force interrupts into the pending state, and show which interrupts are pending.

• SETPEND: Interrupt Set-pending
Write:

0: No effect.

1: Changes the interrupt state to pending.

Read:

0: Interrupt is not pending.

1: Interrupt is pending.

Notes: 1. Writing a 1 to an ISPR bit corresponding to an interrupt that is pending has no effect.
2. Writing a 1 to an ISPR bit corresponding to a disabled interrupt sets the state of that interrupt to pending.

31 30 29 28 27 26 25 24
SETPEND

23 22 21 20 19 18 17 16
SETPEND

15 14 13 12 11 10 9 8
SETPEND

7 6 5 4 3 2 1 0
SETPEND

 187SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.8.3.4 Interrupt Clear-pending Registers
Name: NVIC_ICPRx [x=0..7]

Access: Read/Write

Reset: 0x00000000

These registers remove the pending state from interrupts, and show which interrupts are pending.

• CLRPEND: Interrupt Clear-pending
Write:

0: No effect.

1: Removes the pending state from an interrupt.

Read:

0: Interrupt is not pending.

1: Interrupt is pending.

Note: Writing a 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

31 30 29 28 27 26 25 24
CLRPEND

23 22 21 20 19 18 17 16
CLRPEND

15 14 13 12 11 10 9 8
CLRPEND

7 6 5 4 3 2 1 0
CLRPEND

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 188

12.8.3.5 Interrupt Active Bit Registers
Name: NVIC_IABRx [x=0..7]

Access: Read/Write

Reset: 0x00000000

These registers indicate which interrupts are active.

• ACTIVE: Interrupt Active Flags
0: Interrupt is not active.

1: Interrupt is active.

Note: A bit reads as one if the status of the corresponding interrupt is active, or active and pending.

31 30 29 28 27 26 25 24
ACTIVE

23 22 21 20 19 18 17 16
ACTIVE

15 14 13 12 11 10 9 8
ACTIVE

7 6 5 4 3 2 1 0
ACTIVE

 189SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.8.3.6 Interrupt Priority Registers
Name: NVIC_IPRx [x=0..10]

Access: Read/Write

Reset: 0x00000000

The NVIC_IPR0 - NVIC_IPR10 registers provide a 8-bit priority field for each interrupt. These registers are byte-accessible.
Each register holds four priority fields that map up to four elements in the CMSIS interrupt priority array IP[0] to IP[40].

• PRI3: Priority (4m+3)
Priority, Byte Offset 3, refers to register bits [31:24].

• PRI2: Priority (4m+2)
Priority, Byte Offset 2, refers to register bits [23:16].

• PRI1: Priority (4m+1)
Priority, Byte Offset 1, refers to register bits [15:8].

• PRI0: Priority (4m)
Priority, Byte Offset 0, refers to register bits [7:0].

Notes: 1. Each priority field holds a priority value, 0 - 15. The lower the value, the greater the priority of the corresponding
interrupt. The processor implements only bits [7:4] of each field; bits [3:0] read as zero and ignore writes.

2. For more information about the IP [0] to IP [40] interrupt priority array, that provides the software view of the
interrupt priorities, see Table 12-30, “CMSIS Functions for NVIC Control” .

3. The corresponding IPR number n is given by n = m DIV 4.
4. The byte offset of the required Priority field in this register is m MOD 4.

31 30 29 28 27 26 25 24
PRI3

23 22 21 20 19 18 17 16
PRI2

15 14 13 12 11 10 9 8
PRI1

7 6 5 4 3 2 1 0
PRI0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 190

12.8.3.7 Software Trigger Interrupt Register
Name: NVIC_STIR

Access: Write-only

Reset: 0x00000000

Write to this register to generate an interrupt from the software.

• INTID: Interrupt ID
Interrupt ID of the interrupt to trigger, in the range 0 - 239. For example, a value of 0x03 specifies interrupt IRQ3.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – INTID

7 6 5 4 3 2 1 0
INTID

 191SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9 System Control Block (SCB)
The System Control Block (SCB) provides system implementation information, and system control. This includes
configuration, control, and reporting of the system exceptions.

Ensure that the software uses aligned accesses of the correct size to access the system control block registers:

 Except for the SCB_CFSR and SCB_SHPR1 - SCB_SHPR3 registers, it must use aligned word accesses.
 For the SCB_CFSR and SCB_SHPR1 - SCB_SHPR3 registers, it can use byte or aligned halfword or word

accesses.
The processor does not support unaligned accesses to system control block registers.

In a fault handler, to determine the true faulting address:

1. Read and save the MMFAR or SCB_BFAR value.
2. Read the MMARVALID bit in the MMFSR subregister, or the BFARVALID bit in the BFSR subregister. The

SCB_MMFAR or SCB_BFAR address is valid only if this bit is 1.
The software must follow this sequence because another higher priority exception might change the SCB_MMFAR or
SCB_BFAR value. For example, if a higher priority handler preempts the current fault handler, the other fault might
change the SCB_MMFAR or SCB_BFAR value.

12.9.1 System Control Block (SCB) User Interface

Notes: 1. See the register description for more information.
2. This register contains the subregisters: “MMFSR: Memory Management Fault Status Subregister” (0xE000ED28 -

8 bits), “BFSR: Bus Fault Status Subregister” (0xE000ED29 - 8 bits), “UFSR: Usage Fault Status Subregister”
(0xE000ED2A - 16 bits).

Table 12-33. System Control Block (SCB) Register Mapping

Offset Register Name Access Reset

0xE000E008 Auxiliary Control Register SCB_ACTLR Read/Write 0x00000000

0xE000ED00 CPUID Base Register SCB_CPUID Read-only 0x410FC240

0xE000ED04 Interrupt Control and State Register SCB_ICSR Read/Write(1) 0x00000000

0xE000ED08 Vector Table Offset Register SCB_VTOR Read/Write 0x00000000

0xE000ED0C Application Interrupt and Reset Control Register SCB_AIRCR Read/Write 0xFA050000

0xE000ED10 System Control Register SCB_SCR Read/Write 0x00000000

0xE000ED14 Configuration and Control Register SCB_CCR Read/Write 0x00000200

0xE000ED18 System Handler Priority Register 1 SCB_SHPR1 Read/Write 0x00000000

0xE000ED1C System Handler Priority Register 2 SCB_SHPR2 Read/Write 0x00000000

0xE000ED20 System Handler Priority Register 3 SCB_SHPR3 Read/Write 0x00000000

0xE000ED24 System Handler Control and State Register SCB_SHCSR Read/Write 0x00000000

0xE000ED28 Configurable Fault Status Register SCB_CFSR(2) Read/Write 0x00000000

0xE000ED2C HardFault Status Register SCB_HFSR Read/Write 0x00000000

0xE000ED34 MemManage Fault Address Register SCB_MMFAR Read/Write Unknown

0xE000ED38 BusFault Address Register SCB_BFAR Read/Write Unknown

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 192

12.9.1.1 Auxiliary Control Register
Name: SCB_ACTLR

Access: Read/Write

The SCB_ACTLR provides disable bits for the following processor functions:

• IT folding.
• Write buffer use for accesses to the default memory map.
• Interruption of multi-cycle instructions.

By default, this register is set to provide optimum performance from the Cortex-M4 processor, and does not normally require
modification.

• DISOOFP: Disable Out Of Order Floating Point
Disables floating point instructions that complete out of order with respect to integer instructions.

• DISFPCA: Disable FPCA
Disables an automatic update of CONTROL.FPCA.

• DISFOLD: Disable Folding
When set to 1, disables the IT folding.

Note: In some situations, the processor can start executing the first instruction in an IT block while it is still executing the IT
instruction. This behavior is called IT folding, and it improves the performance. However, IT folding can cause jitter in
looping. If a task must avoid jitter, set the DISFOLD bit to 1 before executing the task, to disable the IT folding.

• DISDEFWBUF: Disable Default Write Buffer
When set to 1, it disables the write buffer use during default memory map accesses. This causes BusFault to be precise but
decreases the performance, as any store to memory must complete before the processor can execute the next instruction.

This bit only affects write buffers implemented in the Cortex-M4 processor.

• DISMCYCINT: Disable Multiple Cycle Interruption
When set to 1, it disables the interruption of load multiple and store multiple instructions. This increases the interrupt latency of
the processor, as any LDM or STM must complete before the processor can stack the current state and enter the interrupt
handler.

31 30 29 28 27 26 25 24
–

23 22 21 20 19 18 17 16
–

15 14 13 12 11 10 9 8
– DISOOFP DISFPCA

7 6 5 4 3 2 1 0
– DISFOLD DISDEFWBUF DISMCYCINT

 193SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9.1.2 CPUID Base Register
Name: SCB_CPUID

Access: Read/Write

The SCB_CPUID register contains the processor part number, version, and implementation information.

• Implementer: Implementer Code
0x41: ARM.

• Variant: Variant Number
It is the r value in the rnpn product revision identifier:

0x0: Revision 0.

• Constant: Reads as 0xF
Reads as 0xF.

• PartNo: Part Number of the Processor
0xC24 = Cortex-M4.

• Revision: Revision Number
It is the p value in the rnpn product revision identifier:

0x0: Patch 0.

31 30 29 28 27 26 25 24
Implementer

23 22 21 20 19 18 17 16
Variant Constant

15 14 13 12 11 10 9 8
PartNo

7 6 5 4 3 2 1 0
PartNo Revision

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 194

12.9.1.3 Interrupt Control and State Register
Name: SCB_ICSR

Access: Read/Write

The SCB_ICSR provides a set-pending bit for the Non-Maskable Interrupt (NMI) exception, and set-pending and clear-pending
bits for the PendSV and SysTick exceptions.

It indicates:

• The exception number of the exception being processed, and whether there are preempted active exceptions.
• The exception number of the highest priority pending exception, and whether any interrupts are pending.

• NMIPENDSET: NMI Set-pending
Write:

PendSV set-pending bit.

Write:

0: No effect.

1: Changes NMI exception state to pending.

Read:

0: NMI exception is not pending.

1: NMI exception is pending.

As NMI is the highest-priority exception, the processor normally enters the NMI exception handler as soon as it registers a
write of 1 to this bit. Entering the handler clears this bit to 0. A read of this bit by the NMI exception handler returns 1 only if the
NMI signal is reasserted while the processor is executing that handler.

• PENDSVSET: PendSV Set-pending
Write:

0: No effect.

1: Changes PendSV exception state to pending.

Read:

0: PendSV exception is not pending.

1: PendSV exception is pending.

Writing a 1 to this bit is the only way to set the PendSV exception state to pending.

31 30 29 28 27 26 25 24
NMIPENDSET – PENDSVSET PENDSVCLR PENDSTSET PENDSTCLR –

23 22 21 20 19 18 17 16
– ISRPENDING VECTPENDING

15 14 13 12 11 10 9 8
VECTPENDING RETTOBASE – VECTACTIVE

7 6 5 4 3 2 1 0
VECTACTIVE

 195SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• PENDSVCLR: PendSV Clear-pending
Write:

0: No effect.

1: Removes the pending state from the PendSV exception.

• PENDSTSET: SysTick Exception Set-pending
Write:

0: No effect.

1: Changes SysTick exception state to pending.

Read:

0: SysTick exception is not pending.

1: SysTick exception is pending.

• PENDSTCLR: SysTick Exception Clear-pending
Write:

0: No effect.

1: Removes the pending state from the SysTick exception.

This bit is Write-only. On a register read, its value is Unknown.

• ISRPENDING: Interrupt Pending Flag (Excluding NMI and Faults)
0: Interrupt not pending.

1: Interrupt pending.

• VECTPENDING: Exception Number of the Highest Priority Pending Enabled Exception
0: No pending exceptions.

Nonzero: The exception number of the highest priority pending enabled exception.

The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the
PRIMASK register.

• RETTOBASE: Preempted Active Exceptions Present or Not
0: There are preempted active exceptions to execute.

1: There are no active exceptions, or the currently-executing exception is the only active exception.

• VECTACTIVE: Active Exception Number Contained
0: Thread mode.

Nonzero: The exception number of the currently active exception. The value is the same as IPSR bits [8:0]. See “Interrupt Pro-
gram Status Register”.

Subtract 16 from this value to obtain the IRQ number required to index into the Interrupt Clear-Enable, Set-Enable,
Clear-Pending, Set-Pending, or Priority Registers, see “Interrupt Program Status Register”.

Note: When the user writes to the SCB_ICSR, the effect is unpredictable if:
- Writing a 1 to the PENDSVSET bit and writing a 1 to the PENDSVCLR bit.
- Writing a 1 to the PENDSTSET bit and writing a 1 to the PENDSTCLR bit.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 196

12.9.1.4 Vector Table Offset Register
Name: SCB_VTOR

Access: Read/Write

The SCB_VTOR indicates the offset of the vector table base address from memory address 0x00000000.

• TBLOFF: Vector Table Base Offset
It contains bits [29:7] of the offset of the table base from the bottom of the memory map.

Bit [29] determines whether the vector table is in the code or SRAM memory region:

0: Code.

1: SRAM.

It is sometimes called the TBLBASE bit.

Note: When setting TBLOFF, the offset must be aligned to the number of exception entries in the vector table. Configure the
next statement to give the information required for your implementation; the statement reminds the user of how to
determine the alignment requirement. The minimum alignment is 32 words, enough for up to 16 interrupts. For more
interrupts, adjust the alignment by rounding up to the next power of two. For example, if 21 interrupts are required, the
alignment must be on a 64-word boundary because the required table size is 37 words, and the next power of two
is 64.

Table alignment requirements mean that bits[6:0] of the table offset are always zero.

31 30 29 28 27 26 25 24
TBLOFF

23 22 21 20 19 18 17 16
TBLOFF

15 14 13 12 11 10 9 8
TBLOFF

7 6 5 4 3 2 1 0
TBLOFF –

 197SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9.1.5 Application Interrupt and Reset Control Register
Name: SCB_AIRCR

Access: Read/Write

The SCB_AIRCR provides priority grouping control for the exception model, endian status for data accesses, and reset control
of the system. To write to this register, write 0x5FA to the VECTKEY field, otherwise the processor ignores the write.

• VECTKEYSTAT: Register Key (Read)
Reads as 0xFA05.

• VECTKEY: Register Key (Write)
Writes 0x5FA to VECTKEY, otherwise the write is ignored.

• ENDIANNESS: Data Endianness
0: Little-endian.

1: Big-endian.

• PRIGROUP: Interrupt Priority Grouping
This field determines the split of group priority from subpriority. It shows the position of the binary point that splits the PRI_n
fields in the Interrupt Priority Registers into separate group priority and subpriority fields. The table below shows how the PRI-
GROUP value controls this split.

Note: 1. PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a subpriority field bit.
Determining preemption of an exception uses only the group priority field.

31 30 29 28 27 26 25 24
VECTKEYSTAT/VECTKEY

23 22 21 20 19 18 17 16
VECTKEYSTAT/VECTKEY

15 14 13 12 11 10 9 8
ENDIANNESS – PRIGROUP

7 6 5 4 3 2 1 0
– SYSRESETREQ VECTCLRACTIVE VECTRESET

Interrupt Priority Level Value, PRI_N[7:0] Number of
PRIGROUP Binary Point (1) Group Priority Bits Subpriority Bits Group Priorities Subpriorities
0b000 bxxxxxxx.y [7:1] None 128 2
0b001 bxxxxxx.yy [7:2] [4:0] 64 4
0b010 bxxxxx.yyy [7:3] [4:0] 32 8
0b011 bxxxx.yyyy [7:4] [4:0] 16 16
0b100 bxxx.yyyyy [7:5] [4:0] 8 32
0b101 bxx.yyyyyy [7:6] [5:0] 4 64
0b110 bx.yyyyyyy [7] [6:0] 2 128
0b111 b.yyyyyyy None [7:0] 1 256

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 198

• SYSRESETREQ: System Reset Request
0: No system reset request.

1: Asserts a signal to the outer system that requests a reset.

This is intended to force a large system reset of all major components except for debug. This bit reads as 0.

• VECTCLRACTIVE: Reserved for Debug use
This bit reads as 0. When writing to the register, write a 0 to this bit, otherwise the behavior is unpredictable.

• VECTRESET: Reserved for Debug use
This bit reads as 0. When writing to the register, write a 0 to this bit, otherwise the behavior is unpredictable.

 199SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9.1.6 System Control Register
Name: SCB_SCR

Access: Read/Write

• SEVONPEND: Send Event on Pending Bit
0: Only enabled interrupts or events can wake up the processor; disabled interrupts are excluded.

1: Enabled events and all interrupts, including disabled interrupts, can wake up the processor.

When an event or an interrupt enters the pending state, the event signal wakes up the processor from WFE. If the processor is
not waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an external event.

• SLEEPDEEP: Sleep or Deep Sleep
Controls whether the processor uses sleep or deep sleep as its low-power mode:

0: Sleep.

1: Deep sleep.

• SLEEPONEXIT: Sleep-on-exit
Indicates sleep-on-exit when returning from the Handler mode to the Thread mode:

0: Do not sleep when returning to Thread mode.

1: Enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt-driven application to avoid returning to an empty main application.

31 30 29 28 27 26 25 24
–

23 22 21 20 19 18 17 16
–

15 14 13 12 11 10 9 8
–

7 6 5 4 3 2 1 0
– SEVONPEND – SLEEPDEEP SLEEPONEXIT –

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 200

12.9.1.7 Configuration and Control Register
Name: SCB_CCR

Access: Read/Write

The SCB_CCR controls the entry to the Thread mode and enables the handlers for NMI, hard fault and faults escalated by
FAULTMASK to ignore BusFaults. It also enables the division by zero and unaligned access trapping, and the access to the
NVIC_STIR by unprivileged software (see “Software Trigger Interrupt Register”).

• STKALIGN: Stack Alignment
Indicates the stack alignment on exception entry:

0: 4-byte aligned.

1: 8-byte aligned.

On exception entry, the processor uses bit [9] of the stacked PSR to indicate the stack alignment. On return from the excep-
tion, it uses this stacked bit to restore the correct stack alignment.

• BFHFNMIGN: Bus Faults Ignored
Enables handlers with priority -1 or -2 to ignore data bus faults caused by load and store instructions. This applies to the hard
fault and FAULTMASK escalated handlers:

0: Data bus faults caused by load and store instructions cause a lock-up.

1: Handlers running at priority -1 and -2 ignore data bus faults caused by load and store instructions.

Set this bit to 1 only when the handler and its data are in absolutely safe memory. The normal use of this bit is to probe system
devices and bridges to detect control path problems and fix them.

• DIV_0_TRP: Division by Zero Trap
Enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of 0:

0: Do not trap divide by 0.

1: Trap divide by 0.

When this bit is set to 0, a divide by zero returns a quotient of 0.

• UNALIGN_TRP: Unaligned Access Trap
Enables unaligned access traps:

0: Do not trap unaligned halfword and word accesses.

1: Trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a usage fault.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of whether UNALIGN_TRP is set to 1.

31 30 29 28 27 26 25 24
–

23 22 21 20 19 18 17 16
–

15 14 13 12 11 10 9 8
– STKALIGN BFHFNMIGN

7 6 5 4 3 2 1 0

– DIV_0_TRP UNALIGN_
TRP – USERSETM

PEND
NONBASET

HRDENA

 201SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• USERSETMPEND: Unprivileged Software Access
Enables unprivileged software access to the NVIC_STIR, see “Software Trigger Interrupt Register”:

0: Disable.

1: Enable.

• NONBASETHRDENA: Thread Mode Enable
Indicates how the processor enters Thread mode:

0: The processor can enter the Thread mode only when no exception is active.

1: The processor can enter the Thread mode from any level under the control of an EXC_RETURN value, see “Exception
Return”.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 202

12.9.1.8 System Handler Priority Registers
The SCB_SHPR1 - SCB_SHPR3 registers set the priority level, 0 to 15 of the exception handlers that have configurable
priority. They are byte-accessible.

The system fault handlers and the priority field and register for each handler are:

Each PRI_N field is 8 bits wide, but the processor implements only bits [7:4] of each field, and bits [3:0] read as zero and
ignore writes.

Table 12-34. System Fault Handler Priority Fields

Handler Field Register Description

Memory management fault (MemManage) PRI_4

“System Handler Priority Register 1”Bus fault (BusFault) PRI_5

Usage fault (UsageFault) PRI_6

SVCall PRI_11 “System Handler Priority Register 2”

PendSV PRI_14
“System Handler Priority Register 3”

SysTick PRI_15

 203SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9.1.9 System Handler Priority Register 1
Name: SCB_SHPR1

Access: Read/Write

• PRI_6: Priority
Priority of system handler 6, UsageFault.

• PRI_5: Priority
Priority of system handler 5, BusFault.

• PRI_4: Priority
Priority of system handler 4, MemManage.

31 30 29 28 27 26 25 24
–

23 22 21 20 19 18 17 16
PRI_6

15 14 13 12 11 10 9 8
PRI_5

7 6 5 4 3 2 1 0
PRI_4

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 204

12.9.1.10 System Handler Priority Register 2
Name: SCB_SHPR2

Access: Read/Write

• PRI_11: Priority
Priority of system handler 11, SVCall.

31 30 29 28 27 26 25 24
PRI_11

23 22 21 20 19 18 17 16
–

15 14 13 12 11 10 9 8
–

7 6 5 4 3 2 1 0
–

 205SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9.1.11 System Handler Priority Register 3
Name: SCB_SHPR3

Access: Read/Write

• PRI_15: Priority
Priority of system handler 15, SysTick exception.

• PRI_14: Priority
Priority of system handler 14, PendSV.

31 30 29 28 27 26 25 24
PRI_15

23 22 21 20 19 18 17 16
PRI_14

15 14 13 12 11 10 9 8
–

7 6 5 4 3 2 1 0
–

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 206

12.9.1.12 System Handler Control and State Register
Name: SCB_SHCSR

Access: Read/Write

The SHCSR enables the system handlers, and indicates the pending status of the bus fault, memory management fault, and
SVC exceptions; it also indicates the active status of the system handlers.

• USGFAULTENA: Usage Fault Enable
0: Disables the exception.

1: Enables the exception.

• BUSFAULTENA: Bus Fault Enable
0: Disables the exception.

1: Enables the exception.

• MEMFAULTENA: Memory Management Fault Enable
0: Disables the exception.

1: Enables the exception.

• SVCALLPENDED: SVC Call Pending
Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

• BUSFAULTPENDED: Bus Fault Exception Pending
Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

• MEMFAULTPENDED: Memory Management Fault Exception Pending
Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

31 30 29 28 27 26 25 24
–

23 22 21 20 19 18 17 16
– USGFAULTENA BUSFAULTENA MEMFAULTENA

15 14 13 12 11 10 9 8
SVCALLPEN

DED
BUSFAULTPEN

DED
MEMFAULTPE

NDED
USGFAULTPEN

DED SYSTICKACT PENDSVACT – MONITORACT

7 6 5 4 3 2 1 0
SVCALLACT – USGFAULTACT – BUSFAULTACT MEMFAULTACT

 207SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• USGFAULTPENDED: Usage Fault Exception Pending
Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

• SYSTICKACT: SysTick Exception Active
Read:

0: The exception is not active.

1: The exception is active.

Note: The user can write to these bits to change the active status of the exceptions.
- Caution: A software that changes the value of an active bit in this register without a correct adjustment to the stacked
content can cause the processor to generate a fault exception. Ensure that the software writing to this register retains
and subsequently restores the current active status.
- Caution: After enabling the system handlers, to change the value of a bit in this register, the user must use a
read-modify-write procedure to ensure that only the required bit is changed.

• PENDSVACT: PendSV Exception Active
0: The exception is not active.

1: The exception is active.

• MONITORACT: Debug Monitor Active
0: Debug monitor is not active.

1: Debug monitor is active.

• SVCALLACT: SVC Call Active
0: SVC call is not active.

1: SVC call is active.

• USGFAULTACT: Usage Fault Exception Active
0: Usage fault exception is not active.

1: Usage fault exception is active.

• BUSFAULTACT: Bus Fault Exception Active
0: Bus fault exception is not active.

1: Bus fault exception is active.

• MEMFAULTACT: Memory Management Fault Exception Active
0: Memory management fault exception is not active.

1: Memory management fault exception is active.

If the user disables a system handler and the corresponding fault occurs, the processor treats the fault as a hard fault.

The user can write to this register to change the pending or active status of system exceptions. An OS kernel can write to the
active bits to perform a context switch that changes the current exception type.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 208

12.9.1.13 Configurable Fault Status Register
Name: SCB_CFSR

Access: Read/Write

• IACCVIOL: Instruction Access Violation Flag
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No instruction access violation fault.

1: The processor attempted an instruction fetch from a location that does not permit execution.

This fault occurs on any access to an XN region, even when the MPU is disabled or not present.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has not written
a fault address to the SCB_MMFAR.

• DACCVIOL: Data Access Violation Flag
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No data access violation fault.

1: The processor attempted a load or store at a location that does not permit the operation.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has loaded the
SCB_MMFAR with the address of the attempted access.

• MUNSTKERR: Memory Manager Fault on Unstacking for a Return From Exception
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No unstacking fault.

1: Unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original return stack is still present. The processor
has not adjusted the SP from the failing return, and has not performed a new save. The processor has not written a fault
address to the SCB_MMFAR.

• MSTKERR: Memory Manager Fault on Stacking for Exception Entry
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No stacking fault.

1: Stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The processor has
not written a fault address to SCB_MMFAR.

31 30 29 28 27 26 25 24
– DIVBYZERO UNALIGNED

23 22 21 20 19 18 17 16
– NOCP INVPC INVSTATE UNDEFINSTR

15 14 13 12 11 10 9 8
BFARVALID – LSPERR STKERR UNSTKERR IMPRECISERR PRECISERR IBUSERR

7 6 5 4 3 2 1 0
MMARVALID – MLSPERR MSTKERR MUNSTKERR – DACCVIOL IACCVIOL

 209SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• MLSPERR: MemManage During Lazy State Preservation
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No MemManage fault occurred during the floating-point lazy state preservation.

1: A MemManage fault occurred during the floating-point lazy state preservation.

• MMARVALID: Memory Management Fault Address Register (SCB_MMFAR) Valid Flag
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: The value in SCB_MMFAR is not a valid fault address.

1: SCB_MMFAR holds a valid fault address.

If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this
bit to 0. This prevents problems on return to a stacked active memory management fault handler whose SCB_MMFAR value
has been overwritten.

• IBUSERR: Instruction Bus Error
This is part of “BFSR: Bus Fault Status Subregister”.

0: No instruction bus error.

1: Instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1 only if it
attempts to issue the faulting instruction.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

• PRECISERR: Precise Data Bus Error
This is part of “BFSR: Bus Fault Status Subregister”.

0: No precise data bus error.

1: A data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused the
fault.

When the processor sets this bit to 1, it writes the faulting address to the SCB_BFAR.

• IMPRECISERR: Imprecise Data Bus Error
This is part of “BFSR: Bus Fault Status Subregister”.

0: No imprecise data bus error.

1: A data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the
error.

When the processor sets this bit to 1, it does not write a fault address to the SCB_BFAR.

This is an asynchronous fault. Therefore, if it is detected when the priority of the current process is higher than the bus fault
priority, the bus fault becomes pending and becomes active only when the processor returns from all higher priority processes.
If a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects that both this
bit and one of the precise fault status bits are set to 1.

• UNSTKERR: Bus Fault on Unstacking for a Return From Exception
This is part of “BFSR: Bus Fault Status Subregister”.

0: No unstacking fault.

1: Unstack for an exception return has caused one or more bus faults.

This fault is chained to the handler. This means that when the processor sets this bit to 1, the original return stack is still
present. The processor does not adjust the SP from the failing return, does not performed a new save, and does not write a
fault address to the BFAR.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 210

• STKERR: Bus Fault on Stacking for Exception Entry
This is part of “BFSR: Bus Fault Status Subregister”.

0: No stacking fault.

1: Stacking for an exception entry has caused one or more bus faults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the context area on the stack might be incorrect.
The processor does not write a fault address to the SCB_BFAR.

• LSPERR: Bus Error During Lazy Floating-point State Preservation
This is part of “BFSR: Bus Fault Status Subregister”.

0: No bus fault occurred during floating-point lazy state preservation.

1: A bus fault occurred during floating-point lazy state preservation.

• BFARVALID: Bus Fault Address Register (BFAR) Valid flag
This is part of “BFSR: Bus Fault Status Subregister”.

0: The value in SCB_BFAR is not a valid fault address.

1: SCB_BFAR holds a valid fault address.

The processor sets this bit to 1 after a bus fault where the address is known. Other faults can set this bit to 0, such as a
memory management fault occurring later.

If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to 0. This pre-
vents problems if returning to a stacked active bus fault handler whose SCB_BFAR value has been overwritten.

• UNDEFINSTR: Undefined Instruction Usage Fault
This is part of “UFSR: Usage Fault Status Subregister”.

0: No undefined instruction usage fault.

1: The processor has attempted to execute an undefined instruction.

When this bit is set to 1, the PC value stacked for the exception return points to the undefined instruction.

An undefined instruction is an instruction that the processor cannot decode.

• INVSTATE: Invalid State Usage Fault
This is part of “UFSR: Usage Fault Status Subregister”.

0: No invalid state usage fault.

1: The processor has attempted to execute an instruction that makes illegal use of the EPSR.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that attempted the illegal use of
the EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

• INVPC: Invalid PC Load Usage Fault
This is part of “UFSR: Usage Fault Status Subregister”. It is caused by an invalid PC load by EXC_RETURN:

0: No invalid PC load usage fault.

1: The processor has attempted an illegal load of EXC_RETURN to the PC, as a result of an invalid context, or an invalid
EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that tried to perform the illegal
load of the PC.

 211SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• NOCP: No Coprocessor Usage Fault
This is part of “UFSR: Usage Fault Status Subregister”. The processor does not support coprocessor instructions:

0: No usage fault caused by attempting to access a coprocessor.

1: The processor has attempted to access a coprocessor.

• UNALIGNED: Unaligned Access Usage Fault
This is part of “UFSR: Usage Fault Status Subregister”.

0: No unaligned access fault, or unaligned access trapping not enabled.

1: The processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the SCB_CCR to 1. See “Configuration and Con-
trol Register”. Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the setting of UNALIGN_TRP.

• DIVBYZERO: Divide by Zero Usage Fault
This is part of “UFSR: Usage Fault Status Subregister”.

0: No divide by zero fault, or divide by zero trapping not enabled.

1: The processor has executed an SDIV or UDIV instruction with a divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the exception return points to the instruction that performed the
divide by zero. Enable trapping of divide by zero by setting the DIV_0_TRP bit in the SCB_CCR to 1. See “Configuration and
Control Register”.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 212

12.9.1.14 Configurable Fault Status Register (Byte Access)
Name: SCB_CFSR (BYTE)

Access: Read/Write

• MMFSR: Memory Management Fault Status Subregister
The flags in the MMFSR subregister indicate the cause of memory access faults. See bitfield [7..0] description in Section
12.9.1.13.

• BFSR: Bus Fault Status Subregister
The flags in the BFSR subregister indicate the cause of a bus access fault. See bitfield [14..8] description in Section 12.9.1.13.

• UFSR: Usage Fault Status Subregister
The flags in the UFSR subregister indicate the cause of a usage fault. See bitfield [31..15] description in Section 12.9.1.13.

Note: The UFSR bits are sticky. This means that as one or more fault occurs, the associated bits are set to 1. A bit that is set
to 1 is cleared to 0 only by writing a 1 to that bit, or by a reset.

The SCB_CFSR indicates the cause of a memory management fault, bus fault, or usage fault. It is byte accessible. The user
can access the SCB_CFSR or its subregisters as follows:

 Access complete SCB_CFSR with a word access to 0xE000ED28.
 Access MMFSR with a byte access to 0xE000ED28.
 Access MMFSR and BFSR with a halfword access to 0xE000ED28.
 Access BFSR with a byte access to 0xE000ED29.
 Access UFSR with a halfword access to 0xE000ED2A.

31 30 29 28 27 26 25 24
UFSR

23 22 21 20 19 18 17 16
UFSR

15 14 13 12 11 10 9 8
BFSR

7 6 5 4 3 2 1 0
MMFSR

 213SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9.1.15 Hard Fault Status Register
Name: SCB_HFSR

Access: Read/Write

The SCB_HFSR gives information about events that activate the hard fault handler. This register is read, write to clear. This
means that bits in the register read normally, but writing a 1 to any bit clears that bit to 0.

• DEBUGEVT: Reserved for Debug Use
When writing to the register, write a 0 to this bit, otherwise the behavior is unpredictable.

• FORCED: Forced Hard Fault
It indicates a forced hard fault, generated by escalation of a fault with configurable priority that cannot be handles, either
because of priority or because it is disabled:

0: No forced hard fault.

1: Forced hard fault.

When this bit is set to 1, the hard fault handler must read the other fault status registers to find the cause of the fault.

• VECTTBL: Bus Fault on a Vector Table
It indicates a bus fault on a vector table read during an exception processing:

0: No bus fault on vector table read.

1: Bus fault on vector table read.

This error is always handled by the hard fault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that was preempted by the
exception.

Note: The HFSR bits are sticky. This means that, as one or more fault occurs, the associated bits are set to 1. A bit that is
set to 1 is cleared to 0 only by writing a 1 to that bit, or by a reset.

31 30 29 28 27 26 25 24
DEBUGEVT FORCED –

23 22 21 20 19 18 17 16
–

15 14 13 12 11 10 9 8
–

7 6 5 4 3 2 1 0
– VECTTBL –

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 214

12.9.1.16 MemManage Fault Address Register
Name: SCB_MMFAR

Access: Read/Write

The SCB_MMFAR contains the address of the location that generated a memory management fault.

• ADDRESS: Memory Management Fault Generation Location Address
When the MMARVALID bit of the MMFSR subregister is set to 1, this field holds the address of the location that generated the
memory management fault.

Notes: 1. When an unaligned access faults, the address is the actual address that faulted. Because a single read or write
instruction can be split into multiple aligned accesses, the fault address can be any address in the range of the
requested access size.

2. Flags in the MMFSR subregister indicate the cause of the fault, and whether the value in the SCB_MMFAR is
valid. See “MMFSR: Memory Management Fault Status Subregister”.

31 30 29 28 27 26 25 24
ADDRESS

23 22 21 20 19 18 17 16
ADDRESS

15 14 13 12 11 10 9 8
ADDRESS

7 6 5 4 3 2 1 0
ADDRESS

 215SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.9.1.17 Bus Fault Address Register
Name: SCB_BFAR

Access: Read/Write

The SCB_BFAR contains the address of the location that generated a bus fault.

• ADDRESS: Bus Fault Generation Location Address
When the BFARVALID bit of the BFSR subregister is set to 1, this field holds the address of the location that generated the bus
fault.

Notes: 1. When an unaligned access faults, the address in the SCB_BFAR is the one requested by the instruction, even if it
is not the address of the fault.

2. Flags in the BFSR indicate the cause of the fault, and whether the value in the SCB_BFAR is valid. See “BFSR:
Bus Fault Status Subregister”.

31 30 29 28 27 26 25 24
ADDRESS

23 22 21 20 19 18 17 16
ADDRESS

15 14 13 12 11 10 9 8
ADDRESS

7 6 5 4 3 2 1 0
ADDRESS

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 216

12.10 System Timer (SysTick)
The processor has a 24-bit system timer, SysTick, that counts down from the reload value to zero, reloads (wraps to)
the value in the SYST_RVR on the next clock edge, then counts down on subsequent clocks.

When the processor is halted for debugging, the counter does not decrement.

The SysTick counter runs on the processor clock. If this clock signal is stopped for low-power mode, the SysTick
counter stops.

Ensure that the software uses aligned word accesses to access the SysTick registers.

The SysTick counter reload and current value are undefined at reset; the correct initialization sequence for the
SysTick counter is:

1. Program the reload value.
2. Clear the current value.
3. Program the Control and Status register.

12.10.1 System Timer (SysTick) User Interface
Table 12-35. System Timer (SYST) Register Mapping

Offset Register Name Access Reset

0xE000E010 SysTick Control and Status Register SYST_CSR Read/Write 0x00000000

0xE000E014 SysTick Reload Value Register SYST_RVR Read/Write Unknown

0xE000E018 SysTick Current Value Register SYST_CVR Read/Write Unknown

0xE000E01C SysTick Calibration Value Register SYST_CALIB Read-only 0x000030D4

 217SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.10.1.1 SysTick Control and Status Register
Name: SYST_CSR

Access: Read/Write

The SysTick SYST_CSR enables the SysTick features.

• COUNTFLAG: Count Flag
Returns 1 if the timer counted to 0 since the last time this was read.

• CLKSOURCE: Clock Source
Indicates the clock source:

0: External Clock.

1: Processor Clock.

• TICKINT: SysTick Exception Request Enable
Enables a SysTick exception request:

0: Counting down to zero does not assert the SysTick exception request.

1: Counting down to zero asserts the SysTick exception request.

The software can use COUNTFLAG to determine if SysTick has ever counted to zero.

• ENABLE: Counter Enable
Enables the counter:

0: Counter disabled.

1: Counter enabled.

When ENABLE is set to 1, the counter loads the RELOAD value from the SYST_RVR and then counts down. On reaching 0, it
sets the COUNTFLAG to 1 and optionally asserts the SysTick depending on the value of TICKINT. It then loads the RELOAD
value again, and begins counting.

31 30 29 28 27 26 25 24
–

23 22 21 20 19 18 17 16
– COUNTFLAG

15 14 13 12 11 10 9 8
–

7 6 5 4 3 2 1 0
– – – – – CLKSOURCE TICKINT ENABLE

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 218

12.10.1.2 SysTick Reload Value Register
Name: SYST_RVR

Access: Read/Write

The SYST_RVR specifies the start value to load into the SYST_CVR.

• RELOAD: SYST_CVR Load Value
Value to load into the SYST_CVR when the counter is enabled and when it reaches 0.

The RELOAD value can be any value in the range 0x00000001 - 0x00FFFFFF. A start value of 0 is possible, but has no effect
because the SysTick exception request and COUNTFLAG are activated when counting from 1 to 0.

The RELOAD value is calculated according to its use: For example, to generate a multi-shot timer with a period of N processor
clock cycles, use a RELOAD value of N-1. If the SysTick interrupt is required every 100 clock pulses, set RELOAD to 99.

31 30 29 28 27 26 25 24
–

23 22 21 20 19 18 17 16
RELOAD

15 14 13 12 11 10 9 8
RELOAD

7 6 5 4 3 2 1 0
RELOAD

 219SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.10.1.3 SysTick Current Value Register
Name: SYST_CVR

Access: Read/Write

The SysTick SYST_CVR contains the current value of the SysTick counter.

• CURRENT: SysTick Counter Current Value
Reads return the current value of the SysTick counter.

A write of any value clears the field to 0, and also clears the SYST_CSR.COUNTFLAG bit to 0.

31 30 29 28 27 26 25 24
–

23 22 21 20 19 18 17 16
CURRENT

15 14 13 12 11 10 9 8
CURRENT

7 6 5 4 3 2 1 0
CURRENT

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 220

12.10.1.4 SysTick Calibration Value Register
Name: SYST_CALIB

Access: Read/Write

The SysTick SYST_CSR indicates the SysTick calibration properties.

• NOREF: No Reference Clock
It indicates whether the device provides a reference clock to the processor:

0: Reference clock provided.

1: No reference clock provided.

If your device does not provide a reference clock, the SYST_CSR.CLKSOURCE bit reads-as-one and ignores writes.

• SKEW: TENMS Value Verification
It indicates whether the TENMS value is exact:

0: TENMS value is exact.

1: TENMS value is inexact, or not given.

An inexact TENMS value can affect the suitability of SysTick as a software real time clock.

• TENMS: Ten Milliseconds
The reload value for 10 ms (100 Hz) timing is subject to system clock skew errors. If the value reads as zero, the calibration
value is not known.

The TENMS field default value is 0x000030D4 (12500 decimal).

In order to achieve a 1 ms timebase on SysTick, the TENMS field must be programmed to a value corresponding to the pro-
cessor clock frequency (in kHz) divided by 8.

For example, for devices running the processor clock at 48 MHz, the TENMS field value must be 0x00001770 (48000 kHz/8).

31 30 29 28 27 26 25 24
NOREF SKEW –

23 22 21 20 19 18 17 16
TENMS

15 14 13 12 11 10 9 8
TENMS

7 6 5 4 3 2 1 0
TENMS

 221SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.11 Memory Protection Unit (MPU)
The MPU divides the memory map into a number of regions, and defines the location, size, access permissions, and
memory attributes of each region. It supports:

 Independent attribute settings for each region.
 Overlapping regions.
 Export of memory attributes to the system.

The memory attributes affect the behavior of memory accesses to the region. The Cortex-M4 MPU defines:

 Eight separate memory regions, 0 - 7.
 A background region.

When memory regions overlap, a memory access is affected by the attributes of the region with the highest number.
For example, the attributes for region 7 take precedence over the attributes of any region that overlaps region 7.

The background region has the same memory access attributes as the default memory map, but is accessible from
privileged software only.

The Cortex-M4 MPU memory map is unified. This means that instruction accesses and data accesses have the same
region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates a memory manage-
ment fault. This causes a fault exception, and might cause the termination of the process in an OS environment.

In an OS environment, the kernel can update the MPU region setting dynamically based on the process to be exe-
cuted. Typically, an embedded OS uses the MPU for memory protection.

The configuration of MPU regions is based on memory types (see “Memory Regions, Types and Attributes”).
Table 12-36 shows the possible MPU region attributes. These include Shareability and cache behavior attributes that
are not relevant to most microcontroller implementations. See “MPU Configuration for a Microcontroller” for guidelines
for programming such an implementation.

Table 12-36. Memory Attributes Summary

Memory Type Shareability Other Attributes Description

Strongly-ordered - - All accesses to Strongly-ordered memory occur in program
order. All Strongly-ordered regions are assumed to be shared.

Device
Shared - Memory-mapped peripherals that several processors share.

Non-shared - Memory-mapped peripherals that only a single processor
uses.

Normal
Shared - Normal memory that is shared between several processors.

Non-shared - Normal memory that only a single processor uses.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 222

12.11.1 MPU Access Permission Attributes
This section describes the MPU access permission attributes. The access permission bits (TEX, C, B, S, AP, and XN)
of the MPU_RASR control the access to the corresponding memory region. If an access is made to an area of
memory without the required permissions, then the MPU generates a permission fault.

The table below shows the encodings for the TEX, C, B, and S access permission bits.

Notes: 1. The MPU ignores the value of this bit.

Table 12-38 shows the cache policy for memory attribute encodings with a TEX value is in the range 4 - 7.

Table 12-37. TEX, C, B, and S Encoding

TEX C B S Memory Type Shareability Other Attributes

b000

0

0 x (1) Strongly-
ordered Shareable -

1 x (1) Device Shareable -

1

0
0

Normal
Not
shareable Outer and inner write-through. No write

allocate.
1 Shareable

1
0

Normal
Not
shareable Outer and inner write-back. No write

allocate.
1 Shareable

b001

0

0
0

Normal
Not
shareable -

1 Shareable

1 x (1) Reserved encoding -

1

0 x (1) Implementation defined
attributes. -

1
0

Normal
Not
shareable Outer and inner write-back. Write and read

allocate.
1 Shareable

b010
0

0 x (1) Device Not
shareable Nonshared Device.

1 x (1) Reserved encoding -

1 x (1) x (1) Reserved encoding -

b1BB A A
0

Normal
Not
shareable -

1 Shareable

Table 12-38. Cache Policy for Memory Attribute Encoding

Encoding, AA or BB Corresponding Cache Policy

00 Non-cacheable

01 Write back, write and read allocate

10 Write through, no write allocate

11 Write back, no write allocate

 223SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Table 12-39 shows the AP encodings that define the access permissions for privileged and unprivileged software.

12.11.1.1 MPU Mismatch
When an access violates the MPU permissions, the processor generates a memory management fault, see “Excep-
tions and Interrupts”. The MMFSR indicates the cause of the fault. See “MMFSR: Memory Management Fault Status
Subregister” for more information.

12.11.1.2 Updating an MPU Region
To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR and MPU_RASRs. Each register can
be programed separately, or a multiple-word write can be used to program all of these registers. MPU_RBAR and
MPU_RASR aliases can be used to program up to four regions simultaneously using an STM instruction.

12.11.1.3 Updating an MPU Region Using Separate Words
Simple code to configure one region:

; R1 = region number
; R2 = size/enable
; R3 = attributes
; R4 = address
LDR R0,=MPU_RNR ; 0xE000ED98, MPU region number register
STR R1, [R0, #0x0] ; Region Number
STR R4, [R0, #0x4] ; Region Base Address
STRH R2, [R0, #0x8] ; Region Size and Enable
STRH R3, [R0, #0xA] ; Region Attribute

Disable a region before writing new region settings to the MPU, if the region being changed was previously enabled.
For example:

; R1 = region number
; R2 = size/enable
; R3 = attributes
; R4 = address
LDR R0,=MPU_RNR ; 0xE000ED98, MPU region number register
STR R1, [R0, #0x0] ; Region Number
BIC R2, R2, #1 ; Disable
STRH R2, [R0, #0x8] ; Region Size and Enable
STR R4, [R0, #0x4] ; Region Base Address
STRH R3, [R0, #0xA] ; Region Attribute
ORR R2, #1 ; Enable
STRH R2, [R0, #0x8] ; Region Size and Enable

Table 12-39. AP Encoding

AP[2:0] Privileged
Permissions

Unprivileged
Permissions

Description

000 No access No access All accesses generate a permission fault

001 RW No access Access from privileged software only

010 RW RO Writes by unprivileged software generate a permission fault

011 RW RW Full access

100 Unpredictable Unpredictable Reserved

101 RO No access Reads by privileged software only

110 RO RO Read only, by privileged or unprivileged software

111 RO RO Read only, by privileged or unprivileged software

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 224

The software must use memory barrier instructions:

 Before the MPU setup, if there might be outstanding memory transfers, such as buffered writes, that might be
affected by the change in MPU settings.

 After the MPU setup, if it includes memory transfers that must use the new MPU settings.
However, memory barrier instructions are not required if the MPU setup process starts by entering an exception han-
dler, or is followed by an exception return, because the exception entry and exception return mechanisms cause
memory barrier behavior.

The software does not need any memory barrier instructions during an MPU setup, because it accesses the MPU
through the PPB, which is a Strongly-Ordered memory region.

For example, if the user wants all of the memory access behavior to take effect immediately after the programming
sequence, a DSB instruction and an ISB instruction must be used. A DSB is required after changing MPU settings,
such as at the end of a context switch. An ISB is required if the code that programs the MPU region or regions is
entered using a branch or call. If the programming sequence is entered using a return from exception, or by taking an
exception, then an ISB is not required.

12.11.1.4 Updating an MPU Region Using Multi-word Writes
The user can program directly using multi-word writes, depending on how the information is divided. Consider the
following reprogramming:

; R1 = region number
; R2 = address
; R3 = size, attributes in one
LDR R0, =MPU_RNR ; 0xE000ED98, MPU region number register
STR R1, [R0, #0x0] ; Region Number
STR R2, [R0, #0x4] ; Region Base Address
STR R3, [R0, #0x8] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:

; R1 = region number
; R2 = address
; R3 = size, attributes in one
LDR R0, =MPU_RNR ; 0xE000ED98, MPU region number register
STM R0, {R1-R3} ; Region Number, address, attribute, size and enable

This can be done in two words for pre-packed information. This means that the MPU_RBAR contains the required
region number and had the VALID bit set to 1. See “MPU Region Base Address Register”. Use this when the data is
statically packed, for example in a boot loader:

; R1 = address and region number in one
; R2 = size and attributes in one
LDR R0, =MPU_RBAR ; 0xE000ED9C, MPU Region Base register
STR R1, [R0, #0x0] ; Region base address and
 ; region number combined with VALID (bit 4) set to 1
STR R2, [R0, #0x4] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:

; R1 = address and region number in one
; R2 = size and attributes in one
LDR R0,=MPU_RBAR ; 0xE000ED9C, MPU Region Base register
STM R0, {R1-R2} ; Region base address, region number and VALID bit,
 ; and Region Attribute, Size and Enable

 225SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.11.1.5 Subregions
Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the corresponding bit in the SRD field
of the MPU_RASR field to disable a subregion. See “MPU Region Attribute and Size Register”. The least significant
bit of SRD controls the first subregion, and the most significant bit controls the last subregion. Disabling a subregion
means another region overlapping the disabled range matches instead. If no other enabled region overlaps the
disabled subregion, the MPU issues a fault.

Regions of 32, 64, and 128 bytes do not support subregions. With regions of these sizes, the SRD field must be set to
0x00, otherwise the MPU behavior is unpredictable.

12.11.1.6 Example of SRD Use
Two regions with the same base address overlap. Region 1 is 128 KB, and region 2 is 512 KB. To ensure the attri-
butes from region 1 apply to the first 128 KB region, set the SRD field for region 2 to b00000011 to disable the first two
subregions, as in Figure 12-13 below:

Figure 12-13. SRD Use

12.11.1.7 MPU Design Hints And Tips
To avoid unexpected behavior, disable the interrupts before updating the attributes of a region that the interrupt han-
dlers might access.

Ensure the software uses aligned accesses of the correct size to access MPU registers:

 Except for the MPU_RASR, it must use aligned word accesses.
 For the MPU_RASR, it can use byte or aligned halfword or word accesses.

The processor does not support unaligned accesses to MPU registers.

When setting up the MPU, and if the MPU has previously been programmed, disable unused regions to prevent any
previous region settings from affecting the new MPU setup.

MPU Configuration for a Microcontroller

Usually, a microcontroller system has only a single processor and no caches. In such a system, program the MPU as
follows:

In most microcontroller implementations, the shareability and cache policy attributes do not affect the system
behavior. However, using these settings for the MPU regions can make the application code more portable. The
values given are for typical situations. In special systems, such as multiprocessor designs or designs with a separate
DMA engine, the shareability attribute might be important. In these cases, refer to the recommendations of the
memory device manufacturer.

Region 1

Region 2, with
subregions

Base address of both regions

Offset from
base address

0
64KB

128KB
192KB
256KB
320KB
384KB
448KB
512KB

Disabled subregion
Disabled subregion

Table 12-40. Memory Region Attributes for a Microcontroller
Memory Region TEX C B S Memory Type and Attributes
Flash memory b000 1 0 0 Normal memory, non-shareable, write-through

Internal SRAM b000 1 0 1 Normal memory, shareable, write-through

External SRAM b000 1 1 1 Normal memory, shareable, write-back, write-allocate

Peripherals b000 0 1 1 Device memory, shareable

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 226

12.11.2 Memory Protection Unit (MPU) User Interface
Table 12-41. Memory Protection Unit (MPU) Register Mapping

Offset Register Name Access Reset

0xE000ED90 MPU Type Register MPU_TYPE Read-only 0x00000800

0xE000ED94 MPU Control Register MPU_CTRL Read/Write 0x00000000

0xE000ED98 MPU Region Number Register MPU_RNR Read/Write 0x00000000

0xE000ED9C MPU Region Base Address Register MPU_RBAR Read/Write 0x00000000

0xE000EDA0 MPU Region Attribute and Size Register MPU_RASR Read/Write 0x00000000

0xE000EDA4 MPU Region Base Address Register Alias 1 MPU_RBAR_A1 Read/Write 0x00000000

0xE000EDA8 MPU Region Attribute and Size Register Alias 1 MPU_RASR_A1 Read/Write 0x00000000

0xE000EDAC MPU Region Base Address Register Alias 2 MPU_RBAR_A2 Read/Write 0x00000000

0xE000EDB0 MPU Region Attribute and Size Register Alias 2 MPU_RASR_A2 Read/Write 0x00000000

0xE000EDB4 MPU Region Base Address Register Alias 3 MPU_RBAR_A3 Read/Write 0x00000000

0xE000EDB8 MPU Region Attribute and Size Register Alias 3 MPU_RASR_A3 Read/Write 0x00000000

 227SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.11.2.1 MPU Type Register
Name: MPU_TYPE

Access: Read-only

The MPU_TYPE register indicates whether the MPU is present, and if so, how many regions it supports.

• IREGION: Instruction Region
Indicates the number of supported MPU instruction regions.

Always contains 0x00. The MPU memory map is unified and is described by the DREGION field.

• DREGION: Data Region
Indicates the number of supported MPU data regions:

0x08 = Eight MPU regions.

• SEPARATE: Separate Instruction
Indicates support for unified or separate instruction and date memory maps:

0: Unified.

31 30 29 28 27 26 25 24
–

23 22 21 20 19 18 17 16
IREGION

15 14 13 12 11 10 9 8
DREGION

7 6 5 4 3 2 1 0
– SEPARATE

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 228

12.11.2.2 MPU Control Register
Name: MPU_CTRL

Access: Read/Write

The MPU CTRL register enables the MPU, enables the default memory map background region, and enables the use of the
MPU when in the hard fault, Non-maskable Interrupt (NMI), and FAULTMASK escalated handlers.

• PRIVDEFENA: Privileged Default Memory Map Enable
Enables privileged software access to the default memory map:

0: If the MPU is enabled, disables the use of the default memory map. Any memory access to a location not covered by any
enabled region causes a fault.

1: If the MPU is enabled, enables the use of the default memory map as a background region for privileged software accesses.

When enabled, the background region acts as a region number -1. Any region that is defined and enabled has priority over this
default map.

If the MPU is disabled, the processor ignores this bit.

• HFNMIENA: Hard Fault and NMI Enable
Enables the operation of MPU during hard fault, NMI, and FAULTMASK handlers.

When the MPU is enabled:

0: MPU is disabled during hard fault, NMI, and FAULTMASK handlers, regardless of the value of the ENABLE bit.

1: The MPU is enabled during hard fault, NMI, and FAULTMASK handlers.

When the MPU is disabled, if this bit is set to 1, the behavior is unpredictable.

• ENABLE: MPU Enable
Enables the MPU:

0: MPU disabled.

1: MPU enabled.

When ENABLE and PRIVDEFENA are both set to 1:

• For privileged accesses, the default memory map is as described in “Memory Model”. Any access by privileged software
that does not address an enabled memory region behaves as defined by the default memory map.

• Any access by unprivileged software that does not address an enabled memory region causes a memory management
fault.

XN and Strongly-ordered rules always apply to the System Control Space regardless of the value of the ENABLE bit.

31 30 29 28 27 26 25 24
–

23 22 21 20 19 18 17 16
–

15 14 13 12 11 10 9 8
–

7 6 5 4 3 2 1 0
– PRIVDEFENA HFNMIENA ENABLE

 229SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled for the system to function unless the
PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is set to 1 and no regions are enabled, then only privileged software can
operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the same memory attributes as if the
MPU is not implemented. The default memory map applies to accesses from both privileged and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are always permitted. Other areas are
accessible based on regions and whether PRIVDEFENA is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the handler for an exception with
priority –1 or –2. These priorities are only possible when handling a hard fault or NMI exception, or when FAULTMASK is
enabled. Setting the HFNMIENA bit to 1 enables the MPU when operating with these two priorities.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 230

12.11.2.3 MPU Region Number Register
Name: MPU_RNR

Access: Read/Write

The MPU_RNR selects which memory region is referenced by the MPU_RBAR and MPU_RASRs.

• REGION: MPU Region Referenced by the MPU_RBAR and MPU_RASRs
Indicates the MPU region referenced by the MPU_RBAR and MPU_RASRs.

The MPU supports 8 memory regions, so the permitted values of this field are 0 - 7.

Normally, the required region number is written to this register before accessing the MPU_RBAR or MPU_RASR. However,
the region number can be changed by writing to the MPU_RBAR with the VALID bit set to 1; see “MPU Region Base Address
Register”. This write updates the value of the REGION field.

31 30 29 28 27 26 25 24
–

23 22 21 20 19 18 17 16
–

15 14 13 12 11 10 9 8
–

7 6 5 4 3 2 1 0
REGION

 231SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.11.2.4 MPU Region Base Address Register
Name: MPU_RBAR

Access: Read/Write

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

• ADDR: Region Base Address
Software must ensure that the value written to the ADDR field aligns with the size of the selected region (SIZE field in the
MPU_RASR).

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies the
complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB, for
example, at 0x00010000 or 0x00020000.

• VALID: MPU Region Number Valid
Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and
ignores the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for the
region specified in the REGION field.

Always reads as zero.

• REGION: MPU Region
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

31 30 29 28 27 26 25 24
ADDR

23 22 21 20 19 18 17 16
ADDR

15 14 13 12 11 10 9 8
ADDR

7 6 5 4 3 2 1 0
ADDR VALID REGION

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 232

12.11.2.5 MPU Region Attribute and Size Register
Name: MPU_RASR

Access: Read/Write

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and enables
that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:

• The most significant halfword holds the region attributes.
• The least significant halfword holds the region size, and the region and subregion enable bits.

• XN: Instruction Access Disable
0: Instruction fetches enabled.

1: Instruction fetches disabled.

• AP: Access Permission
See Table 12-39.

• TEX, C, B: Memory Access Attributes
See Table 12-37.

• S: Shareable
See Table 12-37.

• SRD: Subregion Disable
For each bit in this field:

0: Corresponding subregion is enabled.

1: Corresponding subregion is disabled.

See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD
field as 0x00.

31 30 29 28 27 26 25 24
– XN – AP

23 22 21 20 19 18 17 16
– TEX S C B

15 14 13 12 11 10 9 8
SRD

7 6 5 4 3 2 1 0
– SIZE ENABLE

 233SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• SIZE: Size of the MPU Protection Region
The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR as follows:

 (Region size in bytes) = 2(SIZE+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE
values, with the corresponding region size and value of N in the MPU_RBAR.

Note: 1. In the MPU_RBAR; see “MPU Region Base Address Register”.

• ENABLE: Region Enable

Note: For information about access permission, see “MPU Access Permission Attributes”.

SIZE Value Region Size Value of N (1) Note

b00100 (4) 32 B 5 Minimum permitted size

b01001 (9) 1 KB 10 -

b10011 (19) 1 MB 20 -

b11101 (29) 1 GB 30 -

b11111 (31) 4 GB b01100 Maximum possible size

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 234

12.11.2.6 MPU Region Base Address Register Alias 1
Name: MPU_RBAR_A1
Access: Read/Write

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.
Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

• ADDR: Region Base Address
Software must ensure that the value written to the ADDR field aligns with the size of the selected region.
The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified by
the SIZE field in the MPU_RASR, defines the value of N:
N = Log2(Region size in bytes).
If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies the
complete memory map, and the base address is 0x00000000.
The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB, for
example, at 0x00010000 or 0x00020000.

• VALID: MPU Region Number Valid
Write:
0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and
ignores the value of the REGION field.
1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for the
region specified in the REGION field.
Always reads as zero.

• REGION: MPU Region
For the behavior on writes, see the description of the VALID field.
On reads, returns the current region number, as specified by the MPU_RNR.

31 30 29 28 27 26 25 24
ADDR

23 22 21 20 19 18 17 16
ADDR

15 14 13 12 11 10 9 8
ADDR

7 6 5 4 3 2 1 0
ADDR VALID REGION

 235SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.11.2.7 MPU Region Attribute and Size Register Alias 1
Name: MPU_RASR_A1
Access: Read/Write

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and enables
that region and any subregions.
MPU_RASR is accessible using word or halfword accesses:

• The most significant halfword holds the region attributes.
• The least significant halfword holds the region size, and the region and subregion enable bits.

• XN: Instruction Access Disable
0: Instruction fetches enabled.
1: Instruction fetches disabled.

• AP: Access Permission
See Table 12-39.

• TEX, C, B: Memory Access Attributes
See Table 12-37.

• S: Shareable
See Table 12-37.

• SRD: Subregion Disable
For each bit in this field:
0: Corresponding subregion is enabled.
1: Corresponding subregion is disabled.
See “Subregions” for more information.
Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD
field as 0x00.

31 30 29 28 27 26 25 24
– XN – AP

23 22 21 20 19 18 17 16
– TEX S C B

15 14 13 12 11 10 9 8
SRD

7 6 5 4 3 2 1 0
– SIZE ENABLE

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 236

• SIZE: Size of the MPU Protection Region
The minimum permitted value is 3 (b00010).
The SIZE field defines the size of the MPU memory region specified by the MPU_RNR as follows:
 (Region size in bytes) = 2(SIZE+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE
values, with the corresponding region size and value of N in the MPU_RBAR.

Note: 1. In the MPU_RBAR; see “MPU Region Base Address Register”.

• ENABLE: Region Enable
Note: For information about access permission, see “MPU Access Permission Attributes”.

SIZE Value Region Size Value of N (1) Note

b00100 (4) 32 B 5 Minimum permitted size

b01001 (9) 1 KB 10 –

b10011 (19) 1 MB 20 –

b11101 (29) 1 GB 30 –

b11111 (31) 4 GB b01100 Maximum possible size

 237SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.11.2.8 MPU Region Base Address Register Alias 2
Name: MPU_RBAR_A2
Access: Read/Write

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.
Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

• ADDR: Region Base Address
Software must ensure that the value written to the ADDR field aligns with the size of the selected region.
The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified by
the SIZE field in the MPU_RASR, defines the value of N:
N = Log2(Region size in bytes).
If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies the
complete memory map, and the base address is 0x00000000.
The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB, for
example, at 0x00010000 or 0x00020000.

• VALID: MPU Region Number Valid
Write:
0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and
ignores the value of the REGION field.
1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for the
region specified in the REGION field.
Always reads as zero.

• REGION: MPU Region
For the behavior on writes, see the description of the VALID field.
On reads, returns the current region number, as specified by the MPU_RNR.

31 30 29 28 27 26 25 24
ADDR

23 22 21 20 19 18 17 16
ADDR

15 14 13 12 11 10 9 8
ADDR

7 6 5 4 3 2 1 0
ADDR VALID REGION

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 238

12.11.2.9 MPU Region Attribute and Size Register Alias 2
Name: MPU_RASR_A2
Access: Read/Write

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and enables
that region and any subregions.
MPU_RASR is accessible using word or halfword accesses:

• The most significant halfword holds the region attributes.
• The least significant halfword holds the region size, and the region and subregion enable bits.

• XN: Instruction Access Disable
0: Instruction fetches enabled.
1: Instruction fetches disabled.

• AP: Access Permission
See Table 12-39.

• TEX, C, B: Memory Access Attributes
See Table 12-37.

• S: Shareable
See Table 12-37.

• SRD: Subregion Disable
For each bit in this field:
0: Corresponding subregion is enabled.
1: Corresponding subregion is disabled.
See “Subregions” for more information.
Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD
field as 0x00.

31 30 29 28 27 26 25 24
– XN – AP

23 22 21 20 19 18 17 16
– TEX S C B

15 14 13 12 11 10 9 8
SRD

7 6 5 4 3 2 1 0
– SIZE ENABLE

 239SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• SIZE: Size of the MPU Protection Region
The minimum permitted value is 3 (b00010).
The SIZE field defines the size of the MPU memory region specified by the MPU_RNR as follows:
 (Region size in bytes) = 2(SIZE+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE
values, with the corresponding region size and value of N in the MPU_RBAR.

Note: 1. In the MPU_RBAR; see “MPU Region Base Address Register”.

• ENABLE: Region Enable
Note: For information about access permission, see “MPU Access Permission Attributes”.

SIZE Value Region Size Value of N (1) Note

b00100 (4) 32 B 5 Minimum permitted size

b01001 (9) 1 KB 10 –

b10011 (19) 1 MB 20 –

b11101 (29) 1 GB 30 –

b11111 (31) 4 GB b01100 Maximum possible size

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 240

12.11.2.10 MPU Region Base Address Register Alias 3
Name: MPU_RBAR_A3
Access: Read/Write

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.
Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

• ADDR: Region Base Address
Software must ensure that the value written to the ADDR field aligns with the size of the selected region.
The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified by
the SIZE field in the MPU_RASR, defines the value of N:
N = Log2(Region size in bytes).
If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies the
complete memory map, and the base address is 0x00000000.
The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB, for
example, at 0x00010000 or 0x00020000.

• VALID: MPU Region Number Valid
Write:
0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and
ignores the value of the REGION field.
1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for the
region specified in the REGION field.
Always reads as zero.

• REGION: MPU Region
For the behavior on writes, see the description of the VALID field.
On reads, returns the current region number, as specified by the MPU_RNR.

31 30 29 28 27 26 25 24
ADDR

23 22 21 20 19 18 17 16
ADDR

15 14 13 12 11 10 9 8
ADDR

7 6 5 4 3 2 1 0
ADDR VALID REGION

 241SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.11.2.11 MPU Region Attribute and Size Register Alias 3
Name: MPU_RASR_A3
Access: Read/Write

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and enables
that region and any subregions.
MPU_RASR is accessible using word or halfword accesses:

• The most significant halfword holds the region attributes.
• The least significant halfword holds the region size, and the region and subregion enable bits.

• XN: Instruction Access Disable
0: Instruction fetches enabled.
1: Instruction fetches disabled.

• AP: Access Permission
See Table 12-39.

• TEX, C, B: Memory Access Attributes
See Table 12-37.

• S: Shareable
See Table 12-37.

• SRD: Subregion Disable
For each bit in this field:
0: Corresponding subregion is enabled.
1: Corresponding subregion is disabled.
See “Subregions” for more information.
Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD
field as 0x00.

31 30 29 28 27 26 25 24
– XN – AP

23 22 21 20 19 18 17 16
– TEX S C B

15 14 13 12 11 10 9 8
SRD

7 6 5 4 3 2 1 0
– SIZE ENABLE

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 242

• SIZE: Size of the MPU Protection Region
The minimum permitted value is 3 (b00010).
The SIZE field defines the size of the MPU memory region specified by the MPU_RNR as follows:
 (Region size in bytes) = 2(SIZE+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE
values, with the corresponding region size and value of N in the MPU_RBAR.

Note: 1. In the MPU_RBAR; see “MPU Region Base Address Register”.

• ENABLE: Region Enable
Note: For information about access permission, see “MPU Access Permission Attributes”.

SIZE Value Region Size Value of N (1) Note

b00100 (4) 32 B 5 Minimum permitted size

b01001 (9) 1 KB 10 –

b10011 (19) 1 MB 20 –

b11101 (29) 1 GB 30 –

b11111 (31) 4 GB b01100 Maximum possible size

 243SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.12 Floating Point Unit (FPU)
The Cortex-M4F FPU implements the FPv4-SP floating-point extension.

The FPU fully supports single-precision add, subtract, multiply, divide, multiply and accumulate, and square root
operations. It also provides conversions between fixed-point and floating-point data formats, and floating-point
constant instructions.

The FPU provides floating-point computation functionality that is compliant with the ANSI/IEEE Std 754-2008, IEEE
Standard for Binary Floating-Point Arithmetic, referred to as the IEEE 754 standard.

The FPU contains 32 single-precision extension registers, which can also be accessed as 16 doubleword registers for
load, store, and move operations.

12.12.1 Enabling the FPU
The FPU is disabled from reset. It must be enabled before any floating-point instructions can be used. An example
code sequence for enabling the FPU in both privileged and user modes is showed below. The processor must be in
privileged mode to read from and write to the CPACR.

Example of Enabling the FPU:

; CPACR is located at address 0xE000ED88
LDR.W R0, =0xE000ED88
; Read CPACR
LDR R1, [R0]
; Set bits 20-23 to enable CP10 and CP11 coprocessors
ORR R1, R1, #(0xF << 20)
; Write back the modified value to the CPACR
STR R1, [R0]; wait for store to complete
DSB
;reset pipeline now the FPU is enabled
ISB

12.12.2 Floating Point Unit (FPU) User Interface

Table 12-42. Floating Point Unit (FPU) Register Mapping

Offset Register Name Access Reset

0xE000ED88 Coprocessor Access Control Register CPACR Read/Write 0x00000000

0xE000EF34 Floating-point Context Control Register FPCCR Read/Write 0xC0000000

0xE000EF38 Floating-point Context Address Register FPCAR Read/Write –

– Floating-point Status Control Register FPSCR Read/Write –

0xE000E01C Floating-point Default Status Control Register FPDSCR Read/Write 0x00000000

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 244

12.12.2.1 Coprocessor Access Control Register
Name: CPACR

Access: Read/Write

The CPACR specifies the access privileges for coprocessors.

• CP10: Access Privileges for Coprocessor 10
The possible values of each field are:

0: Access denied. Any attempted access generates a NOCP UsageFault.

1: Privileged access only. An unprivileged access generates a NOCP fault.

2: Reserved. The result of any access is unpredictable.

3: Full access.

• CP11: Access Privileges for Coprocessor 11
The possible values of each field are:

0: Access denied. Any attempted access generates a NOCP UsageFault.

1: Privileged access only. An unprivileged access generates a NOCP fault.

2: Reserved. The result of any access is unpredictable.

3: Full access.

31 30 29 28 27 26 25 24
–

23 22 21 20 19 18 17 16
CP11 CP10 –

15 14 13 12 11 10 9 8
–

7 6 5 4 3 2 1 0
–

 245SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.12.2.2 Floating-point Context Control Register
Name: FPCCR

Access: Read/Write

The FPCCR sets or returns FPU control data.

• ASPEN: Automatic Hardware State Preservation And Restoration
Enables CONTROL bit [2] setting on execution of a floating-point instruction. This results in an automatic hardware state
preservation and restoration, for floating-point context, on exception entry and exit.

0: Disable CONTROL bit [2] setting on execution of a floating-point instruction.

1: Enable CONTROL bit [2] setting on execution of a floating-point instruction.

• LSPEN: Automatic Lazy State Preservation
0: Disable automatic lazy state preservation for floating-point context.

1: Enable automatic lazy state preservation for floating-point context.

• MONRDY: Debug Monitor Ready
0: DebugMonitor is disabled or the priority did not permit to set MON_PEND when the floating-point stack frame was allocated.

1: DebugMonitor is enabled and the priority permitted to set MON_PEND when the floating-point stack frame was allocated.

• BFRDY: Bus Fault Ready
0: BusFault is disabled or the priority did not permit to set the BusFault handler to the pending state when the floating-point
stack frame was allocated.

1: BusFault is enabled and the priority permitted to set the BusFault handler to the pending state when the floating-point stack
frame was allocated.

• MMRDY: Memory Management Ready
0: MemManage is disabled or the priority did not permit to set the MemManage handler to the pending state when the floating-
point stack frame was allocated.

1: MemManage is enabled and the priority permitted to set the MemManage handler to the pending state when the floating-
point stack frame was allocated.

• HFRDY: Hard Fault Ready
0: The priority did not permit to set the HardFault handler to the pending state when the floating-point stack frame was
allocated.

1: The priority permitted to set the HardFault handler to the pending state when the floating-point stack frame was allocated.

31 30 29 28 27 26 25 24
ASPEN LSPEN –

23 22 21 20 19 18 17 16
–

15 14 13 12 11 10 9 8
– MONRDY

7 6 5 4 3 2 1 0
– BFRDY MMRDY HFRDY THREAD – USER LSPACT

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 246

• THREAD: Thread Mode
0: The mode was not the Thread Mode when the floating-point stack frame was allocated.

1: The mode was the Thread Mode when the floating-point stack frame was allocated.

• USER: User Privilege Level
0: The privilege level was not User when the floating-point stack frame was allocated.

1: The privilege level was User when the floating-point stack frame was allocated.

• LSPACT: Lazy State Preservation Active
0: The lazy state preservation is not active.

1: The lazy state preservation is active. The floating-point stack frame has been allocated but saving the state to it has been
deferred.

 247SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.12.2.3 Floating-point Context Address Register
Name: FPCAR

Access: Read/Write

The FPCAR holds the location of the unpopulated floating-point register space allocated on an exception stack frame.

• ADDRESS: Location of Unpopulated Floating-point Register Space Allocated on an Exception Stack Frame
The location of the unpopulated floating-point register space allocated on an exception stack frame.

31 30 29 28 27 26 25 24
ADDRESS

23 22 21 20 19 18 17 16
ADDRESS

15 14 13 12 11 10 9 8
ADDRESS

7 6 5 4 3 2 1 0
ADDRESS –

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 248

12.12.2.4 Floating-point Status Control Register
Name: FPSCR

Access: Read/Write

The FPSCR provides all necessary User level control of the floating-point system.

• N: Negative Condition Code Flag
Floating-point comparison operations update this flag.

• Z: Zero Condition Code Flag
Floating-point comparison operations update this flag.

• C: Carry Condition Code Flag
Floating-point comparison operations update this flag.

• V: Overflow Condition Code Flag
Floating-point comparison operations update this flag.

• AHP: Alternative Half-precision Control
0: IEEE half-precision format selected.

1: Alternative half-precision format selected.

• DN: Default NaN Mode Control
0: NaN operands propagate through to the output of a floating-point operation.

1: Any operation involving one or more NaNs returns the Default NaN.

• FZ: Flush-to-zero Mode Control
0: Flush-to-zero mode disabled. The behavior of the floating-point system is fully compliant with the IEEE 754 standard.

1: Flush-to-zero mode enabled.

• RMode: Rounding Mode Control
The encoding of this field is:

0b00: Round to Nearest (RN) mode.

0b01: Round towards Plus Infinity (RP) mode.

0b10: Round towards Minus Infinity (RM) mode.

0b11: Round towards Zero (RZ) mode.

The specified rounding mode is used by almost all floating-point instructions.

31 30 29 28 27 26 25 24
N Z C V – AHP DN FZ

23 22 21 20 19 18 17 16
RMode –

15 14 13 12 11 10 9 8
–

7 6 5 4 3 2 1 0
IDC – IXC UFC OFC DZC IOC

 249SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• IDC: Input Denormal Cumulative Exception
IDC is a cumulative exception bit for floating-point exception; see also bits [4:0].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

• IXC: Inexact Cumulative Exception
IXC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

• UFC: Underflow Cumulative Exception
UFC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

• OFC: Overflow Cumulative Exception
OFC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

• DZC: Division by Zero Cumulative Exception
DZC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

• IOC: Invalid Operation Cumulative Exception
IOC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 250

12.12.2.5 Floating-point Default Status Control Register
Name: FPDSCR

Access: Read/Write

The FPDSCR holds the default values for the floating-point status control data.

• AHP: FPSCR.AHP Default Value
Default value for FPSCR.AHP.

• DN: FPSCR.DN Default Value
Default value for FPSCR.DN.

• FZ: FPSCR.FZ Default Value
Default value for FPSCR.FZ.

• RMode: FPSCR.RMode Default Value
Default value for FPSCR.RMode.

31 30 29 28 27 26 25 24
– AHP DN FZ

23 22 21 20 19 18 17 16
RMode –

15 14 13 12 11 10 9 8
–

7 6 5 4 3 2 1 0
–

 251SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

12.13 Glossary
This glossary describes some of the terms used in technical documents from ARM.

Abort A mechanism that indicates to a processor that the value associated with a memory access is invalid.
An abort can be caused by the external or internal memory system as a result of attempting to access
invalid instruction or data memory.

Aligned A data item stored at an address that is divisible by the number of bytes that defines the data size is
said to be aligned. Aligned words and halfwords have addresses that are divisible by four and two
respectively. The terms word-aligned and halfword-aligned therefore stipulate addresses that are
divisible by four and two respectively.

Banked register A register that has multiple physical copies, where the state of the processor determines which copy is
used. The Stack Pointer, SP (R13) is a banked register.

Base register In instruction descriptions, a register specified by a load or store instruction that is used to hold the
base value for the instruction’s address calculation. Depending on the instruction and its addressing
mode, an offset can be added to or subtracted from the base register value to form the address that is
sent to memory.

See also “Index register”.

Big-endian (BE) Byte ordering scheme in which bytes of decreasing significance in a data word are stored at
increasing addresses in memory.

See also “Byte-invariant”, “Endianness”, “Little-endian (LE)”.

Big-endian memory Memory in which:
a byte or halfword at a word-aligned address is the most significant byte or halfword within the word at
that address, a byte at a halfword-aligned address is the most significant byte within the halfword at
that address.

See also “Little-endian memory”.

Breakpoint A breakpoint is a mechanism provided by debuggers to identify an instruction at which program
execution is to be halted. Breakpoints are inserted by the programmer to enable inspection of register
contents, memory locations, variable values at fixed points in the program execution to test that the
program is operating correctly. Breakpoints are removed after the program is successfully tested.

Byte-invariant In a byte-invariant system, the address of each byte of memory remains unchanged when switching
between little-endian and big-endian operation. When a data item larger than a byte is loaded from or
stored to memory, the bytes making up that data item are arranged into the correct order depending
on the endianness of the memory access.
An ARM byte-invariant implementation also supports unaligned halfword and word memory accesses.
It expects multi-word accesses to be word-aligned.

Condition field A four-bit field in an instruction that specifies a condition under which the instruction can execute.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 252

Conditional execution If the condition code flags indicate that the corresponding condition is true when the instruction starts
executing, it executes normally. Otherwise, the instruction does nothing.

Context The environment that each process operates in for a multitasking operating system. In ARM
processors, this is limited to mean the physical address range that it can access in memory and the
associated memory access permissions.

Coprocessor A processor that supplements the main processor. Cortex-M4 does not support any coprocessors.

Debugger A debugging system that includes a program, used to detect, locate, and correct software faults,
together with custom hardware that supports software debugging.

Direct Memory Access
(DMA)

An operation that accesses main memory directly, without the processor performing any accesses to
the data concerned.

Doubleword A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise stated.

Doubleword-aligned A data item having a memory address that is divisible by eight.

Endianness Byte ordering. The scheme that determines the order that successive bytes of a data word are stored
in memory. An aspect of the system’s memory mapping.

See also “Little-endian (LE)” and “Big-endian (BE)”.

Exception An event that interrupts program execution. When an exception occurs, the processor suspends the
normal program flow and starts execution at the address indicated by the corresponding exception
vector. The indicated address contains the first instruction of the handler for the exception.

An exception can be an interrupt request, a fault, or a software-generated system exception. Faults
include attempting an invalid memory access, attempting to execute an instruction in an invalid
processor state, and attempting to execute an undefined instruction.

Exception service routine See “Interrupt handler”.

Exception vector See “Interrupt vector”.

Flat address mapping A system of organizing memory in which each physical address in the memory space is the same as
the corresponding virtual address.

Halfword A 16-bit data item.

Illegal instruction An instruction that is architecturally Undefined.

 253SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Implementation-defined The behavior is not architecturally defined, but is defined and documented by individual
implementations.

Implementation-specific The behavior is not architecturally defined, and does not have to be documented by individual
implementations. Used when there are a number of implementation options available and the option
chosen does not affect software compatibility.

Index register In some load and store instruction descriptions, the value of this register is used as an offset to be
added to or subtracted from the base register value to form the address that is sent to memory. Some
addressing modes optionally enable the index register value to be shifted prior to the addition or
subtraction.

See also “Base register”.

Instruction cycle count The number of cycles that an instruction occupies the Execute stage of the pipeline.

Interrupt handler A program that control of the processor is passed to when an interrupt occurs.

Interrupt vector One of a number of fixed addresses in low memory, or in high memory if high vectors are configured,
that contains the first instruction of the corresponding interrupt handler.

Little-endian (LE) Byte ordering scheme in which bytes of increasing significance in a data word are stored at increasing
addresses in memory.

See also “Big-endian (BE)”, “Byte-invariant”, “Endianness”.

Little-endian memory Memory in which:
a byte or halfword at a word-aligned address is the least significant byte or halfword within the word at
that address, a byte at a halfword-aligned address is the least significant byte within the halfword at
that address.

See also “Big-endian memory”.

Load/store architecture A processor architecture where data-processing operations only operate on register contents, not
directly on memory contents.

Memory Protection Unit
(MPU)

Hardware that controls access permissions to blocks of memory. An MPU does not perform any
address translation.

Prefetching In pipelined processors, the process of fetching instructions from memory to fill up the pipeline before
the preceding instructions have finished executing. Prefetching an instruction does not mean that the
instruction has to be executed.

Preserved Preserved by writing the same value back that has been previously read from the same field on the
same processor.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 254

Read Reads are defined as memory operations that have the semantics of a load. Reads include the Thumb
instructions LDM, LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.

Region A partition of memory space.

Reserved A field in a control register or instruction format is reserved if the field is to be defined by the
implementation, or produces Unpredictable results if the contents of the field are not zero. These fields
are reserved for use in future extensions of the architecture or are implementation-specific. All
reserved bits not used by the implementation must be written as 0 and read as 0.

Thread-safe In a multi-tasking environment, thread-safe functions use safeguard mechanisms when accessing
shared resources, to ensure correct operation without the risk of shared access conflicts.

Thumb instruction One or two halfwords that specify an operation for a processor to perform. Thumb instructions must be
halfword-aligned.

Unaligned A data item stored at an address that is not divisible by the number of bytes that defines the data size
is said to be unaligned. For example, a word stored at an address that is not divisible by four.

Undefined Indicates an instruction that generates an Undefined instruction exception.

Unpredictable One cannot rely on the behavior. Unpredictable behavior must not represent security holes.
Unpredictable behavior must not halt or hang the processor, or any parts of the system.

Warm reset Also known as a core reset. Initializes the majority of the processor excluding the debug controller and
debug logic. This type of reset is useful if debugging features of a processor.

Word A 32-bit data item.

Write Writes are defined as operations that have the semantics of a store. Writes include the Thumb
instructions STM, STR, STRH, STRB, and PUSH.

 255SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

13. Debug and Test Features

13.1 Description
A number of complementary debug and test capabilities are available to users. The Serial Wire/JTAG Debug Port
(SWJ-DP) combining a Serial Wire Debug Port (SW-DP) and a JTAG Debug Port (JTAG-DP) is used for standard
debugging functions, such as downloading code and single-stepping through programs. It also embeds a serial wire
trace.

13.2 Associated Documentation
The SAM4CP implements the standard ARM CoreSight™ Macrocell. For information on CoreSight, the following
reference documents are available from the ARM website:
 Cortex-M4/M4F Technical Reference Manual (ARM DDI 0439C).
 CoreSight Technology System Design Guide (ARM DGI 0012D).
 CoreSight Components Technical Reference Manual (ARM DDI 0314H).
 ARM Debug Interface v5 Architecture Specification (Doc. ARM IHI 0031A).
 ARMv7-M Architecture Reference Manual (ARM DDI 0403D).

13.3 Embedded Characteristics
 Dual Core Debugging with common Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-

DP) debug access port connected to both cores.
 Star Topology AHB-AP Debug Access Port Implementation with common SW-DP / SWJ-DP providing higher

performance than daisy-chain topology.
 Possibility to halt each core on debug event on the other core (hardware).
 Possibility to restart each core when the other core has restarted (hardware).
 Synchronization and software cross-triggering with Debugger.
 Instrumentation Trace Macrocell (ITM) on both core for support of ‘printf’ style debugging.
 Mux 2-1 to trace chosen core (limit the number of out put pin).
 Single wire Viewer or Clock mode (4-bit parallel output ports).
 Debug access to all memory and registers in the system, including Cortex-M4 register bank when the core is

running, halted, or held in reset.
 Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches.
 Data Watchpoint and Trace (DWT) unit for implementing watch points, data tracing, and system profiling.
 IEEE 1149.1 JTAG Boundary scan on All Digital Pins.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 256

Figure 13-1. Debug and Test Block Diagram

Figure 13-2 illustrates the dual core debug implementation using only one SW-JTAG/SW-DP Debug Access Port. Star
topology has been used to connect the AHB-AP 0 (Core 0) and AHB-AP 1 (Core) rather than legacy daisy chaining
method. Star topology provides higher performance than daisy-chain topology. This core debug architecture is fully
supported by debug tools vendors.

Figure 13-2. Dual Core Debug Architecture

TST

TMS

TCK/SWCLK

TDI

JTAGSEL

TDO/TRACESWO

Boundary
TAP

SWJ-DP

Reset
and
Test

POR

TDI
TDO
TM

S/S
W

DIO

TC
K/S

W
CLK

JT
AGSEL

Serial Wire and JTAG Debug Port (SW-DP / SWJ-DP)

Cross-Trigering
Debug Event

(Halt / Restart)

Cortex-M4F

Core 1
(CM4P1)

DAP
ROM

TPIU

2 -> 1

DAP
ROM

TPIU

Cortex-M4

Core 0
(CM4P0)

AHB-AP 1

ITMITM

Trace Data

AHB-AP 0

 257SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

13.4 Cross Triggering Debug Events
Cross Triggering (CT) as shown in Figure 13-2 is an Atmel module that enables two cores to send and receive debug
events to and from each other. This module is used to debug two applications at the same time (one application
running on each core).

CT enables core 0 (or 1) to trigger a debug event (halt) to core 1 (or 0) to enter Debug mode. The debug event can be
sent when the core 0 (or 1) enters Debug mode (such as breakpoint) or at run-time.

Once core 0 (or 1) gets out of Debug mode, it releases core 1 (0) from Debug mode as well.

The Cross Triggering configuration is located in the Special Function Register in the Matrix User Interface.

13.5 Application Examples

13.5.1 Debug Environment

Figure 13-3 shows a complete debug environment example. The SWJ-DP interface is used for standard debugging
functions, such as downloading code and single-stepping through the program, as well as viewing core and peripheral
registers.

Figure 13-3. Application Debug Environment Example

SAM4

Host Debugger
PC

SAM4-based Application Board

SWJ-DP
Connector

SWJ-DP
Emulator/Probe

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 258

13.5.2 Test Environment

Figure 13-4 shows an example of a test environment (JTAG Boundary scan). Test vectors are sent and interpreted by
the tester. In this example, the “board in test” is designed using a number of JTAG-compliant devices. These devices
can be connected to form a single scan chain.

Figure 13-4. Application Test Environment Example

13.6 Debug and Test Pin Description

Chip 2Chip n

Chip 1SAM4

SAM4-based Application Board In Test

JTAG
Connector

Tester
Test Adaptor

JTAG
Probe

Table 13-1. Debug and Test Signal List

Signal Name Function Type Active Level

Reset/Test

NRST Microcontroller Reset Input/Output Low

TST Test Select Input -

SWD/JTAG

TCK/SWCLK Test Clock/Serial Wire Clock Input -

TDI Test Data In Input -

TDO/TRACESWO Test Data Out/Trace Asynchronous Data Out Output -

TMS/SWDIO Test Mode Select/Serial Wire Input/Output Input -

JTAGSEL JTAG Selection Input High

 259SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

13.7 Functional Description

13.7.1 Test Pin

One dedicated pin, TST, is used to define the device operating mode. When this pin is at low level during power-up,
the device is in Normal operating mode. When at high level, the device is in Test mode or FFPI mode. The TST pin
integrates a permanent pull-down resistor of about 15 kso that it can be left unconnected for normal operation.
Note that when setting the TST pin to low or high level at power-up, the pin must remain in the same state for the
duration of the operation.

13.7.2 Debug Architecture

Figure 13-5 illustrates the debug architecture. The Cortex-M4 embeds four functional units for debug:
 SWJ-DP (Serial Wire/JTAG Debug Port).
 FPB (Flash Patch Breakpoint).
 DWT (Data Watchpoint and Trace).
 ITM (Instrumentation Trace Macrocell).
 TPIU (Trace Port Interface Unit).

The information that follows is mainly dedicated to developers of SWJ-DP Emulators/Probes and debugging tool
vendors for Cortex-M4 based microcontrollers. For further details on SWJ-DP, see the Cortex-M4 technical reference
manual.

Figure 13-5. Debug Architecture

4 watchpoints

PC sampler

data address sampler

data sampler

interrupt trace

CPU statistics

DWT

6 breakpoints

FPB

software trace
32 channels

time stamping

ITM

SWD/JTAG

SWJ-DP

SWO trace

TPIU

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 260

13.7.3 Serial Wire/JTAG Debug Port (SWJ-DP)

The Cortex-M4 embeds a SWJ-DP Debug port which is the standard CoreSight debug port. It combines the Serial
Wire Debug Port (SW-DP), from 2 to 3 pins, and the JTAG Debug Port (JTAG-DP), 5 pins.

By default, the JTAG-DP is active. If the host debugger needs to switch to the SW-DP, it must provide a dedicated
JTAG sequence on TMS/SWDIO and TCK/SWCLK. This disables JTAG-DP and enables SW-DP.

When SW-DP is active, TDO/TRACESWO can be used for trace. The asynchronous TRACE output (TRACESWO) is
multiplexed with TDO and thus the asynchronous trace can only be used with SW-DP.

SW-DP or JTAG-DP mode is selected when JTAGSEL is low. It is not possible to switch directly between SWJ-DP
and JTAG boundary scan operations. A chip reset must be performed after JTAGSEL is changed.

13.7.3.1 SW-DP and JTAG-DP Selection
Debug port selection is done by sending a specific SWDIOTMS sequence. The JTAG-DP is selected by default after
reset.
 Switch from JTAG-DP to SW-DP. The sequence is:

 Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1
 Send the 16-bit sequence on SWDIOTMS = 0111100111100111 (0x79E7 MSB first)
 Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1

 Switch from SWD to JTAG. The sequence is:
 Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1
 Send the 16-bit sequence on SWDIOTMS = 0011110011100111 (0x3CE7 MSB first)
 Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1

13.7.4 FPB (Flash Patch Breakpoint)

The FPB:
 Implements hardware breakpoints.
 Patches code and data from code space to system space.

The FPB unit contains:
 Two literal comparators for matching against literal loads from Code space, and remapping to a corresponding

area in System space.
 Six instruction comparators for matching against instruction fetches from Code space, and remapping to a

corresponding area in System space.
 Alternatively, comparators can also be configured to generate a Breakpoint instruction to the processor core on

a match.

Table 13-2. SWJ-DP Pin List

Pin Name JTAG Port Serial Wire Debug Port

TMS/SWDIO TMS SWDIO

TCK/SWCLK TCK SWCLK

TDI TDI -

TDO/TRACESWO TDO TRACESWO (optional: trace)

 261SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

13.7.5 DWT (Data Watchpoint and Trace)

The DWT contains four comparators which can be configured to generate the following:
 PC sampling packets at set intervals.
 PC or Data watchpoint packets.
 Watchpoint event to halt core.

The DWT contains counters for the items that follow:
 Clock cycle (CYCCNT).
 Folded instructions.
 Load Store Unit (LSU) operations.
 Sleep Cycles.
 CPI (all instruction cycles except for the first cycle).
 Interrupt overhead.

13.7.6 ITM (Instrumentation Trace Macrocell)

The ITM is an application-driven trace source that supports ‘printf’ style debugging to trace operating system (OS) and
application events, and provides diagnostic system information. The ITM transmits the trace information as packets
which can be generated by three different sources with several priority levels:
 Software trace: Software can write directly to ITM stimulus registers. This can be done using the ‘printf’

function. For more information, refer to Section 13.7.6.1 “How to Configure the ITM”.
 Hardware trace: The ITM transmits packets generated by the DWT.
 Time stamping: Timestamps are transmitted relative to packets. The ITM contains a 21-bit counter to generate

the timestamp.

13.7.6.1 How to Configure the ITM
The following example describes how to output trace data in Asynchronous Trace mode.
 Configure the TPIU for Asynchronous Trace mode (refer to Section 13.7.6.3 “How to Configure the TPIU”).
 Enable the write accesses into the ITM registers by writing 0xC5ACCE55 into the Lock Access Register

(address: 0xE0000FB0).
 Write 0x00010015 into the Trace Control Register:

 Enable ITM.
 Enable Synchronization packets.
 Enable SWO behavior.
 Set the ATB ID to 1.

 Write 0x1 into the Trace Enable Register:
 Enable the Stimulus port 0.

 Write 0x1 into the Trace Privilege Register:
 Stimulus port 0 only accessed in Privileged mode (clearing a bit in this register results in the

corresponding stimulus port being accessible in User mode).
 Write into the Stimulus port 0 register: TPIU (Trace Port Interface Unit).

The TPIU acts as a bridge between the on-chip trace data and the ITM.

The TPIU formats and transmits trace data off-chip at frequencies asynchronous to the core.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 262

13.7.6.2 Asynchronous Mode
The TPIU is configured in Asynchronous mode, trace data are output using the single TRACESWO pin. The
TRACESWO signal is multiplexed with the TDO signal of the JTAG Debug Port. As a consequence, Asynchronous
Trace mode is only available when the Serial Wire Debug mode is selected since TDO signal is used in JTAG Debug
mode.

Two encoding formats are available for the single pin output:
 Manchester encoded stream. This is the reset value.
 NRZ_based UART byte structure.

13.7.6.3 How to Configure the TPIU
This example is applicable with Asynchronous Trace mode only.
 Set the TRCENA bit to 1 into the Debug Exception and Monitor Register (0xE000EDFC) to enable the use of

trace and debug blocks.
 Write 0x2 into the Selected Pin Protocol Register

 Select the Serial Wire Output – NRZ
 Write 0x100 into the Formatter and Flush Control Register.
 Set the suitable clock prescaler value into the Async Clock Prescaler Register to scale the baud rate of the

asynchronous output (this can be done automatically by the debugging tool).

13.7.7 IEEE 1149.1 JTAG Boundary Scan

With IEEE 1149.1 JTAG Boundary Scan, the pin-level access is independent of the device packaging technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when TST is tied low, while JTAGSEL is high and INTEST7 is tied low
during the power-up, and must be kept in this state during the whole boundary scan operation. The SAMPLE,
EXTEST and BYPASS functions are implemented. In SWD/JTAG Debug mode, the ARM processor responds with a
non-JTAG chip ID that identifies the processor. This is not IEEE 1149.1 JTAG-compliant.

It is not possible to switch directly between JTAG Boundary Scan and SWJ Debug Port operations. A chip reset must
be performed after JTAGSEL is changed.

A Boundary-scan Descriptor Language (BSDL) file is provided on Atmel’s web site to set up the test.

13.7.7.1 JTAG Boundary-scan Register
The Boundary-scan Register (BSR) contains a number of bits which correspond to active pins and the associated
control signals.

Each SAM4 input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit contains data that can be
forced on the pad. The INPUT bit facilitates the observability of data applied to the pad. The CONTROL bit selects the
direction of the pad.

For more information, refer to Boundary Scan Description Language (BDSL) files available for the SAM4 Series.

 263SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

13.7.8 ID Code Register

Access: Read-only

• VERSION[31:28]: Product Version Number
Set to 0x0.

• PART NUMBER[27:12]: Product Part Number

• MANUFACTURER IDENTITY[11:1]
Set to 0x01F.

• Bit[0] Required by IEEE Std. 1149.1.
Set to 0x1.

31 30 29 28 27 26 25 24
VERSION PART NUMBER

23 22 21 20 19 18 17 16
PART NUMBER

15 14 13 12 11 10 9 8
PART NUMBER MANUFACTURER IDENTITY

7 6 5 4 3 2 1 0
MANUFACTURER IDENTITY 1

Chip Name Chip ID

SAM4CP 0x05B34

Chip Name JTAG ID Code

SAM4CP 0x05B3_403F

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 264

14. SAM4CP Boot Program

14.1 Description
The SAM-BA Boot Program includes an array of programs used to download and/or upload data into the different
memories of the product.

14.2 Hardware and Software Constraints
 SAM-BA Boot uses the first 4096 bytes of the SRAM for variables and stacks. The remaining available size can

be used for user code.
 UART0 requirements: None.

14.3 Flow Diagram
The Boot Program implements the algorithm depicted in Figure 14-1.

Figure 14-1. Boot Program Algorithm Flow Diagram

The SAM-BA Boot program seeks to detect a source clock either from the embedded main oscillator with external
crystal (main oscillator enabled), or from a supported frequency signal applied to the XIN pin (main oscillator in
Bypass mode).

If a clock is found from the two possible sources above, the boot program checks whether the frequency is one of the
supported external frequencies. If no clock or frequency other than one of the supported external frequencies is found,
the internal 12-MHz RC oscillator is used as the main clock. The frequency drift of the 12-MHz RC oscillator should be
taken into account for high precision applications.

14.4 Device Initialization
Initialization follows the steps described below:

1. Stack setup
2. Setup the Embedded Flash Controller
3. External clock detection (crystal or external clock on XIN)
4. Main oscillator frequency detection if no external clock detected
5. Switch master clock on main oscillator
6. C variable initialization
7. PLLB setup: PLLB clock is initialized to generate a 48 MHz on MCK
8. Disable the watchdogs

Table 14-1. Pins Driven during Boot Program Execution

Peripheral Pin PIO Line

UART0 URXD0 PB4

UART0 UTXD0 PB5

Device
Setup

Character # received
from UART0?

Run SAM-BA Monitor

Yes

No

 265SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

9. Initialization of UART0 (115200 bauds, 8, N, 1)
10. Wait for a character on UART0
11. Jump to SAM-BA monitor (see Section 14.5 ”SAM-BA Monitor”)

14.5 SAM-BA Monitor
The SAM-BA boot principle: once the communication interface is identified, running in an infinite loop waiting for
different commands as shown in Table 14-2.

 Mode commands:
 Normal mode configures SAM-BA Monitor to send/receive data in binary format
 Terminal mode configures SAM-BA Monitor to send/receive data in ASCII format

 Write commands: Write a byte (O), a halfword (H) or a word (W) to the target
 Address: Address in hexadecimal
 Value: Byte, halfword or word to write in hexadecimal

 Read commands: Read a byte (o), a halfword (h) or a word (w) from the target
 Address: Address in hexadecimal
 Output: The byte, halfword or word read in hexadecimal

 Send a file (S): Send a file to a specified address
 Address: Address in hexadecimal

Note: There is a time-out on this command which is reached when the prompt ‘>’ appears before the end of the
command execution.

 Receive a file (R): Receive data into a file from a specified address
 Address: Address in hexadecimal
 NbOfBytes: Number of bytes in hexadecimal to receive

 Go (G): Jump to a specified address and execute the code
 Address: Address to jump in hexadecimal

 Get Version (V): Return the SAM-BA boot version
Note: In Terminal mode, when the requested command is performed, SAM-BA Monitor adds the following prompt

sequence to its answer: <LF>+<CR>+'>'.

Table 14-2. Commands Available through the SAM-BA Boot

Command Action Argument(s) Example

N Set Normal mode No argument N#

T Set Terminal mode No argument T#

O Write a byte Address, Value# O200001,CA#

o Read a byte Address,# o200001,#

H Write a half word Address, Value# H200002,CAFE#

h Read a half word Address,# h200002,#

W Write a word Address, Value# W200000,CAFEDECA#

w Read a word Address,# w200000,#

S Send a file Address,# S200000,#

R Receive a file Address, NbOfBytes# R200000,1234#

G Go Address# G200200#

V Display version No argument V#

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 266

14.5.1 UART0 Serial Port

Communication is performed through the UART0 initialized to 115200 Baud, 8, n, 1.

The Send and Receive File commands use the Xmodem protocol to communicate. Any terminal performing this
protocol can be used to send the application file to the target. The size of the binary file to send depends on the SRAM
size embedded in the product. In all cases, the size of the binary file must be lower than the SRAM size because the
Xmodem protocol requires some SRAM memory to work. See Section 14.2 ”Hardware and Software Constraints”.

14.5.2 Xmodem Protocol

The supported Xmodem protocol is the 128-byte length block. This protocol uses a two-character CRC-16 to
guarantee detection of a maximum bit error.

Xmodem protocol with CRC is accurate provided both sender and receiver report a successful transmission. Each
block of the transfer looks like:

<SOH><blk #><255-blk #><--128 data bytes--><checksum>

where:
 <SOH> = 01 hex
 <blk #> = binary number, starts at 01, increments by 1, and wraps 0FFH to 00H (not to 01)
 <255-blk #> = 1’s complement of the blk#.
 <checksum> = 2 bytes CRC16

Figure 14-2 shows a transmission using this protocol.

Figure 14-2. Xmodem Transfer Example

Host Device

SOH 01 FE Data[128] CRC CRC

C

ACK

SOH 02 FD Data[128] CRC CRC

ACK

SOH 03 FC Data[100] CRC CRC

ACK

EOT

ACK

 267SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

14.5.3 In Application Programming (IAP) Feature

The IAP feature is a function located in the ROM that can be called by any software application.

When called, IAP sends the required FLASH command to the EEFC and waits for the Flash to be ready (looping while
the FRDY bit is not set in the EEFC_FSR register).

Since this function is executed from ROM, Flash programming (such as sector write) can be performed by code
running in Flash.

The IAP function entry point is retrieved by reading the NMI vector in the ROM (0x02000008).

This function takes one argument in parameter: the command to be sent to the EEFC.

This function returns the value of the EEFC_FSR register.

IAP software code example:

(unsigned int) (*IAP_Function)(unsigned long);
void main (void){

unsigned long FlashSectorNum = 200; //
unsigned long flash_cmd = 0;
unsigned long flash_status = 0;
unsigned long EFCIndex = 0; // 0:EEFC0, 1: EEFC1

/* Initialize the function pointer (retrieve function address from NMI
vector) */

IAP_Function = ((unsigned long) (*)(unsigned long))
0x02000008;

/* Send your data to the sector here */

/* build the command to send to EEFC */

flash_cmd = (0x5A << 24) | (FlashSectorNum << 8) |
AT91C_MC_FCMD_EWP;

/* Call the IAP function with appropriate command */

flash_status = IAP_Function (EFCIndex, flash_cmd);

}

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 268

15. Reset Controller (RSTC)

15.1 Description
The Reset Controller (RSTC), driven by power-on reset (POR) cells, software, external reset pin and peripheral
events, handles all the resets of the system without any external components. It reports which reset occurred last.

The RSTC also drives independently or simultaneously the external reset and the peripheral and processor resets.

15.2 Embedded Characteristics
 Driven by Embedded Power-on Reset, Software, External Reset Pin and Peripheral Events
 Management of All System Resets, Including

 External Devices through the NRST Pin
 Processor and Coprocessor (second processor)
 Peripheral Set

 Reset Source Status
 Status of the Last Reset
 Either VDDCORE and VDDBU POR Reset, Software Reset, User Reset, Watchdog Reset

 External Reset Signal Control and Shaping

15.3 Block Diagram

Figure 15-1. Reset Controller Block Diagram

NRST Pin

wd_fault

SLCK

Reset
State

Manager

Reset Controller

NRST
Manager

exter_nreset
nrst_out

WDT_MR.WDRPROC

user_reset

From
watchdog

POR
Backup

 Backup area reset

SUPC

 VDDCORE reset

Peripherals
reset line

RSTC
interrupt line

Processor
reset line

Coprocessor
Peripherals
reset line

Coprocessor
reset line

SM
VDDIO

POR
VDDCORE

BOD
VDDCORE

 269SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

15.4 Functional Description

15.4.1 Overview

The RSTC is made up of an NRST Manager and a Reset State Manager. It runs at SLCK frequency and generates
the following reset signals:
 proc_nreset: processor reset line (also resets the Watchdog Timer)
 coproc_nreset: coprocessor (second processor) reset line
 periph_nreset: affects the whole set of embedded peripherals
 coproc_periph_nreset: affects the whole set of embedded peripherals driven by the Coprocessor
 nrst_out: drives the NRST pin

These reset signals are asserted by the RSTC, either on events generated by peripherals, events on NRST pin, or on
software action. The Reset State Manager controls the generation of reset signals and provides a signal to the NRST
Manager when an assertion of the NRST pin is required.

The NRST Manager shapes the NRST assertion during a programmable time, thus controlling external device resets.

The RSTC Mode register (RSTC_MR), used to configure the RSTC, is powered with VDDBU, so that its configuration
is saved as long as VDDBU is on.

15.4.2 NRST Manager

The NRST Manager samples the NRST input pin and drives this pin low when required by the Reset State Manager.
Figure 15-2 shows the block diagram of the NRST Manager.

Figure 15-2. NRST Manager

15.4.2.1 NRST Signal or Interrupt
The NRST Manager samples the NRST pin at SLCK speed. When the NRST line is low for more than three clock
cycles, a User Reset is reported to the reset state manager. The NRST pin must be asserted for at least 1 SLCK clock
cycle to ensure execution of a user reset.

However, the NRST Manager can be programmed to not trigger a reset when an assertion of NRST occurs. Writing a
‘0’ to RSTC_MR.URSTEN disables the User Reset trigger.

The level of the pin NRST can be read at any time in the bit NRSTL in the RSTC Status Register (RSTC_SR). As
soon as the NRST pin is asserted, RSTC_SR.URSTS is written to ‘1’. This bit is cleared only when the RSTC_SR is
read.

The RSTC can also be programmed to generate an interrupt instead of generating a reset. To do so,
RSTC_MR.URSTIEN must be set.

External Reset Timer

URSTS

URSTEN

ERSTL

exter_nreset

URSTIEN

RSTC_MR

RSTC_MR

RSTC_MR

RSTC_SR

NRSTL

nrst_out

NRST

Other
interrupt
sources

user_reset

RSTC
Interrupt line

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 270

15.4.2.2 NRST External Reset Control
The Reset State Manager asserts the signal exter_nreset to assert the NRST pin. When this occurs, the “nrst_out”
signal is driven low by the NRST Manager for a time programmed by RSTC_MR.ERSTL. This assertion duration,
named External Reset Length, lasts 2(ERSTL+1) SLCK cycles. This gives the approximate duration of an assertion
between 60 μs and 2 seconds. Note that ERSTL at ‘0’ defines a two-cycle duration for the NRST pulse.

This feature allows the RSTC to shape the NRST pin level, and thus to guarantee that the NRST line is driven low for
a time compliant with potential external devices connected on the system reset.

RSTC_MR is backed up, making it possible to use the value of ERSTL to shape the system power-up reset for
devices requiring a longer startup time than that of the MCU.

15.4.3 Reset States

The Reset State Manager handles the different reset sources and generates the internal reset signals. It reports the
reset status in RSTTYP of the Status Register (RSTC_SR). The update of RSTC_SR.RSTTYP is performed when the
processor reset is released.

15.4.3.1 General Reset
A general reset occurs when a VDDBU power-on-reset is detected, a Brownout or a Voltage regulation loss is
detected by the Supply controller. The vddcore_nreset signal is asserted by the Supply Controller when a general
reset occurs.

All the reset signals are released and RSTC_SR.RSTTYP reports a General Reset. As the RSTC_MR is written to 0,
the NRST line rises two cycles after the vddcore_nreset, as ERSTL defaults at value 0x0.

Figure 15-3 shows how the General Reset affects the reset signals.

Figure 15-3. General Reset Timing Diagram

SLCK

Processor
Reset Line

NRST
(nrst_out)

3 SLCK cycles

MCK

Backup Area POR
Output

Any
Freq.

RSTTYP XXX 0x0 = General Reset XXX

6.5 SLCK cycles + 2 Main RC cycles

Peripheral
Reset Line

Inactive

VDDCORE POR
Output

Regulator Startup

Power Supply
 Activation

5 Main RC cycles

Backup Logic
Reset

5 SLCK
cycles

Main RC
Oscillator

Active

2 SLCK cycles

Active

Active

Active

Inactive

Inactive

Inactive

Inactive

 271SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

15.4.3.2 Backup Reset
A Backup reset occurs when the chip exits from Backup Mode. While exiting Backup mode, the vddcore_nreset signal
is asserted by the Supply Controller.

Field RSTC_SR.RSTTYP is updated to report a Backup Reset.

15.4.3.3 Watchdog Reset
The Watchdog Reset is entered when a watchdog fault occurs. This reset lasts three SLCK cycles.

When in Watchdog Reset, assertion of the reset signals depends on the value of WDT_MR.WDRPROC:
 If WDRPROC = 0, the Processor Reset and the Peripheral Reset are asserted. The NRST line is also asserted,

depending on how field RSTC_MR.ERSTL is programmed. However, the resulting low level on NRST does not
result in a User Reset state.

 If WDRPROC = 1, only the processor reset is asserted.

The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a processor reset if
WDT_MR.WDRSTEN is written to ‘1’, the Watchdog Timer is always reset after a Watchdog Reset, and the Watchdog
is enabled by default and with a period set to a maximum.

When WDT_MR.WDRSTEN is written to ‘0’, the watchdog fault has no impact on the RSTC.

After a watchdog overflow occurs, the report on the RSTC_SR.RSTTYP may differ (either WDT_RST or USER_RST)
depending on the external components driving the NRST pin. For example, if the NRST line is driven through a
resistor and a capacitor (NRST pin debouncer), the reported value is USER_RST if the low to high transition is greater
than one SLCK cycle.

Figure 15-4. Watchdog Reset Timing Diagram

15.4.3.4 Software Reset
The RSTC offers commands to assert the different reset signals. These commands are performed by writing the
Control register (RSTC_CR) or Coprocessor Mode register (RSTC_CPMR) with the following bits at ‘1’:
 RSTC_CR.PROCRST: Writing a ‘1’ to PROCRST resets the processor and the watchdog timer.
 RSTC_CR.PERRST: Writing a ‘1’ to PERRST resets all the embedded peripherals associated to processor

whereas the coprocessor peripherals are not reset, including the memory system, and, in particular, the Remap

O
nl

y
if

W
D

T_
M

R
.W

D
R

P
R

O
C

 =
 0

0x2 = Watchdog Reset

SLCK

Processor
Reset Line

NRST
(nrst_out)

MCK Any
Frequency.

RSTTYP XXX

Main RC
Oscillator

3 SLCK cycles + 2 MCK cycles

Active

Active

Inactive

Inactive

Any
Frequency.

Inactive

Inactive

WDT Fault

Min = 2 SLCK cycles if ERSTL=0 (e.g. 8 if ERSTL=2)

Active InactiveInactive
Peripherals
Reset Line

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 272

Command. The Peripheral Reset is generally used for debug purposes.
Except for debug purposes, PERRST must always be used in conjunction with PROCRST (PERRST and
PROCRST set both at 1 simultaneously).

 RSTC_CPMR.CPROCEN: Writing a ‘0’ to CPROCEN resets the coprocessor only.
 RSTC_CPMR.CPEREN: Writing a ‘0’ to CPEREN resets all the embedded peripherals associated to

coprocessor whereas the processor peripherals are not reset.
 RSTC_CR.EXTRST: Writing a ‘1’ to EXTRST asserts low the NRST pin during a time defined by the field

RSTC_MR.ERSTL.

The software reset is entered if at least one of these bits is written to ‘1’ by the software. All these commands can be
performed independently or simultaneously. The software reset lasts three SLCK cycles.

The internal reset signals are asserted as soon as the register write is performed. This is detected on the Master
Clock (MCK). They are released when the software reset has ended, i.e., synchronously to SLCK.

If EXTRST is written to ‘1’, the nrst_out signal is asserted depending on the configuration of RSTC_MR.ERSTL.
However, the resulting falling edge on NRST does not lead to a User Reset.

If and only if the RSTC_CR.PROCRST is written to ‘1’, the RSTC reports the software status in field
RSTC_SR.RSTTYP. Other Software Resets are not reported in RSTTYP.

As soon as a software operation is detected, RSTC_SR.SRCMP is written to ‘1’. SRCMP is cleared at the end of the
software reset. No other software reset can be performed while SRCMP is written to ‘1’, and writing any value in the
RSTC_CR has no effect.

Figure 15-5. Software Reset Timing Diagram

15.4.3.5 User Reset
A User Reset is generated when a low level is detected on the NRST pin and RSTC_MR.URSTEN is at ‘1’. The NRST
input signal is resynchronized with SLCK to ensure proper behavior of the system. Thus, the NRST pin must be
asserted for at least 1 SLCK clock cycle to ensure execution of a user reset.

Write RSTC_CR

NRST
(nrst_out)

if EXTRST=1

0x3 = Software Reset

SLCK

Processor
Reset Line

MCK Any
Frequency.

RSTTYP XXX

Main RC
Oscillator

3 SLCK cycles + 2 MCK cycles

Active

Active

Inactive

Inactive

Any
Frequency.

Inactive

Inactive

Min = 2 SLCK cycles if ERSTL=0 (e.g. 8 if ERSTL=2)

Up to 1 SLCK cycle

Peripherals
Reset Line Active InactiveInactive

RSTC_SR.SRCMP

 273SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

The User Reset is triggered 2 SLCK cycles after a low level is detected on NRST. The Processor and Coprocessor
Reset and the Peripheral Resets are asserted.

The User Reset ends when NRST rises, after a two-cycle resynchronization time and a three-cycle processor startup.
The processor clock is reenabled as soon as NRST is confirmed high.

When the processor reset signal is released, RSTC_SR.RSTTYP is loaded with the value ‘4’, indicating a User Reset.

The NRST Manager guarantees that the NRST line is asserted for External Reset Length SLCK cycles, as configured
in RSTC_MR.ERSTL. However, if NRST does not rise after External Reset Length because it is driven low externally,
the internal reset lines remain asserted until NRST actually rises.

Figure 15-6. User Reset Timing Diagram

15.4.4 Reset State Priorities

The Reset State Manager manages the priorities among the different reset sources. The resets are listed in order of
priority as follows:
 General Reset
 Backup Reset
 Watchdog Reset
 Software Reset
 User Reset

Specific cases are listed below:
 When in User Reset:

 A watchdog event is impossible because the Watchdog Timer is being reset by the proc_nreset signal.
 A software reset is impossible, since the processor reset is being activated.

 When in Software Reset:
 A watchdog event has priority over the current state.
 The NRST has no effect.

 When in Watchdog Reset:
 The processor reset is active and so a Software Reset cannot be programmed.
 A User Reset cannot be entered.

SLCK

Processor
Reset Line

NRST
(nrst_out)

MCK Any
Frequency.

RSTTYP XXX

Main RC
Oscillator

Active

Active

Inactive

Inactive

Any
Frequency.

Inactive

Inactive

NRST pin

Min = 2 SLCK cycles if ERSTL=0 (e.g. 8 if ERSTL=2)

0x4 = User Reset

2 SLCK cycles

6 SLCK cycles

Active InactiveInactive
Peripherals
Reset Line

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 274

15.4.5 Managing Reset at Application Level
As described, the device embeds only one system and power management controller shared by the two subsystems,
i.e.:

 Subsystem 0 (SUB-S0 - Application Master/Core)
 Subsystem 1 (SUB-S1 - Metrology/Co-Processor Core)

After a power-up, the SUB-S0 application configures the SUB-S1 system clock (PMC). Then, the application code can
be downloaded into the SUB-S1 boot memory (SRAM1) and SUB-S0 can afterwards deassert the SUB-S1 reset lines
through the RSTC.

Once the two subsystems are up and running, each one executes its firmware independently. In some application use
case, Subsystem 1 must not be reset even if Subsystem 0 is allowed to, due to a firmware upgrade or due to a reset
request from one of the following reset sources:

 a User Reset (NRST pin), a Software Reset, a VDDIO Supply Monitor Reset
 a Watchdog Reset

Since the PMC can be reset from one of the above reset sources, if a reset occurs, the PMC is reset, leading to
switching off the SUB-S1 clocks.

To avoid this, the SUB-S0 application must be in charge of the reset management of the complete system in the
following manner:

1. User Reset (NRST pin) and VDDIO Supply Monitor Reset must be configured to generate an interrupt, and not
a reset. This allows to reset only the SUB-S0 processor and not the peripherals (so, not the PMC). This is man-
datory to avoid any stop of a metrology part due to a reset on clocks.

2. Watchdog Reset must be configured to generate a SUB-S0 processor reset only.
Note: The Core Brownout detector reset (general reset source) and the Backup reset are not taken into account in

the reset management considerations described above, as they are related, respectively, to a power loss
detection or to a wake-up from Backup mode or low level on VDDBU. (Note that in Backup mode, all digital
logic, except the backup zone, is shut down).

15.5 Reset Controller (RSTC) User Interface

Notes: 1. This value assumes that a general reset has been performed, subject to change if other types of reset are
generated.

Table 15-1. Register Mapping

Offset Register Name Access Reset

0x00 Control Register RSTC_CR Write-only –

0x04 Status Register RSTC_SR Read-only 0x0000_0000(1)

0x08 Mode Register RSTC_MR Read/Write 0x0000 0001

0x0C Coprocessor Mode Register RSTC_CPMR Read/Write 0x0000_0000

 275SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

15.5.1 RSTC Control Register

Name: RSTC_CR

Address: 0x400E1400

Access: Write-only

• PROCRST: Processor Reset
0: No effect.

1: If KEY = 0xA5, resets the processor.

• PERRST: Peripheral Reset
0: No effect.

1: If KEY = 0xA5, resets the peripherals.

• EXTRST: External Reset
0: No effect.

1: If KEY = 0xA5, asserts the NRST pin.

• KEY: System Reset Key

31 30 29 28 27 26 25 24
KEY

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – EXTRST PERRST – PROCRST

Value Name Description

0xA5 PASSWD Writing any other value in this field aborts the write operation.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 276

15.5.2 RSTC Status Register

Name: RSTC_SR

Address: 0x400E1404

Access: Read-only

• URSTS: User Reset Status
A high-to-low transition of the NRST pin sets the URSTS. This transition is also detected on the MCK rising edge. If the user
reset is disabled (URSTEN = 0 in RSTC_MR) and if the interrupt is enabled by RSTC_MR.URSTIEN, URSTS triggers an inter-
rupt. Reading the RSTC_SR resets URSTS and clears the interrupt.

0: No high-to-low edge on NRST happened since the last read of RSTC_SR.

1: At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR.

• RSTTYP: Reset Type
This field reports the cause of the last processor reset. Reading this RSTC_SR does not reset this field.

• NRSTL: NRST Pin Level
Registers the NRST pin level sampled on each MCK rising edge.

• SRCMP: Software Reset Command in Progress
When set, this bit indicates that a software reset command is in progress and that no further software reset should be per-
formed until the end of the current one. This bit is automatically cleared at the end of the current software reset.

0: No software command is being performed by the RSTC. The RSTC is ready for a software command.

1: A software reset command is being performed by the RSTC. The RSTC is busy.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – SRCMP NRSTL

15 14 13 12 11 10 9 8
– – – – – RSTTYP

7 6 5 4 3 2 1 0
– – – – – – – URSTS

Value Name Description

0 GENERAL_RST First power-up Reset

1 BACKUP_RST Return from Backup Mode

2 WDT_RST Watchdog fault occurred

3 SOFT_RST Processor reset required by the software

4 USER_RST NRST pin detected low

5 - Reserved

6 - Reserved

7 - Reserved

 277SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

15.5.3 RSTC Mode Register

Name: RSTC_MR

Address: 0x400E1408

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register
(SYSC_WPMR).

• URSTEN: User Reset Enable
0: The detection of a low level on the NRST pin does not generate a User Reset.

1: The detection of a low level on the NRST pin triggers a User Reset.

• URSTIEN: User Reset Interrupt Enable
0: RSTC_SR.USRTS at ‘1’ has no effect on the RSTC interrupt line.

1: RSTC_SR.USRTS at ‘1’ asserts the RSTC interrupt line if URSTEN = 0.

• ERSTL: External Reset Length
This field defines the external reset length. The external reset is asserted during a time of 2(ERSTL+1) SLCK cycles. This allows
assertion duration to be programmed between 60 μs and 2 seconds. Note that synchronization cycles must also be considered
when calculating the actual reset length as previously described.

• KEY: Write Access Password

31 30 29 28 27 26 25 24
KEY

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – ERSTL

7 6 5 4 3 2 1 0
– – – URSTIEN – – – URSTEN

Value Name Description

0xA5 PASSWD Writing any other value in this field aborts the write operation. Always reads as 0.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 278

15.5.4 RSTC Coprocessor Mode Register

Name: RSTC_CPMR

Address: 0x400E140C

Access: Read/Write

• CPROCEN: Coprocessor (Second Processor) Enable
0: If CPKEY = 0x5A, resets the coprocessor (power-on default value).

1: If CPKEY = 0x5A, deasserts the reset of the coprocessor.

• CPEREN: Coprocessor Peripheral Enable
0: If CPKEY = 0x5A, resets the coprocessor peripherals.

1: If CPKEY = 0x5A, deasserts the reset of the coprocessor peripherals.

• CPKEY: Coprocessor System Enable Key

31 30 29 28 27 26 25 24
CPKEY

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – CPEREN – – – CPROCEN

Value Name Description

0x5A PASSWD Writing any other value in this field aborts the write operation.

 279SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

16. Real-time Timer (RTT)

16.1 Description
The Real-time Timer (RTT) is built around a 32-bit counter used to count roll-over events of the programmable 16-bit
prescaler driven from the 32 kHz slow clock source. It generates a periodic interrupt and/or triggers an alarm on a
programmed value.

The RTT can also be configured to be driven by the 1 Hz RTC signal, thus taking advantage of a calibrated 1 Hz
clock.

The slow clock source can be fully disabled to reduce power consumption when only an elapsed seconds count is
required.

16.2 Embedded Characteristics
 32-bit Free-running Counter on prescaled slow clock or RTC calibrated 1 Hz clock
 16-bit Configurable Prescaler
 Interrupt on Alarm or Counter Increment

16.3 Block Diagram

Figure 16-1. Real-time Timer

SLCK

RTPRES

RTTINC

ALMS

16-bit
Divider

32-bit
Counter

ALMV

=

CRTV

RTT_MR

RTT_VR

RTT_AR

RTT_SR

RTTINCIEN

RTT_MR

0

1 0

ALMIEN

rtt_int

RTT_MR

set

set

RTT_SR

read
RTT_SR

reset

reset

RTT_MR

reload

rtt_alarm

RTTRST

RTT_MR

RTTRST

RTT_MR

RTTDIS

1 0

RTT_MR

RTC1HZ

RTC 1Hz

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 280

16.4 Functional Description
The programmable 16-bit prescaler value can be configured through the RTPRES field in the “Real-time Timer Mode
Register” (RTT_MR).

Configuring the RTPRES field value to 0x8000 (default value) corresponds to feeding the real-time counter with a 1Hz
signal (if the slow clock is 32.768 kHz). The 32-bit counter can count up to 232 seconds, corresponding to more than
136 years, then roll over to 0. Bit RTTINC in the “Real-time Timer Status Register” (RTT_SR) is set each time there is
a prescaler roll-over (see Figure 16-2).

The real-time 32-bit counter can also be supplied by the 1 Hz RTC clock. This mode is interesting when the RTC 1Hz
is calibrated (CORRECTION field ≠ 0 in RTC_MR) in order to guaranty the synchronism between RTC and RTT
counters.

Setting the RTC1HZ bit in the RTT_MR drives the 32-bit RTT counter from the 1Hz RTC clock. In this mode, the
RTPRES field has no effect on the 32-bit counter.

The prescaler roll-over generates an increment of the real-time timer counter if RTC1HZ = 0. Otherwise, if
RTC1HZ = 1, the real-time timer counter is incremented every second. The RTTINC bit is set independently from the
32-bit counter increment.

The Real-time Timer can also be used as a free-running timer with a lower time-base. The best accuracy is achieved
by writing RTPRES to 3 in RTT_MR.

Programming RTPRES to 1 or 2 is forbidden.

If the RTT is configured to trigger an interrupt, the interrupt occurs two slow clock cycles after reading the RTT_SR. To
prevent several executions of the interrupt handler, the interrupt must be disabled in the interrupt handler and re-
enabled when the RTT_SR is cleared.

The CRTV field can be read at any time in the “Real-time Timer Value Register” (RTT_VR). As this value can be
updated asynchronously with the Master Clock, the CRTV field must be read twice at the same value to read a correct
value.

The current value of the counter is compared with the value written in the “Real-time Timer Alarm Register”
(RTT_AR). If the counter value matches the alarm, the ALMS bit in the RTT_SR is set. The RTT_AR is set to its
maximum value (0xFFFF_FFFF) after a reset.

The ALMS flag is always a source of the RTT alarm signal that may be used to exit the system from low power modes
(see Figure 16-1).

The alarm interrupt must be disabled (ALMIEN must be cleared in RTT_MR) when writing a new ALMV value in the
RTT_AR.

The RTTINC bit can be used to start a periodic interrupt, the period being one second when the RTPRES field
value = 0x8000 and the slow clock = 32.768 kHz.

The RTTINCIEN bit must be cleared prior to writing a new RTPRES value in the RTT_MR.

Reading the RTT_SR automatically clears the RTTINC and ALMS bits.

Writing the RTTRST bit in the RTT_MR immediately reloads and restarts the clock divider with the new programmed
value. This also resets the 32-bit counter.

When not used, the Real-time Timer can be disabled in order to suppress dynamic power consumption in this module.
This can be achieved by setting the RTTDIS bit in the RTT_MR.

 281SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 16-2. RTT Counting

16.5 Real-time Timer (RTT) User Interface

Prescaler

ALMVALMV-10 ALMV+1

0

RTPRES - 1

CRTV

read RTT_SR

ALMS (RTT_SR)

APB Interface

SLCK

RTTINC (RTT_SR)

ALMV+2 ALMV+3...

APB cycleAPB cycle

Table 16-1. Register Mapping

Offset Register Name Access Reset

0x00 Mode Register RTT_MR Read/Write 0x0000_8000

0x04 Alarm Register RTT_AR Read/Write 0xFFFF_FFFF

0x08 Value Register RTT_VR Read-only 0x0000_0000

0x0C Status Register RTT_SR Read-only 0x0000_0000

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 282

16.5.1 Real-time Timer Mode Register

Name: RTT_MR

Address: 0x400E1430

Access: Read/Write

• RTPRES: Real-time Timer Prescaler Value
Defines the number of SLCK periods required to increment the Real-time timer. RTPRES is defined as follows:

RTPRES = 0: The prescaler period is equal to 216 * SLCK periods.

RTPRES = 1 or 2: forbidden.

RTPRES ≠ 0, 1 or 2: The prescaler period is equal to RTPRES * SLCK periods.
Note: The RTTINCIEN bit must be cleared prior to writing a new RTPRES value.

• ALMIEN: Alarm Interrupt Enable
0: The bit ALMS in RTT_SR has no effect on interrupt.

1: The bit ALMS in RTT_SR asserts interrupt.

• RTTINCIEN: Real-time Timer Increment Interrupt Enable
0: The bit RTTINC in RTT_SR has no effect on interrupt.

1: The bit RTTINC in RTT_SR asserts interrupt.

• RTTRST: Real-time Timer Restart
0: No effect.

1: Reloads and restarts the clock divider with the new programmed value. This also resets the 32-bit counter.

• RTTDIS: Real-time Timer Disable
0: The real-time timer is enabled.

1: The real-time timer is disabled (no dynamic power consumption).
Note: RTTDIS is write only.

• RTC1HZ: Real-Time Clock 1Hz Clock Selection
0: The RTT 32-bit counter is driven by the 16-bit prescaler roll-over events.

1: The RTT 32-bit counter is driven by the 1 Hz RTC clock.
Note: RTC1HZ is write only.

31 30 29 28 27 26 25 24
– – – – – – – RTC1HZ

23 22 21 20 19 18 17 16
– – – RTTDIS – RTTRST RTTINCIEN ALMIEN

15 14 13 12 11 10 9 8
RTPRES

7 6 5 4 3 2 1 0
RTPRES

 283SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

16.5.2 Real-time Timer Alarm Register

Name: RTT_AR

Address: 0x400E1434

Access: Read/Write

• ALMV: Alarm Value
When the CRTV value in RTT_VR equals the ALMV field, the ALMS flag is set in RTT_SR. As soon as the ALMS flag rises,
the CRTV value equals ALMV+1 (refer to Figure 16-2).
Note: The alarm interrupt must be disabled (ALMIEN must be cleared in RTT_MR) when writing a new ALMV value.

31 30 29 28 27 26 25 24
ALMV

23 22 21 20 19 18 17 16
ALMV

15 14 13 12 11 10 9 8
ALMV

7 6 5 4 3 2 1 0
ALMV

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 284

16.5.3 Real-time Timer Value Register

Name: RTT_VR

Address: 0x400E1438

Access: Read-only

• CRTV: Current Real-time Value
Returns the current value of the Real-time Timer.
Note: As CRTV can be updated asynchronously, it must be read twice at the same value.

31 30 29 28 27 26 25 24
CRTV

23 22 21 20 19 18 17 16
CRTV

15 14 13 12 11 10 9 8
CRTV

7 6 5 4 3 2 1 0
CRTV

 285SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

16.5.4 Real-time Timer Status Register

Name: RTT_SR

Address: 0x400E143C

Access: Read-only

• ALMS: Real-time Alarm Status (cleared on read)
0: The Real-time Alarm has not occurred since the last read of RTT_SR.

1: The Real-time Alarm occurred since the last read of RTT_SR.

• RTTINC: Prescaler Roll-over Status (cleared on read)
0: No prescaler roll-over occurred since the last read of the RTT_SR.

1: Prescaler roll-over occurred since the last read of the RTT_SR.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – RTTINC ALMS

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 286

17. Real-time Clock (RTC)

17.1 Description
The Real-time Clock (RTC) peripheral is designed for very low power consumption. For optimal functionality, the RTC
requires an accurate external 32.768 kHz clock, which can be provided by a crystal oscillator.

It combines a complete time-of-day clock with alarm and a Gregorian or Persian calendar, complemented by a
programmable periodic interrupt. The alarm and calendar registers are accessed by a 32-bit data bus.

The time and calendar values are coded in binary-coded decimal (BCD) format. The time format can be 24-hour mode
or 12-hour mode with an AM/PM indicator.

Updating time and calendar fields and configuring the alarm fields are performed by a parallel capture on the 32-bit
data bus. An entry control is performed to avoid loading registers with incompatible BCD format data or with an
incompatible date according to the current month/year/century.

A clock divider calibration circuitry can be used to compensate for crystal oscillator frequency variations.

An RTC output can be programmed to generate several waveforms, including a prescaled clock derived from
32.768 kHz.

Timestamping capability reports the first and last occurrences of tamper events.

17.2 Embedded Characteristics
 Full Asynchronous Design for Ultra Low Power Consumption
 Gregorian and Persian Modes Supported
 Programmable Periodic Interrupt
 Safety/security features:

 Valid Time and Date Programming Check
 On-The-Fly Time and Date Validity Check

 Counters Calibration Circuitry to Compensate for Crystal Oscillator Variations
 Waveform Generation
 Tamper Timestamping Registers
 Register Write Protection

17.3 Block Diagram

Figure 17-1. Real-time Clock Block Diagram

User Interface

32768 Divider
Time

Slow Clock: SLCK

System Bus

Date

RTC Interrupt
Entry

Control
Interrupt
Control

Clock Calibration

RTCOUT0Wave
Generator

Alarm

 287SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.4 Product Dependencies

17.4.1 Power Management

The Real-time Clock is continuously clocked at 32.768 kHz. The Power Management Controller has no effect on RTC
behavior.

17.4.2 Interrupt
RTC interrupt line is connected on one of the internal sources of the interrupt controller. RTC interrupt requires the
interrupt controller to be programmed first.

17.5 Functional Description
The RTC provides a full binary-coded decimal (BCD) clock that includes century (19/20), year (with leap years),
month, date, day, hours, minutes and seconds reported in “RTC Time Register” (RTC_TIMR) and “RTC Calendar
Register” (RTC_CALR).

The valid year range is up to 2099 in Gregorian mode (or 1300 to 1499 in Persian mode).

The RTC can operate in 24-hour mode or in 12-hour mode with an AM/PM indicator.

Corrections for leap years are included (all years divisible by 4 being leap years except 1900). This is correct up to the
year 2099.

The RTC can generate configurable waveforms on RTCOUT0 output.

17.5.1 Reference Clock
The reference clock is the Slow Clock (SLCK). It can be driven internally or by an external 32.768 kHz crystal.

During low-power modes of the processor, the oscillator runs and power consumption is critical. The crystal selection
has to take into account the current consumption for power saving and the frequency drift due to temperature effect on
the circuit for time accuracy.

17.5.2 Timing
The RTC is updated in real time at one-second intervals in Normal mode for the counters of seconds, at one-minute
intervals for the counter of minutes and so on.

Due to the asynchronous operation of the RTC with respect to the rest of the chip, to be certain that the value read in
the RTC registers (century, year, month, date, day, hours, minutes, seconds) are valid and stable, it is necessary to
read these registers twice. If the data is the same both times, then it is valid. Therefore, a minimum of two and a
maximum of three accesses are required.

17.5.3 Alarm
The RTC has five programmable fields: month, date, hours, minutes and seconds.

Each of these fields can be enabled or disabled to match the alarm condition:
 If all the fields are enabled, an alarm flag is generated (the corresponding flag is asserted and an interrupt

generated if enabled) at a given month, date, hour/minute/second.
 If only the “seconds” field is enabled, then an alarm is generated every minute.

Depending on the combination of fields enabled, a large number of possibilities are available to the user ranging from
minutes to 365/366 days.

Table 17-1. Peripheral IDs

Instance ID

RTC 2

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 288

Hour, minute and second matching alarm (SECEN, MINEN, HOUREN) can be enabled independently of SEC, MIN,
HOUR fields.
Note: To change one of the SEC, MIN, HOUR, DATE, MONTH fields, it is recommended to disable the field before

changing the value and then re-enable it after the change has been made. This requires up to three accesses
to the RTC_TIMALR or RTC_CALALR. The first access clears the enable corresponding to the field to
change (SECEN, MINEN, HOUREN, DATEEN, MTHEN). If the field is already cleared, this access is not
required. The second access performs the change of the value (SEC, MIN, HOUR, DATE, MONTH). The
third access is required to re-enable the field by writing 1 in SECEN, MINEN, HOUREN, DATEEN, MTHEN
fields.

17.5.4 Error Checking when Programming

Verification on user interface data is performed when accessing the century, year, month, date, day, hours, minutes,
seconds and alarms. A check is performed on illegal BCD entries such as illegal date of the month with regard to the
year and century configured.

If one of the time fields is not correct, the data is not loaded into the register/counter and a flag is set in the validity
register. The user can not reset this flag. It is reset as soon as an acceptable value is programmed. This avoids any
further side effects in the hardware. The same procedure is followed for the alarm.

The following checks are performed:
1. Century (check if it is in range 19 - 20 or 13 - 14 in Persian mode)
2. Year (BCD entry check)
3. Date (check range 01 - 31)
4. Month (check if it is in BCD range 01 - 12, check validity regarding “date”)
5. Day (check range 1 - 7)
6. Hour (BCD checks: in 24-hour mode, check range 00 - 23 and check that AM/PM flag is not set if RTC is set in

24-hour mode; in 12-hour mode check range 01 - 12)
7. Minute (check BCD and range 00 - 59)
8. Second (check BCD and range 00 - 59)

Note: If the 12-hour mode is selected by means of the RTC Mode Register (RTC_MR), a 12-hour value can be pro-
grammed and the returned value on RTC_TIMR will be the corresponding 24-hour value. The entry control
checks the value of the AM/PM indicator (bit 22 of RTC_TIMR) to determine the range to be checked.

17.5.5 RTC Internal Free Running Counter Error Checking

To improve the reliability and security of the RTC, a permanent check is performed on the internal free running
counters to report non-BCD or invalid date/time values.

An error is reported by TDERR bit in the status register (RTC_SR) if an incorrect value has been detected. The flag
can be cleared by setting the TDERRCLR bit in the RTC Status Clear Command Register (RTC_SCCR).

Anyway the TDERR error flag will be set again if the source of the error has not been cleared before clearing the
TDERR flag. The clearing of the source of such error can be done by reprogramming a correct value on RTC_CALR
and/or RTC_TIMR.

The RTC internal free running counters may automatically clear the source of TDERR due to their roll-over (i.e., every
10 seconds for SECONDS[3:0] field in RTC_TIMR). In this case the TDERR is held high until a clear command is
asserted by TDERRCLR bit in RTC_SCCR.

17.5.6 Updating Time/Calendar
The update of the time/calendar must be synchronized on a second periodic event by either polling the RTC_SR.SEC
status bit or by enabling the SECEN interrupt in the RTC_IER register.

 289SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Once the second event occurs, the user must stop the RTC by setting the corresponding field in the Control Register
(RTC_CR). Bit UPDTIM must be set to update time fields (hour, minute, second) and bit UPDCAL must be set to
update calendar fields (century, year, month, date, day).

The ACKUPD bit must then be read to 1 by either polling the RTC_SR or by enabling the ACKUPD interrupt in the
RTC_IER. Once ACKUPD is read to 1, it is mandatory to clear this flag by writing the corresponding bit in the
RTC_SCCR, after which the user can write to the Time Register, the Calendar Register, or both.

Once the update is finished, the user must write UPDTIM and/or UPDCAL to 0 in the RTC_CR.

The timing sequence of the time/calendar update is described in Figure 17-2 ”Time/Calendar Update Timing Diagram”

When entering the Programming mode of the calendar fields, the time fields remain enabled. When entering the
Programming mode of the time fields, both the time and the calendar fields are stopped. This is due to the location of
the calendar logical circuity (downstream for low-power considerations). It is highly recommended to prepare all the
fields to be updated before entering Programming mode. In successive update operations, the user must wait for at
least one second after resetting the UPDTIM/UPDCAL bit in the RTC_CR before setting these bits again. This is done
by waiting for the SEC flag in the RTC_SR before setting the UPDTIM/UPDCAL bit. After resetting UPDTIM/UPDCAL,
the SEC flag must also be cleared.

Figure 17-2. Time/Calendar Update Timing Diagram

20 (counter stopped) 15 16

Clear
ACKUPD bit

Update request
from SW

Clear
UPDTIM bit

Update
RTC_TIMR.SEC to 15

Sofware
Time Line

//

//

//

1 2 43

RTC_SR.ACKUPD

SEC Event Flag

RTC_CR.UPDTIM

RTC_TIMR.SEC

1Hz RTC Clock

RTC BACK TO
NORMAL MODE

//
//

//

//

////

//

// //

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 290

Figure 17-3. Update Sequence

Prepare Time or Calendar Fields

Set UPDTIM and/or UPDCAL
bit(s) in RTC_CR

Read RTC_SR

ACKUPD
= 1?

Clear ACKUPD bit in RTC_SCCR

Update Time and/or Calendar values in
RTC_TIMR/RTC_CALR

Clear UPDTIM and/or UPDCAL bit
in RTC_CR

No

Yes

Begin

End

Polling or
IRQ (if enabled)

Wait for second periodic event

 291SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.5.7 RTC Accurate Clock Calibration

The crystal oscillator that drives the RTC may not be as accurate as expected mainly due to temperature variation.
The RTC is equipped with circuitry able to correct slow clock crystal drift.

To compensate for possible temperature variations over time, this accurate clock calibration circuitry can be
programmed on-the-fly and also programmed during application manufacturing, in order to correct the crystal
frequency accuracy at room temperature (20-25°C). The typical clock drift range at room temperature is ±20 ppm.

In the device operating temperature range, the 32.768 kHz crystal oscillator clock inaccuracy can be up to -200 ppm.

The RTC clock calibration circuitry allows positive or negative correction in a range of 1.5 ppm to 1950 ppm.

The calibration circuitry is fully digital. Thus, the configured correction is independent of temperature, voltage,
process, etc., and no additional measurement is required to check that the correction is effective.

If the correction value configured in the calibration circuitry results from an accurate crystal frequency measure, the
remaining accuracy is bounded by the values listed below:
 Below 1 ppm, for an initial crystal drift between 1.5 ppm up to 20 ppm, and from 30 ppm to 90 ppm
 Below 2 ppm, for an initial crystal drift between 20 ppm up to 30 ppm, and from 90 ppm to 130 ppm
 Below 5 ppm, for an initial crystal drift between 130 ppm up to 200 ppm

The calibration circuitry does not modify the 32.768 kHz crystal oscillator clock frequency but it acts by slightly
modi fy ing the 1 Hz c lock per iod f rom t ime to t ime. The correct ion event occurs every 1 + [(20 -
 (19 x HIGHPPM)) x CORRECTION] seconds. When the period is modified, depending on the sign of the correction,
the 1 Hz clock period increases or reduces by around 4 ms. Depending on the CORRECTION, NEGPPM and
HIGHPPM values configured in RTC_MR, the period interval between two correction events differs.

Figure 17-4. Calibration Circuitry

32.768 kHz

O
sc

ill
at

or

Other Logic

RTC

Time/Calendar1Hz

CORRECTION, HIGHPPM
Integrator
Comparator

Divider by 32768
Add

32.768 kHz

NEGPPM

Suppress

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 292

Figure 17-5. Calibration Circuitry Waveforms

The inaccuracy of a crystal oscillator at typical room temperature (±20 ppm at 20 - 25 ºC) can be compensated if a
reference clock/signal is used to measure such inaccuracy. This kind of calibration operation can be set up during the
final product manufacturing by means of measurement equipment embedding such a reference clock. The correction
of value must be programmed into the RTC_MR, and this value is kept as long as the circuitry is powered (backup
area). Removing the backup power supply cancels this calibration. This room temperature calibration can be further
processed by means of the networking capability of the target application.

Time

Monotonic 1 Hz
Counter value

32.768 kHz -50 ppm

32.768 kHz +50 ppm

Crystal frequency
remains unadjusted

Internal 1 Hz clock
is adjusted

Phase adjustment
 (~4 ms)

User configurable period
(integer multiple of 1s or 20s)

Time

-50 ppm

-25 ppm

-50 ppm correction period
-25 ppm correction period

Nominal 32.768 kHz

Crystal clock

Internally divided clock (256 Hz)

Internally divided clock (128 Hz)

Clock pulse periodically suppressed
when correction period elapses

128 Hz clock edge delayed by 3.906 ms
when correction period elapses

Internally divided clock (256 Hz)

Internally divided clock (128 Hz)

Internally divided clock (64 Hz)

128 Hz clock edge delayed by 3.906 ms
when correction period elapses

Clock edge periodically added
when correction period elapses

1.000 second

1.003906 second

1.000 second

0.996094 second

N
E

G
AT

IV
E

 C
O

R
R

E
C

TI
O

N
P

O
S

IT
IV

E
 C

O
R

R
E

C
TI

O
N

dashed lines = no correction

 293SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

To ease the comparison of the inherent crystal accuracy with the reference clock/signal during manufacturing, an
internal prescaled 32.768 kHz clock derivative signal can be assigned to drive RTC output. To accommodate the
measure, several clock frequencies can be selected among 1 Hz, 32 Hz, 64 Hz, 512 Hz.

The clock calibration correction drives the internal RTC counters but can also be observed in the RTC output when
one of the following three frequencies 1 Hz, 32 Hz or 64 Hz is configured. The correction is not visible in the RTC
output if 512 Hz frequency is configured.

In any event, this adjustment does not take into account the temperature variation.

The frequency drift (up to -200 ppm) due to temperature variation can be compensated using a reference time if the
application can access such a reference. If a reference time cannot be used, a temperature sensor can be placed
close to the crystal oscillator in order to get the operating temperature of the crystal oscillator. Once obtained, the
temperature may be converted using a lookup table (describing the accuracy/temperature curve of the crystal
oscillator used) and RTC_MR configured accordingly. The calibration can be performed on-the-fly. This adjustment
method is not based on a measurement of the crystal frequency/drift and therefore can be improved by means of the
networking capability of the target application.

If no crystal frequency adjustment has been done during manufacturing, it is still possible to do it. In the case where
a reference time of the day can be obtained through LAN/WAN network, it is possible to calculate the drift of the
application crystal oscillator by comparing the values read on RTC Time Register (RTC_TIMR) and programming the
HIGHPPM and CORRECTION fields on RTC_MR according to the difference measured between the reference time
and those of RTC_TIMR.

17.5.8 Waveform Generation

Waveforms can be generated by the RTC in order to take advantage of the RTC inherent prescalers while the RTC is
the only powered circuitry (Low-power mode of operation, Backup mode) or in any active mode. Going into Backup or
Low-power operating modes does not affect the waveform generation outputs.

The RTC output (RTCOUT0) has a source driver selected among seven possibilities.

The first selection choice sticks the associated output at 0 (This is the reset value and it can be used at any time to
disable the waveform generation).

Selection choices 1 to 4 respectively select 1 Hz, 32 Hz, 64 Hz and 512 Hz.

32 Hz or 64 Hz can drive, for example, a TN LCD backplane signal while 1 Hz can be used to drive a blinking
character like “:” for basic time display (hour, minute) on TN LCDs.

Selection choice 5 provides a toggling signal when the RTC alarm is reached.

Selection choice 6 provides a copy of the alarm flag, so the associated output is set high (logical 1) when an alarm
occurs and immediately cleared when software clears the alarm interrupt source.

Selection choice 7 provides a 1 Hz periodic high pulse of 15 μs duration that can be used to drive external devices for
power consumption reduction or any other purpose.

PIO line associated to RTC output is automatically selecting these waveforms as soon as RTC_MR corresponding
fields OUT0 differ from 0.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 294

Figure 17-6. Waveform Generation

17.5.9 Tamper Timestamping

As soon as a tamper is detected, the tamper counter is incremented and the RTC stores the time of the day, the date
and the source of the tamper event in registers located in the backup area. Up to two tamper events can be stored.

The tamper counter saturates at 15. Once this limit is reached, the exact number of tamper occurrences since the last
read of stamping registers cannot be known.

The first set of timestamping registers (RTC_TSTR0, RTC_TSDR0, RTC_TSSR0) cannot be overwritten, so once
they have been written all data are stored until the registers are reset.Therefore these registers are storing the first
tamper occurrence after a read.

The second set of timestamping registers (RTC_TSTR1, RTC_TSDR1, RTC_TSSR1) are overwritten each time a
tamper event is detected. Thus the date and the time data of the first and the second stamping registers may be
equal. This occurs when the tamper counter value carried on field TEVCNT in RTC_TSTR0 equals 1. Thus this
second set of registers stores the last occurrence of tamper before a read.

Reading a set of timestamping registers requires three accesses, one for the time of the day, one for the date and one
for the tamper source.

Reading the third part (RTC_TSSR0/1) of a timestamping register set clears the whole content of the registers (time,
date and tamper source) and makes the timestamping registers available to store a new event.

RTCOUT0

‘0’

1 Hz

32 Hz

64 Hz

512 Hz

toggle_alarm

flag_alarm

pulse

0

1

2

3

4

5

6

7

RTC_MR(OUT0)

flag_alarm

alarm match
event 1

RTC_SCCR(ALRCLR)

alarm match
event 2

RTC_SCCR(ALRCLR)

toggle_alarm

pulse

Tperiod Tperiod

Thigh

 295SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.6 Real-time Clock (RTC) User Interface

Note: If an offset is not listed in the table it must be considered as reserved.

Table 17-2. Register Mapping

Offset Register Name Access Reset

0x00 Control Register RTC_CR Read/Write 0x00000000

0x04 Mode Register RTC_MR Read/Write 0x00000000

0x08 Time Register RTC_TIMR Read/Write 0x00000000

0x0C Calendar Register RTC_CALR Read/Write 0x01E111220

0x10 Time Alarm Register RTC_TIMALR Read/Write 0x00000000

0x14 Calendar Alarm Register RTC_CALALR Read/Write 0x01010000

0x18 Status Register RTC_SR Read-only 0x00000000

0x1C Status Clear Command Register RTC_SCCR Write-only –

0x20 Interrupt Enable Register RTC_IER Write-only –

0x24 Interrupt Disable Register RTC_IDR Write-only –

0x28 Interrupt Mask Register RTC_IMR Read-only 0x00000000

0x2C Valid Entry Register RTC_VER Read-only 0x00000000

0xB0 TimeStamp Time Register 0 RTC_TSTR0 Read-only 0x00000000

0xB4 TimeStamp Date Register 0 RTC_TSDR0 Read-only 0x00000000

0xB8 TimeStamp Source Register 0 RTC_TSSR0 Read-only 0x00000000

0xBC TimeStamp Time Register 1 RTC_TSTR1 Read-only 0x00000000

0xC0 TimeStamp Date Register 1 RTC_TSDR1 Read-only 0x00000000

0xC4 TimeStamp Source Register 1 RTC_TSSR1 Read-only 0x00000000

0xC8 Reserved – – –

 0xCC Reserved – – –

0xD0 Reserved – – –

0xD4 – 0xE0 Reserved – – –

0xE4 Write Protection Mode Register RTC_WPMR Read/Write 0x00000000

0xE8 – 0xF8 Reserved – – –

0xFC Reserved – – –

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 296

17.6.1 RTC Control Register

Name: RTC_CR

Address: 0x400E1460

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “RTC Write Protection Mode Register”

• UPDTIM: Update Request Time Register
0 = No effect or, if UPDTIM has been previously written to 1, stops the update procedure.

1 = Stops the RTC time counting.

Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and
acknowledged by the bit ACKUPD of the RTC_SR.

• UPDCAL: Update Request Calendar Register
0 = No effect or, if UPDCAL has been previously written to 1, stops the update procedure.

1 = Stops the RTC calendar counting.

Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once this
bit is set and acknowledged by the bit ACKUPD of the RTC_SR.

• TIMEVSEL: Time Event Selection
The event that generates the flag TIMEV in RTC_SR depends on the value of TIMEVSEL.

• CALEVSEL: Calendar Event Selection
The event that generates the flag CALEV in RTC_SR depends on the value of CALEVSEL.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – CALEVSEL

15 14 13 12 11 10 9 8
– – – – – – TIMEVSEL

7 6 5 4 3 2 1 0
– – – – – – UPDCAL UPDTIM

Value Name Description
0 MINUTE Minute change

1 HOUR Hour change

2 MIDNIGHT Every day at midnight

3 NOON Every day at noon

Value Name Description
0 WEEK Week change (every Monday at time 00:00:00)

1 MONTH Month change (every 01 of each month at time 00:00:00)

2 YEAR Year change (every January 1 at time 00:00:00)

3 - Reserved

 297SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.6.2 RTC Mode Register

Name: RTC_MR

Address: 0x400E1464

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “RTC Write Protection Mode Register”

• HRMOD: 12-/24-hour Mode
0 = 24-hour mode is selected.

1 = 12-hour mode is selected.

• PERSIAN: PERSIAN Calendar
0 = Gregorian calendar.

1 = Persian calendar.

• NEGPPM: NEGative PPM Correction
0 = Positive correction (the divider will be slightly higher than 32768).

1 = Negative correction (the divider will be slightly lower than 32768).

Refer to CORRECTION and HIGHPPM field descriptions.
Note: NEGPPM must be cleared to correct a crystal slower than 32.768 kHz.

• CORRECTION: Slow Clock Correction
0 = No correction.

1 - 127 = The slow clock will be corrected according to the formula given in HIGHPPM description.

• HIGHPPM: HIGH PPM Correction
0 = Lower range ppm correction with accurate correction.

1 = Higher range ppm correction with accurate correction.

If the absolute value of the correction to be applied is lower than 30 ppm, it is recommended to clear HIGHPPM. HIGHPPM set
to 1 is recommended for 30 ppm correction and above.

Formula:

If HIGHPPM = 0, then the clock frequency correction range is from 1.5 ppm up to 98 ppm. The RTC accuracy is less than 1
ppm for a range correction from 1.5 ppm up to 30 ppm.

31 30 29 28 27 26 25 24
– – TPERIOD – THIGH

23 22 21 20 19 18 17 16
– – – – – OUT0

15 14 13 12 11 10 9 8
HIGHPPM CORRECTION

7 6 5 4 3 2 1 0
– – – NEGPPM – – PERSIAN HRMOD

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 298

The correction field must be programmed according to the required correction in ppm; the formula is as follows:

The value obtained must be rounded to the nearest integer prior to being programmed into CORRECTION field.

If HIGHPPM = 1, then the clock frequency correction range is from 30.5 ppm up to 1950 ppm. The RTC accuracy is less
than 1 ppm for a range correction from 30.5 ppm up to 90 ppm.

The correction field must be programmed according to the required correction in ppm; the formula is as follows:

The value obtained must be rounded to the nearest integer prior to be programmed into CORRECTION field.

If NEGPPM is set to 1, the ppm correction is negative (used to correct crystals that are faster than the nominal 32.768 kHz).

• OUT0: RTCOUT0 Output Source Selection

• THIGH: High Duration of the Output Pulse

• TPERIOD: Period of the Output Pulse

Value Name Description

0 NO_WAVE No waveform, stuck at ‘0’

1 FREQ1HZ 1 Hz square wave

2 FREQ32HZ 32 Hz square wave

3 FREQ64HZ 64 Hz square wave

4 FREQ512HZ 512 Hz square wave

5 ALARM_TOGGLE Output toggles when alarm flag rises

6 ALARM_FLAG Output is a copy of the alarm flag

7 PROG_PULSE Duty cycle programmable pulse

Value Name Description

0 H_31MS 31.2 ms

1 H_16MS 15.6 ms

2 H_4MS 3.91 ms

3 H_976US 976 μs

4 H_488US 488 μs

5 H_122US 122 μs

6 H_30US 30.5 μs

7 H_15US 15.2 μs

Value Name Description

0 P_1S 1 second

1 P_500MS 500 ms

2 P_250MS 250 ms

3 P_125MS 125 ms

CORRECTION 3906
20 ppm
------------------------ 1–=

CORRECTION 3906
ppm
------------- 1–=

 299SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.6.3 RTC Time Register

Name: RTC_TIMR

Address: 0x400E1468

Access: Read/Write

• SEC: Current Second
The range that can be set is 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• MIN: Current Minute
The range that can be set is 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• HOUR: Current Hour
The range that can be set is 1 - 12 (BCD) in 12-hour mode or 0 - 23 (BCD) in 24-hour mode.

• AMPM: Ante Meridiem Post Meridiem Indicator
This bit is the AM/PM indicator in 12-hour mode.

0 = AM.

1 = PM.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– AMPM HOUR

15 14 13 12 11 10 9 8
– MIN

7 6 5 4 3 2 1 0
– SEC

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 300

17.6.4 RTC Calendar Register

Name: RTC_CALR

Address: 0x400E146C

Access: Read/Write

• CENT: Current Century
The range that can be set is 19 - 20 (gregorian) or 13 - 14 (persian) (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• YEAR: Current Year
The range that can be set is 00 - 99 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• MONTH: Current Month
The range that can be set is 01 - 12 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• DAY: Current Day in Current Week
The range that can be set is 1 - 7 (BCD).

The coding of the number (which number represents which day) is user-defined as it has no effect on the date counter.

• DATE: Current Day in Current Month
The range that can be set is 01 - 31 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

31 30 29 28 27 26 25 24
– – DATE

23 22 21 20 19 18 17 16
DAY MONTH

15 14 13 12 11 10 9 8
YEAR

7 6 5 4 3 2 1 0
– CENT

 301SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.6.5 RTC Time Alarm Register

Name: RTC_TIMALR

Address: 0x400E1470

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “RTC Write Protection Mode Register”
Note: To change one of the SEC, MIN, HOUR fields, it is recommended to disable the field before changing the value and

then re-enable it after the change has been made. This requires up to three accesses to the RTC_TIMALR. The first
access clears the enable corresponding to the field to change (SECEN, MINEN, HOUREN). If the field is already
cleared, this access is not required. The second access performs the change of the value (SEC, MIN, HOUR). The
third access is required to re-enable the field by writing 1 in SECEN, MINEN, HOUREN fields.

• SEC: Second Alarm
This field is the alarm field corresponding to the BCD-coded second counter.

• SECEN: Second Alarm Enable
0 = The second-matching alarm is disabled.

1 = The second-matching alarm is enabled.

• MIN: Minute Alarm
This field is the alarm field corresponding to the BCD-coded minute counter.

• MINEN: Minute Alarm Enable
0 = The minute-matching alarm is disabled.

1 = The minute-matching alarm is enabled.

• HOUR: Hour Alarm
This field is the alarm field corresponding to the BCD-coded hour counter.

• AMPM: AM/PM Indicator
This field is the alarm field corresponding to the BCD-coded hour counter.

• HOUREN: Hour Alarm Enable
0 = The hour-matching alarm is disabled.

1 = The hour-matching alarm is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
HOUREN AMPM HOUR

15 14 13 12 11 10 9 8
MINEN MIN

7 6 5 4 3 2 1 0
SECEN SEC

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 302

17.6.6 RTC Calendar Alarm Register

Name: RTC_CALALR

Address: 0x400E1474

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “RTC Write Protection Mode Register”
Note: To change one of the DATE, MONTH fields, it is recommended to disable the field before changing the value and then

re-enable it after the change has been made. This requires up to three accesses to the RTC_CALALR. The first
access clears the enable corresponding to the field to change (DATEEN, MTHEN). If the field is already cleared, this
access is not required. The second access performs the change of the value (DATE, MONTH). The third access is
required to re-enable the field by writing 1 in DATEEN, MTHEN fields.

• MONTH: Month Alarm
This field is the alarm field corresponding to the BCD-coded month counter.

• MTHEN: Month Alarm Enable
0 = The month-matching alarm is disabled.

1 = The month-matching alarm is enabled.

• DATE: Date Alarm
This field is the alarm field corresponding to the BCD-coded date counter.

• DATEEN: Date Alarm Enable
0 = The date-matching alarm is disabled.

1 = The date-matching alarm is enabled.

31 30 29 28 27 26 25 24
DATEEN – DATE

23 22 21 20 19 18 17 16
MTHEN – – MONTH

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – –

 303SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.6.7 RTC Status Register

Name: RTC_SR

Address: 0x400E1478

Access: Read-only

• ACKUPD: Acknowledge for Update

• ALARM: Alarm Flag

• SEC: Second Event

• TIMEV: Time Event

Note: The time event is selected in the TIMEVSEL field in the Control Register (RTC_CR) and can be any one of the
following events: minute change, hour change, noon, midnight (day change).

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – TDERR CALEV TIMEV SEC ALARM ACKUPD

Value Name Description
0 FREERUN Time and calendar registers cannot be updated.
1 UPDATE Time and calendar registers can be updated.

Value Name Description
0 NO_ALARMEVENT No alarm matching condition occurred.
1 ALARMEVENT An alarm matching condition has occurred.

Value Name Description
0 NO_SECEVENT No second event has occurred since the last clear.
1 SECEVENT At least one second event has occurred since the last clear.

Value Name Description
0 NO_TIMEVENT No time event has occurred since the last clear.
1 TIMEVENT At least one time event has occurred since the last clear.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 304

• CALEV: Calendar Event

Note: The calendar event is selected in the CALEVSEL field in the Control Register (RTC_CR) and can be any one of the
following events: week change, month change and year change.

• TDERR: Time and/or Date Free Running Error

Value Name Description
0 NO_CALEVENT No calendar event has occurred since the last clear.
1 CALEVENT At least one calendar event has occurred since the last clear.

Value Name Description

0 CORRECT The internal free running counters are carrying valid values since the last read
of the Status Register (RTC_SR).

1 ERR_TIMEDATE The internal free running counters have been corrupted (invalid date or time,
non-BCD values) since the last read and/or they are still invalid.

 305SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.6.8 RTC Status Clear Command Register

Name: RTC_SCCR

Address: 0x400E147C

Access: Write-only

• ACKCLR: Acknowledge Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

• ALRCLR: Alarm Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

• SECCLR: Second Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

• TIMCLR: Time Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

• CALCLR: Calendar Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

• TDERRCLR: Time and/or Date Free Running Error Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – TDERRCLR CALCLR TIMCLR SECCLR ALRCLR ACKCLR

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 306

17.6.9 RTC Interrupt Enable Register

Name: RTC_IER

Address: 0x400E1480

Access: Write-only

• ACKEN: Acknowledge Update Interrupt Enable
0 = No effect.

1 = The acknowledge for update interrupt is enabled.

• ALREN: Alarm Interrupt Enable
0 = No effect.

1 = The alarm interrupt is enabled.

• SECEN: Second Event Interrupt Enable
0 = No effect.

1 = The second periodic interrupt is enabled.

• TIMEN: Time Event Interrupt Enable
0 = No effect.

1 = The selected time event interrupt is enabled.

• CALEN: Calendar Event Interrupt Enable
0 = No effect.

1 = The selected calendar event interrupt is enabled.

• TDERREN: Time and/or Date Error Interrupt Enable
0 = No effect.

1 = The time and date error interrupt is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – TDERREN CALEN TIMEN SECEN ALREN ACKEN

 307SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.6.10 RTC Interrupt Disable Register

Name: RTC_IDR

Address: 0x400E1484

Access: Write-only

• ACKDIS: Acknowledge Update Interrupt Disable
0 = No effect.

1 = The acknowledge for update interrupt is disabled.

• ALRDIS: Alarm Interrupt Disable
0 = No effect.

1 = The alarm interrupt is disabled.

• SECDIS: Second Event Interrupt Disable
0 = No effect.

1 = The second periodic interrupt is disabled.

• TIMDIS: Time Event Interrupt Disable
0 = No effect.

1 = The selected time event interrupt is disabled.

• CALDIS: Calendar Event Interrupt Disable
0 = No effect.

1 = The selected calendar event interrupt is disabled.

• TDERRDIS: Time and/or Date Error Interrupt Disable
0 = No effect.

1 = The time and date error interrupt is disabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – TDERRDIS CALDIS TIMDIS SECDIS ALRDIS ACKDIS

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 308

17.6.11 RTC Interrupt Mask Register

Name: RTC_IMR

Address: 0x400E1488

Access: Read-only

• ACK: Acknowledge Update Interrupt Mask
0 = The acknowledge for update interrupt is disabled.

1 = The acknowledge for update interrupt is enabled.

• ALR: Alarm Interrupt Mask
0 = The alarm interrupt is disabled.

1 = The alarm interrupt is enabled.

• SEC: Second Event Interrupt Mask
0 = The second periodic interrupt is disabled.

1 = The second periodic interrupt is enabled.

• TIM: Time Event Interrupt Mask
0 = The selected time event interrupt is disabled.

1 = The selected time event interrupt is enabled.

• CAL: Calendar Event Interrupt Mask
0 = The selected calendar event interrupt is disabled.

1 = The selected calendar event interrupt is enabled.

• TDERR: Time and/or Date Error Mask
0 = The time and/or date error event is disabled.

1 = The time and/or date error event is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – TDERR CAL TIM SEC ALR ACK

 309SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.6.12 RTC Valid Entry Register

Name: RTC_VER

Address: 0x400E148C

Access: Read-only

• NVTIM: Non-valid Time
0 = No invalid data has been detected in RTC_TIMR (Time Register).

1 = RTC_TIMR has contained invalid data since it was last programmed.

• NVCAL: Non-valid Calendar
0 = No invalid data has been detected in RTC_CALR (Calendar Register).

1 = RTC_CALR has contained invalid data since it was last programmed.

• NVTIMALR: Non-valid Time Alarm
0 = No invalid data has been detected in RTC_TIMALR (Time Alarm Register).

1 = RTC_TIMALR has contained invalid data since it was last programmed.

• NVCALALR: Non-valid Calendar Alarm
0 = No invalid data has been detected in RTC_CALALR (Calendar Alarm Register).

1 = RTC_CALALR has contained invalid data since it was last programmed.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – NVCALALR NVTIMALR NVCAL NVTIM

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 310

17.6.13 RTC TimeStamp Time Register 0

Name: RTC_TSTR0

Address: 0x400E1510

Access: Read-only

RTC_TSTR0 reports the timestamp of the first tamper event after reading RTC_TSSR0.

This register is cleared by reading RTC_TSSR0.

• SEC: Seconds of the Tamper

• MIN: Minutes of the Tamper

• HOUR: Hours of the Tamper

• AMPM: AM/PM Indicator of the Tamper

• TEVCNT: Tamper Events Counter
Each time a tamper event occurs, this counter is incremented. This counter saturates at 15. Once this value is reached, it is no
more possible to know the exact number of tamper events.

If this field is not null, this implies that at least one tamper event occurs since last register reset and that the values stored in
timestamping registers are valid.

• BACKUP: System Mode of the Tamper
0 = The state of the system is different from backup mode when the tamper event occurs.

1 = The system is in backup mode when the tamper event occurs.

31 30 29 28 27 26 25 24
BACKUP – – – TEVCNT

23 22 21 20 19 18 17 16
– AMPM HOUR

15 14 13 12 11 10 9 8
– MIN

7 6 5 4 3 2 1 0
– SEC

 311SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.6.14 RTC TimeStamp Time Register 1

Name: RTC_TSTR1

Address: 0x400E151C

Access: Read-only

RTC_TSTR1 reports the timestamp of the last tamper event.

This register is cleared by reading RTC_TSSR1.

• SEC: Seconds of the Tamper

• MIN: Minutes of the Tamper

• HOUR: Hours of the Tamper

• AMPM: AM/PM Indicator of the Tamper

• BACKUP: System Mode of the Tamper
0 = The state of the system is different from Backup mode when the tamper event occurs.

1 = The system is in Backup mode when the tamper event occurs.

31 30 29 28 27 26 25 24
BACKUP – – – – – – –

23 22 21 20 19 18 17 16
– AMPM HOUR

15 14 13 12 11 10 9 8
– MIN

7 6 5 4 3 2 1 0
– SEC

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 312

17.6.15 RTC TimeStamp Date Register

Name: RTC_TSDRx

Address: 0x400E1514 [0], 0x400E1520 [1]

Access: Read-only

RTC_TSDR0 reports the timestamp of the first tamper event after reading RTC_TSSR0, and RTC_TSDR1 reports the time-
stamp of the last tamper event.

This register is cleared by reading RTC_TSSR.

• CENT: Century of the Tamper

• YEAR: Year of the Tamper

• MONTH: Month of the Tamper

• DAY: Day of the Tamper

• DATE: Date of the Tamper
The fields contain the date and the source of a tamper occurrence if the TEVCNT is not null.

31 30 29 28 27 26 25 24
– – DATE

23 22 21 20 19 18 17 16
DAY MONTH

15 14 13 12 11 10 9 8
YEAR

7 6 5 4 3 2 1 0
– CENT

 313SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17.6.16 RTC TimeStamp Source Register

Name: RTC_TSSRx

Address: 0x400E1518 [0], 0x400E1524 [1]

Access: Read-only

• TSRC: Tamper Source
This field contains the tamper source. It is valid only if the TEVCNT is not null.

This register is cleared after read and the read access also performs a clear on RTC_TSTRx and RTC_TSDRx.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – TSRC

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 314

17.6.17 RTC Write Protection Mode Register

Name: RTC_WPMR

Address: 0x400E1544

Access: Read/Write

• WPEN: Write Protection Enable
0 = Disables the write protection if WPKEY corresponds to 0x525443 (“RTC” in ASCII).

1 = Enables the write protection if WPKEY corresponds to 0x525443 (“RTC” in ASCII).

The following registers can be write-protected:
 “RTC Mode Register”
 “RTC Time Alarm Register”
 “RTC Calendar Alarm Register”

• WPKEY: Write Protection Key

31 30 29 28 27 26 25 24
WPKEY

23 22 21 20 19 18 17 16
WPKEY

15 14 13 12 11 10 9 8
WPKEY

7 6 5 4 3 2 1 0
– – – – – – – WPEN

Value Name Description

0x525443 PASSWD Writing any other value in this field aborts the write operation of the WPEN bit. Always reads as 0.

 315SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

18. Watchdog Timer (WDT)

18.1 Description
The Watchdog Timer (WDT) is used to prevent system lock-up if the software becomes trapped in a deadlock.
It features a 12-bit down counter that allows a watchdog period of up to 16 seconds (slow clock around 32 kHz). It can
generate a general reset or a processor reset only. In addition, it can be stopped while the processor is in Debug
mode or Sleep mode (Idle mode).

18.2 Embedded Characteristics
 12-bit key-protected programmable counter.
 Watchdog Clock is independent from Processor Clock.
 Provides reset or interrupt signals to the system.
 Counter may be stopped while the processor is in debug state or in idle mode.

18.3 Block Diagram

Figure 18-1. Watchdog Timer Block Diagram

= 0

1 0

set

resetread WDT_SR
or
reset

wdt_fault
(to Reset Controller)

set

reset

WDFIEN

wdt_int

WDT_MR

SLCK1/128

12-bit Down
Counter

Current
Value

WDD

WDT_MR

<= WDD

WDV

WDRSTT

WDT_MR

WDT_CR

reload

WDUNF

WDERR

reload

write WDT_MR

WDT_MR

WDRSTEN

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 316

18.4 Functional Description
The Watchdog Timer is used to prevent system lock-up if the software becomes trapped in a deadlock. It is supplied
with VDDCORE. It restarts with initial values on processor reset.

The watchdog is built around a 12-bit down counter, which is loaded with the value defined in the field WDV of the
Mode Register (WDT_MR). The Watchdog Timer uses the Slow Clock divided by 128 to establish the maximum
watchdog period to be 16 seconds (with a typical Slow Clock of 32.768 kHz).

After a Processor Reset, the value of WDV is 0xFFF, corresponding to the maximum value of the counter with the
external reset generation enabled (field WDRSTEN at 1 after a Backup Reset). This means that a default watchdog is
running at reset, i.e., at power-up. The user can either disable the WDT by setting bit WDT_MR.WDDIS or reprogram
the WDT to meet the maximum watchdog period the application requires.

If the watchdog is restarted by writing into the Control Register (WDT_CR), WDT_MR must not be programmed
during a period of time of three slow clock periods following the WDT_CR write access. In any case, programming a
new value in WDT_MR automatically initiates a restart instruction.

WDT_MR can be written only once. Only a processor reset resets it. Writing WDT_MR reloads the timer with the
newly programmed mode parameters.

In normal operation, the user reloads the watchdog at regular intervals before the timer underflow occurs, by setting
bit WDT_CR.WDRSTT. The watchdog counter is then immediately reloaded from WDT_MR and restarted, and the
Slow Clock 128 divider is reset and restarted. WDT_CR is write-protected. As a result, writing WDT_CR without the
correct hard-coded key has no effect. If an underflow does occur, the “wdt_fault” signal to the Reset Controller is
asserted if bit WDT_MR.WDRSTEN is set. Moreover, the bit WDUNF is set in the Status Register (WDT_SR).

The reload of the watchdog must occur while the watchdog counter is within a window between 0 and WDD. WDD is
defined in WDT_MR.

Any attempt to restart the watchdog while the watchdog counter is between WDV and WDD results in a watchdog
error, even if the watchdog is disabled. The bit WDT_SR.WDERR is updated and the “wdt_fault” signal to the Reset
Controller is asserted.

Note that this feature can be disabled by programming a WDD value greater than or equal to the WDV value. In such
a configuration, restarting the Watchdog Timer is permitted in the whole range [0; WDV] and does not generate an
error. This is the default configuration on reset (the WDD and WDV values are equal).

The status bits WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an interrupt, provided the bit
WDT_MR.WDFIEN is set. The signal “wdt_fault” to the reset controller causes a watchdog reset if the WDRSTEN bit
is set as already explained in the reset controller documentation. In this case, the processor and the Watchdog Timer
are reset, and the WDERR and WDUNF flags are reset.

If a reset is generated or if WDT_SR is read, the status bits are reset, the interrupt is cleared, and the “wdt_fault”
signal to the reset controller is deasserted.

Writing WDT_MR reloads and restarts the down counter.

While the processor is in Debug state or in Sleep mode, the counter may be stopped depending on the value
programmed for the bits WDIDLEHLT and WDDBGHLT in WDT_MR.

 317SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 18-2. Watchdog Behavior

18.5 Watchdog Timer (WDT) User Interface

Table 18-1. Register Mapping

Offset Register Name Access Reset

0x00 Control Register WDT_CR Write-only –

0x04 Mode Register WDT_MR Read/Write Once 0x3FFF_2FFF

0x08 Status Register WDT_SR Read-only 0x0000_0000

0

WDV

WDD

WDT_CR. WDRSTT=1
Watchdog

Fault

Normal behavior

Watchdog Error Watchdog Underflow

FFF
if WDRSTEN is 1

if WDRSTEN is 0

Forbidden
Window

Permitted
Window

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 318

18.5.1 Watchdog Timer Control Register

Name: WDT_CR

Address: 0x400E1450

Access: Write-only

Notes: 1. The WDT_CR register values must not be modified within three slow clock periods following a restart of the watch-
dog performed by a write access in WDT_CR. Any modification will cause the watchdog to trigger an end of period
earlier than expected.

• WDRSTT: Watchdog Restart
0: No effect.

1: Restarts the watchdog if KEY is written to 0xA5.

• KEY: Password

31 30 29 28 27 26 25 24
KEY

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – WDRSTT

Value Name Description

0xA5 PASSWD Writing any other value in this field aborts the write operation.

 319SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

18.5.2 Watchdog Timer Mode Register

Name: WDT_MR

Address: 0x400E1454

Access: Read/Write Once

Notes: 1. The first write access prevents any further modification of the value of this register. Read accesses remain
possible.

2. The WDT_MR register values must not be modified within three slow clock periods following a restart of the watch-
dog performed by a write access in WDT_CR. Any modification will cause the watchdog to trigger an end of period
earlier than expected.

• WDV: Watchdog Counter Value
Defines the value loaded in the 12-bit watchdog counter.

• WDFIEN: Watchdog Fault Interrupt Enable
0: A watchdog fault (underflow or error) has no effect on interrupt.

1: A watchdog fault (underflow or error) asserts interrupt.

• WDRSTEN: Watchdog Reset Enable
0: A watchdog fault (underflow or error) has no effect on the resets.

1: A watchdog fault (underflow or error) triggers a watchdog reset.

• WDRPROC: Watchdog Reset Processor
0: If WDRSTEN is 1, a watchdog fault (underflow or error) activates all resets.

1: If WDRSTEN is 1, a watchdog fault (underflow or error) activates the processor reset.

• WDDIS: Watchdog Disable
0: Enables the Watchdog Timer.

1: Disables the Watchdog Timer.

• WDD: Watchdog Delta Value
Defines the permitted range for reloading the Watchdog Timer.

If the Watchdog Timer value is less than or equal to WDD, setting bit WDT_CR.WDRSTT restarts the timer.

If the Watchdog Timer value is greater than WDD, setting bit WDT_CR.WDRSTT causes a watchdog error.

31 30 29 28 27 26 25 24
– – WDIDLEHLT WDDBGHLT WDD

23 22 21 20 19 18 17 16
WDD

15 14 13 12 11 10 9 8
WDDIS WDRPROC WDRSTEN WDFIEN WDV

7 6 5 4 3 2 1 0
WDV

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 320

• WDDBGHLT: Watchdog Debug Halt
0: The watchdog runs when the processor is in debug state.

1: The watchdog stops when the processor is in debug state.

• WDIDLEHLT: Watchdog Idle Halt
0: The watchdog runs when the system is in idle state.

1: The watchdog stops when the system is in idle state.

 321SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

18.5.3 Watchdog Timer Status Register

Name: WDT_SR

Address: 0x400E1458

Access Read-only

• WDUNF: Watchdog Underflow (cleared on read)
0: No watchdog underflow occurred since the last read of WDT_SR.

1: At least one watchdog underflow occurred since the last read of WDT_SR.

• WDERR: Watchdog Error (cleared on read)
0: No watchdog error occurred since the last read of WDT_SR.

1: At least one watchdog error occurred since the last read of WDT_SR.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – WDERR WDUNF

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 322

19. Reinforced Safety Watchdog Timer (RSWDT)

19.1 Description
The Reinforced Safety Watchdog Timer (RSWDT) works in parallel with the Watchdog Timer (WDT) to reinforce safe
watchdog operations.

The RSWDT can be used to reinforce the safety level provided by the WDT in order to prevent system lock-up if the
software becomes trapped in a deadlock. The RSWDT works in a fully operable mode, independent of the WDT. Its
clock source is automatically selected from either the Slow RC oscillator clock, or from the Main RC oscillator divided
clock to get an equivalent Slow RC oscillator clock. If the WDT clock source (for example, the 32 kHz crystal oscillator)
fails, the system lock-up is no longer monitored by the WDT because the RSWDT performs the monitoring. Thus,
there is no lack of safety regardless of the external operating conditions. The RSWDT shares the same features as
the WDT (i.e., a 12-bit down counter that allows a watchdog period of up to 16 seconds with slow clock at 32.768
kHz). It can generate a general reset or a processor reset only. In addition, it can be stopped while the processor is in
Debug mode or Idle mode.

19.2 Embedded Characteristics
 Automatically selected reliable RSWDT clock source (independent of WDT clock source).
 12-bit key-protected programmable counter.
 Provides Reset Signal to the system.
 Counter may be stopped while processor is in debug state or idle mode.

19.3 Block Diagram

Figure 19-1. Reinforced Safety Watchdog Timer Block Diagram

= 0

1 0

set

resetread RSWDT_SR
or
reset

rswdt_fault
(to Reset Controller)
(ORed with wdt_fault)set

reset

slow RC clock
1/128

12-bit Down
Counter

Current
Value

WDD

RSWDT_MR

<= WDD

WDV

WDRSTT

RSWDT_MR

RSWDT_CR

reload

WDUNF

WDERR

reload

write RSWDT_MR

RSWDT_MR

WDRSTEN

main RC clock

divider

main RC frequency

Automatic selection
[CKGR_MOR.MOSCRCEN = 0

and
(WDT_MR.WDDIS

or
SUPC_MR.XTALSEL = 1)]

1

0

 323SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

19.4 Functional Description
The RSWDT is supplied by VDDCORE. The RSWDT is initialized with default values on processor reset or on a
power-on sequence and is disabled (its default mode) under such conditions.

The RSWDT must not be enabled if the WDT is disabled.

The Main RC oscillator divided clock is selected if the Main RC oscillator is already enabled by the application
(CKGR_MOR.MOSCRCEN = 1) or if the WDT is driven by the Slow RC oscillator.

The RSWDT is built around a 12-bit down counter, which is loaded with a slow clock value other than that of the slow
clock in the WDT, defined in the WDV (Watchdog Counter Value) field of the Mode Register (RSWDT_MR). The
RSWDT uses the slow clock divided by 128 to establish the maximum watchdog period to be 16 seconds (with a
typical slow clock of 32.768 kHz).

After a processor reset, the value of RSWDT_MR.WDV is 0xFFF, corresponding to the maximum value of the counter
with the external reset generation enabled (RSWDT_MR.WDRSTEN = 1 after a backup reset). This means that a
default watchdog is running at reset, i.e., at power-up.

If the watchdog is restarted by writing into the Control Register (RSWDT_CR), the RSWDT_MR must not be
programmed during a period of time of three slow clock periods following the RSWDT_CR write access. Programming
a new value in the RSWDT_MR automatically initiates a restart instruction.

RSWDT_MR can be written only once. Only a processor reset resets it. Writing RSWDT_MR reloads the timer with
the newly programmed mode parameters.

In normal operation, the user reloads the watchdog at regular intervals before the timer underflow occurs, by setting
bit RSWDT_CR.WDRSTT. The watchdog counter is then immediately reloaded from the RSWDT_MR and restarted,
and the slow clock 128 divider is reset and restarted. The RSWDT_CR is write-protected. As a result, writing
RSWDT_CR without the correct hard-coded key has no effect. If an underflow does occur, the “wdt_fault” signal to the
Reset Controller is asserted if RSWDT_MR.WDRSTEN is set. Moreover, WDUNF (Watchdog Underflow) is set in the
Status Register (RSWDT_SR).

The signal “wdt_fault” to the Reset Controller causes a Watchdog reset if the WDRSTEN bit. For details, refer to the
section “Reset Controller (RSTC)”. In this case, the processor and the RSWDT are reset, and the WDUNF and
WDERR flags are reset.

If a reset is generated, or if RSWDT_SR is read, the status bits are reset, and the “wdt_fault” signal to the reset
controller is deasserted.

Writing RSWDT_MR reloads and restarts the down counter.

The RSWDT is disabled after any power-on sequence.

While the processor is in Debug state or in Idle mode, the counter may be stopped depending on the value
programmed for the WDIDLEHLT and WDDBGHLT bits in the RSWDT_MR.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 324

Figure 19-2. Watchdog Behavior

19.5 Reinforced Safety Watchdog Timer (RSWDT) User Interface

0

WDV

WDD

RSWDT_CR. WDRSTT = 1
Watchdog

Fault

Normal behavior

Watchdog Error Watchdog Underflow

FFF
if WDRSTEN is 1

if WDRSTEN is 0

Forbidden
Window

Permitted
Window

Table 19-1. Register Mapping

Offset Register Name Access Reset

0x00 Control Register RSWDT_CR Write-only –

0x04 Mode Register RSWDT_MR Read/Write Once 0x3FFF_AFFF

0x08 Status Register RSWDT_SR Read-only 0x0000_0000

 325SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

19.5.1 Reinforced Safety Watchdog Timer Control Register

Name: RSWDT_CR

Address: 0x400E1500

Access: Write-only

• WDRSTT: Watchdog Restart
0: No effect.

1: Restarts the watchdog.

• KEY: Password

31 30 29 28 27 26 25 24
KEY

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – WDRSTT

Value Name Description

0xC4 PASSWD Writing any other value in this field aborts the write operation.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 326

19.5.2 Reinforced Safety Watchdog Timer Mode Register

Name: RSWDT_MR

Address: 0x400E1504

Access: Read/Write Once

Note: The first write access prevents any further modification of the value of this register, read accesses remain possible.
Note: The WDV value must not be modified within three slow clock periods following a restart of the watchdog performed

by means of a write access in the RSWDT_CR, else the watchdog may trigger an end of period earlier than
expected.

• WDV: Watchdog Counter Value
Defines the value loaded in the 12-bit watchdog counter.

• WDRSTEN: Watchdog Reset Enable
0: A Watchdog fault (underflow or error) has no effect on the resets.

1: A Watchdog fault (underflow or error) triggers a watchdog reset.

• WDRPROC: Watchdog Reset Processor
0: If WDRSTEN is 1, a watchdog fault (underflow or error) activates all resets.

1: If WDRSTEN is 1, a watchdog fault (underflow or error) activates the processor reset.

• ALLONES: Must Always Be Written with 0xFFF

• WDDBGHLT: Watchdog Debug Halt
0: The RSWDT runs when the processor is in debug state.

1: The RSWDT stops when the processor is in debug state.

• WDIDLEHLT: Watchdog Idle Halt
0: The RSWDT runs when the system is in idle mode.

1: The RSWDT stops when the system is in idle state.

• WDDIS: Watchdog Disable
0: Enables the RSWDT.

1: Disables the RSWDT.

31 30 29 28 27 26 25 24
– – WDIDLEHLT WDDBGHLT ALLONES

23 22 21 20 19 18 17 16
ALLONES

15 14 13 12 11 10 9 8
WDDIS WDRPROC WDRSTEN - WDV

7 6 5 4 3 2 1 0
WDV

 327SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

19.5.3 Reinforced Safety Watchdog Timer Status Register

Name: RSWDT_SR

Address: 0x400E1508

Access: Read-only

• WDUNF: Watchdog Underflow
0: No watchdog underflow occurred since the last read of RSWDT_SR.

1: At least one watchdog underflow occurred since the last read of RSWDT_SR.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – WDUNF

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 328

20. Supply Controller (SUPC)

20.1 Description
The Supply Controller (SUPC) controls the supply voltages of the system and manages the backup Low-power mode.
In this mode, current consumption is reduced to less than 1 μA (typ) for backup power retention. Exit from this mode is
possible on multiple wake-up sources. The SUPC also generates the slow clock by selecting either the low-power RC
oscillator or the low-power crystal oscillator.

20.2 Embedded Characteristics
 Manages VDDCORE and the Backup Low-Power Mode by Controlling the Embedded Voltage Regulator
 Manages the LCD Power Supply VDDLCD and the Backup Low-Power Mode by Controlling the Embedded

LCD Voltage Regulator
 A Supply Monitor Detection on VDDIO or a Brownout Detection on VDDCORE Triggers a System Reset
 A Zero-power Power-on Reset on VDDBU_SW Triggers a System Reset
 Generates the Slow Clock SLCK by Selecting Either the 32 kHz Low-Power RC Oscillator or the 32 kHz Low-

Power Crystal Oscillator
 Supports Multiple Wake-up Sources for Exit from Backup Low-Power Mode

 Force Wake-up Pin, with Programmable Debouncing
 Up to 16 Wake-up Inputs (including Tamper Inputs), with Programmable Debouncing
 Real-time Clock Alarm
 Real-time Timer Alarm
 Supply Monitor Detection on VDDIO with Programmable Scan Period and Voltage Threshold

 329SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.3 Block Diagram

Figure 20-1. Supply Controller Block Diagram

Supply Monitoring

VDDBU

VDDOUT

SHDN

VDDLCD
(In/Out)

Core Voltage
Regulator

VROFF

ONREG

VDDIN

LCD Voltage
RegulatorLCDMODE

- OFF (LCDOFF),
- Active (LCDON_EXTVR),
- Hi-Z (LCDON_EXTVR)

LCDVROUT

VDDLCD
Adjust

Backup
Mode

Used/Unused

Automatic
Power Switch

Note: TMPx signals and WKUPx signals are multiplexed on the same pins (i.e., TMP0/WKUP0, TMP1/WKUP10, etc).
This generates a wake-up event only, a tamper event only or a wake-up and a tamper event.

RSTC
Module

vddcore_nreset (system reset signal)

core_backup_reset

VDDBU_SW

reset enable

disable

Power-On-Reset
VDDCORE

Brownout
Detector

VDDCORE

Programmable
Supply Monitor

VDDIO

Zero-Power
Power-On-Reset

VDDBU_SW

threshold

enable

sampling period
reset enable

interrupt enable
wake-up enable

VDDIO

XTALSEL

SLCK (Slow Clock)

PORCORE_out

BODCORE_out

SMIO_out

PORBUSW_out

SMEN
SMIEN
SMRSTEN
SMSMPL
SMTH

BUPPOREN

BODRSTEN

BODDIS

Wake-Up & Tamper Inputs

TIMSTPM3DIS
TIMSTPM2DIS
TIMSTPM1DIS

TimeStamp
Disable

RTC
Module

WKUPx
x:1..15

WKUPDBC
WKUPEN[1..15]

Programmable
Debouncer wake-up

TMP1/2/3
LPDBC
LPDBCEN[1..3]

Programmable
LP Debouncer tamper

WKUP0
WKUPDBC
WKUPEN0

Programmable
Debouncer wake-up

TMP0
LPDBC
LPDBCEN0

Programmable
LP Debouncer tamper

FWUP
FWUPDBC
FWUPEN

Programmable
Debouncer wake-up

Clear on
tamper event

(8/16)
LPDBCCLR

LPDBDISCLR1
LPDBDISCLR2
LPDBDISCLR3

General
Purpose
Backup

Registers
x8
x8

Supplied by
VDDCORE

Supplied by
VDDBU_SW

Supplied by
VDDIO

Supplied by
VDDIN

SUPPLY CONTROLLER

RTT
Module

RTTEN
wake-up

RTCEN
wake-up

RC OSC 32kHz

OSCBYPASS

XTAL OSC 32kHz

Slow Clock Control

I/O pin referred to VDDBU

I/O pin referred to VDDIO

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 330

20.4 Supply Controller Functional Description

20.4.1 Supply Controller Overview
The device can be divided into two power supply areas:
 The backup VDDBU_SW power supply that includes the Supply Controller, a part of the Reset Controller, the

slow clock switch, the general-purpose backup registers, the supply monitor and the clock which includes the
Real-time Timer and the Real-time Clock.

 The core power supply that includes the other part of the Reset Controller, the Brownout Detector, the
processor, the SRAM memory, the Flash memory and the peripherals.

The SUPC controls the core power supply and intervenes when the VDDBU_SW power supply rises (when the
system is starting) or when the backup Low-power mode is entered.

The SUPC also integrates the slow clock generator which is based on a 32 kHz crystal oscillator and an embedded
32 kHz RC oscillator. The slow clock defaults to the RC oscillator, but the software can enable the crystal oscillator
and select it as the slow clock source.

The SUPC and the VDDBU_SW power supply have a reset circuitry based on a zero-power power-on reset cell. The
zero-power power-on reset allows the SUPC to start properly as soon as the VDDBU_SW voltage becomes valid.

At start-up of the system, once the backup voltage VDDBU_SW is valid and the embedded 32 kHz RC oscillator is
stabilized, the SUPC starts up the core voltage regulator and ties the SHDN pin to VDDBU. Once the VDDCORE
voltage is valid, it releases the system reset signal (vddcore_nreset) to the RSTC. The RSTC module then releases
the subsystem 0 reset signals (proc_nreset and periph_nreset). Note that the subsystem 1 remains in reset after
power-up.

Once the system has started, the user can program a supply monitor and/or a brownout detector. If a powerfail
condition occurs on either VDDIO or on VDDCORE power supplies, the SUPC asserts the system reset signal
(vddcore_nreset). This signal is released when the powerfail condition is cleared.

When the backup Low-power mode is entered, the SUPC sequentially asserts the system reset signal and disables
the voltage regulator, in order to maintain only the VDDBU_SW power supply. Current consumption is reduced to less
than one microamp for the backup part retention. Exit from this mode is possible on multiple wake-up sources
including an event on the FWUP pin or WKUPx pins, or a clock alarm. To exit this mode, the SUPC operates in the
same way as system start-up by enabling the core voltage regulator and the SHDN pin.

20.4.2 Slow Clock Generator
The SUPC embeds a slow clock generator that is supplied with the VDDBU_SW power supply. As soon as
VDDBU_SW is supplied, both the crystal oscillator and the embedded RC oscillator are powered up, but only the
embedded RC oscillator is enabled. This allows the slow clock to be valid in a short time (about 100 μs).

The user can select the crystal oscillator to be the source of the slow clock, as it provides a more accurate frequency.
The command is executed by writing the Supply Controller Control register (SUPC_CR) with the XTALSEL bit at 1,
resulting in the following sequence:

1. The crystal oscillator is enabled.
2. A number of slow RC oscillator clock periods is counted to cover the start-up time of the crystal oscillator (refer

to the electrical characteristics for information on 32 kHz crystal oscillator start-up time).
3. The slow clock is switched to the output of the crystal oscillator.
4. The RC oscillator is disabled to save power.

The switching time may vary depending on the slow RC oscillator clock frequency range. The switch of the slow clock
source is glitch-free. The OSCSEL bit of the Supply Controller Status register (SUPC_SR) indicates that the
switchover has completed.

Reverting to the RC oscillator is only possible by shutting down the VDDBU_SW power supply.

If the crystal oscillator is not needed, the XIN32 and XOUT32 pins should be left unconnected.

 331SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

The user can also put the crystal oscillator in Bypass mode instead of connecting a crystal. In this case, the user has
to provide the external clock signal on XIN32. For details of input characteristics of the XIN32 pin, see the section
“Electrical Characteristics”. To enter Bypass mode, the OSCBYPASS bit of the Supply Controller Mode register
(SUPC_MR) must be set to 1 before writing a 1 to the bit XTALSEL.

20.4.3 Core Voltage Regulator Control/Low-Power Backup Mode

The SUPC can be used to control the embedded voltage regulator.

The voltage regulator automatically adapts its quiescent current depending on the required load current. For details,
see the section “Electrical Characteristics”.

The voltage regulator can be switched off and the device put in Backup mode by setting the bit VROFF in SUPC_CR.

This asserts the system reset signal after the write resynchronization time, which lasts two slow clock cycles (worst
case). Once the system reset signal is asserted, the processor and the peripherals are stopped one slow clock cycle
before the core voltage regulator shuts off and the SHDN pin is pulled down to ground.

When the embedded voltage regulator is not used and VDDCORE is supplied via an external supply, the voltage
regulator can be disabled. This is done by clearing the ONREG bit in SUPC_MR.

20.4.4 Segmented LCD Voltage Regulator Control

The SUPC can be used to select the power supply source of the Segmented LCD (SLCD) voltage regulator.

This selection is done by the LCDMODE field in SUPC_MR. After a backup reset, the LCDMODE field is at 0. No
power supply source is selected and the SLCD reset signal is asserted.

The status of the SLCD Controller (SLCDC) reset is given by the LCDS field in SUPC_ SR.
 If LCDMODE is written to 2 while it is at 0, after the write resynchronization time (about 2 slow clock cycles), the

external power supply source is selected, then after one slow clock cycle, the SLCDC reset signal is released.
 If LCDMODE is written to 0 while it is at 2, after the write resynchronization time (about 2 slow clock cycles), the

SLCDC reset signal is asserted, then after one slow clock cycle, the external power supply source is
deselected.

 If LCDMODE is written to 3 while it is at 0, after the write resynchronization time (about 2 slow clock cycles), the
internal power supply source is selected and the embedded regulator is turned on, then after 15 slow clock
cycles, the SLCDC reset signal is released.

 If LCDMODE is written to 0 while it is at 3, after the write resynchronization time (about 2 slow clock cycles), the
SLCDC reset signal, then after one slow clock cycle, the internal power supply source is deselected.

There are several restrictions concerning the write of the LCDMODE field:
 The user must check that the previous power supply selection is done before writing LCDMODE again. To do

so, the user must check that the LCDS flag has the correct value. If LCDMODE is cleared, the LCDS flag is
cleared. If LCDMODE is set to 2 or 3, the LCDS flag is set.

 Writing LCDMODE to 2 while it is at 3 or writing LCDMODE to 3 while it is at 2 is forbidden and has no effect.
 Before writing LCDMODE to 2, the user must ensure that the external power supply is ready and supplies the

VDDLCD pin.
 Before writing LCDMODE to 3, the user must ensure that the external power supply does not supply the

VDDLCD pin.

The SLCD can be used in all low-power modes.

20.4.5 Using Backup Battery/Automatic Power Switch
The power switch automatically selects either VDDBU or VDDIO as a power source.

As soon as VDDIO is present (higher than 1.9V), it supplies the backup area of the device (VDDBU_SW = VDDIO)
even if the voltage of VDDBU is higher than VDDIO. If not, the backup area is supplied by the VDDBU voltage source
(VDDBU_SW = VDDBU). For more information on power supply schematics, refer to the section “Power Supplies”.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 332

20.4.6 Supply Monitor

The SUPC embeds a supply monitor located in the VDDBU_SW power domain and which monitors VDDIO power
supply.

The supply monitor can be used to prevent the processor from falling into an unpredictable state if the main power
supply drops below a certain level.

The threshold of the supply monitor is programmable. It can be selected from 1.9V to 3.4V by steps of 100 mV. This
threshold is configured in the SMTH field of the Supply Controller Supply Monitor Mode register (SUPC_SMMR).

The supply monitor can also be enabled during one slow clock period on every one of either 32, 256 or 2048 slow
clock periods, depending on the user selection. This is configured in the SMSMPL field in SUPC_SMMR.

Enabling the supply monitor for such reduced times divides the typical supply monitor power consumption by factors
of 2, 16 or 128, respectively, if continuous monitoring of the VDDIO power supply is not required.

A supply monitor detection can either generate a system reset (vddcore_nreset signal is asserted) or a system wake-
up. Generating a system reset when a supply monitor detection occurs is enabled by setting the SMRSTEN bit in
SUPC_SMMR.

Waking up the system when a supply monitor detection occurs is enabled by setting the SMEN bit in the Supply
Controller Wake-up Mode register (SUPC_WUMR).

The SUPC provides two status bits for the supply monitor in the SUPC_SR. These bits determine whether the last
wake-up was due to the supply monitor:
 the SMOS bit provides real-time information, updated at each measurement cycle or updated at each Slow

Clock cycle, if the measurement is continuous.
 the SMS bit provides saved information and shows a supply monitor detection has occurred since the last read

of SUPC_SR.

The SMS bit generates an interrupt if the SMIEN bit is set in SUPC_SMMR.

Figure 20-2. Supply Monitor Status Bit and Associated Interrupt

Supply Monitor ON

3.3 V

0 V

Threshold

SMS and SUPC interrupt

Read SUPC_SR

Periodic Sampling

Continuous Sampling (SMSMPL = 1)

SMOS

 333SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.4.7 Backup Power Supply Reset

20.4.7.1 Raising the Backup Power Supply
As soon as the backup voltage VDDBU_SW rises, the 32 kHz RC oscillator is powered up and the zero-power power-
on reset cell maintains its output low as long as VDDBU_SW has not reached its target voltage. During this time, the
SUPC is reset. When the VDDBU_SW voltage becomes valid and zero-power power-on reset signal is released, a
counter is started for five slow clock cycles. This is the period required for the 32 kHz RC oscillator to stabilize.

After this time, the SHDN pin is asserted high and the core voltage regulator is enabled. The core power supply rises
and the brownout detector provides the core regulator status as soon as the core voltage VDDCORE is valid. The
system reset signal is then released to the Reset Controller after the core voltage status has been confirmed as being
valid for at least one slow clock cycle.

Figure 20-3. Raising the VDDBU_SW Power Supply

 Zero-Power Power-On
 Reset Cell output

 22 - 42 kHz RC
Oscillator output

 Fast RC
Oscillator output

 Backup Power Supply

SHDN

Core Regulator Status
from BOD core

 (vddcore_nreset)

NRST
(no ext. drive assumed)

Processor Reset
(Core 0 only)

Note: After processor reset rising, the core starts fetching instructions from Flash at 4 MHz.

Peripheral Reset

7 x Slow Clock Cycles 3 x Slow Clock
Cycles

2 x Slow Clock
Cycles

6.5 x Slow Clock
Cycles

TON Voltage
Regulator

Zero-Power POR

 Core Power Supply

RSTC.ERSTL

(5 for startup slow RC + 2 for synchro.)

default = 2

 System Reset

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 334

20.4.7.2 SHDN Output Pin
The SHDN pin is designed to drive the enable pin of an external voltage regulator. This pin is controlled by the VROFF
bit in SUPC_CR. When the device goes into Backup mode (bit VROFF set), the SHDN pin is asserted low. Upon a
wake-up event, the SHDN pin is released (VDDBU level).

20.4.8 System Reset

The SUPC manages the system reset signal (vddcore_nreset) to the Reset Controller, as described in Section 20.4.7
”Backup Power Supply Reset”. The system reset signal is normally asserted before shutting down the core power
supply and released as soon as the core power supply is correctly regulated.

There are two additional sources which can be programmed to activate the system reset signal:
 a supply monitor detection
 a brownout detection

20.4.8.1 Supply Monitor Reset
The supply monitor can generate a reset of the system. This can be enabled by setting the SMRSTEN bit in
SUPC_SMMR.

The output of the supply monitor is synchronized on SLCK. If SMRSTEN is set and if a supply monitor detection
occurs, the system reset is asserted one or two slow clock cycles after the detection.

20.4.8.2 Brownout Detector Reset
The brownout detector provides the core voltage status signal (BODCORE_out) to the SUPC which indicates that the
voltage regulation is operating as programmed. If this signal is lost for longer than one slow clock period while the
voltage regulator is enabled, the SUPC can assert a system reset signal. This feature is enabled by setting
BODRSTEN (Brownout Detector Reset Enable) in SUPC_MR.

If BODRSTEN is set and the voltage regulation is lost (output voltage of the regulator too low), the system reset signal
is asserted for a minimum of one slow clock cycle and then released if the core voltage status has been reactivated.
The BODRSTS bit is set in SUPC_SR, indicating the source of the last reset.

The system reset signal remains active as long as the core voltage status signal (BODCORE_out) indicates a
powerfail condition.

20.4.8.3 Power-on-Reset on VDDBU_SW
The power-on-reset monitors VDDBU_SW. It is active by default and monitors voltage at start-up but also during
power-down. It can be deactivated by clearing the BUPPOREN bit in SUPC_MR. If VDDBU_SW goes below the
threshold voltage, the chip is reset. Note that due to the automatic power switch, VDDBU_SW can be either VDDIO or
VDDBU.

 335SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.4.9 Wake-up Sources

The wake-up events allow the device to exit Backup mode. When a wake-up event is detected, the SUPC performs a
sequence which automatically re-enables the core power supply.

Figure 20-4. Wake-up Sources

WKUP15

WKUPT15

WKUPEN1

WKUPEN0 &
LPDBCEN0=0

Debouncer

SLCK

WKUPDBC WKUPS

RTCEN
RTC ALARM

SMEN
Supply Monitor

Core
Supply
Restart

WKUPIS0

WKUPIS1

WKUPIS15

WKUPT0

WKUPT1

WKUP0/TMP0

WKUP1

RTTEN
RTT ALARM

Debouncer

RTCOUT0 LPDBC

Debouncer

LPDBCRTCOUT0 LPDBCS0

LPDBCEN1

WKUPT10

LPDBCEN0

WKUPT0

Falling/Rising
Edge Detector

Falling/Rising
Edge Detector

Falling/Rising
Edge Detector

Falling/Rising
Edge Detector

Falling/Rising
Edge Detector

Falling/Rising
Edge Detector

Falling/Rising
Edge Detector

FWUP

Debouncer

FWUPDBC

FWUPFWUPEN

Low
Level

Detector

SLCK

WKUP14/TMP2

OR

OR
WKUP10/TMP1

WKUP15/TMP3

LPDBCEN2

WKUPT14

LPDBCEN3

WKUPT15

OR

enable

enable

enable

WKUPEN0

LPDBCS1

WKUPEN10

LPDBCS2

WKUPEN14

LPDBCS3

WKUPEN15

WKUPEN15 &
LPDBCEN3=0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 336

20.4.9.1 Force Wake-up
The FWUP pin is enabled as a wake-up source by setting the FWUPEN bit in SUPC_WUMR. The FWUPDBC field in
the same register then selects the debouncing period, which can be selected between 3, 32, 512, 4,096 or 32,768
slow clock cycles. This corresponds to about 100 μs, about 1 ms, about 16 ms, about 128 ms and about 1 second,
respectively (for a typical slow clock frequency of 32 kHz). Configuring FWUPDBC to 0 selects an immediate wake-
up, i.e., the FWUP pin must be low during at least one slow clock period to wake up the system.

If the FWUP pin is asserted for a time longer than the debouncing period, a system wake-up is started and the
FWUPS bit in SUPC_SR is set and remains high until the register is read.

20.4.9.2 Wake-up Inputs
The wake-up inputs WKUPx can be programmed to perform a system wake-up. Each input can be enabled by setting
the corresponding bit, WKUPENx, in the Wake-up Inputs register (SUPC_WUIR). The wake-up level can be selected
with the corresponding polarity bit, WKUPTx, also located in SUPC_WUIR.

A logical OR combination of all the resulting signals triggers a debouncing counter. The WKUPDBC field can be
configured to select a debouncing period of 3, 32, 512, 4,096 or 32,768 slow clock cycles. This corresponds,
respectively, to about 100 μs, about 1 ms, about 16 ms, about 128 ms and about 1 second (for a typical slow clock
frequency of 32 kHz). Configuring WKUPDBC to 0 selects an immediate wake-up, i.e., an enabled WKUP pin must be
active according to its polarity during a minimum of one slow clock period to wake up the core power supply.

If an enabled WKUPx pin holds the active polarity for a time longer than the debouncing period, a system wake-up is
started and the flags WKUPISx, as shown in Figure 20-4, are reported in SUPC_SR. This allows the user to identify
the source of the wake-up. However, if a new wake-up condition occurs, the primary information is lost. No new wake-
up can be detected since the primary wake-up condition has disappeared.

Prior to instructing the system to enter Backup mode, if the field WKUPDBC > 0, it must be verified that none of the
WKUPx pins, enabled for a wake-up (exit of Backup mode), holds an active polarity. The verification can be made by
reading the pin status in the PIO controller. If WKUPENx = 1 and the pin WKUPx holds an active polarity, the system
must not be instructed to enter Backup mode.

Figure 20-5. Entering and Exiting Backup Mode with a WKUP pin

20.4.9.3 Low-power Debouncer Inputs (Tamper Detection Pins)
Low-power debouncer inputs are dedicated to tamper detection. If the tamper sensor is biased through a resistor and
constantly driven by the power supply, this leads to power consumption as long as the tamper detection switch is in its
active state. To prevent power consumption when the switch is in active state, the tamper sensor circuitry can be
intermittently powered, thus, a specific waveform must be generated.

The waveform can be generated using pin RTCOUT0 in all modes, including Backup mode. Refer to the section
“Real-time Clock (RTC)” for waveform generation.

WKUPx

WKUPTx=0

Active BACKUP Active BACKUP Active BACKUPSystem

Edge detect +
debounce time

Edge detect +
debounce time

active runtime active runtime

VROFF=1VROFF=1

check
WKUPx
status

check
WKUPx
status

WKUPDBC > 0

 337SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

For SAM4CP16C devices, separate debouncers are embedded, one for WKUP0/TMP0 input and a shared one for
WKUP10/TMP1, WKUP14/TMP2, WKUP15/TMP3 inputs. See Figure 20-4.

The WKUP0/TMP0 and/or WKUP10/TMP1, WKUP14/TMP2, WKUP15/TMP3 inputs can be programmed to perform a
system wake-up with a debouncing done by RTCOUT0. This can be enabled by setting LPDBCEN0/1/2/3 in
SUPC_WUMR.

These inputs can be also used when VDDCORE is powered to obtain the tamper detection function with a low-power
debounce function and to raise an interrupt.

The low-power debounce mode of operation requires the RTC output (RTCOUT0) to be configured to generate a duty
cycle programmable pulse (i.e., OUT0 = 0x7 in RTC_MR) in order to create the sampling points of both debouncers.
The sampling point is the falling edge of the RTCOUT0 waveform.

Figure 20-6 shows an example of an application where two tamper switches are used. RTCOUT0 powers the external
pull-up used by the tampers.

Figure 20-6. Low-Power Debouncer (Push-to-Make Switch, Pull-up Resistors)

Figure 20-7. Low-Power Debouncer (Push-to-Break Switch, Pull-down Resistors)

The duration of the debouncing period is configurable. The period is identical for all debouncers (i.e., the duration
cannot be adjusted separately for each debouncer). The number of successive identical samples to wake up the
system can be configured from 2 up to 8 in the LPDBC field of SUPC_WUMR. The period of time between two
samples can be configured in the TPERIOD field in the RTC_MR. Power parameters can be adjusted by modifying
the period of time in the THIGH field in RTC_MR.

MCU

WKUP0/TMP0

WKUPx/TMPx

RTCOUT0

Pull-Up
Resistor

Pull-Up
Resistor

GND

GND

GND

MCU

WKUP0/TMP0

WKUPx/TMPx

RTCOUT0

Pull-Down
Resistors

GND GND

GND

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 338

The wake-up polarity of the inputs can be independently configured by writing WKUPT0/WKUPT10/WKUPT14
/WKUPT15 bits in SUPC_WUIR.

In order to determine which wake-up/tamper pin triggers the system wake-up, a status flag LPDBCSx is associated to
each low-power debouncer. These flags can be read in the SUPC_SR.

A debounce event (tamper detection) can perform an immediate clear (0 delay) on the first half of the general-purpose
backup registers (GPBR). The LPDBCCLR bit must be set in SUPC_WUMR. The clear capability for
TMP1/TMP2/TMP3 can be individually disabled by setting the corresponding bit DISTMPCLR1/2/3.

Note that it is not mandatory to use the RTCOUT0 pin when using the WKUP0/WKUP10/WKUP14/WKUP15 pins as
tampering inputs (TMP0/TMP1/TMP2/TMP3) in any mode. Using the RTCOUT0 pin provides a “sampling mode” to
further reduce the power consumption of the tamper detection circuitry. If RTCOUT0 is not used, the RTC must be
configured to create an internal sampling point for the debouncer logic. The period of time between two samples can
be configured by programming the TPERIOD field in the RTC_MR.

Figure 20-8 illustrates the use of WKUPx/TMPx without the RTCOUT0 pin.

Figure 20-8. Using WKUP/TMP Pins Without RTCOUT Pins

20.4.9.4 Clock Alarms
The RTC and the RTT alarms generate a system wake-up. This can be enabled by setting bits RTCEN and RTTEN in
SUPC_WUMR.

The SUPC does not provide any status, as the information is available in the user interface of either the Real-Time
Timer or the Real-Time Clock.

20.4.9.5 Supply Monitor Detection
The supply monitor can generate a system wake-up. See Section 20.4.6 ”Supply Monitor”.

MCU

WKUP0/TMP0

WKUPx/TMPx

RTCOUT0

VDD

Pull-Up
Resistor

Pull-Up
Resistor

GND

GND

GND

 339SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.5 Register Write Protection
To prevent any single software error from corrupting SUPC behavior, certain registers in the address space can be
write-protected by setting the WPEN bit in the “System Controller Write Protection Mode Register” (SYSC_WPMR).

The following registers can be write-protected:
 RSTC Mode Register
 RTT Mode Register
 RTT Alarm Register
 RTC Control Register
 RTC Mode Register
 RTC Time Alarm Register
 RTC Calendar Alarm Register
 General Purpose Backup Registers
 Supply Controller Control Register
 Supply Controller Supply Monitor Mode Register
 Supply Controller Mode Register
 Supply Controller Wake-up Mode Register

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 340

20.6 Supply Controller (SUPC) User Interface
The user interface of the SUPC is part of the System Controller user interface.

20.6.1 System Controller (SYSC) User Interface

20.6.2 Supply Controller (SUPC) User Interface

Table 20-1. System Controller Peripheral Offsets

Offset System Controller Peripheral Name

0x00 - 0x0C Reset Controller RSTC

0x10 - 0x2C Supply Controller SUPC

0x30 - 0x3C Real Time Timer RTT

0x50 - 0x5C Watchdog Timer WDT

0x60 - 0x8C Real Time Clock RTC

0x90 - 0xDC General Purpose Backup Register GPBR

0xE0 Reserved -

0xE4 Write Protection Mode Register SYSC_WPMR

0xE8 - 0xF8 Reserved -

0xFC Reserved -

0x100 - 0x10C Reinforced Safety Watchdog Timer RSWDT

0x110 - 0x124 Time Stamping Registers RTC

Table 20-2. Register Mapping

Offset Register Name Access Reset

0x00 Supply Controller Control Register SUPC_CR Write-only -

0x04 Supply Controller Supply Monitor Mode Register SUPC_SMMR Read/Write 0x0000_0000

0x08 Supply Controller Mode Register SUPC_MR Read/Write 0x0000_DA00

0x0C Supply Controller Wake-up Mode Register SUPC_WUMR Read/Write 0x0000_0000

0x10 Supply Controller Wake-up Inputs Register SUPC_WUIR Read/Write 0x0000_0000

0x14 Supply Controller Status Register SUPC_SR Read-only 0x0000_0000

0x18 Reserved - - -

0xFC Reserved - - -

 341SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.6.3 Supply Controller Control Register

Name: SUPC_CR

Address: 0x400E1410

Access: Write-only

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register
(SYSC_WPMR).

• VROFF: Voltage Regulator Off
0 (NO_EFFECT): No effect.

1 (STOP_VREG): If KEY is correct, asserts the system reset signal and stops the voltage regulator.

• XTALSEL: Crystal Oscillator Select
0 (NO_EFFECT): No effect.

1 (CRYSTAL_SEL): If KEY is correct, switches the slow clock on the crystal oscillator output.

• KEY: Password

31 30 29 28 27 26 25 24
KEY

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – XTALSEL VROFF – –

Value Name Description

0xA5 PASSWD Writing any other value in this field aborts the write operation.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 342

20.6.4 Supply Controller Supply Monitor Mode Register

Name: SUPC_SMMR

Address: 0x400E1414

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register
(SYSC_WPMR).

• SMTH: Supply Monitor Threshold
Selects the threshold voltage of the supply monitor. Refer to the section “Electrical Characteristics” for voltage values.

• SMSMPL: Supply Monitor Sampling Period

• SMRSTEN: Supply Monitor Reset Enable
0 (NOT_ENABLE): The system reset signal is not affected when a supply monitor detection occurs.

1 (ENABLE): The system reset signal is asserted when a supply monitor detection occurs.

• SMIEN: Supply Monitor Interrupt Enable
0 (NOT_ENABLE): The SUPC interrupt signal is not affected when a supply monitor detection occurs.

1 (ENABLE): The SUPC interrupt signal is asserted when a supply monitor detection occurs.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – SMIEN SMRSTEN – SMSMPL

7 6 5 4 3 2 1 0
– – – – SMTH

Value Name Description

0 SMD Supply Monitor disabled

1 CSM Continuous Supply Monitor

2 32SLCK Supply Monitor enabled one SLCK period every 32 SLCK periods

3 256SLCK Supply Monitor enabled one SLCK period every 256 SLCK periods

4 2048SLCK Supply Monitor enabled one SLCK period every 2,048 SLCK periods

 343SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.6.5 Supply Controller Mode Register

Name: SUPC_MR

Address: 0x400E1418

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register
(SYSC_WPMR).

• LCDVROUT: LCD Voltage Regulator Output
Adjusts the output voltage of the LCD Voltage Regulator. Refer to the section “Electrical Characteristics” for voltage values.

• LCDMODE: LCD Controller Mode of Operation

• BODRSTEN: Brownout Detector Reset Enable
0 (NOT_ENABLE): The system reset signal is not affected when a brownout detection occurs.
1 (ENABLE): The system reset signal is asserted when a brownout detection occurs.

• BODDIS: Brownout Detector Disable
0 (ENABLE): The core brownout detector is enabled.
1 (DISABLE): The core brownout detector is disabled.

• ONREG: Voltage Regulator enable
0 (ONREG_UNUSED): Internal voltage regulator is not used (external power supply is used).
1 (ONREG_USED): Internal voltage regulator is used.

• BUPPOREN: Backup Area Power-On Reset Enable
0 (BUPPOR_DISABLE): Disables the backup POR.
1 (BUPPOR_ENABLE): Enables the backup POR.

Note: The value written in BUPPOREN is effective when BUPPORS has the same value in ”Supply Controller Status
Register”.

31 30 29 28 27 26 25 24
KEY

23 22 21 20 19 18 17 16
– – – OSCBYPASS – – – –

15 14 13 12 11 10 9 8
BUPPOREN ONREG BODDIS BODRSTEN – – – –

7 6 5 4 3 2 1 0
– – LCDMODE LCDVROUT

Value Name Description

0 LCDOFF The internal supply source and the external supply source are both deselected (OFF mode).

1 - Reserved

2 LCDON_EXTVR The external supply source for LCD (VDDLCD) is selected (the LCD voltage regulator is in Hi-Z
mode).

3 LCDON_INVR The internal supply source for LCD (the LCD Voltage Regulator) is selected (Active mode).

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 344

• OSCBYPASS: Oscillator Bypass
0 (NO_EFFECT): No effect. Clock selection depends on XTALSEL value.

1 (BYPASS): The 32 kHz crystal oscillator is bypassed if XTALSEL = 1. OSCBYPASS must be set before setting XTALSEL.

• KEY: Password Key

Value Name Description

0xA5 PASSWD Writing any other value in this field aborts the write operation.

 345SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.6.6 Supply Controller Wake-up Mode Register

Name: SUPC_WUMR

Address: 0x400E141C

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register
(SYSC_WPMR).

• FWUPEN: Force Wake-up Enable
0 (NOT_ENABLE): The force wake-up pin has no wake-up effect.

1 (ENABLE): The force wake-up pin low forces a system wake-up.

• SMEN: Supply Monitor Wake-up Enable
0 (NOT_ENABLE): The supply monitor detection has no wake-up effect.

1 (ENABLE): The supply monitor detection forces a system wake-up.

• RTTEN: Real-time Timer Wake-up Enable
0 (NOT_ENABLE): The RTT alarm signal has no wake-up effect.

1 (ENABLE): The RTT alarm signal forces a system wake-up.

• RTCEN: Real-time Clock Wake-up Enable
0 (NOT_ENABLE): The RTC alarm signal has no wake-up effect.

1 (ENABLE): The RTC alarm signal forces a system wake-up.

• LPDBCEN0: Low-Power Debouncer Enable WKUP0/TMP0
0 (NOT_ENABLE): The WKUP0/TMP0 input pin is not connected to the low-power debouncer.

1 (ENABLE): The WKUP0/TMP0 input pin is connected to the low-power debouncer and can force a system wake-up.

• LPDBCEN1: Low-Power Debouncer Enable WKUP10/TMP1
0 (NOT_ENABLE): The WKUP10/TMP1 input pin is not connected to the low-power debouncer.

1 (ENABLE): The WKUP10/TMP1 input pin is connected to the low-power debouncer and can force a system wake-up.

• LPDBCCLR: Low-Power Debouncer Clear
0 (NOT_ENABLE): A low-power debounce event does not create an immediate clear on the first half of GPBR registers.

1 (ENABLE): A low-power debounce event on WKUP0/TMP0 or WKUP10/14/15/TMP1/2/3 (if DISTMPCLR1/2/3 is cleared)
generates an immediate clear on the first half of GPBR registers.

31 30 29 28 27 26 25 24
– DISTSTMP3 DISTSTMP2 DISTSTMP1 – DISTMPCLR3 DISTMPCLR2 DISTMPCLR1

23 22 21 20 19 18 17 16
– – LPDBCEN3 LPDBCEN2 – LPDBC

15 14 13 12 11 10 9 8
– WKUPDBC – FWUPDBC

7 6 5 4 3 2 1 0
LPDBCCLR LPDBCEN1 LPDBCEN0 – RTCEN RTTEN SMEN FWUPEN

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 346

• FWUPDBC: Force Wake-up Debouncer Period

• WKUPDBC: Wake-up Inputs Debouncer Period

• LPDBC: Low-Power Debouncer Period

• LPDBCEN2: Low-Power Debouncer Enable WKUP14/TMP2
0 (NOT_ENABLE): The WKUP14/TMP2 input pin is not connected to the low-power debouncer.

1 (ENABLE): The WKUP14/TMP2 input pin is connected to the low-power debouncer and can force a system wake-up.

• LPDBCEN3: Low-Power Debouncer Enable WKUP15/TMP3
0 (NOT_ENABLE): The WKUP15/TMP3 input pin is not connected to the low-power debouncer.

1 (ENABLE): The WKUP15/TMP3 input pin is connected to the low-power debouncer and can force a system wake-up.

• DISTMPCLR1: Disable GPBR Clear Command from WKUP10/TMP1 pin
0 (ENABLE): The WKUP10/TMP1 input pin can clear the GPBR (if LPDBCCLR is enabled) when tamper is detected.

1 (DISABLE): The WKUP10/TMP1 input pin has no effect on the GPBR value (no clear on tamper detection).

Value Name Description

0 IMMEDIATE Immediate, no debouncing, detected active at least on one Slow Clock edge

1 3_SLCK FWUP shall be low for at least 3 SLCK periods

2 32_SLCK FWUP shall be low for at least 32 SLCK periods

3 512_SLCK FWUP shall be low for at least 512 SLCK periods

4 4096_SLCK FWUP shall be low for at least 4,096 SLCK periods

5 32768_SLCK FWUP shall be low for at least 32,768 SLCK periods

Value Name Description

0 IMMEDIATE Immediate, no debouncing, detected active at least on one Slow Clock edge

1 3_SLCK WKUPx shall be in its active state for at least 3 SLCK periods

2 32_SLCK WKUPx shall be in its active state for at least 32 SLCK periods

3 512_SLCK WKUPx shall be in its active state for at least 512 SLCK periods

4 4096_SLCK WKUPx shall be in its active state for at least 4,096 SLCK periods

5 32768_SLCK WKUPx shall be in its active state for at least 32,768 SLCK periods

Value Name Description

0 DISABLE Disable the low-power debouncers

1 2_RTCOUT0 WKUP0/10/14/15/TMP0/1/2/3 in active state for at least 2 RTCOUT0 periods

2 3_RTCOUT0 WKUP0/10/14/15/TMP0/1/2/3 in active state for at least 3 RTCOUT0 periods

3 4_RTCOUT0 WKUP0/10/14/15/TMP0/1/2/3 in active state for at least 4 RTCOUT0 periods

4 5_RTCOUT0 WKUP0/10/14/15/TMP0/1/2/3 in active state for at least 5 RTCOUT0 periods

5 6_RTCOUT0 WKUP0/10/14/15/TMP0/1/2/3 in active state for at least 6 RTCOUT0 periods

6 7_RTCOUT0 WKUP0/10/14/15/TMP0/1/2/3 in active state for at least 7 RTCOUT0 periods

7 8_RTCOUT0 WKUP0/10/14/15/TMP0/1/2/3 in active state for at least 8 RTCOUT0 periods

 347SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• DISTMPCLR2: Disable GPBR Clear Command from WKUP14/TMP2 Pin
0 (ENABLE): The WKUP14/TMP2 input pin can clear the GPBR (if LPDBCCLR is enabled) when tamper is detected.

1 (DISABLE): The WKUP14/TMP2 input pin has no effect on the GPBR value (no clear on tamper detection).

• DISTMPCLR3: Disable GPBR Clear Command from WKUP15/TMP3 Pin
0 (ENABLE): The WKUP15/TMP3 input pin can clear the GPBR (if LPDBCCLR is enabled) when tamper is detected.

1 (DISABLE): The WKUP15/TMP3 input pin has no effect on the GPBR value (no clear on tamper detection).

• DISTSTMP1: Disable Timestamp from WKUP10/TMP1 Pin
0 (ENABLE): A tamper detection on WKUP10/TMP1 pin generates a timestamp.

1 (DISABLE): A tamper detection on WKUP10/TMP1 does NOT generate a report in timestamp register.

• DISTSTMP2: Disable Timestamp from WKUP14/TMP2 Pin
0 (ENABLE): A tamper detection on WKUP14/TMP2 pin generates a timestamp.

1 (DISABLE): A tamper detection on WKUP14/TMP2 does NOT generate a report in timestamp register.

• DISTSTMP3: Disable Timestamp from WKUP15/TMP3 Pin
0 (ENABLE): A tamper detection on WKUP15/TMP3 pin generates a timestamp.

1 (DISABLE): A tamper detection on WKUP15/TMP3 does NOT generate a report in timestamp register.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 348

20.6.7 Supply Controller Wake-up Inputs Register

Name: SUPC_WUIR

Address: 0x400E1420

Access: Read/Write

• WKUPENx: WKUPx Input Enable
0 (DISABLE): The corresponding wake-up input has no wake-up effect.

1 (ENABLE): The corresponding wake-up input is enabled for a system wake-up.

• WKUPTx: WKUPx Input Type
0 (LOW): A falling edge followed by a low level for a period defined by WKUPDBC in SUPC_WUMR on the corresponding
wake-up input forces a system wake-up.

1 (HIGH): A rising edge followed by a high level for a period defined by WKUPDBC in SUPC_WUMR on the corresponding
wake-up input forces a system wake-up.

31 30 29 28 27 26 25 24
WKUPT15 WKUPT14 WKUPT13 WKUPT12 WKUPT11 WKUPT10 WKUPT9 WKUPT8

23 22 21 20 19 18 17 16
WKUPT7 WKUPT6 WKUPT5 WKUPT4 WKUPT3 WKUPT2 WKUPT1 WKUPT0

15 14 13 12 11 10 9 8
WKUPEN15 WKUPEN14 WKUPEN13 WKUPEN12 WKUPEN11 WKUPEN10 WKUPEN9 WKUPEN8

7 6 5 4 3 2 1 0
WKUPEN7 WKUPEN6 WKUPEN5 WKUPEN4 WKUPEN3 WKUPEN2 WKUPEN1 WKUPEN0

 349SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.6.8 Supply Controller Status Register

Name: SUPC_SR

Address: 0x400E1424

Access: Read-only

Note: Because of the asynchronism between the Slow Clock (SLCK) and the System Clock (MCK), the status register
flag reset is taken into account only two slow clock cycles after the read of the SUPC_SR.

• FWUPS: FWUP Wake-up Status (cleared on read)
0 (NO): No wake-up due to the assertion of the FWUP pin has occurred since the last read of SUPC_SR.

1 (PRESENT): At least one wake-up due to the assertion of the FWUP pin has occurred since the last read of SUPC_SR.

• WKUPS: WKUP Wake-up Status (cleared on read)
0 (NO): No wake-up due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.

1 (PRESENT): At least one wake-up due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.

• SMWS: Supply Monitor Detection Wake-up Status (cleared on read)
0 (NO): No wake-up due to a supply monitor detection has occurred since the last read of SUPC_SR.

1 (PRESENT): At least one wake-up due to a supply monitor detection has occurred since the last read of SUPC_SR.

• BODRSTS: Brownout Detector Reset Status (cleared on read)
0 (NO): No core brownout rising edge event has been detected since the last read of SUPC_SR.

1 (PRESENT): At least one brownout output rising edge event has been detected since the last read of SUPC_SR.

When the voltage remains below the defined threshold, there is no rising edge event at the output of the brownout detection
cell. The rising edge event occurs only when there is a voltage transition below the threshold.

• SMRSTS: Supply Monitor Reset Status (cleared on read)
0 (NO): No supply monitor detection has generated a system reset since the last read of SUPC_SR.

1 (PRESENT): At least one supply monitor detection has generated a system reset since the last read of SUPC_SR.

• SMS: Supply Monitor Status (cleared on read)
0 (NO): No supply monitor detection since the last read of SUPC_SR.

1 (PRESENT): At least one supply monitor detection since the last read of SUPC_SR.

• SMOS: Supply Monitor Output Status
0 (HIGH): The supply monitor detected VDDIO higher than its threshold at its last measurement.

1 (LOW): The supply monitor detected VDDIO lower than its threshold at its last measurement.

31 30 29 28 27 26 25 24
WKUPIS15 WKUPIS14 WKUPIS13 WKUPIS12 WKUPIS11 WKUPIS10 WKUPIS9 WKUPIS8

23 22 21 20 19 18 17 16
WKUPIS7 WKUPIS6 WKUPIS5 WKUPIS4 WKUPIS3 WKUPIS2 WKUPIS1 WKUPIS0

15 14 13 12 11 10 9 8
BUPPORS LPDBCS1 LPDBCS0 FWUPIS – LPDBCS3 LPDBCS2 LCDS

7 6 5 4 3 2 1 0
OSCSEL SMOS SMS SMRSTS BODRSTS SMWS WKUPS FWUPS

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 350

• OSCSEL: 32 kHz Oscillator Selection Status
0 (RC): The slow clock, SLCK, is generated by the embedded 32 kHz RC oscillator.

1 (CRYST): The slow clock, SLCK, is generated by the 32 kHz crystal oscillator.

• LCDS: LCD Status
0 (DISABLED): LCD controller is disabled.

1 (ENABLED): LCD controller is enabled.

• LPDBCS2: Low-Power Debouncer Tamper Status on WKUP14/TMP2 (cleared on read)
0 (NO): No tamper detection or wake-up due to the assertion of the WKUP14/TMP2 pin has occurred since the last read of
SUPC_SR.

1 (PRESENT): At least one tamper detection and wake-up (if enabled by WKUPEN14) due to the assertion of the
WKUP14/TMP2 pin has occurred since the last read of SUPC_SR. The SUPC interrupt line is asserted while LPDBCS2 is 1.

• LPDBCS3: Low-Power Debouncer Tamper Status on WKUP15/TMP3 (cleared on read)
0 (NO): No tamper detection or wake-up due to the assertion of the WKUP15/TMP3 pin has occurred since the last read of
SUPC_SR.

1 (PRESENT): At least one tamper detection and wake-up (if enabled by WKUPEN15) due to the assertion of the
WKUP15/TMP3 pin has occurred since the last read of SUPC_SR. The SUPC interrupt line is asserted while LPDBCS2 is 1.

• FWUPIS: FWUP Input Status
0 (LOW): FWUP input is tied low.

1 (HIGH): FWUP input is tied high.

• LPDBCS0: Low-Power Debouncer Wake-up Status on WKUP0/TMP0 (cleared on read)
0 (NO): No tamper detection or wake-up due to the assertion of the WKUP0/TMP0 pin has occurred since the last read of
SUPC_SR.

1 (PRESENT): At least one tamper detection and wake-up (if enabled by WKUPEN0) due to the assertion of the
WKUP0/TMP0 pin has occurred since the last read of SUPC_SR. The SUPC interrupt line is asserted while LPDBCS0 is 1.

• LPDBCS1: Low-Power Debouncer Wake-up Status on WKUP10/TMP1 (cleared on read)
0 (NO): No tamper detection or wake-up due to the assertion of the WKUP10 pin has occurred since the last read of
SUPC_SR.

1 (PRESENT): At least one tamper detection and wake-up (if enabled by WKUPEN10) due to the assertion of the
WKUP10/TMP1 pin has occurred since the last read of SUPC_SR. The SUPC interrupt line is asserted while LPDBCS1 is 1.

• BUPPORS: Backup Area Power-On Reset Status
0 (BUPPOR_DISABLED): Backup POR is disabled.

1 (BUPPOR_ENABLED): Backup POR is enabled.

Note: The value written in BUPPOREN is effective when BUPPORENS has the same value in ”Supply Controller Status
Register”.

• WKUPISx: WKUPx Input Status (cleared on read)
0 (DIS): The corresponding wake-up input is disabled, or was inactive at the time the debouncer triggered a wake-up event.

1 (EN): The corresponding wake-up input was active at the time the debouncer triggered a wake-up event since the last read
of SUPC_SR.

 351SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

20.6.9 System Controller Write Protection Mode Register

Name: SYSC_WPMR

Access: Read/Write

For more information on Write Protection registers, refer to Section 20.5 ”Register Write Protection”.

• WPEN: Write Protection Enable
0: Disables the write protection if WPKEY corresponds to 0x525443 (RTC in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x525443 (RTC in ASCII).

See Section 20.5 ”Register Write Protection” for the list of registers that can be protected.

• WPKEY: Write Protection Key

31 30 29 28 27 26 25 24
WPKEY

23 22 21 20 19 18 17 16
WPKEY

15 14 13 12 11 10 9 8
WPKEY

7 6 5 4 3 2 1 0
– – – – – – – WPEN

Value Name Description

0x525443 PASSWD Writing any other value in this field aborts the write operation of the WPEN bit. Always reads as 0.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 352

21. General Purpose Backup Registers (GPBR)

21.1 Description
The System Controller embeds 16 General Purpose Backup registers.

It is possible to generate an immediate clear of the content of General Purpose Backup registers 0 to 7 (first half), if
a Tamper event is detected on one of the tamper pins, TMP0 to TMP3. The content of the other General Purpose
Backup registers (second half) remains unchanged. A Tamper event on pin TMP0 always performs an immediate
clear, while tamper event on other tamper pin can be enabled or disabled in the Supply Controller.

The Supply Controller module must be programmed accordingly. In the register SUPC_WUMR in the Supply
Controller module, bits LPDBCCLR and LPDBCEN[0..3] must be configured to 1 and LPDBC must be other than 0.

If a Tamper event has been detected, it is not possible to write to the General Purpose Backup registers while the
LPDBCSx flags are not cleared in the Supply Controller Status Register (SUPC_SR).

21.2 Embedded Characteristics
 16 32-bit General Purpose Backup Registers
 Immediate Clear on Tamper Event

21.3 General Purpose Backup Registers (GPBR) User Interface

Table 21-1. Register Mapping

Offset Register Name Access Reset

0x0 General Purpose Backup Register 0 SYS_GPBR0 Read/Write 0x00000000

...

0xCC General Purpose Backup Register 15 SYS_GPBR15 Read/Write 0x00000000

 353SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

21.3.1 General Purpose Backup Register x

Name: SYS_GPBRx

Address: 0x400E1490

Access: Read/Write

These registers are reset at first power-up and on each loss of VDDBU_SW.

• GPBR_VALUE: Value of GPBR x
If a Tamper event has been detected, it is not possible to write GPBR_VALUE as long as the LPDBCS0 or LPDBCS3 flag has
not been cleared in the Supply Controller Status Register (SUPC_SR).

31 30 29 28 27 26 25 24
GPBR_VALUE

23 22 21 20 19 18 17 16
GPBR_VALUE

15 14 13 12 11 10 9 8
GPBR_VALUE

7 6 5 4 3 2 1 0
GPBR_VALUE

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 354

22. Enhanced Embedded Flash Controller (EEFC)

22.1 Description
The Enhanced Embedded Flash Controller (EEFC) provides the interface of the Flash block with the 32-bit internal
bus.

Its 128-bit or 64-bit wide memory interface increases performance. It also manages the programming, erasing, locking
and unlocking sequences of the Flash using a full set of commands. One of the commands returns the embedded
Flash descriptor definition that informs the system about the Flash organization, thus making the software generic.

22.2 Embedded Characteristics
 Increases Performance in Thumb-2 Mode with 128-bit or 64-bit wide Memory Interface up to 100 MHz
 Code Loop Optimization
 128 Lock Bits, Each Protecting a Lock Region
 2 General-purpose GPNVM Bits
 One-by-one Lock Bit Programming
 Commands Protected by a Keyword
 Erase the Entire Flash
 Erase by Plane
 Erase by Sector
 Erase by Page
 Provides Unique Identifier
 Provides 512-byte User Signature Area
 Supports Erasing before Programming
 Locking and Unlocking Operations
 ECC Single and Multiple Error Flags Report
 Supports Read of the Calibration Bits

22.3 Product Dependencies

22.3.1 Power Management

The Enhanced Embedded Flash Controller (EEFC) is continuously clocked. The Power Management Controller has
no effect on its behavior.

22.3.2 Interrupt Sources

The EEFC interrupt line is connected to the interrupt controller. Using the EEFC interrupt requires the interrupt
controller to be programmed first. The EEFC interrupt is generated only if the value of EEFC_FMR.FRDY is ‘1’.

Table 22-1. Peripheral IDs

Instance ID

EFC 6

 355SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

22.4 Functional Description

22.4.1 Embedded Flash Organization

The embedded Flash interfaces directly with the internal bus. The embedded Flash is composed of:
 One memory plane organized in several pages of the same size for the code.
 A separate 2 x 512-byte memory area which includes the unique chip identifier.
 A separate 512-byte memory area for the user signature.
 Two 128-bit or 64-bit read buffers used for code read optimization.
 One 128-bit or 64-bit read buffer used for data read optimization.
 One write buffer that manages page programming. The write buffer size is equal to the page size. This buffer is

write-only and accessible all along the 1 Mbyte address space, so that each word can be written to its final
address.

 Several lock bits used to protect write/erase operation on several pages (lock region). A lock bit is associated
with a lock region composed of several pages in the memory plane.

 Several bits that may be set and cleared through the EEFC interface, called general-purpose non-volatile
memory bits (GPNVM bits).

The embedded Flash size, the page size, the organization of lock regions and the definition of GPNVM bits are
specific to the device. The EEFC returns a descriptor of the Flash controller after a ‘Get Flash Descriptor’ command
has been issued by the application (see Section 22.4.3.1 ”Get Flash Descriptor Command”).

Figure 22-1. Flash Memory Areas

@FBA+0x000Use
r S

ign
atu

re
Area

Uniq
ue

 Id
en

tifi
er

Area

Unique Identifier

Cod
e A

rea

@FBA+0x1FF

@FBA+0x000

@FBA+0x3FF

@FBA+0x000

Write “Start Unique Identifier”
(Flash Command STUI)

Write “Start User Signature”
(Flash Command STUS)

@FBA+0x010

@FBA+0x010

Write “Stop Unique Identifier”
(Flash Command SPUI)

Write “Stop User signature”
(Flash Command SPUS)

FBA = Flash Base Address

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 356

Figure 22-2. Organization of Embedded Flash for Code

22.4.2 Read Operations

An optimized controller manages embedded Flash reads, thus increasing performance when the processor is running
in Thumb-2 mode by means of the 128- or 64-bit wide memory interface.

The Flash memory is accessible through 8-, 16- and 32-bit reads.

As the Flash block size is smaller than the address space reserved for the internal memory area, the embedded Flash
wraps around the address space and appears to be repeated within it.

The read operations can be performed with or without wait states. Wait states must be programmed in the field FWS
(Flash Read Wait State) in the Flash Mode register (EEFC_FMR). Defining FWS as 0 enables the single-cycle access
of the embedded Flash. For more details, refer to the section “Electrical Characteristics” of this datasheet.

22.4.2.1 128-bit or 64-bit Access Mode
By default, the read accesses of the Flash are performed through a 128-bit wide memory interface. It improves system
performance especially when two or three wait states are needed.

For systems requiring only 1 wait state, or to focus on current consumption rather than performance, the user can
select a 64-bit wide memory access via the bit EEFC_FMR.FAM.

For more details, refer to the section “Electrical Characteristics” of this datasheet.

22.4.2.2 Code Read Optimization
Code read optimization is enabled if the bit EEFC_FMR.SCOD is cleared.

A system of 2 x 128-bit or 2 x 64-bit buffers is added in order to optimize sequential code fetch.
Note: Immediate consecutive code read accesses are not mandatory to benefit from this optimization.
The sequential code read optimization is enabled by default. If the bit EEFC_FMR.SCOD is set, these buffers are
disabled and the sequential code read is no longer optimized.

Another system of 2 x 128-bit or 2 x 64-bit buffers is added in order to optimize loop code fetch. Refer to Section
22.4.2.3 ”Code Loop Optimization” for more details.

Start Address
Page 0

Lock Region 0

Lock Region 1

Memory Plane

Page (m-1)

Lock Region (n-1)

Page (n*m-1)Start Address + Flash size -1

Lock Bit 0

Lock Bit 1

Lock Bit (n-1)

 357SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 22-3. Code Read Optimization for FWS = 0

Note: When FWS is equal to 0, all the accesses are performed in a single-cycle access.

Figure 22-4. Code Read Optimization for FWS = 3

Note: When FWS is between 1 and 3, in case of sequential reads, the first access takes (FWS + 1) cycles.
The following accesses take only one cycle.

22.4.2.3 Code Loop Optimization
Code loop optimization is enabled when the bit EEFC_FMR.CLOE is set.

When a backward jump is inserted in the code, the pipeline of the sequential optimization is broken and becomes
inefficient. In this case, the loop code read optimization takes over from the sequential code read optimization to
prevent the insertion of wait states. The loop code read optimization is enabled by default. In EEFC_FMR, if the bit
CLOE is reset to 0 or the bit SCOD is set, these buffers are disabled and the loop code read is not optimized.

When code loop optimization is enabled, if inner loop body instructions L0 to Ln are positioned from the 128-bit Flash
memory cell Mb0 to the memory cell Mp1, after recognition of a first backward branch, the first two Flash memory cells
Mb0 and Mb1 targeted by this branch are cached for fast access from the processor at the next loop iteration.

Then by combining the sequential prefetch (described in Section 22.4.2.2 ”Code Read Optimization”) through the loop
body with the fast read access to the loop entry cache, the entire loop can be iterated with no wait state.

Flash Access

Buffer 0 (128bits)

Master Clock

ARM Request
 (32-bit)

XXX

Data To ARM

Bytes 0–15 Bytes 16–31 Bytes 32–47

Bytes 0–15

Buffer 1 (128bits)

Bytes 32–47

Bytes 0–3 Bytes 4–7 Bytes 8–11 Bytes 12–15 Bytes 16–19 Bytes 20–23 Bytes 24–27XXX

XXX Bytes 16–31

@ 0 @+4 @ +8 @+12 @+16 @+20 @+24 @+28 @+32

Bytes 28–31

anticipation of @16-31

Flash Access

Buffer 0 (128bits)

Master Clock

ARM Request
 (32-bit)

Data To ARM

Buffer 1 (128bits)

0–3

XXX

XXX

Bytes 16–31

@ 0 @+4 @+8

Bytes 0–15 Bytes 16–31 Bytes 32–47 Bytes 48–63

Bytes 0–15

4–7 8–11 12–15

@+12 @+16 @+20

24–27 28–31 32–35 36–3916–19 20–23 40–43 44–47

@+24 @+28 @+32 @+36 @+40 @+44 @+48 @+52

Bytes 32–47

48–51

anticipation of @16-31 anticipation of @32-47

wait 3 cycles before
128bit data is stable

@0/4/8/12 are ready
@16/20/24/28 are ready

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 358

Figure 22-5 illustrates code loop optimization.

Figure 22-5. Code Loop Optimization

22.4.2.4 Data Read Optimization
The organization of the Flash in 128 bits or 64 bits is associated with two 128-bit or 64-bit prefetch buffers and one
128-bit or 64-bit data read buffer, thus providing maximum system performance. This buffer is added in order to store
the requested data plus all the data contained in the 128-bit or 64-bit aligned data. This speeds up sequential data
reads if, for example, FWS is equal to 1 (see Figure 22-6). The data read optimization is enabled by default. If the bit
EEFC_FMR.SCOD is set, this buffer is disabled and the data read is no longer optimized.
Note: No consecutive data read accesses are mandatory to benefit from this optimization.

Figure 22-6. Data Read Optimization for FWS = 1

LnLn-1Ln-2Ln-3Ln-4Ln-5L5L4L3L2L1L0

B1 B2 B3 B4 B5 B6 B7B0 P1 P2 P3 P4 P5 P6 P7P0

Mb0Mb0 Mb1 Mp0 Mp1

Backward address jump

2x128-bit loop entry
cache

2x128-bit prefetch
buffer

L0 Loop Entry instruction

Ln Loop End instruction

Flash Memory
128-bit words

Mb0 Branch Cache 0

Mb1 Branch Cache 1

Mp0 Prefetch Buffer 0

Mp1 Prefetch Buffer 1

Flash Access

Buffer (128bits)

Master Clock

ARM Request
 (32-bit)

XXX

Data To ARM

Bytes 0-15 Bytes 16-31

Bytes 0-15

Bytes 0-3 4-7 8-11 12-15 16-19 20-23XXX

Bytes 16-31

@Byte 0 @4 @8 @12 @16 @20 @ 24 @28 @32 @36

XXX Bytes 32-47

24-27 28-31 32-35

 359SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

22.4.3 Flash Commands

The EEFC offers a set of commands to manage programming the Flash memory, locking and unlocking lock regions,
consecutive programming, locking and full Flash erasing, etc.

The commands are listed in the following table.

In order to execute one of these commands, select the required command using the FCMD field in the Flash
Command register (EEFC_FCR). As soon as EEFC_FCR is written, the FRDY flag and the FVALUE field in the Flash
Result register (EEFC_FRR) are automatically cleared. Once the current command has completed, the FRDY flag is
automatically set. If an interrupt has been enabled by setting the bit EEFC_FMR.FRDY, the corresponding interrupt
line of the interrupt controller is activated. (Note that this is true for all commands except for the STUI command. The
FRDY flag is not set when the STUI command has completed).

All the commands are protected by the same keyword, which must be written in the eight highest bits of EEFC_FCR.

Writing EEFC_FCR with data that does not contain the correct key and/or with an invalid command has no effect on
the whole memory plane, but the FCMDE flag is set in the Flash Status register (EEFC_FSR). This flag is
automatically cleared by a read access to EEFC_FSR.

When the current command writes or erases a page in a locked region, the command has no effect on the whole
memory plane, but the FLOCKE flag is set in EEFC_FSR. This flag is automatically cleared by a read access to
EEFC_FSR.

Table 22-2. Set of Commands

Command Value Mnemonic

Get Flash descriptor 0x00 GETD

Write page 0x01 WP

Write page and lock 0x02 WPL

Erase page and write page 0x03 EWP

Erase page and write page then lock 0x04 EWPL

Erase all 0x05 EA

Erase pages 0x07 EPA

Set lock bit 0x08 SLB

Clear lock bit 0x09 CLB

Get lock bit 0x0A GLB

Set GPNVM bit 0x0B SGPB

Clear GPNVM bit 0x0C CGPB

Get GPNVM bit 0x0D GGPB

Start read unique identifier 0x0E STUI

Stop read unique identifier 0x0F SPUI

Get CALIB bit 0x10 GCALB

Erase sector 0x11 ES

Write user signature 0x12 WUS

Erase user signature 0x13 EUS

Start read user signature 0x14 STUS

Stop read user signature 0x15 SPUS

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 360

Figure 22-7. Command State Chart

22.4.3.1 Get Flash Descriptor Command
This command provides the system with information on the Flash organization. The system can take full advantage of
this information. For instance, a device could be replaced by one with more Flash capacity, and so the software is able
to adapt itself to the new configuration.

To get the embedded Flash descriptor, the application writes the GETD command in EEFC_FCR. The first word of the
descriptor can be read by the software application in EEFC_FRR as soon as the FRDY flag in EEFC_FSR rises. The
next reads of EEFC_FRR provide the following word of the descriptor. If extra read operations to EEFC_FRR are
done after the last word of the descriptor has been returned, the EEFC_FRR value is 0 until the next valid command.

No

Yes

Read Status: EEFC_FSR

No

Read Status: EEFC_FSR

Yes

Yes

No

Yes

No

Bad keyword violation

Command Successfull

Check if FRDY flag Set

Write FCMD and PAGENB in Flash Command Register

Check if FRDY flag Set

Check if FLOCKE flag Set

Check if FCMDE flag Set

Locking region violation

 361SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

22.4.3.2 Write Commands
Several commands are used to program the Flash.

Only 0 values can be programmed using Flash technology; 1 is the erased value. In order to program words in a page,
the page must first be erased. Commands are available to erase the full memory plane or a given number of pages.
With the EWP and EWPL commands, a page erase is done automatically before a page programming.

After programming, the page (the entire lock region) can be locked to prevent miscellaneous write or erase
sequences. The lock bit can be automatically set after page programming using WPL or EWPL commands.

Data to be programmed in the Flash must be written in an internal latch buffer before writing the programming
command in EEFC_FCR. Data can be written at their final destination address, as the latch buffer is mapped into the
Flash memory address space and wraps around within this Flash address space.

Byte and half-word AHB accesses to the latch buffer are not allowed. Only 32-bit word accesses are supported.

32-bit words must be written continuously, in either ascending or descending order. Writing the latch buffer in a
random order is not permitted. This prevents mapping a C-code structure to the latch buffer and accessing the data of
the structure in any order. It is instead recommended to fill in a C-code structure in SRAM and copy it in the latch
buffer in a continuous order.

Write operations in the latch buffer are performed with the number of wait states programmed for reading the Flash.

The latch buffer is automatically re-initialized, i.e., written with logical ‘1’, after execution of each programming
command.

The programming sequence is the following:
1. Write the data to be programmed in the latch buffer.
2. Write the programming command in EEFC_FCR. This automatically clears the bit EEFC_FSR.FRDY.
3. When Flash programming is completed, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by

setting the bit EEFC_FMR.FRDY, the interrupt line of the EEFC is activated.

Three errors can be detected in EEFC_FSR after a programming sequence:
 Command Error: A bad keyword has been written in EEFC_FCR.
 Lock Error: The page to be programmed belongs to a locked region. A command must be run previously to

unlock the corresponding region.
 Flash Error: When programming is completed, the WriteVerify test of the Flash memory has failed.

Only one page can be programmed at a time. It is possible to program all the bits of a page (full page programming) or
only some of the bits of the page (partial page programming).

Depending on the number of bits to be programmed within the page, the EEFC adapts the write operations required to
program the Flash.

Table 22-3. Flash Descriptor Definition

Symbol Word Index Description

FL_ID 0 Flash Interface Description

FL_SIZE 1 Flash size in bytes

FL_PAGE_SIZE 2 Page size in bytes

FL_NB_PLANE 3 Number of planes

FL_PLANE[0] 4 Number of bytes in the plane

FL_NB_LOCK 4 + FL_NB_PLANE
Number of lock bits. A bit is associated with a lock
region. A lock bit is used to prevent write or erase
operations in the lock region

FL_LOCK[0] 4 + FL_NB_PLANE + 1 Number of bytes in the first lock region

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 362

When a ‘Write Page’ (WP) command is issued, the EEFC starts the programming sequence and all the bits written at
0 in the latch buffer are cleared in the Flash memory array.

During programming, i.e., until EEFC_FSR.FDRY rises, access to the Flash is not allowed.

Full Page Programming

To program a full page, all the bits of the page must be erased before writing the latch buffer and issuing the WP
command. The latch buffer must be written in ascending order, starting from the first address of the page. See Figure
22-8, "Full Page Programming".

Partial Page Programming

To program only part of a page using the WP command, the following constraints must be respected:
 Data to be programmed must be contained in integer multiples of 64-bit address-aligned words.
 64-bit words can be programmed only if all the corresponding bits in the Flash array are erased (at logical value

1).

See Figure 22-9, "Partial Page Programming".

 Programming Bytes

Individual bytes can be programmed using the Partial page programming mode. In this case, an area of 64 bits must
be reserved for each byte. Refer to Figure 22-10, "Programming Bytes in the Flash".

Figure 22-8. Full Page Programming

FF FF FF FF
FF FF FF FF
FF FF FF FF

FF FF FF FF

0xX00
0xX04
0xX08
0xX0C

0xX10

0xX14
0xX18
0xX1C

0xX00
0xX04
0xX08
0xX0C

0xX10

0xX14
0xX18
0xX1C

0xX00
0xX04
0xX08
0xX0C

0xX10

0xX14
0xX18
0xX1C

Before programming: Unerased page in Flash array

CA FE CA FE
CA FE CA FE
CA FE CA FE
CA FE CA FE

CA FE CA FE
CA FE CA FE
CA FE CA FE
CA FE CA FE

Step 1: Flash array after page erase

FF FF FF FF
FF FF FF FF
FF FF FF FF

FF FF FF FF

address space
for

Page N

address space
for

latch buffer

Step 2: Writing a page in the latch buffer

DE CA DE CA
DE CA DE CA
DE CA DE CA
DE CA DE CA

DE CA DE CA
DE CA DE CA

DE CA DE CA
DE CA DE CA

DE CA DE CA

CA FE CA FE

0xX00
0xX04
0xX08
0xX0C

0xX10

0xX14
0xX18
0xX1C

address space
for

Page N

Step 3: Page in Flash array after issuing
 WP command and FRDY=1

DE CA DE CA
DE CA DE CA
DE CA DE CA
DE CA DE CA

DE CA DE CA
DE CA DE CA

DE CA DE CA
DE CA DE CA

DE CA DE CA

FF FF FF FF

32 bits wide 32 bits wide

 363SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 22-9. Partial Page Programming

Figure 22-10. Programming Bytes in the Flash

32 bits wide 32 bits wide

FF FF FF FF
FF FF FF FF
FF FF FF FF

FF FF FF FF

0xX00
0xX04
0xX08
0xX0C

0xX10

0xX14
0xX18
0xX1C

Step 2: Flash array after programming
64-bit at address 0xX08 (write latch buffer + WP)

CA FE CA FE
CA FE CA FE
FF FF FF FF

FF FF FF FF

address space
for

Page N

FF FF FF FF
FF FF FF FF
FF FF FF FF

FF FF FF FF

FF FF FF FF
FF FF FF FF
FF FF FF FF

FF FF FF FF

Step 1: Flash array after page erase

CA FE CA FE
CA FE CA FE

32 bits wide

FF FF FF FF
FF FF FF FF
FF FF FF FF

FF FF FF FF

0xX00
0xX04
0xX08
0xX0C

0xX10

0xX14
0xX18
0xX1C

Step 3: Flash array after programming
a second 64-bit data at address 0xX00
(write latch buffer + WP)

CA FE CA FE
CA FE CA FE

FF FF FF FF FF FF FF FF

FF FF FF FF

CA FE CA FE
CA FE CA FE

32 bits wide

0xX00
0xX04
0xX08
0xX0C

0xX10

0xX14
0xX18
0xX1C

Step 4: Flash array after programming
a 128-bit data word at address 0xX10
(write latch buffer + WP)

CA FE CA FE
CA FE CA FE

FF FF FF FF

CA FE CA FE
CA FE CA FE

CA FE CA FE
CA FE CA FE
CA FE CA FE
CA FE CA FE

32 bits wide

FF FF FF FF
FF FF FF FF
FF FF FF FF

FF FF FF FF

0xX00
0xX04
0xX08
0xX0C

0xX10

0xX14
0xX18
0xX1C

FF FF FF FF

FF FF FF FF

address space
for

Page N

Step 1: Flash array after programming first byte (0xAA)
64-bit used at address 0xX00 (write latch buffer + WP)

FF FF FF FF

xx xx xx xx

xx xx xx AA

32 bits wide

FF FF FF FF
FF FF FF FF
FF FF FF FF

FF FF FF FF

0xX00
0xX04
0xX08
0xX0C

0xX10

0xX14
0xX18
0xX1C

FF FF FF FF

xx xx xx xx

xx xx xx AA

Step 2: Flash array after programming second byte (0x55)
64-bit used at address 0xX08 (write latch buffer + WP)

xx xx xx xx

xx xx xx 55

Note: The byte location shown here is for example only, it can be any byte location within a 64-bit word.

4 x 32 bits =
1 Flash word

4 x 32 bits =
1 Flash word

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 364

22.4.3.3 Erase Commands
Erase commands are allowed only on unlocked regions. Depending on the Flash memory, several commands can be
used to erase the Flash:
 Erase All Memory (EA): All memory is erased. The processor must not fetch code from the Flash memory.
 Erase Pages (EPA): 8 or 16 pages are erased in the Flash sector selected. The first page to be erased is

specified in the FARG[15:2] field of the EEFC_FCR. The first page number must be a multiple of 8, 16 or 32
depending on the number of pages to erase at the same time.

 Erase Sector (ES): A full memory sector is erased. Sector size depends on the Flash memory.
EEFC_FCR.FARG must be set with a page number that is in the sector to be erased.

If the processor is fetching code from the Flash memory while the EPA or ES command is being executed, the
processor accesses are stalled until the EPA command is completed. To avoid stalling the processor, the code can be
run out of internal SRAM.

The erase sequence is the following:
1. Erase starts as soon as one of the erase commands and the FARG field are written in EEFC_FCR.

 For the EPA command, the two lowest bits of the FARG field define the number of pages to be erased
(FARG [1:0]):

2. When erasing is completed, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting the bit
EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Three errors can be detected in EEFC_FSR after an erasing sequence:
 Command Error: A bad keyword has been written in EEFC_FCR.
 Lock Error: At least one page to be erased belongs to a locked region. The erase command has been refused,

no page has been erased. A command must be run previously to unlock the corresponding region.
 Flash Error: At the end of the erase period, the EraseVerify test of the Flash memory has failed.

22.4.3.4 Lock Bit Protection
Lock bits are associated with several pages in the embedded Flash memory plane. This defines lock regions in the
embedded Flash memory plane. They prevent writing/erasing protected pages.

The lock sequence is the following:
1. Execute the ‘Set Lock Bit’ command by writing EEFC_FCR.FCMD with the SLB command and

EEFC_FCR.FARG with a page number to be protected.
2. When the locking completes, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting the bit

EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.
3. The result of the SLB command can be checked running a ‘Get Lock Bit’ (GLB) command.

Note: The value of the FARG argument passed together with SLB command must not exceed the higher lock bit
index available in the product.

Two errors can be detected in EEFC_FSR after a programming sequence:
 Command Error: A bad keyword has been written in EEFC_FCR.
 Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has failed.

Table 22-4. EEFC_FCR.FARG Field for EPA command
FARG[1:0] Number of pages to be erased with EPA command

0 4 pages (only valid for small 8 KB sectors)

1 8 pages

2 16 pages

3 32 pages (not valid for small 8 KB sectors)

 365SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

It is possible to clear lock bits previously set. After the lock bits are cleared, the locked region can be erased or
programmed. The unlock sequence is the following:

1. Execute the ‘Clear Lock Bit’ command by writing EEFC_FCR.FCMD with the CLB command and
EEFC_FCR.FARG with a page number to be unprotected.

2. When the unlock completes, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting the bit
EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Note: The value of the FARG argument passed together with CLB command must not exceed the higher lock bit
index available in the product.

Two errors can be detected in EEFC_FSR after a programming sequence:
 Command Error: A bad keyword has been written in EEFC_FCR.
 Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has failed.

The status of lock bits can be returned by the EEFC. The ‘Get Lock Bit’ sequence is the following:
1. Execute the ‘Get Lock Bit’ command by writing EEFC_FCR.FCMD with the GLB command. Field

EEFC_FCR.FARG is meaningless.
2. Lock bits can be read by the software application in EEFC_FRR. The first word read corresponds to the 32 first

lock bits, next reads providing the next 32 lock bits as long as it is meaningful. Extra reads to EEFC_FRR return
0.

For example, if the third bit of the first word read in EEFC_FRR is set, the third lock region is locked.

Two errors can be detected in EEFC_FSR after a programming sequence:
 Command Error: A bad keyword has been written in EEFC_FCR.
 Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has failed.

Note: Access to the Flash in read is permitted when a ‘Set Lock Bit’, ‘Clear Lock Bit’ or ‘Get Lock Bit’ command is
executed.

22.4.3.5 GPNVM Bit
GPNVM bits do not interfere with the embedded Flash memory plane. For more details, refer to the section
“Memories” of this datasheet.

The ‘Set GPNVM Bit’ sequence is the following:
1. Execute the ‘Set GPNVM Bit’ command by writing EEFC_FCR.FCMD with the SGPB command and

EEFC_FCR.FARG with the number of GPNVM bits to be set.
2. When the GPNVM bit is set, the bit EEFC_FSR.FRDY rises. If an interrupt was enabled by setting the bit

EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.
3. The result of the SGPB command can be checked by running a ‘Get GPNVM Bit’ (GGPB) command.

Note: The value of the FARG argument passed together with SGPB command must not exceed the higher GPNVM
index available in the product. Flash data content is not altered if FARG exceeds the limit. Command Error is
detected only if FARG is greater than 8.

Two errors can be detected in EEFC_FSR after a programming sequence:
 Command Error: A bad keyword has been written in EEFC_FCR.
 Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has failed.

It is possible to clear GPNVM bits previously set. The ‘Clear GPNVM Bit’ sequence is the following:
1. Execute the ‘Clear GPNVM Bit’ command by writing EEFC_FCR.FCMD with the CGPB command and

EEFC_FCR.FARG with the number of GPNVM bits to be cleared.
2. When the clear completes, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting the bit

EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.
Note: The value of the FARG argument passed together with CGPB command must not exceed the higher GPNVM

index available in the product. Flash data content is not altered if FARG exceeds the limit. Command Error is
detected only if FARG is greater than 8.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 366

Two errors can be detected in EEFC_FSR after a programming sequence:
 Command Error: A bad keyword has been written in EEFC_FCR.
 Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has failed.

The status of GPNVM bits can be returned by the EEFC. The sequence is the following:
1. Execute the ‘Get GPNVM Bit’ command by writing EEFC_FCR.FCMD with the GGPB command. Field

EEFC_FCR.FARG is meaningless.
2. GPNVM bits can be read by the software application in EEFC_FRR. The first word read corresponds to the 32

first GPNVM bits, following reads provide the next 32 GPNVM bits as long as it is meaningful. Extra reads to
EEFC_FRR return 0.

For example, if the third bit of the first word read in EEFC_FRR is set, the third GPNVM bit is active.

One error can be detected in EEFC_FSR after a programming sequence:
 Command Error: A bad keyword has been written in EEFC_FCR.

Note: Access to the Flash in read is permitted when a ‘Set GPNVM Bit’, ‘Clear GPNVM Bit’ or ‘Get GPNVM Bit’
command is executed.

22.4.3.6 Calibration Bit
Calibration bits do not interfere with the embedded Flash memory plane.

The calibration bits cannot be modified.

The status of calibration bits are returned by the EEFC. The sequence is the following:
1. Execute the ‘Get CALIB Bit’ command by writing EEFC_FCR.FCMD with the GCALB command.

Field EEFC_FCR.FARG is meaningless.
2. Calibration bits can be read by the software application in EEFC_FRR. The first word read corresponds to the

first 32 calibration bits. The following reads provide the next 32 calibration bits as long as it is meaningful. Extra
reads to EEFC_FRR return 0.

The 8/12 MHz internal RC oscillator is calibrated in production. This calibration can be read through the GCALB
command. Table 22-5 shows the bit implementation.

The RC calibration for the 4 MHz is set to ‘1000000’.

22.4.3.7 Security Bit Protection
When the security bit is enabled, access to the Flash through the SWD interface or through the Fast Flash
Programming interface is forbidden. This ensures the confidentiality of the code programmed in the Flash.

The security bit is GPNVM0.

Disabling the security bit can only be achieved by asserting the ERASE pin at ‘1’, and after a full Flash erase is
performed. When the security bit is deactivated, all accesses to the Flash are permitted.

22.4.3.8 Unique Identifier Area
Each device is programmed with a 2x512-bytes unique identifier area. See Figure 22-1, "Flash Memory Areas".

The sequence to read the unique identifier area is the following:
1. Execute the ‘Start Read Unique Identifier’ command by writing EEFC_FCR.FCMD with the STUI command.

Field EEFC_FCR.FARG is meaningless.
2. Wait until the bit EEFC_FSR.FRDY falls to read the unique identifier area. The unique identifier field is located

in the first 128 bits of the Flash memory mapping. The ‘Start Read Unique Identifier’ command reuses some

Table 22-5. Calibration Bit Indexes
RC Calibration Frequency EEFC_FRR Bits
8 MHz RC calibration output [28 - 22]

12 MHz RC calibration output [38 - 32]

 367SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

addresses of the memory plane for code, but the unique identifier area is physically different from the memory
plane for code.

3. To stop reading the unique identifier area, execute the ‘Stop Read Unique Identifier’ command by writing
EEFC_FCR.FCMD with the SPUI command. Field EEFC_FCR.FARG is meaningless.

4. When the SPUI command has been executed, the bit EEFC_FSR.FRDY rises. If an interrupt was enabled by
setting the bit EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Note that during the sequence, the software cannot be fetched from the Flash.

22.4.3.9 User Signature Area
Each product contains a user signature area of 512 bytes. It can be used for storage. Read, write and erase of this
area is allowed. See Figure 22-1, "Flash Memory Areas".

The sequence to read the user signature area is the following:
1. Execute the ‘Start Read User Signature’ command by writing EEFC_FCR.FCMD with the STUS command.

Field EEFC_FCR.FARG is meaningless.
2. Wait until the bit EEFC_FSR.FRDY falls to read the user signature area. The user signature area is located in

the first 512 bytes of the Flash memory mapping. The ‘Start Read User Signature’ command reuses some
addresses of the memory plane but the user signature area is physically different from the memory plane.

3. To stop reading the user signature area, execute the ‘Stop Read User Signature’ command by writing
EEFC_FCR.FCMD with the SPUS command. Field EEFC_FCR.FARG is meaningless.

4. When the SPUS command has been executed, the bit EEFC_FSR.FRDY rises. If an interrupt was enabled by
setting the bit EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Note that during the sequence, the software cannot be fetched from the Flash.

One error can be detected in EEFC_FSR after this sequence:
 Command Error: A bad keyword has been written in EEFC_FCR.

The sequence to write the user signature area is the following:
1. Write the full page, at any page address, within the internal memory area address space.
2. Execute the ‘Write User Signature’ command by writing EEFC_FCR.FCMD with the WUS command. Field

EEFC_FCR.FARG is meaningless.
3. When programming is completed, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting

the bit EEFC_FMR.FRDY, the corresponding interrupt line of the interrupt controller is activated.

Two errors can be detected in EEFC_FSR after this sequence:
 Command Error: A bad keyword has been written in EEFC_FCR.
 Flash Error: At the end of the programming, the WriteVerify test of the Flash memory has failed.

The sequence to erase the user signature area is the following:
1. Execute the ‘Erase User Signature’ command by writing EEFC_FCR.FCMD with the EUS command. Field

EEFC_FCR.FARG is meaningless.
2. When programming is completed, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting

the bit EEFC_FMR.FRDY, the corresponding interrupt line of the interrupt controller is activated.

Two errors can be detected in EEFC_FSR after this sequence:
 Command Error: A bad keyword has been written in EEFC_FCR.
 Flash Error: At the end of the programming, the EraseVerify test of the Flash memory has failed.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 368

22.4.3.10 ECC Errors and Corrections
The Flash embeds an ECC module able to correct one unique error and able to detect two errors. The errors are
detected while a read access is performed into memory array and stored in EEFC_FSR (see Section 22.5.3 ”EEFC
Flash Status Register”). The error report is kept until EEFC_FSR is read.

There is one flag for a unique error on lower half part of the Flash word (64 LSB) and one flag for the upper half part
(MSB). The multiple errors are reported in the same way.

Due to the anticipation technique to improve bandwidth throughput on instruction fetch, a reported error can be
located in the next sequential Flash word compared to the location of the instruction being executed, which is located
in the previously fetched Flash word.
If a software routine processes the error detection independently from the main software routine, the entire Flash
located software must be rewritten because there is no storage of the error location.
If only a software routine is running to program and check pages by reading EEFC_FSR, the situation differs from the
previous case. Performing a check for ECC unique errors just after page programming completion involves a read of
the newly programmed page. This read sequence is viewed as data accesses and is not optimized by the Flash
controller. Thus, in case of unique error, only the current page must be reprogrammed.

22.5 Enhanced Embedded Flash Controller (EEFC) User Interface
The User Interface of the Enhanced Embedded Flash Controller (EEFC) is integrated within the System Controller
with base address 0x400E0A00.

Table 22-6. Register Mapping

Offset Register Name Access Reset State

0x00 EEFC Flash Mode Register EEFC_FMR Read/Write 0x0400_0000

0x04 EEFC Flash Command Register EEFC_FCR Write-only –

0x08 EEFC Flash Status Register EEFC_FSR Read-only 0x0000_0001

0x0C EEFC Flash Result Register EEFC_FRR Read-only 0x0

0x10 - 0x14 Reserved – – –

0x18 - 0xE4 Reserved – – –

 369SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

22.5.1 EEFC Flash Mode Register

Name: EEFC_FMR

Address: 0x400E0A00

Access: Read/Write

• FRDY: Flash Ready Interrupt Enable
0: Flash ready does not generate an interrupt.

1: Flash ready (to accept a new command) generates an interrupt.

• FWS: Flash Wait State
This field defines the number of wait states for read and write operations:

FWS = Number of cycles for Read/Write operations - 1.

• SCOD: Sequential Code Optimization Disable
0: The sequential code optimization is enabled.

1: The sequential code optimization is disabled.

No Flash read should be done during change of this field.

• FAM: Flash Access Mode
0: 128-bit access in Read mode only to enhance access speed.

1: 64-bit access in Read mode only to enhance power consumption.

No Flash read should be done during change of this field.

• CLOE: Code Loop Optimization Enable
0: The opcode loop optimization is disabled.

1: The opcode loop optimization is enabled.

No Flash read should be done during change of this field.

31 30 29 28 27 26 25 24
– – – – – CLOE – FAM

23 22 21 20 19 18 17 16
– – – – – – – SCOD

15 14 13 12 11 10 9 8
– – – – FWS

7 6 5 4 3 2 1 0
– – – – – – – FRDY

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 370

22.5.2 EEFC Flash Command Register

Name: EEFC_FCR

Address: 0x400E0A04

Access: Write-only

• FCMD: Flash Command

31 30 29 28 27 26 25 24
FKEY

23 22 21 20 19 18 17 16
FARG

15 14 13 12 11 10 9 8
FARG

7 6 5 4 3 2 1 0
FCMD

Value Name Description

0x00 GETD Get Flash descriptor

0x01 WP Write page

0x02 WPL Write page and lock

0x03 EWP Erase page and write page

0x04 EWPL Erase page and write page then lock

0x05 EA Erase all

0x07 EPA Erase pages

0x08 SLB Set lock bit

0x09 CLB Clear lock bit

0x0A GLB Get lock bit

0x0B SGPB Set GPNVM bit

0x0C CGPB Clear GPNVM bit

0x0D GGPB Get GPNVM bit

0x0E STUI Start read unique identifier

0x0F SPUI Stop read unique identifier

0x10 GCALB Get CALIB bit

0x11 ES Erase sector

0x12 WUS Write user signature

0x13 EUS Erase user signature

0x14 STUS Start read user signature

0x15 SPUS Stop read user signature

 371SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• FARG: Flash Command Argument

• FKEY: Flash Writing Protection Key

GETD, GLB,
GGPB, STUI,
SPUI, GCALB,
WUS, EUS,
STUS, SPUS, EA

Commands requiring
no argument,
including

Erase all command

FARG is meaningless, must be written with 0

ES Erase sector
command FARG must be written with any page number within the sector to be erased

EPA Erase pages
command

FARG[1:0] defines the number of pages to be erased

The start page must be written in FARG[15:2]

FARG[1:0] = 0: Four pages to be erased. FARG[15:2] = Page_Number / 4

FARG[1:0] = 1: Eight pages to be erased. FARG[15:3] = Page_Number / 8,
FARG[2] = 0

FARG[1:0] = 2: Sixteen pages to be erased. FARG[15:4] = Page_Number / 16,
FARG[3:2] = 0

FARG[1:0] = 3: Thirty-two pages to be erased. FARG[15:5] = Page_Number / 32,
FARG[4:2] = 0

Refer to Table 22-4, “EEFC_FCR.FARG Field for EPA command,” on page 364

WP, WPL, EWP,
EWPL

Programming
commands FARG must be written with the page number to be programmed

SLB, CLB Lock bit commands FARG defines the page number to be locked or unlocked

SGPB, CGPB GPNVM commands FARG defines the GPNVM number to be programmed

Value Name Description

0x5A PASSWD The 0x5A value enables the command defined by the bits of the register. If the field is
written with a different value, the write is not performed and no action is started.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 372

22.5.3 EEFC Flash Status Register

Name: EEFC_FSR

Address: 0x400E0A08

Access: Read-only

• FRDY: Flash Ready Status (cleared when Flash is busy)
0: The EEFC is busy.

1: The EEFC is ready to start a new command.

When set, this flag triggers an interrupt if the FRDY flag is set in EEFC_FMR.

This flag is automatically cleared when the EEFC is busy.

• FCMDE: Flash Command Error Status (cleared on read or by writing EEFC_FCR)
0: No invalid commands and no bad keywords were written in EEFC_FMR.

1: An invalid command and/or a bad keyword was/were written in EEFC_FMR.

• FLOCKE: Flash Lock Error Status (cleared on read)
0: No programming/erase of at least one locked region has happened since the last read of EEFC_FSR.

1: Programming/erase of at least one locked region has happened since the last read of EEFC_FSR.

This flag is automatically cleared when EEFC_FSR is read or EEFC_FCR is written.

• FLERR: Flash Error Status (cleared when a programming operation starts)
0: No Flash memory error occurred at the end of programming (EraseVerify or WriteVerify test has passed).

1: A Flash memory error occurred at the end of programming (EraseVerify or WriteVerify test has failed).

• UECCELSB: Unique ECC Error on LSB Part of the Memory Flash Data Bus (cleared on read)
0: No unique error detected on 64 LSB data bus of the Flash memory since the last read of EEFC_FSR.

1: One unique error detected but corrected on 64 LSB data bus of the Flash memory since the last read of EEFC_FSR.

• MECCELSB: Multiple ECC Error on LSB Part of the Memory Flash Data Bus (cleared on read)
0: No multiple error detected on 64 LSB part of the Flash memory data bus since the last read of EEFC_FSR.

1: Multiple errors detected and NOT corrected on 64 LSB part of the Flash memory data bus since the last read of EEFC_FSR.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – MECCEMSB UECCEMSB MECCELSB UECCELSB

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – FLERR FLOCKE FCMDE FRDY

 373SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• UECCEMSB: Unique ECC Error on MSB Part of the Memory Flash Data Bus (cleared on read)
0: No unique error detected on 64 MSB data bus of the Flash memory since the last read of EEFC_FSR.

1: One unique error detected but corrected on 64 MSB data bus of the Flash memory since the last read of EEFC_FSR.

• MECCEMSB: Multiple ECC Error on MSB Part of the Memory Flash Data Bus (cleared on read)
0: No multiple error detected on 64 MSB part of the Flash memory data bus since the last read of EEFC_FSR.

1: Multiple errors detected and NOT corrected on 64 MSB part of the Flash memory data bus since the last read of
EEFC_FSR.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 374

22.5.4 EEFC Flash Result Register

Name: EEFC_FRR

Address: 0x400E0A0C

Access: Read-only

• FVALUE: Flash Result Value
The result of a Flash command is returned in this register. If the size of the result is greater than 32 bits, the next resulting
value is accessible at the next register read.

31 30 29 28 27 26 25 24
FVALUE

23 22 21 20 19 18 17 16
FVALUE

15 14 13 12 11 10 9 8
FVALUE

7 6 5 4 3 2 1 0
FVALUE

 375SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

23. Fast Flash Programming Interface (FFPI)

23.1 Description
The Fast Flash Programming Interface (FFPI) provides parallel high-volume programming using a standard gang
programmer. The parallel interface is fully handshaked and the device is considered to be a standard EEPROM.
Additionally, the parallel protocol offers an optimized access to all the embedded Flash functionalities.

Although the Fast Flash Programming mode is a dedicated mode for high volume programming, this mode is not
designed for in-situ programming.

23.2 Embedded Characteristics
 Programming Mode for High-volume Flash Programming Using Gang Programmer

 Offers Read and Write Access to the Flash Memory Plane
 Enables Control of Lock Bits and General-purpose NVM Bits
 Enables Security Bit Activation
 Disabled Once Security Bit is Set

 Parallel Fast Flash Programming Interface
 Provides an 16-bit Parallel Interface to Program the Embedded Flash
 Full Handshake Protocol

23.3 Parallel Fast Flash Programming

23.3.1 Device Configuration

In Fast Flash Programming mode, the device is in a specific test mode. Only a certain set of pins is significant. The
rest of the PIOs are used as inputs with a pull-up. The crystal oscillator is in bypass mode. Other pins must be left
unconnected.

Figure 23-1. 16-bit Parallel Programming Interface

NCMD PGMNCMD
RDY PGMRDY
NOE PGMNOE

NVALID PGMNVALID

MODE[3:0] PGMM[3:0]

DATA[15:0] PGMD[15:0]

XIN

TSTVDDIO
PGMEN0
PGMEN1

External
Clock

VDDIO

VDDCORE

VDDIO

VDDPLL

VDDBU

GND

VDDIO

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 376

23.3.2 Signal Names

Table 23-1. Signal Description List

Signal Name Function Type
Active
Level Comments

Pin
(LQFP176)

Power
VDDIO I/O Lines Power Supply Power
VDDCORE Core Power Supply Power
VDDPLL PLL Power Supply Power
GND Ground Power

Clocks
XIN Main Clock Input Input

Test
TST Test Mode Select Input High Must be connected to VDDIO
PGMEN0 Test Mode Select Input High Must be connected to VDDIO 158
PGMEN1 Test Mode Select Input High Must be connected to VDDIO 174

PIO
PGMNCMD Valid command available Input Low Pulled-up input at reset 145

PGMRDY
0: Device is busy

1: Device is ready for a new command
Output High Pulled-up input at reset 144

PGMNOE Output Enable (active high) Input Low Pulled-up input at reset 111

PGMNVALID
0: DATA[15:0] is in input mode

1: DATA[15:0] is in output mode
Output Low Pulled-up input at reset 176

PGMM0

Specifies DATA type (see Table 23-2) Input Pulled-up input at reset

45
PGMM1 126
PGMM2 127
PGMM3 128
PGMD0

Bidirectional data bus Input/Output Pulled-up input at reset

147
PGMD1 130
PGMD2 131
PGMD3 133
PGMD4 134
PGMD5 135
PGMD6 43
PGMD7 42
PGMD8 40
PGMD9 115
PGMD10 116
PGMD11 124
PGMD12 38
PGMD13 36
PGMD14 34
PGMD15 110

 377SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Depending on the MODE settings, DATA is latched in different internal registers.

When MODE is equal to CMDE, then a new command (strobed on DATA[15:0] signals) is stored in the command
register.

23.3.3 Entering Parallel Programming Mode

The following algorithm puts the device in Parallel Programming mode:
1. Apply the supplies as described in Table 23-1.
2. If an external clock is available, apply it to XIN within the VDDCORE POR reset timeout period, as defined in

the section “Electrical Characteristics”.
3. Wait for the end of this reset period.
4. Start a read or write handshaking.

Table 23-2. Mode Coding

MODE[3:0] Symbol Data

0000 CMDE Command Register

0001 ADDR0 Address Register LSBs

0010 ADDR1 -

0101 DATA Data Register

Default IDLE No register

Table 23-3. Command Bit Coding

DATA[15:0] Symbol Command Executed

0x0011 READ Read Flash

0x0012 WP Write Page Flash

0x0022 WPL Write Page and Lock Flash

0x0032 EWP Erase Page and Write Page

0x0042 EWPL Erase Page and Write Page then Lock

0x0013 EA Erase All

0x0014 SLB Set Lock Bit

0x0024 CLB Clear Lock Bit

0x0015 GLB Get Lock Bit

0x0034 SGPB Set General Purpose NVM bit

0x0044 CGPB Clear General Purpose NVM bit

0x0025 GGPB Get General Purpose NVM bit

0x0054 SSE Set Security Bit

0x0035 GSE Get Security Bit

0x001F WRAM Write Memory

0x001E GVE Get Version

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 378

23.3.4 Programmer Handshaking

A handshake is defined for read and write operations. When the device is ready to start a new operation (RDY signal
set), the programmer starts the handshake by clearing the NCMD signal. The handshaking is completed once the
NCMD signal is high and RDY is high.

23.3.4.1 Write Handshaking
For details on the write handshaking sequence, refer to Figure 23-2 and Table 23-4.

Figure 23-2. Parallel Programming Timing, Write Sequence

23.3.4.2 Read Handshaking
For details on the read handshaking sequence, refer to Figure 23-3 and Table 23-5.

Figure 23-3. Parallel Programming Timing, Read Sequence

Table 23-4. Write Handshake

Step Programmer Action Device Action Data I/O

1 Sets MODE and DATA signals Waits for NCMD low Input

2 Clears NCMD signal Latches MODE and DATA Input

3 Waits for RDY low Clears RDY signal Input

4 Releases MODE and DATA signals Executes command and polls NCMD high Input

5 Sets NCMD signal Executes command and polls NCMD high Input

6 Waits for RDY high Sets RDY Input

NCMD

RDY

NOE

NVALID

DATA[15:0]

MODE[3:0]

1

2

3

4

5

NCMD

RDY

NOE

NVALID

DATA[15:0]

MODE[3:0]

1

2

3

4

5

6

7

9

8

ADDR

Adress IN Z Data OUT

10

11

X IN

12

13

 379SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

23.3.5 Device Operations

Several commands on the Flash memory are available. These commands are summarized in Table 23-3. Each
command is driven by the programmer through the parallel interface running several read/write handshaking
sequences.

When a new command is executed, the previous one is automatically achieved. Thus, chaining a read command after
a write automatically flushes the load buffer in the Flash.

23.3.5.1 Flash Read Command
This command is used to read the contents of the Flash memory. The read command can start at any valid address in
the memory plane and is optimized for consecutive reads. Read handshaking can be chained; an internal address
buffer is automatically increased.

Table 23-5. Read Handshake

Step Programmer Action Device Action DATA I/O

1 Sets MODE and DATA signals Waits for NCMD low Input

2 Clears NCMD signal Latch MODE and DATA Input

3 Waits for RDY low Clears RDY signal Input

4 Sets DATA signal in tristate Waits for NOE Low Input

5 Clears NOE signal - Tristate

6 Waits for NVALID low Sets DATA bus in output mode and outputs the flash contents Output

7 - Clears NVALID signal Output

8 Reads value on DATA Bus Waits for NOE high Output

9 Sets NOE signal - Output

10 Waits for NVALID high Sets DATA bus in input mode X

11 Sets DATA in output mode Sets NVALID signal Input

12 Sets NCMD signal Waits for NCMD high Input

13 Waits for RDY high Sets RDY signal Input

Table 23-6. Read Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE READ

2 Write handshaking ADDR0 Memory Address LSB

3 Write handshaking ADDR1 Memory Address

4 Read handshaking DATA *Memory Address++

5 Read handshaking DATA *Memory Address++

...

n Write handshaking ADDR0 Memory Address LSB

n+1 Write handshaking ADDR1 Memory Address

n+2 Read handshaking DATA *Memory Address++

n+3 Read handshaking DATA *Memory Address++

...

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 380

23.3.5.2 Flash Write Command
This command is used to write the Flash contents.

The Flash memory plane is organized into several pages. Data to be written are stored in a load buffer that
corresponds to a Flash memory page. The load buffer is automatically flushed to the Flash:
 before access to any page other than the current one
 when a new command is validated (MODE = CMDE)

The Write Page command (WP) is optimized for consecutive writes. Write handshaking can be chained; an internal
address buffer is automatically increased.

The Flash command Write Page and Lock (WPL) is equivalent to the Flash Write Command. However, the lock bit is
automatically set at the end of the Flash write operation. As a lock region is composed of several pages, the
programmer writes to the first pages of the lock region using Flash write commands and writes to the last page of the
lock region using a Flash write and lock command.

The Flash command Erase Page and Write (EWP) is equivalent to the Flash Write Command. However, before
programming the load buffer, the page is erased.

The Flash command Erase Page and Write the Lock (EWPL) combines EWP and WPL commands.

23.3.5.3 Flash Full Erase Command
This command is used to erase the Flash memory planes.

All lock regions must be unlocked before the Full Erase command by using the CLB command. Otherwise, the erase
command is aborted and no page is erased.

23.3.5.4 Flash Lock Commands
Lock bits can be set using WPL or EWPL commands. They can also be set by using the Set Lock command (SLB).
With this command, several lock bits can be activated. A Bit Mask is provided as argument to the command. When bit
0 of the bit mask is set, then the first lock bit is activated.

Table 23-7. Write Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE WP or WPL or EWP or EWPL

2 Write handshaking ADDR0 Memory Address LSB

3 Write handshaking ADDR1 Memory Address

4 Write handshaking DATA *Memory Address++

5 Write handshaking DATA *Memory Address++

...

n Write handshaking ADDR0 Memory Address LSB

n+1 Write handshaking ADDR1 Memory Address

n+2 Write handshaking DATA *Memory Address++

n+3 Write handshaking DATA *Memory Address++

...

Table 23-8. Full Erase Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE EA

2 Write handshaking DATA 0

 381SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

In the same way, the Clear Lock command (CLB) is used to clear lock bits.

Lock bits can be read using Get Lock Bit command (GLB). The nth lock bit is active when the bit n of the bit mask is
set.

23.3.5.5 Flash General-purpose NVM Commands
General-purpose NVM bits (GP NVM bits) can be set using the Set GPNVM command (SGPB). This command also
activates GP NVM bits. A bit mask is provided as argument to the command. When bit 0 of the bit mask is set, then
the first GP NVM bit is activated.

In the same way, the Clear GPNVM command (CGPB) is used to clear general-purpose NVM bits. The general-
purpose NVM bit is deactivated when the corresponding bit in the pattern value is set to 1.

General-purpose NVM bits can be read using the Get GPNVM Bit command (GGPB). The nth GP NVM bit is active
when bit n of the bit mask is set.

23.3.5.6 Flash Security Bit Command
A security bit can be set using the Set Security Bit command (SSE). Once the security bit is active, the Fast Flash
programming is disabled. No other command can be run. An event on the Erase pin can erase the security bit once
the contents of the Flash have been erased.

Once the security bit is set, it is not possible to access FFPI. The only way to erase the security bit is to erase the
Flash.

Table 23-9. Set and Clear Lock Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE SLB or CLB

2 Write handshaking DATA Bit Mask

Table 23-10. Get Lock Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE GLB

2 Read handshaking DATA

Lock Bit Mask Status

0 = Lock bit is cleared

1 = Lock bit is set

Table 23-11. Set/Clear GP NVM Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE SGPB or CGPB

2 Write handshaking DATA GP NVM bit pattern value

Table 23-12. Get GP NVM Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE GGPB

2 Read handshaking DATA

GP NVM Bit Mask Status

0 = GP NVM bit is cleared

1 = GP NVM bit is set

Table 23-13. Set Security Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE SSE

2 Write handshaking DATA 0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 382

To erase the Flash, perform the following steps:
 Power-off the chip.
 Power-on the chip with TST = 0.
 Assert the ERASE pin for at least the ERASE pin assertion time as defined in the section “Electrical

Characteristics”.
 Power-off the chip.

Return to FFPI mode to check that the Flash is erased.

23.3.5.7 Memory Write Command
This command is used to perform a write access to any memory location.

The Memory Write command (WRAM) is optimized for consecutive writes. Write handshaking can be chained;
an internal address buffer is automatically increased.

23.3.5.8 Get Version Command
The Get Version (GVE) command retrieves the version of the FFPI interface.

Table 23-14. Write Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE WRAM

2 Write handshaking ADDR0 Memory Address LSB

3 Write handshaking ADDR1 Memory Address

4 Write handshaking DATA *Memory Address++

5 Write handshaking DATA *Memory Address++

...

n Write handshaking ADDR0 Memory Address LSB

n+1 Write handshaking ADDR1 Memory Address

n+2 Write handshaking DATA *Memory Address++

n+3 Write handshaking DATA *Memory Address++

...

Table 23-15. Get Version Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE GVE

2 Read handshaking DATA Version

 383SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

24. Cortex-M Cache Controller (CMCC)

24.1 Description
The Cortex-M Cache Controller (CMCC) is a 4-Way set associative unified cache controller. It integrates a controller,
a tag directory, data memory, metadata memory and a configuration interface.

24.2 Embedded Characteristics
 Physically addressed and physically tagged.
 L1 data cache set to 2 Kbytes.
 L1 cache line size set to 16 Bytes.
 L1 cache integrates 32-bit bus master interface.
 Unified direct mapped cache architecture.
 Unified 4-Way set associative cache architecture.
 Write accesses forwarded, cache state not modified. Allocate on read.
 Round Robin victim selection policy.
 Event Monitoring, with one programmable 32-bit counter.
 Configuration registers accessible through Cortex-M Private Peripheral Bus (PPB).
 Cache interface includes cache maintenance operations registers.

24.3 Block Diagram

Figure 24-1. Block Diagram

Cache
Controller

META INFO RAM

DATA RAM

TAG RAM

RAM
Interface

Cortex-M Interface

Memory Interface

Registers
Interface

Cortex-M
PPB

Cortex-M Memory Interface Bus

System Memory Bus

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 384

24.4 Functional Description

24.4.1 Cache Operation

On reset, the cache controller data entries are all invalidated and the cache is enabled. The cache is transparent to
processor operations. The cache controller is activated with its configuration registers. The configuration interface is
memory-mapped in the private peripheral bus.

The cache must always be enabled, even if the code is running out of a non-cached region.

When the cache is disabled, the accesses to the cache on its slave port are “forwarded” to the master port. In this
case, there are two simultaneous accesses on the matrix: one on a non-cached region, and another “dummy” access
on the cache master port. These two accesses can slow down the system due to the wait error introduction on the
cache master port.

24.4.2 Cache Maintenance

If the contents seen by the cache have changed, the user must invalidate the cache entries. This can be done line-by-
line or for all cache entries.

24.4.2.1 Cache Invalidate-by-Line Operation
When an invalidate-by-line command is issued, the cache controller resets the valid bit information of the decoded
cache line. As the line is no longer valid, the replacement counter points to that line.

Use the following sequence to invalidate one line of cache:
1. Disable the cache controller by clearing the CEN bit of the Control Register (CMCC_CTRL).
2. Check the CSTS bit of CMCC_SR to verify that the cache is successfully disabled.
3. Perform an invalidate-by-line by configuring the bits INDEX and WAY in the Maintenance Register 1

(CMCC_MAINT1).
4. Enable the cache controller by writing a one to the CEN bit of the CMCC_CTRL.

24.4.2.2 Cache Invalidate All Operation
To invalidate all cache entries, write a one to the INVALL bit of the Maintenance Register 0 (CMCC_MAINT0).

24.4.3 Cache Performance Monitoring

The Cortex-M cache controller includes a programmable 32-bit monitor counter. The monitor can be configured to
count the number of clock cycles, the number of data hits or the number of instruction hits.

Use the following sequence to activate the counter:
1. Configure the monitor counter by writing to the MODE field of the Monitor Configuration Register

(CMCC_MCFG).
2. Enable the counter by writing a one to the MENABLE bit of the Monitor Enable Register (CMCC_MEN).
3. If required, clear the counter by writing a one to the SWRST bit of the Monitor Control Register

(CMCC_MCTRL).
4. Check the value of the monitor counter by reading the EVENT_CNT field of the CMCC_MSR.

 385SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

24.5 Cortex-M Cache Controller (CMCC) User Interface

Table 24-1. Register Mapping

Offset Register Name Access Reset

0x00 Cache Controller Type Register CMCC_TYPE Read-only 0x000011D7

0x04 Reserved – – –

0x08 Cache Controller Control Register CMCC_CTRL Write-only –

0x0C Cache Controller Status Register CMCC_SR Read-only 0x00000001

0x10 - 0x1C Reserved – – –

0x20 Cache Controller Maintenance Register 0 CMCC_MAINT0 Write-only –

0x24 Cache Controller Maintenance Register 1 CMCC_MAINT1 Write-only –

0x28 Cache Controller Monitor Configuration Register CMCC_MCFG Read/Write 0x00000000

0x2C Cache Controller Monitor Enable Register CMCC_MEN Read/Write 0x00000000

0x30 Cache Controller Monitor Control Register CMCC_MCTRL Write-only –

0x34 Cache Controller Monitor Status Register CMCC_MSR Read-only 0x00000000

0x38 - 0xFC Reserved – – –

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 386

24.5.1 Cache Controller Type Register

Name: CMCC_TYPE

Address: 0x4007C000 (0), 0x48018000 (1)

Access: Read-only

• RANDP: Random Selection Policy Supported
0: Random victim selection is not supported.

1: Random victim selection is supported.

• LRUP: Least Recently Used Policy Supported
0: Least Recently Used Policy is not supported.

1: Least Recently Used Policy is supported.

• RRP: Random Selection Policy Supported
0: Random Selection Policy is not supported.

1: Random Selection Policy is supported.

• WAYNUM: Number of Ways

• LCKDOWN: Lockdown Supported
0: Lockdown is not supported.

1: Lockdown is supported.

• CSIZE: Data Cache Size

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – CLSIZE CSIZE

7 6 5 4 3 2 1 0
LCKDOWN WAYNUM RRP LRUP RANDP – –

Value Name Description
0 DMAPPED Direct Mapped Cache

1 ARCH2WAY 2-way set associative

2 ARCH4WAY 4-way set associative

3 ARCH8WAY 8-way set associative

Value Name Description
0 CSIZE_1KB Data cache size is 1 Kbyte

1 CSIZE_2KB Data cache size is 2 Kbytes

2 CSIZE_4KB Data cache size is 4 Kbytes

3 CSIZE_8KB Data cache size is 8 Kbytes

 387SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• CLSIZE: Cache Line Size

Value Name Description

0 CLSIZE_1KB Cache line size is 4 bytes

1 CLSIZE_2KB Cache line size is 8 bytes

2 CLSIZE_4KB Cache line size is 16 bytes

3 CLSIZE_8KB Cache line size is 32 bytes

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 388

24.5.2 Cache Controller Control Register

Name: CMCC_CTRL

Address: 0x4007C008 (0), 0x48018008 (1)

Access: Write-only

• CEN: Cache Controller Enable
0: The cache controller is disabled.

1: The cache controller is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – CEN

 389SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

24.5.3 Cache Controller Status Register

Name: CMCC_SR

Address: 0x4007C00C (0), 0x4801800C (1)

Access: Read-only

• CSTS: Cache Controller Status
0: The cache controller is disabled.

1: The cache controller is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – CSTS

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 390

24.5.4 Cache Controller Maintenance Register 0

Name: CMCC_MAINT0

Address: 0x4007C020 (0), 0x48018020 (1)

Access: Write-only

• INVALL: Cache Controller Invalidate All
0: No effect.

1: All cache entries are invalidated.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – INVALL

 391SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

24.5.5 Cache Controller Maintenance Register 1

Name: CMCC_MAINT1

Address: 0x4007C024 (0), 0x48018024 (1)

Access: Write-only

• INDEX: Invalidate Index
This field indicates the cache line that is being invalidated.

The size of the INDEX field depends on the cache size:

For example:
– for 2 Kbytes: 5 bits
– for 4 Kbytes: 6 bits
– for 8 Kbytes: 7 bits

• WAY: Invalidate Way

31 30 29 28 27 26 25 24
WAY – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – INDEX

7 6 5 4 3 2 1 0
INDEX – – – –

Value Name Description

0 WAY0 Way 0 is selection for index invalidation

1 WAY1 Way 1 is selection for index invalidation

2 WAY2 Way 2 is selection for index invalidation

3 WAY3 Way 3 is selection for index invalidation

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 392

24.5.6 Cache Controller Monitor Configuration Register

Name: CMCC_MCFG

Address: 0x4007C028 (0), 0x48018028 (1)

Access: Read/Write

• MODE: Cache Controller Monitor Counter Mode

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – MODE

Value Name Description

0 CYCLE_COUNT Cycle counter

1 IHIT_COUNT Instruction hit counter

2 DHIT_COUNT Data hit counter

 393SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

24.5.7 Cache Controller Monitor Enable Register

Name: CMCC_MEN

Address: 0x4007C02C (0), 0x4801802C (1)

Access: Read/Write

• MENABLE: Cache Controller Monitor Enable
0: The monitor counter is disabled.

1: The monitor counter is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – MENABLE

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 394

24.5.8 Cache Controller Monitor Control Register

Name: CMCC_MCTRL

Address: 0x4007C030 (0), 0x48018030 (1)

Access: Write-only

• SWRST: Monitor
0: No effect.

1: Resets the event counter register.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – SWRST

 395SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

24.5.9 Cache Controller Monitor Status Register

Name: CMCC_MSR

Address: 0x4007C034 (0), 0x48018034 (1)

Access: Read-only

• EVENT_CNT: Monitor Event Counter

31 30 29 28 27 26 25 24
EVENT_CNT

23 22 21 20 19 18 17 16
EVENT_CNT

15 14 13 12 11 10 9 8
EVENT_CNT

7 6 5 4 3 2 1 0
EVENT_CNT

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 396

25. Interprocessor Communication (IPC)

25.1 Description
The Interprocessor Communication (IPC) module has 32 interrupt sources. Each source has a set of enable, disable,
clear, set, mask and status registers. The interrupt sources are ORed, and the IPC interrupt output line is connected
to the Interrupt Controller input.

25.2 Block Diagram

Figure 25-1. IPC Block Diagram

Figure 25-2. Dual Core IPC Implementation

APB

ARM
Core

IPC_IPR IRQ0

IPC_IPR IRQ1

IPC_IPR IRQ31

Thirty-two
Sources IRQn

IPC

 NVIC1 NVIC0

IPC0 IPC1

Async
AHB-AHB

Bridge
AHB Matrix (Mx1)

AHB to APB Bridge 1

AHB Matrix (Mx0)

AHB to APB Bridge 0

To NVIC1 To NVIC0

Core 1

Metrology
Core

(Cortex-M4F)

Core 0

Application
Core

(Cortex-M4)

 397SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

25.3 Product Dependencies

25.3.1 Power Management
The Interprocessor Communication module is not continuously clocked. The IPC interface is clocked through the
Power Management Controller (PMC), therefore the programmer must first configure the PMC to enable the IPC
clock.

25.3.2 Interrupt Line

The IPC module has an interrupt line connected to the Interrupt Controller. Handling interrupts requires programming
the Interrupt Controller before configuring the IPC.

25.4 Functional Description

25.4.1 Interrupt Sources

25.4.1.1 Interrupt Generation
Interrupt sources can be individually generated by writing respectively the IPC_ISCR and IPC_ICCR registers.

25.4.1.2 Interrupt Source Control
Each interrupt source (IRQ0 to IRQ31) can be enabled or disabled by using the command registers: IPC_IECR
(Interrupt Enable Command Register) and IPC_IDCR (Interrupt Disable Command Register). This set of registers
conducts enabling or disabling of an instruction. The interrupt mask can be read in the IPC_IMR register. All IPC
interrupts can be enabled/disabled, thus configuring the IPC Interrupt mask register. Each pending and unmasked
IPC interrupt asserts the IPC output interrupt line.

A disabled interrupt does not affect servicing of other interrupts.

25.4.1.3 Interrupt Status
The IPC_IECR and IPC_IDCR registers are used to determine which interrupt sources are active/inhibited to generate
an interrupt output. The IPC_IMR register is a status of the interrupt source selection (a result from write into the
IPC_IECR and IPC_IDCR registers). The IPC_ISCR and IPC_ICCR registers are used to activate/inhibit interrupt
sources. The IPC_IPR register is a status register giving active interrupt sources.

The IPC_ISR register reports which interrupt source(s) is(are) currently asserting an interrupt output. IPC_ISR is
basically equivalent to an AND between the IPC_IPR and IPC_IMR registers.

Table 25-1. Peripheral IDs

Instance ID

IPC0 31

IPC1 39

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 398

Figure 25-3. Interrupt Input Stage

25.5 Interprocessor Communication (IPC) User Interface

Clear

Set

Interrupt
Controller

IPC_IPR IRQ0

IPC_ISR IRQ0

IPC_IDCR IRQ0

IPC_IMR IRQ0

IPC_IECR IRQ0

IPC_ICCR IRQ0

IPC_ISCR IRQ0

Clear

Set

Clear

Set

IPC_IPR IRQ31

IPC_ISR IRQ31

IPC_IDCR IRQ31

IPC_IMR IRQ31

IPC_IECR IRQ31

IPC_ICCR IRQ31

IPC_ISCR IRQ31

Clear

Set

Table 25-2. Register Mapping
Offset Register Name Access Reset
0x0000 Interrupt Set Command Register IPC_ISCR Write-only –

0x0004 Interrupt Clear Command Register IPC_ICCR Write-only –

0x0008 Interrupt Pending Register IPC_IPR Read-only 0x0

0x000C Interrupt Enable Command Register IPC_IECR Write-only –

0x0010 Interrupt Disable Command Register IPC_IDCR Write-only –

0x0014 Interrupt Mask Register IPC_IMR Read-only 0x0

0x0018 Interrupt Status Register IPC_ISR Read-only 0x0

 399SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

25.5.1 IPC Interrupt Set Command Register

Name: IPC_ISCR

Address: 0x4004C000 (0), 0x48014000 (1)

Access: Write-only

• IRQ0-IRQ31: Interrupt Set
0: No effect.

1: Sets the corresponding interrupt.

31 30 29 28 27 26 25 24
IRQ31 IRQ30 IRQ29 IRQ28 IRQ27 IRQ26 IRQ25 IRQ24

23 22 21 20 19 18 17 16
IRQ23 IRQ22 IRQ21 IRQ20 IRQ19 IRQ18 IRQ17 IRQ16

15 14 13 12 11 10 9 8
IRQ15 IRQ14 IRQ13 IRQ12 IRQ11 IRQ10 IRQ9 IRQ8

7 6 5 4 3 2 1 0
IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 IRQ0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 400

25.5.2 IPC Interrupt Clear Command Register

Name: IPC_ICCR

Address: 0x4004C004 (0), 0x48014004 (1)

Access: Write-only

• IRQ0-IRQ31: Interrupt Clear
0: No effect.

1: Clears the corresponding interrupt.

31 30 29 28 27 26 25 24
IRQ31 IRQ30 IRQ29 IRQ28 IRQ27 IRQ26 IRQ25 IRQ24

23 22 21 20 19 18 17 16
IRQ23 IRQ22 IRQ21 IRQ20 IRQ19 IRQ18 IRQ17 IRQ16

15 14 13 12 11 10 9 8
IRQ15 IRQ14 IRQ13 IRQ12 IRQ11 IRQ10 IRQ9 IRQ8

7 6 5 4 3 2 1 0
IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 IRQ0

 401SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

25.5.3 IPC Interrupt Pending Register

Name: IPC_IPR

Address: 0x4004C008 (0), 0x48014008 (1)

Access: Read-only

Reset: 0x0

• IRQ0-IRQ31: Interrupt Pending
0: The corresponding interrupt is not pending.

1: The corresponding interrupt is pending.

31 30 29 28 27 26 25 24
IRQ31 IRQ30 IRQ29 IRQ28 IRQ27 IRQ26 IRQ25 IRQ24

23 22 21 20 19 18 17 16
IRQ23 IRQ22 IRQ21 IRQ20 IRQ19 IRQ18 IRQ17 IRQ16

15 14 13 12 11 10 9 8
IRQ15 IRQ14 IRQ13 IRQ12 IRQ11 IRQ10 IRQ9 IRQ8

7 6 5 4 3 2 1 0
IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 IRQ0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 402

25.5.4 IPC Interrupt Enable Command Register

Name: IPC_IECR

Address: 0x4004C00C (0), 0x4801400C (1)

Access: Write-only

• IRQ0-IRQ31: Interrupt Enable
0: No effect.

1: Enables the corresponding interrupt.

31 30 29 28 27 26 25 24
IRQ31 IRQ30 IRQ29 IRQ28 IRQ27 IRQ26 IRQ25 IRQ24

23 22 21 20 19 18 17 16
IRQ23 IRQ22 IRQ21 IRQ20 IRQ19 IRQ18 IRQ17 IRQ16

15 14 13 12 11 10 9 8
IRQ15 IRQ14 IRQ13 IRQ12 IRQ11 IRQ10 IRQ9 IRQ8

7 6 5 4 3 2 1 0
IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 IRQ0

 403SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

25.5.5 IPC Interrupt Disable Command Register

Name: IPC_IDCR

Address: 0x4004C010 (0), 0x48014010 (1)

Access: Write-only

• IRQ0-IRQ31: Interrupt Disable
0: No effect.

1: Disables the corresponding interrupt.

31 30 29 28 27 26 25 24
IRQ31 IRQ30 IRQ29 IRQ28 IRQ27 IRQ26 IRQ25 IRQ24

23 22 21 20 19 18 17 16
IRQ23 IRQ22 IRQ21 IRQ20 IRQ19 IRQ18 IRQ17 IRQ16

15 14 13 12 11 10 9 8
IRQ15 IRQ14 IRQ13 IRQ12 IRQ11 IRQ10 IRQ9 IRQ8

7 6 5 4 3 2 1 0
IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 IRQ0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 404

25.5.6 IPC Interrupt Mask Register

Name: IPC_IMR

Address: 0x4004C014 (0), 0x48014014 (1)

Access: Read-only

Reset: 0x0

• IRQ0-IRQ31: Interrupt Mask
0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24
IRQ31 IRQ30 IRQ29 IRQ28 IRQ27 IRQ26 IRQ25 IRQ24

23 22 21 20 19 18 17 16
IRQ23 IRQ22 IRQ21 IRQ20 IRQ19 IRQ18 IRQ17 IRQ16

15 14 13 12 11 10 9 8
IRQ15 IRQ14 IRQ13 IRQ12 IRQ11 IRQ10 IRQ9 IRQ8

7 6 5 4 3 2 1 0
IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 IRQ0

 405SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

25.5.7 IPC Interrupt Status Register

Name: IPC_ISR

Address: 0x4004C018 (0), 0x48014018 (1)

Access: Read-only

Reset: 0x0

• IRQ0-IRQ31: Current Interrupt Identifier
0: The corresponding interrupt source is not currently asserting the interrupt output.

1: The corresponding interrupt source is currently asserting the interrupt output.

31 30 29 28 27 26 25 24
IRQ31 IRQ30 IRQ29 IRQ28 IRQ27 IRQ26 IRQ25 IRQ24

23 22 21 20 19 18 17 16
IRQ23 IRQ22 IRQ21 IRQ20 IRQ19 IRQ18 IRQ17 IRQ16

15 14 13 12 11 10 9 8
IRQ15 IRQ14 IRQ13 IRQ12 IRQ11 IRQ10 IRQ9 IRQ8

7 6 5 4 3 2 1 0
IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 IRQ0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 406

26. Bus Matrix (MATRIX)

26.1 Description
The Bus Matrix implements a multi-layer AHB, based on the AHB-Lite protocol, that enables parallel access paths
between multiple AHB masters and slaves in a system, thus increasing the overall bandwidth. The Bus Matrix
interconnects AHB masters to AHB slaves. The normal latency to connect a master to a slave is one cycle except for
the default master of the accessed slave which is connected directly (zero cycle latency).

26.2 Embedded Characteristics
 One Decoder for Each Master.
 Support for Long Bursts of 32, 64 and 128 Beats and Up to the 256-beat Word Burst AHB Limit.
 Enhanced Programmable Mixed Arbitration for Each Slave.

 Round-robin.
 Fixed Priority.
 Latency Quality of Service.

 Programmable Default Master for Each Slave.
 No Default Master.
 Last Accessed Default Master.
 Fixed Default Master.

 Deterministic Maximum Access Latency for Masters.
 Zero or One Cycle Arbitration Latency for the First Access of a Burst.
 Bus Lock Forwarding to Slaves.
 Master Number Forwarding to Slaves.
 Write Protection of User Interface Registers.

26.2.1 Matrix 0

26.2.1.1 Matrix 0 Masters
The Bus Matrix 0, which corresponds to the sub-system 0 (Core 0 - CM4P0), manages the masters listed in
Table 26-1. Each master can perform an access to an available slave concurrently with other masters.

Each master has its own specifically-defined decoder. In order to simplify the addressing, all the masters have the
same decodings.

Table 26-1. List of Bus Matrix Masters

Master 0 Cortex-M4 Instruction/Data (CM4P0 I/D Bus)

Master 1 Cortex-M4 System (CM4P0 S Bus)

Master 2 Peripheral DMA Controller 0 (PDC0)

Master 3 Integrity Check Module (ICM)

Master 4 Matrix1

Master 5 Reserved

Master 6 CMCC0

 407SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

26.2.1.2 Matrix 0 Slaves
The Bus Matrix manages the slaves listed in Table 26-2. Each slave has its own arbiter providing a dedicated
arbitration per slave.

26.2.1.3 Master to Slave Access (Matrix 0)
Table 26-3 gives valid paths for master to slave access on Matrix 0. The paths shown as “-” are forbidden or not wired,
i.e., access from the Cortex-M4 S Bus to the Internal ROM.

26.2.1.4 Accesses through Matrix 0
 CM4P0 I/D Bus access to:

 Flash, ROM
 Flash through Cache Controller CMCC0 (respectively through 0x11000000 to 0x11FFFFFF and

0x13000000 to 0x16FFFFFF)
 CMP4P0 S Bus access to:

 SRAM0, SRAM1 through Matrix1, SRAM2 through Matrix1
 CPKCC

Table 26-2. List of Bus Matrix Slaves

Slave 0 Internal SRAM0

Slave 1 Internal ROM

Slave 2 Internal Flash

Slave 3 Reserved

Slave 4 Peripheral Bridge 0

Slave 5 CPKCC RAM and ROM

Slave 6 Matrix1

Slave 7 CMCC0

Table 26-3. Matrix 0 Master to Slave Access

Slaves

Masters

0 1 2 3 4 5 6

Cortex-M4
I/D Bus

Cortex-M4
S Bus PDC0 ICM Matrix1 Reserved CMCC0

0 Internal SRAM0 - X X X X - -

1 Internal ROM X - X X - - -

2 Internal Flash X - - X X - X

3 Reserved - - - - - - -

4 Peripheral Bridge 0 - X X - X - -

5 CPKCC SRAM, ROM - X - X - - -

6 Matrix1 - X - X - - -

7 CMCC0 X - - - - - -

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 408

 PDC0 access to:
 SRAM0, ROM
 HBRIDGE0

 ICM access to:
 Flash, ROM, SRAM0, SRAM1 through Matrix1, SRAM2 through Matrix1
 CPKCC
 HBRIDGE1 through Matrix1

 Matrix1 access to
 Flash (through 0x01000000 to 0x01FFFFFF and 0x11000000 to 0x11FFFFFF)
 SRAM0
 HBRIDGE0

 Cache Controller CMCC0 access to:
 Flash (through 0x11000000 to 0x11FFFFFF)

26.2.2 Matrix 1

26.2.2.1 Matrix 1 Masters
The Bus Matrix 1, which corresponds to the sub-system 1 (Core 1 - CM4P1), manages the masters listed in
Table 26-4. Each master can perform an access to an available slave concurrently with other masters.

Each master has its own specifically-defined decoder. In order to simplify the addressing, all the masters have the
same decodings.

26.2.2.2 Matrix 1 Slaves
The Bus Matrix manages the slaves listed in Table 26-5. Each slave has its own arbiter providing a dedicated
arbitration per slave.

Table 26-4. List of Bus Matrix Masters
Master 0 Cortex-M4 Instruction/Data (CM4P1 I/D Bus)

Master 1 Cortex-M4 System (CM4P1 S Bus)

Master 2 Peripheral DMA Controller 1 (PDC1)

Master 3 Matrix0

Master 4 Reserved

Master 5 CMCC1

Table 26-5. List of Bus Matrix Slaves
Slave 0 Internal SRAM1

Slave 1 Internal SRAM2

Slave 2 Reserved

Slave 3 Peripheral Bridge 1

Slave 4 Matrix0

Slave 5 CMCC1

 409SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

26.2.2.3 Master to Slave Access (Matrix 1)
Table 26-6 gives valid paths for master to slave access on Matrix 1. The paths shown as “-” are forbidden or not wired,
i.e., access from the Cortex-M4 S Bus to the Internal ROM.

26.2.2.4 Accesses through Matrix 1
 CM4P1 I/D Bus access to:

 Flash (through 0x01000000 to 0x01FFFFFF)
 Flash through Cache CMCC1

 CM4P1 S-Bus access to:
 SRAM1, SRAM2, SRAM0 through Matrix0 (0x20000000)
 HBRIDGE1, HBRIDGE0 through Matrix0 (0x40000000)

 PDC1 access to:
 SRAM1, SRAM2
 HBRIDGE1

 Matrix0 access to:
 SRAM1, SRAM2
 HBRIDGE1

 Cache CMCC1 access to:
 Flash through 0x11000000

Table 26-6. Matrix 1 Master to Slave Access

Slaves

Masters

0 1 2 3 4 5

Cortex-M4
I/D Bus

Cortex-M4
S Bus PDC1 Matrix0 Reserved CMCC1

0 Internal SRAM1 X X X X - -

1 Internal SRAM2 - X X X - -

2 Reserved - - - - - -

3 Peripheral Bridge 1 - X X X - -

4 Matrix0 X X - - - X

5 CMCC1 X - - - - -

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 410

26.3 Special Bus Granting Mechanism
The Bus Matrix provides some speculative bus granting techniques in order to anticipate access requests from
masters. This mechanism reduces latency at first access of a burst, or for a single transfer, as long as the slave is free
from any other master access. However, the technique does not provide any benefits if the slave is continuously
accessed by more than one master, since arbitration is pipelined and has no negative effect on the slave bandwidth or
access latency.

This bus granting mechanism sets a different default master for every slave.

At the end of the current access, if no other request is pending, the slave remains connected to its associated default
master. A slave can be associated with three kinds of default masters:
 No default master
 Last access master
 Fixed default master

To change from one type of default master to another, the Bus Matrix user interface provides Slave Configuration
registers, one for every slave which set a default master for each slave. The Slave Configuration register contains two
fields to manage master selection: DEFMSTR_TYPE and FIXED_DEFMSTR. The 2-bit DEFMSTR_TYPE field
selects the default master type (no default, last access master, fixed default master), whereas the 4-bit
FIXED_DEFMSTR field selects a fixed default master provided that DEFMSTR_TYPE is set to fixed default master.
Refer to Section 26.9.2 “Bus Matrix Slave Configuration Registers”.

26.4 No Default Master
After the end of the current access, if no other request is pending, the slave is disconnected from all masters.

This configuration incurs one latency clock cycle for the first access of a burst after bus idle. Arbitration without the
default master may be used for masters that perform significant bursts or several transfers with no idle in between, or
if the slave bus bandwidth is widely used by one or more masters.

This configuration provides no benefit on access latency or bandwidth when reaching maximum slave bus throughput
regardless of the number of requesting masters.

26.5 Last Access Master
After the end of the current access, if no other request is pending, the slave remains connected to the last master that
performed an access request.

This allows the Bus Matrix to remove one latency cycle for the last master that accessed the slave. Other non-
privileged masters still get one latency clock cycle if they need to access the same slave. This technique is used for
masters that perform single accesses or short bursts with some idle cycles in between.

This configuration provides no benefit on access latency or bandwidth when reaching maximum slave bus throughput
whatever is the number of requesting masters.

26.6 Fixed Default Master
After the end of the current access, if no other request is pending, the slave connects to its fixed default master. Unlike
the last access master, the fixed default master does not change unless the user modifies it by software
(FIXED_DEFMSTR field of the related MATRIX_SCFG).

This allows the Bus Matrix arbiters to remove the one latency clock cycle for the fixed default master of the slave. All
requests attempted by the fixed default master do not cause any arbitration latency, whereas other non-privileged
masters will get one latency cycle. This technique is used for a master that mainly performs single accesses or short
bursts with idle cycles in between.

This configuration provides no benefit on access latency or bandwidth when reaching maximum slave bus throughput,
regardless of the number of requesting masters.

 411SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

26.7 Arbitration
The Bus Matrix provides an arbitration mechanism that reduces latency when a conflict occurs, i.e., when two or more
masters try to access the same slave at the same time. One arbiter per AHB slave is provided, thus arbitrating each
slave specifically.

The Bus Matrix provides the user with the possibility of choosing between two arbitration types or mixing them for
each slave:

1. Round-robin arbitration (default)
2. Fixed priority arbitration

The resulting algorithm may be complemented by selecting a default master configuration for each slave.

When re-arbitration must be done, specific conditions apply. See Section 26.7.1 “Arbitration Scheduling”.

26.7.1 Arbitration Scheduling

Each arbiter has the ability to arbitrate between two or more master requests. In order to avoid burst breaking and
also to provide the maximum throughput for slave interfaces, arbitration may only take place during the following
cycles:

1. Idle cycles: When a slave is not connected to any master or is connected to a master which is not currently
accessing it.

2. Single cycles: When a slave is currently doing a single access.
3. End of Burst cycles: When the current cycle is the last cycle of a burst transfer. For defined burst length, pre-

dicted end of burst matches the size of the transfer but is managed differently for undefined burst length. See
Section 26.7.1.1 “Undefined Length Burst Arbitration”.

4. Slot cycle limit: When the slot cycle counter has reached the limit value, indicating that the current master
access is too long and must be broken. See Section 26.7.1.2 “Slot Cycle Limit Arbitration”.

26.7.1.1 Undefined Length Burst Arbitration
In order to prevent long AHB burst lengths that can lock the access to the slave for an excessive period of time, the
user can trigger the re-arbitration before the end of the incremental bursts. The re-arbitration period can be selected
from the following Undefined Length Burst Type (ULBT) possibilities:

1. Unlimited: no predetermined end of burst is generated. This value enables 1-kbyte burst lengths.
2. 1-beat bursts: predetermined end of burst is generated at each single transfer during the INCR transfer.
3. 4-beat bursts: predetermined end of burst is generated at the end of each 4-beat boundary during INCR

transfer.
4. 8-beat bursts: predetermined end of burst is generated at the end of each 8-beat boundary during INCR

transfer.
5. 16-beat bursts: predetermined end of burst is generated at the end of each 16-beat boundary during INCR

transfer.
6. 32-beat bursts: predetermined end of burst is generated at the end of each 32-beat boundary during INCR

transfer.
7. 64-beat bursts: predetermined end of burst is generated at the end of each 64-beat boundary during INCR

transfer.
8. 128-beat bursts: predetermined end of burst is generated at the end of each 128-beat boundary during INCR

transfer.

The use of undefined length 8-beat bursts or less is discouraged since this may decrease the overall bus bandwidth
due to arbitration and slave latencies at each first access of a burst.

However, if the usual length of undefined length bursts is known for a master, it is recommended to configure the
ULBT according to this length.

This selection can be done through the ULBT field of the Master Configuration registers (MATRIX_MCFG).

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 412

26.7.1.2 Slot Cycle Limit Arbitration
The Bus Matrix contains specific logic to break long accesses, such as very long bursts on a very slow slave (i.e., an
external low speed memory). At each arbitration time, a counter is loaded with the value previously written in the
SLOT_CYCLE field of the related Slave Configuration register (MATRIX_SCFG) and decreased at each clock cycle.
When the counter elapses, the arbiter has the ability to re-arbitrate at the end of the current AHB bus access cycle.

Unless a master has a very tight access latency constraint, which could lead to data overflow or underflow due to a
badly undersized internal FIFO with respect to its throughput, the Slot Cycle Limit should be disabled
(SLOT_CYCLE = 0) or set to its default maximum value in order not to inefficiently break long bursts performed by
some Atmel masters.

In most cases, this feature is not needed and should be disabled for power saving.

Warning: This feature cannot prevent any slave from locking its access indefinitely.

26.7.2 Arbitration Priority Scheme

The Bus Matrix arbitration scheme is organized in priority pools. The corresponding access criticality class is assigned
to each priority pool as shown in the “Latency Quality of Service” column in Table 26-7. Latency Quality of Service is
determined through the Bus Matrix user interface. See Section 26.9.3 “Bus Matrix Priority Registers A For Slaves” for
details.

Round-robin priority is used in the highest and lowest priority pools 3 and 0, whereas fixed level priority is used
between priority pools and in the intermediate priority pools 2 and 1. See Section 26.7.2.2 “Round-robin Arbitration”.

For each slave, each master is assigned to one of the slave priority pools through the Latency Quality of Service
inputs or through the priority registers for slaves (MxPR fields of MATRIX_PRAS and MATRIX_PRBS). When
evaluating master requests, this priority pool level always takes precedence.

After reset, most of the masters belong to the lowest priority pool (MxPR = 0, Background Transfer) and, therefore,
are granted bus access in a true round-robin order.

The highest priority pool must be specifically reserved for masters requiring very low access latency. If more than one
master belongs to this pool, they will be granted bus access in a biased round-robin manner which allows tight and
deterministic maximum access latency from AHB bus requests. In the worst case, any currently occurring high-priority
master request will be granted after the current bus master access has ended and other high priority pool master
requests, if any, have been granted once each.

The lowest priority pool shares the remaining bus bandwidth between AHB Masters.

Intermediate priority pools allow fine priority tuning. Typically, a latency-sensitive master or a bandwidth-sensitive
master will use such a priority level. The higher the priority level (MxPR value), the higher the master priority.

To ensure a good level of CPU performance, it is recommended to configure the CPU priority with the default reset
value 2 (Latency Sensitive).

All combinations of MxPR values are allowed for all masters and slaves. For example, some masters might be
assigned the highest priority pool (round-robin), and remaining masters the lowest priority pool (round-robin), with no
master for intermediate fix priority levels.

Table 26-7. Arbitration Priority Pools

Priority Pool Latency Quality of Service

3 Latency Critical

2 Latency Sensitive

1 Bandwidth Sensitive

0 Background Transfers

 413SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

26.7.2.1 Fixed Priority Arbitration
Fixed priority arbitration algorithm is the first and only arbitration algorithm applied between masters from distinct
priority pools. It is also used in priority pools other than the highest and lowest priority pools (intermediate priority
pools).

Fixed priority arbitration allows the Bus Matrix arbiters to dispatch the requests from different masters to the same
slave by using the fixed priority defined by the user in the MxPR field for each master in the Priority registers,
MATRIX_PRAS and MATRIX_PRBS. If two or more master requests are active at the same time, the master with the
highest priority MxPR number is serviced first.

In intermediate priority pools, if two or more master requests with the same priority are active at the same time, the
master with the highest number is serviced first.

26.7.2.2 Round-robin Arbitration
This algorithm is only used in the highest and lowest priority pools. It allows the Bus Matrix arbiters to properly
dispatch requests from different masters to the same slave. If two or more master requests are active at the same
time in the priority pool, they are serviced in a round-robin increasing master number order.

26.8 Register Write Protection
To prevent any single software error from corrupting the Bus Matrix behavior, certain registers in the address space
can be write-protected by setting the WPEN bit in the “Write Protection Mode Register” (MATRIX_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the “Write Protection Status Register”
(MATRIX_WPSR) is set and the field WPVSRC indicates the register in which the write access has been attempted.

The WPVS flag is reset by writing the Bus Matrix Write Protect Mode Register (MATRIX_WPMR) with the appropriate
access key WPKEY.

The following registers can be write-protected:
 “Bus Matrix Master Configuration Registers”
 “Bus Matrix Slave Configuration Registers”
 “Bus Matrix Priority Registers A For Slaves”
 “System I/O Configuration Register”

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 414

26.9 AHB Bus Matrix (MATRIX) User Interface

Table 26-8. Register Mapping

Offset Register Name Access Reset

0x0000 Master Configuration Register 0 MATRIX_MCFG0 Read/Write 0x00000004

0x0004 Master Configuration Register 1 MATRIX_MCFG1 Read/Write 0x00000004

0x0008 Master Configuration Register 2 MATRIX_MCFG2 Read/Write 0x00000004

0x000C Master Configuration Register 3 MATRIX_MCFG3 Read/Write 0x00000004

0x0010 Master Configuration Register 4 MATRIX_MCFG4 Read/Write 0x00000004

0x0014 Master Configuration Register 5 MATRIX_MCFG5 Read/Write 0x00000004

0x0018 Master Configuration Register 6 MATRIX_MCFG6 Read/Write 0x00000004

0x001C - 0x003C Reserved – – –

0x0040 Slave Configuration Register 0 MATRIX_SCFG0 Read/Write 0x000001FF

0x0044 Slave Configuration Register 1 MATRIX_SCFG1 Read/Write 0x000001FF

0x0048 Slave Configuration Register 2 MATRIX_SCFG2 Read/Write 0x000001FF

0x004C Slave Configuration Register 3 MATRIX_SCFG3 Read/Write 0x000001FF

0x0050 Slave Configuration Register 4 MATRIX_SCFG4 Read/Write 0x000001FF

0x0054 Slave Configuration Register 5 MATRIX_SCFG5 Read/Write 0x000001FF

0x0058 Slave Configuration Register 6 MATRIX_SCFG6 Read/Write 0x000001FF

0x005C Slave Configuration Register 7 MATRIX_SCFG7 Read/Write 0x000001FF

0x0060 - 0x007C Reserved – – –

0x0080 Priority Register A for Slave 0 MATRIX_PRAS0 Read/Write 0x00000000(1)

0x0084 Reserved – – –

0x0088 Priority Register A for Slave 1 MATRIX_PRAS1 Read/Write 0x00000000(1)

0x008C Reserved – – –

0x0090 Priority Register A for Slave 2 MATRIX_PRAS2 Read/Write 0x00000000(1)

0x0094 Reserved – – –

0x0098 Priority Register A for Slave 3 MATRIX_PRAS3 Read/Write 0x00000000(1)

0x009C Reserved – – –

0x00A0 Priority Register A for Slave 4 MATRIX_PRAS4 Read/Write 0x00000000(1)

0x00A4 Reserved – – –

0x00A8 Priority Register A for Slave 5 MATRIX_PRAS5 Read/Write 0x00000000(1)

0x00AC Reserved – – –

0x00B0 Priority Register A for Slave 6 MATRIX_PRAS6 Read/Write 0x00000000(1)

0x00B4 Reserved – – –

0x00B8 Priority Register A for Slave 7 MATRIX_PRAS7 Read/Write 0x00000000(1)

0x00BC - 0x0110 Reserved – – –

0x0114 System I/O Configuration Register MATRIX_SYSIO Read/Write 0x00000000

0x0118 Reserved – – –

 415SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Note: 1. Values in the Bus Matrix Priority Registers are product dependent.

0x0120 Reserved – – –

0x0124 Reserved – – –

0x0128 Core Debug Configuration Register MATRIX_CORE_DEBUG Read/Write 0x00000000

0x012C - 0x01E0 Reserved – – –

0x01E4 Write Protection Mode Register MATRIX_WPMR Read/Write 0x00000000

0x01E8 Write Protection Status Register MATRIX_WPSR Read-only 0x00000000

Table 26-8. Register Mapping (Continued)

Offset Register Name Access Reset

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 416

26.9.1 Bus Matrix Master Configuration Registers

Name: MATRIX_MCFGx [x=0..6]

Address: 0x400E0200 (0), 0x48010000 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “Write Protection Mode Register” .

• ULBT: Undefined Length Burst Type
0: Unlimited Length Burst

No predicted end of burst is generated, therefore INCR bursts coming from this master can only be broken if the Slave Slot
Cycle Limit is reached. If the Slot Cycle Limit is not reached, the burst is normally completed by the master, at the latest, on the
next AHB 1 KByte address boundary, allowing up to 256-beat word bursts or 128-beat double-word bursts.

This value should not be used in the very particular case of a master capable of performing back-to-back undefined length
bursts on a single slave, since this could indefinitely freeze the slave arbitration and thus prevent another master from
accessing this slave.

1: Single Access

The undefined length burst is treated as a succession of single accesses, allowing re-arbitration at each beat of the INCR burst
or bursts sequence.

2: 4-beat Burst

The undefined length burst or bursts sequence is split into 4-beat bursts or less, allowing re-arbitration every 4 beats.

3: 8-beat Burst

The undefined length burst or bursts sequence is split into 8-beat bursts or less, allowing re-arbitration every 8 beats.

4: 16-beat Burst

The undefined length burst or bursts sequence is split into 16-beat bursts or less, allowing re-arbitration every 16 beats.

5: 32-beat Burst

The undefined length burst or bursts sequence is split into 32-beat bursts or less, allowing re-arbitration every 32 beats.

6: 64-beat Burst

The undefined length burst or bursts sequence is split into 64-beat bursts or less, allowing re-arbitration every 64 beats.

7: 128-beat Burst

The undefined length burst or bursts sequence is split into 128-beat bursts or less, allowing re-arbitration every 128 beats.

Unless duly needed, the ULBT should be left at its default 0 value for power saving.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – ULBT

 417SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

26.9.2 Bus Matrix Slave Configuration Registers

Name: MATRIX_SCFGx [x=0..7]

Address: 0x400E0240 (0), 0x48010040 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “Write Protection Mode Register” .

• SLOT_CYCLE: Maximum Bus Grant Duration for Masters
When SLOT_CYCLE AHB clock cycles have elapsed since the last arbitration, a new arbitration takes place to let another
master access this slave. If another master is requesting the slave bus, then the current master burst is broken.

If SLOT_CYCLE = 0, the Slot Cycle Limit feature is disabled and bursts always complete unless broken according to the
ULBT.

This limit has been placed in order to enforce arbitration so as to meet potential latency constraints of masters waiting for slave
access.

This limit must not be too small. Unreasonably small values break every burst and the Bus Matrix arbitrates without performing
any data transfer. The default maximum value is usually an optimal conservative choice.

In most cases, this feature is not needed and should be disabled for power saving.

See Section 26.7.1.2 “Slot Cycle Limit Arbitration” for details.

• DEFMSTR_TYPE: Default Master Type
0: No Default Master

At the end of the current slave access, if no other master request is pending, the slave is disconnected from all masters.

This results in a one clock cycle latency for the first access of a burst transfer or for a single access.

1: Last Default Master

At the end of the current slave access, if no other master request is pending, the slave stays connected to the last master
having accessed it.

This results in not having one clock cycle latency when the last master tries to access the slave again.

2: Fixed Default Master

At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master the
number that has been written in the FIXED_DEFMSTR field.

This results in not having one clock cycle latency when the fixed master tries to access the slave again.

• FIXED_DEFMSTR: Fixed Default Master
This is the number of the Default Master for this slave. Only used if DEFMSTR_TYPE is 2. Specifying the number of a master
which is not connected to the selected slave is equivalent to setting DEFMSTR_TYPE to 0.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – FIXED_DEFMSTR DEFMSTR_TYPE

15 14 13 12 11 10 9 8
– – – – – – – SLOT_CYCLE

7 6 5 4 3 2 1 0
SLOT_CYCLE

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 418

26.9.3 Bus Matrix Priority Registers A For Slaves

Name: MATRIX_PRASx [x=0..7]

Address: 0x400E0280 (0)[0], 0x400E0288 (0)[1], 0x400E0290 (0)[2], 0x400E0298 (0)[3], 0x400E02A0 (0)[4],
0x400E02A8 (0)[5], 0x400E02B0 (0)[6], 0x400E02B8 (0)[7], 0x48010080 (1)[0], 0x48010088 (1)[1],
0x48010090 (1)[2], 0x48010098 (1)[3], 0x480100A0 (1)[4], 0x480100A8 (1)[5], 0x480100B0 (1)[6],
0x480100B8 (1)[7]

Access: Read/Write

This register can only be written if the WPE bit is cleared in the “Write Protection Mode Register” .

• MxPR: Master x Priority
Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

All the masters programmed with the same MxPR value for the slave make up a priority pool.

Round-robin arbitration is used in the lowest (MxPR = 0) and highest (MxPR = 3) priority pools.

Fixed priority is used in intermediate priority pools (MxPR = 1) and (MxPR = 2).

See Section 26.7.2 “Arbitration Priority Scheme” for details.

31 30 29 28 27 26 25 24
– – M7PR – – M6PR

23 22 21 20 19 18 17 16
– – M5PR – – M4PR

15 14 13 12 11 10 9 8
– – M3PR – – M2PR

7 6 5 4 3 2 1 0
– – M1PR – – M0PR

 419SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

26.9.4 System I/O Configuration Register

Name: MATRIX_SYSIO

Address: 0x400E0314 (0), 0x48010114 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “Write Protection Mode Register” .

• SYSIO0: PB0 or TDI Assignment
0 = TDI function selected.
1 = PB0 function selected.

• SYSIO1: PB1 or TDO/TRACESWO Assignment
0 = TDO/TRACESWO function selected.
1 = PB1 function selected.

• SYSIO2: PB2 or TMS/SWDIO Assignment
0 = TMS/SWDIO function selected.
1 = PB2 function selected.

• SYSIO3: PB3 or TCK/SWCLK Assignment
0 = TCK/SWCLK function selected.
1 = PB3 function selected.

• SYSIO9: PC9 or ERASE Assignment
0 = ERASE function selected.
1 = PC9 function selected.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – SYSIO9 –

7 6 5 4 3 2 1 0
– – – – SYSIO3 SYSIO2 SYSIO1 SYSIO0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 420

26.9.5 Core Debug Configuration Register

Name: MATRIX_CORE_DEBUG

Address: 0x400E0328 (0), 0x48010128 (1)

Access: Read/Write

Reset: See Table 26-8

• CROSS_TRG1: Core 1 --> Core 0 Cross Triggering
0 = Core 1 is not able to trigger an event on core 0.
1 = Core 1 is able to trigger an event on core 0.

• CROSS_TRG0: Core 0 --> Core 1 Cross Triggering
0 = Core 0 is not able to trigger an event on core 1.
1 = Core 0 is able to trigger an event on core 1.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – CROSS_TRG0 CROSS_TRG1 –

 421SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

26.9.6 Write Protection Mode Register

Name: MATRIX_WPMR

Address: 0x400E03E4 (0), 0x480101E4 (1)

Access: Read/Write

Reset: See Table 26-8

For more information on Write Protection registers, refer to Section 26.8 “Register Write Protection”.

• WPEN: Write Protection Enable
0: Disables the write protection if WPKEY corresponds to 0x4D4154 (“MAT” in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x4D4154 (“MAT” in ASCII).

See Section 26.8 “Register Write Protection” for the list of registers that can be protected.

• WPKEY: Write Protection Key

31 30 29 28 27 26 25 24
WPKEY

23 22 21 20 19 18 17 16
WPKEY

15 14 13 12 11 10 9 8
WPKEY

7 6 5 4 3 2 1 0
– – – – – – – WPEN

Value Name Description

0x4D4154 PASSWD Writing any other value in this field aborts the write operation of the WPEN bit. Always reads as 0.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 422

26.9.7 Write Protection Status Register

Name: MATRIX_WPSR

Address: 0x400E03E8 (0), 0x480101E8 (1)

Access: Read-only

Reset: See Table 26-8

For more information on Write Protection registers, refer to Section 26.8 “Register Write Protection”.

• WPVS: Write Protection Violation Status
0: No write protection violation has occurred since the last read of the MATRIX_WPMR register.

1: A write protection violation has occurred since the last write of the MATRIX_WPMR register. If this violation is an
unauthorized attempt to write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protection Violation Source
When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
WPVSRC

15 14 13 12 11 10 9 8
WPVSRC

7 6 5 4 3 2 1 0
– – – – – – – WPVS

 423SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

27. G3 Power Line Communications (GPLC)

27.1 Description
GPLC is an embedded G3-PLC modem for Power Line Communication. Its flexible architecture, composed of
hardware accelerators and coprocessors, achieves a very efficient G3 PHY layer implementation.

27.2 Embedded Characteristics
 G3-PLC modem

 Implements G3 CENELEC-A, FCC and ARIB profiles (ITU-T G.9903, June ’14)
 Power Line Carrier Modem for 50 Hz and 60 Hz mains
 G3-PLC coherent and differential modulation schemes available

 Automatic Gain Control and continuous amplitude tracking in signal reception
 Zero cross detection
 Embedded PLC Analog Front End (AFE), requires only external discrete high efficient Class D Line Driver for

signal injection

27.2.1 GPLC Application Block Diagram

Figure 27-1. GPLC application example

PLC
Coupling

Zero Crossing
External Circuit

GPLC

EMIT [0:11]
TXRX [0:1]

AGC [0:5]
VIPA
VRC

VIMA

VZ CROSS

L N

P
r
o
x
y

P
L
C

C
o
n
t
r
o
l
l
e
r

SAM4CP16C

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 424

27.3 Block Diagram

Figure 27-2. GPLC Functional Block Diagram

Converter

Syncro

FFT

RX

VIMA
VIPA
VRP

VRM
VRC

Preamble

SPI

Converter/PAD
IFFT

Modulator
INOUTB

TX

TXRXB

Preamble

SPI

Interleaver

Convolutional
Encoder Scrambler

Reed-Solomon
Coprocessor

 Repeater

EMIT(0 :11)

CLOCK &

RESET

INTERFACE

ARST

SRST

 PLL INIT

CLKEA

CLKEB

CLKOUT

POWER

MANAGEMENT

ZERO CROSS
DETECTOR

EVM RSSI CD

AGC(0:5)

TXRX0

TXRX1

VZ CROSS

Demodulator
Interleaver

Viterbi Scrambler

Reed-Solomon
Coprocessor

 Combiner

VDDIO
VDDOUT PLC
VDDPLL PLC

VDDIN PLC
VDDIN AN

VDDOUT AN
GND

AGND

EMITCTRL

Interpolator
Analog

Front-End
Control

RMS BER

RAW
DATA

INOUTB

AGC
DC blockTXRXB Decimator

SYNCM
Detector

RAW
DATA

 425SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

27.4 Signal Description

Table 27-1. Signal Description

Signal Name Function Type

VIMA Negative Differential Voltage Input Input

VIPA Positive Differential Voltage Input Input

VRP Internal Reference “Plus” Voltage. Connect an external
decoupling capacitor between VRP and VRM (1nF - 100nF) Output

VRM Internal Reference “Minus” Voltage. Connect an external
decoupling capacitor between VRP and VRM (1nF - 100nF) Output

VRC Common-mode Voltage. Bypass to analog ground with an
external decoupling capacitor (100pF - 1nF) Output

EMIT0 - EMIT11 PLC Transmission ports Output

AGC0 - AGC5

PLC Automatic Gain Control:
• These digital tri-state outputs are managed by ACG

hardware logic to drive external circuitry when input signal
attenuation is needed

Output

TXRX0 - TXRX1 PLC Ext. coupling TxRx control Output

VZ CROSS
Mains Zero-Cross Detection Signal:
• This input detects the zero-crossing of the mains voltage

Input

ARST
PLC Asynchronous Reset:
• ARST is active low
• Internal configuration: 33 kΩ typ. pull up resistor

Input

SRST
PLC Synchronous Reset
• SRST is active low
• Internal configuration: 33 kΩ typ. pull up resistor

Input

PLL INIT
PLL Initialization Signal
• PLL INIT is active low
• Internal configuration: 33 kΩ typ. pull up resistor

Input

CLKEA

PLC External Clock Input
• CLKEA must be connected to one terminal of a crystal

(when a crystal is being used) or used as input for
external clock signal

Input

CLKEB

PLC External Clock Input/Output
• CLKEB must be connected to one terminal of a crystal

(when a crystal is being used) or must be floating when an
external clock signal is connected thru CLKEA

I/O

CLKOUT 12 MHz External CLK Output Output

VDDIO PLC Digital pads 3.3V Power Supply Power

VDDPLL PLC PLC PLL Power Supply Power

VDDIN PLC PLC Digital Regulator input Power

VDDOUT PLC PLC Digital Regulator output Power

VDDIN AN PLC Analog Regulator input Power

VDDOUT AN PLC Analog Regulator output Power

GND Digital Ground Power

AGND Analog Ground Power

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 426

27.5 Analog Front-End

27.5.1 PLC coupling circuitry description

Atmel PLC coupling reference designs have been designed to achieve high performance, low cost and simplicity.

With these values on mind, Atmel has developed a set of PLC couplings covering frequencies below 500 kHz
compliant with different applicable regulations.

Atmel PLC technology is purely digital and does not require external DAC/ADC, thus simplifying the external required
circuitry. Generally Atmel PLC coupling reference designs make use of few passive components plus a Class D
amplification stage for transmission.

All PLC coupling reference designs are generally composed by the same sub-circuits:
 Transmission Stage
 Reception Stage
 Filtering Stage
 Coupling Stage

Figure 27-3. PLC coupling block diagram

A particular reference design can contain more than one sub-circuit of the same kind (i.e., two transmission stages).

27.5.1.1 Transmission Stage
The transmission stage adapts the EMIT signals and amplifies them if required. It can be composed by:
 Driver: A group of resistors which adapt the EMIT signals to either control the Class-D amplifier or to be filtered

by the next stage.
 Amplifier: If required, a Class-D amplifier which generates a square waveform from 0 to VDD is included.
 Bias and protection: A couple of resistors and a couple of Schottky barrier diodes provide a DC component and

provide protection from received disturbances.

Transmission stage shall be always followed by a filtering stage.

AGC1
AGC0

AGC5
AGC4
AGC3
AGC2

VIPA
VRC
VIMA

EMIT0

EMIT5
EMIT4
EMIT3
EMIT2
EMIT1

TXRX0

TO MAINS

RECEPTION
STAGE

TRANSMISSION
STAGE

COUPLING STAGE

SAM4CP16C

FILTERING STAGE

VDD

 427SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

27.5.1.2 Filtering Stage
The filtering stage is composed by band-pass filters which have been designed to achieve high performance in field
deployments complying at the same time with the proper normative and standards.

The in-band flat response filtering stage does not distort the injected signal, reduces spurious emission to the limits
set by the corresponding regulation and blocks potential interferences from other transmission channels.

The Filtering stage has three aims:
 Band-pass filtering of high frequency components of the square waveform generated by the Transmission

Stage.
 Adapt Input/Output impedances for optimal reception/transmission. This is controlled by TXRX signal.
 In some cases, Band-pass filtering for received signals.

When the system is intended to be connected to a physical channel with high voltage or which is not electrically
referenced to the same point then the filtering stage must be always followed by a coupling stage.

27.5.1.3 Coupling Stage
The coupling stage blocks the DC component of the line to/from which the signal is injected/received (i.e., 50/60 Hz of
the mains). This is carried out by a high voltage capacitor.

Coupling stage could also electrically isolate the coupling circuitry from the external world by means of a 1:1
transformer.

27.5.1.4 Reception Stage
The reception stage adapts the received analog signal to be properly captured by the GPLC internal reception chain.
Reception circuit is independent of the PLC channel which is being used. It basically consists of:
 Anti aliasing filter (RC Filter)
 Automatic Gain Control (AGC) circuit
 Driver of the internal ADC

The AGC circuit avoids distortion on the received signal that may arise when the input signal is high enough to
polarize the protective diodes in direct region.

The driver to the internal ADC comprises a couple of resistors and a couple of capacitors. This driver provides a DC
component and adapts the received signal to be properly converted by the internal reception chain.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 428

27.5.1.5 Generic PLC Coupling
Please consider that this is a generic PLC Coupling design for a particular application please refer to Atmel doc43052
“PLC Coupling Reference Designs”.

Figure 27-4. PLC Coupling block diagram detailed

27.5.2 ATPLCOUP reference designs

Atmel provides PLC coupling reference designs for different applications and frequency bands up to 500 kHz. Please
refer to Atmel doc43052 “PLC Coupling Reference Designs” for a detailed description.

VIPA

VRC

VIMA

AGC0

AGC1

AGC2AGC5

AGC4

AGC3

EMIT0

EMIT1

EMIT2

EMIT3

EMIT4

EMIT5

N

L

+

TXRX

COUPLING STAGE
FILTERING STAGE

TRANSMISSION STAGE

RECEPTION STAGE

3V3

3V3

3V3

VDD

VDD

VDD

3V3

3V3

 429SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

27.5.3 Zero-crossing detector

27.5.3.1 Overview
Zero Crossing Detector block works predicting future zero crossing in function of the past zero crossings. To achieve
this, the system embeds a configurable Input Signal Management (ISM) block and a PLL, both of which manage Zero
Crossing Detector Input Signal to calculate Zero Crossing Output Flag. The zero-cross detection of waves of 50 Hz
and 60 Hz with ±10% of error is supported.

The PLL block interprets its input signal such a way that it indicates a zero cross in the middle of a positive pulse. It is
important to note that depending on the external circuit which implements the Zero Crossing Detector Input Signal this
interpretation is not always correct. So for these cases it is required to transform the Input Signal in a signal where the
middle of a positive pulse corresponds to a truly zero cross. This transformation is implemented through the Input
Signal Management (ISM) configured by MODE_INV and MODE_REP fields in ZC_CONFIG register.

Zero Crossing Detector Input Signal (VZ CROSS) must fulfil some requirements. The first requirement is that VZ
CROSS signal must be a pulse train which its duty cycle must be >60% or <40% (polarity is configurable). In addition,
if we have to detect Ascent or Descent zero-crossing, Zero Crossing Detector Input Signal period must be equal than
period of the wave we need to obtain zero-crossing. Ascent and Descent Zero Crossing Detection are configured by
setting MODE_MUX and MODE_ASC fields in ZC_CONFIG register.

Figure 27-5. Typical circuit, using a bidirectional optocoupler and a Schmitt trigger

The input signal “VZ CROSS”(wider line) generated by this circuit for Zero Cross Detection of the wave “L”-“N” (finer
line) is plotted in next figure. The digital signal at output of Input Signal Management (ISM) is plotted in Figure 27-6.

Figure 27-6. Digital signal (dashed line) at output of Input Signal Management (ISM) internal block

For this circuit, Zero Cross Internal registers should be configured this way:

ZC_CONFIG.MODE_MUX = ‘0’
ZC_CONFIG.MODE_ASC = ‘0’
ZC_CONFIG.MODE_INV = ‘1’
ZC_CONFIG.MODE_REP = ‘0’
ZC_CONFIG.FILTER_BP = ‘0’

Mains Signal

ZC signal provided
to VZ CROSS

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 430

Some situations (for example in some protocols like G3) could require only ascent (or descent) mains signal zero-
crossings to be detected. When we have to detect Ascent or Descent Zero Cross of the wave (finer line), the circuit
should generate an input signal “VZ CROSS” (wider line) with the same period, as specified in next figure. This could
be easily implemented by using an unidirectional optocoupler or a Zener diode topology in the external circuitry.

Figure 27-7. Typical circuit, using a unidirectional optocoupler and a Schmitt trigger

The digital signal at output of Input Signal Management (ISM) is plotted in Figure 27-8:

Figure 27-8. Digital signal (dashed line) at output of Input Signal Management (ISM) internal block

For this case, Zero Cross Internal registers should be configured this way:

ZC_CONFIG.MODE_MUX = ‘1’
ZC_CONFIG.MODE_ASC = ‘0’(ascent) or ‘1’(descent)
ZC_CONFIG.MODE_INV = ‘1’
ZC_CONFIG.MODE_REP = ‘1’
ZC_CONFIG.FILTER_BP = ‘0’

ZC signal provided
to VZ CROSS

Mains Signal

 431SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

27.5.3.2 Zero Crossing Config register
Name: ZC_CONFIG
Address: 0x4A0
Access: Read/Write
Reset: 0x00023210

• MODE_MUX: Zero Crossing Mode
‘0’: Selection of both ascent and descent zero-crossing
‘1’: Selection of ascent or descent zero-crossing

• MODE_ASC: Ascent-Descent Mode
‘0’: If MODE_MUX is 1, Ascent Zero Crossing
‘1’: If MODE_MUX is 1, Descent Zero Crossing

• MODE_INV: Inversion Mode
‘0’: No effect.
‘1’: Zero Crossing Detector Input Signal is inverted.

• MODE_REP: Repetition Mode
‘0’: No effect.
‘1’: Zero Crossing Detector Input Signal period is down by half.

• FILTER_BP: Zero Crossing Input Signal Filter Enable
‘0’: Filter enabled.
‘1’: Filter not enabled.

• FILTER_NUM[6:0]: Zero Crossing Input Signal Filter Parameter
Time (counted in number of clock cycles) that the Zero Crossing Input Signal (1-bit) must be constant to set that
value as the input signal for Zero Crossing Detection. Used to refuse fast transitions in Zero Crossing Input Signal.

• PEAK1_ZC_EN: indicates if PEAK_ZC_TIME updates its value with the last ZC_TIME when a PEAK1 is detected.
It is active high.

• PEAK2_ZC_EN: indicates if PEAK_ZC_TIME updates its value with the last ZC_TIME when a PEAK2 is detected.
It is active high.

31 30 29 28 27 26 25 24
- - - - - - - -

23 22 21 20 19 18 17 16
- - - - - Reserved PEAK2_ZC

_EN
PEAK1_ZC

_EN

15 14 13 12 11 10 9 8
- FILTER_NUM [6:0]

7 6 5 4 3 2 1 0
- - - FILTER_BP MODE_RE

P
MODE_INV MODE_AS

C
MODE_MU

X

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 432

28. Peripheral DMA Controller (PDC)

28.1 Description
The Peripheral DMA Controller (PDC) transfers data between on-chip serial peripherals and the target memories. The
link between the PDC and a serial peripheral is operated by the AHB to APB bridge.

The user interface of each PDC channel is integrated into the user interface of the peripheral it serves. The user
interface of mono-directional channels (receive-only or transmit-only) contains two 32-bit memory pointers and two
16-bit counters, one set (pointer, counter) for the current transfer and one set (pointer, counter) for the next transfer.
The bidirectional channel user interface contains four 32-bit memory pointers and four 16-bit counters. Each set
(pointer, counter) is used by the current transmit, next transmit, current receive and next receive.

Using the PDC decreases processor overhead by reducing its intervention during the transfer. This lowers
significantly the number of clock cycles required for a data transfer, improving microcontroller performance.

To launch a transfer, the peripheral triggers its associated PDC channels by using transmit and receive signals. When
the programmed data is transferred, an end of transfer interrupt is generated by the peripheral itself.

28.2 Embedded Characteristics
 Performs Transfers to/from APB Communication Serial Peripherals.
 Supports Half-duplex and Full-duplex Peripherals.

 433SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

28.3 Block Diagram

Figure 28-1. Block Diagram

28.4 Functional Description

28.4.1 Configuration

The PDC channel user interface enables the user to configure and control data transfers for each channel. The user
interface of each PDC channel is integrated into the associated peripheral user interface.

The user interface of a serial peripheral, whether it is full- or half-duplex, contains four 32-bit pointers (RPR, RNPR,
TPR, TNPR) and four 16-bit counter registers (RCR, RNCR, TCR, TNCR). However, the transmit and receive parts of
each type are programmed differently: the transmit and receive parts of a full-duplex peripheral can be programmed at
the same time, whereas only one part (transmit or receive) of a half-duplex peripheral can be programmed at a time.

PDCFULL DUPLEX
PERIPHERAL

THR

RHR

PDC Channel A

PDC Channel B

Control

Status & Control
Control

PDC Channel C

HALF DUPLEX
PERIPHERAL

THR

Status & Control

RECEIVE or TRANSMIT
PERIPHERAL

RHR or THR

Control

Control

RHR

PDC Channel D

Status & Control

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 434

32-bit pointers define the access location in memory for the current and next transfer, whether it is for read (transmit)
or write (receive). 16-bit counters define the size of the current and next transfers. It is possible, at any moment, to
read the number of transfers remaining for each channel.

The PDC has dedicated status registers which indicate if the transfer is enabled or disabled for each channel. The
status for each channel is located in the associated peripheral status register. Transfers can be enabled and/or
disabled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in the peripheral’s Transfer Control register.

At the end of a transfer, the PDC channel sends status flags to its associated peripheral. These flags are visible in the
Peripheral Status register (ENDRX, ENDTX, RXBUFF, and TXBUFE). Refer to Section 28.4.3 and to the associated
peripheral user interface.

The peripheral where a PDC transfer is configured must have its peripheral clock enabled. The peripheral clock must
be also enabled to access the PDC register set associated to this peripheral.

28.4.2 Memory Pointers

Each full-duplex peripheral is connected to the PDC by a receive channel and a transmit channel. Both channels have
32-bit memory pointers that point to a receive area and to a transmit area, respectively, in the target memory.

Each half-duplex peripheral is connected to the PDC by a bidirectional channel. This channel has two 32-bit memory
pointers, one for current transfer and the other for next transfer. These pointers point to transmit or receive data
depending on the operating mode of the peripheral.

Depending on the type of transfer (byte, half-word or word), the memory pointer is incremented respectively by 1, 2 or
4 bytes.

If a memory pointer address changes in the middle of a transfer, the PDC channel continues operating using the new
address.

28.4.3 Transfer Counters

Each channel has two 16-bit counters, one for the current transfer and the one for the next transfer. These counters
define the size of data to be transferred by the channel. The current transfer counter is decremented first as the data
addressed by the current memory pointer starts to be transferred. When the current transfer counter reaches zero, the
channel checks its next transfer counter. If the value of the next counter is zero, the channel stops transferring data
and sets the appropriate flag. If the next counter value is greater than zero, the values of the next pointer/next counter
are copied into the current pointer/current counter and the channel resumes the transfer, whereas next pointer/next
counter get zero/zero as values. At the end of this transfer, the PDC channel sets the appropriate flags in the
Peripheral Status register.

The following list gives an overview of how status register flags behave depending on the counters’ values:
 ENDRX flag is set when the PDC Receive Counter Register (PERIPH_RCR) reaches zero.
 RXBUFF flag is set when both PERIPH_RCR and the PDC Receive Next Counter Register (PERIPH_RNCR)

reach zero.
 ENDTX flag is set when the PDC Transmit Counter Register (PERIPH_TCR) reaches zero.
 TXBUFE flag is set when both PERIPH_TCR and the PDC Transmit Next Counter Register (PERIPH_TNCR)

reach zero.

These status flags are described in the Transfer Status Register (PERIPH_PTSR).

28.4.4 Data Transfers

The serial peripheral triggers its associated PDC channels’ transfers using transmit enable (TXEN) and receive
enable (RXEN) flags in the transfer control register integrated in the peripheral’s user interface.

When the peripheral receives external data, it sends a Receive Ready signal to its PDC receive channel which then
requests access to the Matrix. When access is granted, the PDC receive channel starts reading the peripheral
Receive Holding register (RHR). The read data are stored in an internal buffer and then written to memory.

 435SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

When the peripheral is about to send data, it sends a Transmit Ready to its PDC transmit channel which then requests
access to the Matrix. When access is granted, the PDC transmit channel reads data from memory and transfers the
data to the Transmit Holding register (THR) of its associated peripheral. The same peripheral sends data depending
on its mechanism.

28.4.5 PDC Flags and Peripheral Status Register

Each peripheral connected to the PDC sends out receive ready and transmit ready flags and the PDC returns flags to
the peripheral. All these flags are only visible in the Peripheral’s Status register.

Depending on whether the peripheral is half- or full-duplex, the flags belong to either one single channel or two
different channels.

28.4.5.1 Receive Transfer End
The receive transfer end flag is set when PERIPH_RCR reaches zero and the last data has been transferred to
memory.

This flag is reset by writing a non-zero value to PERIPH_RCR or PERIPH_RNCR.

28.4.5.2 Transmit Transfer End
The transmit transfer end flag is set when PERIPH_TCR reaches zero and the last data has been written to the
peripheral THR.

This flag is reset by writing a non-zero value to PERIPH_TCR or PERIPH_TNCR.

28.4.5.3 Receive Buffer Full
The receive buffer full flag is set when PERIPH_RCR reaches zero, with PERIPH_RNCR also set to zero and the last
data transferred to memory.

This flag is reset by writing a non-zero value to PERIPH_TCR or PERIPH_TNCR.

28.4.5.4 Transmit Buffer Empty
The transmit buffer empty flag is set when PERIPH_TCR reaches zero, with PERIPH_TNCR also set to zero and the
last data written to peripheral THR.

This flag is reset by writing a non-zero value to PERIPH_TCR or PERIPH_TNCR.

28.5 Peripheral DMA Controller (PDC) User Interface

Note: 1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be configured
by the user depending on the function and the desired peripheral.

Table 28-1. Register Mapping

Offset Register Name(1) Access Reset

0x00 Receive Pointer Register PERIPH_RPR Read/Write 0

0x04 Receive Counter Register PERIPH_RCR Read/Write 0

0x08 Transmit Pointer Register PERIPH_TPR Read/Write 0

0x0C Transmit Counter Register PERIPH_TCR Read/Write 0

0x10 Receive Next Pointer Register PERIPH_RNPR Read/Write 0

0x14 Receive Next Counter Register PERIPH_RNCR Read/Write 0

0x18 Transmit Next Pointer Register PERIPH_TNPR Read/Write 0

0x1C Transmit Next Counter Register PERIPH_TNCR Read/Write 0

0x20 Transfer Control Register PERIPH_PTCR Write-only -

0x24 Transfer Status Register PERIPH_PTSR Read-only 0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 436

28.5.1 Receive Pointer Register

Name: PERIPH_RPR

Access: Read/Write

• RXPTR: Receive Pointer Register
RXPTR must be set to receive buffer address.

When a half-duplex peripheral is connected to the PDC, RXPTR = TXPTR.

31 30 29 28 27 26 25 24
RXPTR

23 22 21 20 19 18 17 16
RXPTR

15 14 13 12 11 10 9 8
RXPTR

7 6 5 4 3 2 1 0
RXPTR

 437SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

28.5.2 Receive Counter Register

Name: PERIPH_RCR

Access: Read/Write

• RXCTR: Receive Counter Register
RXCTR must be set to receive buffer size.

When a half-duplex peripheral is connected to the PDC, RXCTR = TXCTR.

0: Stops peripheral data transfer to the receiver.

1 - 65535: Starts peripheral data transfer if the corresponding channel is active.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
RXCTR

7 6 5 4 3 2 1 0
RXCTR

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 438

28.5.3 Transmit Pointer Register

Name: PERIPH_TPR

Access: Read/Write

• TXPTR: Transmit Counter Register
TXPTR must be set to transmit buffer address.

When a half-duplex peripheral is connected to the PDC, RXPTR = TXPTR.

31 30 29 28 27 26 25 24
TXPTR

23 22 21 20 19 18 17 16
TXPTR

15 14 13 12 11 10 9 8
TXPTR

7 6 5 4 3 2 1 0
TXPTR

 439SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

28.5.4 Transmit Counter Register

Name: PERIPH_TCR

Access: Read/Write

• TXCTR: Transmit Counter Register
TXCTR must be set to transmit buffer size.

When a half-duplex peripheral is connected to the PDC, RXCTR = TXCTR.

0: Stops peripheral data transfer to the transmitter.

1 - 65535: Starts peripheral data transfer if the corresponding channel is active.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TXCTR

7 6 5 4 3 2 1 0
TXCTR

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 440

28.5.5 Receive Next Pointer Register

Name: PERIPH_RNPR

Access: Read/Write

• RXNPTR: Receive Next Pointer
RXNPTR contains the next receive buffer address.

When a half-duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.

31 30 29 28 27 26 25 24
RXNPTR

23 22 21 20 19 18 17 16
RXNPTR

15 14 13 12 11 10 9 8
RXNPTR

7 6 5 4 3 2 1 0
RXNPTR

 441SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

28.5.6 Receive Next Counter Register

Name: PERIPH_RNCR

Access: Read/Write

• RXNCTR: Receive Next Counter
RXNCTR contains the next receive buffer size.

When a half-duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
RXNCTR

7 6 5 4 3 2 1 0
RXNCTR

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 442

28.5.7 Transmit Next Pointer Register

Name: PERIPH_TNPR

Access: Read/Write

• TXNPTR: Transmit Next Pointer
TXNPTR contains the next transmit buffer address.

When a half-duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.

31 30 29 28 27 26 25 24
TXNPTR

23 22 21 20 19 18 17 16
TXNPTR

15 14 13 12 11 10 9 8
TXNPTR

7 6 5 4 3 2 1 0
TXNPTR

 443SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

28.5.8 Transmit Next Counter Register

Name: PERIPH_TNCR

Access: Read/Write

• TXNCTR: Transmit Counter Next
TXNCTR contains the next transmit buffer size.

When a half-duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TXNCTR

7 6 5 4 3 2 1 0
TXNCTR

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 444

28.5.9 Transfer Control Register

Name: PERIPH_PTCR

Access: Write-only

• RXTEN: Receiver Transfer Enable
0: No effect.

1: Enables PDC receiver channel requests if RXTDIS is not set.

When a half-duplex peripheral is connected to the PDC, enabling the receiver channel requests automatically disables the
transmitter channel requests. It is forbidden to set both TXTEN and RXTEN for a half-duplex peripheral.

• RXTDIS: Receiver Transfer Disable
0: No effect.

1: Disables the PDC receiver channel requests.

When a half-duplex peripheral is connected to the PDC, disabling the receiver channel requests also disables the transmitter
channel requests.

• TXTEN: Transmitter Transfer Enable
0: No effect.

1: Enables the PDC transmitter channel requests.

When a half-duplex peripheral is connected to the PDC, it enables the transmitter channel requests only if RXTEN is not set. It
is forbidden to set both TXTEN and RXTEN for a half-duplex peripheral.

• TXTDIS: Transmitter Transfer Disable
0: No effect.

1: Disables the PDC transmitter channel requests.

When a half-duplex peripheral is connected to the PDC, disabling the transmitter channel requests disables the receiver
channel requests.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – TXTDIS TXTEN

7 6 5 4 3 2 1 0
– – – – – – RXTDIS RXTEN

 445SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

28.5.10 Transfer Status Register

Name: PERIPH_PTSR

Access: Read-only

• RXTEN: Receiver Transfer Enable
0: PDC receiver channel requests are disabled.

1: PDC receiver channel requests are enabled.

• TXTEN: Transmitter Transfer Enable
0: PDC transmitter channel requests are disabled.

1: PDC transmitter channel requests are enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – TXTEN

7 6 5 4 3 2 1 0
– – – – – – – RXTEN

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 446

29. Clock Generator

29.1 Description
The Clock Generator User Interface is embedded within the Power Management Controller and is described in
Section 30.18 ”Power Management Controller (PMC) User Interface”. However, the Clock Generator registers are
named CKGR_.

29.2 Embedded Characteristics
The Clock Generator is made up of:
 A low-power 32.768 kHz crystal oscillator with Bypass mode.
 A low-power embedded 32 kHz (typical) RC oscillator.
 A 3 to 20 MHz crystal or ceramic resonator-based oscillator with Bypass mode.
 A factory-trimmed embedded RC oscillator. Three output frequencies can be selected: 4/8/12 MHz. By default 4

MHz is selected.
 Two programmable PLLs, (PLLA input from 32 kHz, output clock range 8 MHz and PLLB input from 3 to 32

MHz, output clock range 80 to 240 MHz), capable of providing the clock MCK to the processor and to the
peripherals.

It provides the following clocks:
 SLCK: Slow clock. The only permanent clock within the system.
 MAINCK: output of the Main clock oscillator selection: either the crystal or ceramic resonator-based oscillator or

4/8/12 MHz RC oscillator.
 PLLACK: output of the 8 MHz programmable PLL (PLLA).
 PLLBCK: output of the divider and 80 to 240 MHz programmable PLL (PLLB).

 447SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

29.3 Block Diagram

Figure 29-1. Clock Generator Block Diagram

29.4 Slow Clock
The Supply Controller embeds a Slow clock generator that is supplied with the VDDBU power supply. As soon as
VDDBU is supplied, both the 32.768 kHz crystal oscillator and the embedded 32 kHz (typical) RC oscillator are
powered up, but only the RC oscillator is enabled.

The Slow clock is generated either by the 32.768 kHz Crystal Oscillator or by the embedded 32 kHz (typical) RC
oscillator.

The selection of the Slow clock source is made via the XTALSEL bit in the Supply Controller Control register
(SUPC_CR).

The OSCSEL bit of the Supply Controller Status register (SUPC_SR) and the OSCSELS bit of the PMC Status
register (PMC_SR) report which oscillator is selected as the Slow clock source. PMC_SR.OSCSELS informs when
the switch sequence initiated by a new value written in SUPC_CR.XTALSEL is done.

ControlStatus

MOSCSEL

XIN

XOUT

XIN32

XOUT32

0

1

3–20 MHz
Crystal

or
Ceramic

Resonator
Oscillator

Embedded
4/8/12 MHz

RC Oscillator

en
32768 Hz

Crystal
Oscillator

or external
oscillator

en
Embedded

32 kHz
RC Oscillator

Clock Generator

XTALSEL (SUPC_CR)

Slow Clock
SLCK

Main Clock
MAINCK

PLLB Clock
PLLBCK

PLLA Clock
PLLACK

Power
Management

Controller

CKGR_MOR

OSCBYPASS (SUPC_MR)

0

1

PLLA

PLLB and
Divider /2

PLLADIV2

PLLBDIV2SRCB

1

0

CKGR_PLLBR PMC_MCKR

PMC_MCKR

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 448

29.4.1 Embedded 32 kHz (typical) RC Oscillator

By default, the embedded 32 kHz (typical) RC oscillator is enabled and selected as a source of Slow clock. The user
has to take into account the possible drifts of this oscillator. Refer to the section “DC Characteristics”.

This oscillator is disabled by clearing SUPC_CR.XTALSEL.

29.4.2 32.768 kHz Crystal Oscillator

The Clock Generator integrates a low-power 32.768 kHz crystal oscillator. To use this oscillator, the XIN32 and
XOUT32 pins must be connected to a 32.768 kHz crystal. Refer to the section “Electrical Characteristics” for
appropriate loading capacitor selection on XIN32 and XOUT32.

Note that the user is not obliged to use the 32.768 kHz crystal oscillator and can use the 32 kHz (typical) RC oscillator
instead.

The 32.768 kHz crystal oscillator provides a more accurate frequency than the 32 kHz (typical) RC oscillator.

To select the 32.768 kHz crystal oscillator as the source of the Slow clock, the bit SUPC_CR.XTALSEL must be set.
This results in a sequence which enables the 32.768 kHz crystal oscillator and then disables the 32 kHz (typical) RC
oscillator to save power. The switch of the Slow clock source is glitch-free.

Reverting to the 32 kHz (typical) RC oscillator is only possible by shutting down the VDDBU power supply. If the user
does not need the 32.768 kHz crystal oscillator, the XIN32 and XOUT32 pins can be left unconnected.

The user can also set the 32.768 kHz crystal oscillator in Bypass mode instead of connecting a crystal. In this case,
the user must provide the external clock signal on XIN32. For input characteristics of the XIN32 pin, refer to the
section “Electrical Characteristics”. To enter Bypass mode, the OSCBYPASS bit of the Supply Controller Mode
register (SUPC_MR) must be set prior to setting SUPC_CR.XTALSEL.

 449SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

29.5 Main Clock
The Main clock has two sources:
 A 4/8/12 MHz RC oscillator with a fast startup time and that is selected by default to start the system.
 A 3 to 20 MHz crystal or ceramic resonator-based oscillator with Bypass mode.

Figure 29-2 shows the Main clock block diagram.

Figure 29-2. Main Clock Block Diagram

XIN

XOUT

MOSCXTEN

MOSCXTST

MOSCXTS

Main Clock
Frequency

Counter

MAINF

SLCK
Slow Clock

3-20 MHz
Crystal

or
Ceramic Resonator

Oscillator

3-20 MHz
Oscillator
Counter

MOSCRCEN

 RC
Oscillator

MOSCRCS

MOSCRCF

MOSCRCEN

MOSCXTEN

MOSCSEL

MOSCSEL MOSCSELS

1

0

MAINCK
Main Clock

MAINCK
Main Clock

Ref.

RCMEAS

CKGR_MCFR

CKGR_MOR CKGR_MOR

CKGR_MOR

PMC_SR

PMC_SR

CKGR_MOR

CKGR_MOR

CKGR_MOR

CKGR_MOR

CKGR_MOR

CKGR_MCFR

PMC_SR

CKGR_MCFR

MAINFRDY

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 450

29.5.1 Embedded 4/8/12 MHz RC Oscillator
After reset, the 4/8/12 MHz RC oscillator is enabled with the 4 MHz frequency selected. This oscillator is selected as
the source of MAINCK. MAINCK is the default clock selected to start the system.

The 4/8/12 MHz RC oscillator frequencies are calibrated in production except for the lowest frequency which is not
calibrated.

Refer to the section “DC Characteristics”.

The software can disable or enable the 4/8/12 MHz RC oscillator with the MOSCRCEN bit in the Clock Generator
Main Oscillator register (CKGR_MOR).

The output frequency of the RC oscillator can be selected among 4/8/12 MHz. The selection is done via the
CKGR_MOR.MOSCRCF field. When changing the frequency selection, PMC_SR.MOSCRCS is automatically
cleared and MAINCK is stopped until the oscillator is stabilized. Once the oscillator is stabilized, MAINCK restarts and
PMC_SR.MOSCRCS is set.

When disabling the Main clock by clearing the CKGR_MOR.MOSCRCEN bit, the PMC_SR.MOSCRCS bit is
automatically cleared, indicating the Main clock is off.

Setting the MOSCRCS bit in the Power Management Controller Interrupt Enable register (PMC_IER) triggers an inter-
rupt to the processor.

When Main clock (MAINCK) is not used to drive the processor and frequency monitor (SLCK or PLLACK is used
instead), it is recommended to disable the 4/8/12 MHz RC oscillator and 3 to 20 MHz crystal oscillator.

The CAL4, CAL8 and CAL12 values in the PMC Oscillator Calibration register (PMC_OCR) are the default values set
by Atmel during production. These values are stored in a specific Flash memory area different from the memory plane
for code. These values cannot be modified by the user and cannot be erased by a Flash erase command or by the
ERASE pin. Values written by the user application in PMC_OCR are reset after each power up or peripheral reset.

29.5.2 4/8/12 MHz RC Oscillator Clock Frequency Adjustment

It is possible for the user to adjust the 4/8/12 MHz RC oscillator frequency through PMC_OCR. By default, SEL4/8/12
bits are cleared, so the RC oscillator will be driven with Flash calibration bits which are programmed during chip
production.

The user can adjust the trimming of the 4/8/12 MHz RC oscillator through this register. This can be used to
compensate derating factors such as temperature and voltage, thus providing greater accuracy.

In order to calibrate the RC oscillator lower frequency, SEL4 bit must be set to 1 and a frequency value must be
configured in the field CAL4. Likewise, SEL8/12 bits must be set to 1 and a trim value must be configured in the fields
CAL8/12 in order to adjust the other frequencies of the RC oscillator.

It is possible to adjust the RC oscillator frequency while operating from this clock. For example, when running on
lowest frequency it is possible to change the CAL4 value if PMC_OCR.SEL4 bit is set.

At any time, it is possible to restart a measurement of the frequency of the selected clock via the RCMEAS bit in Main
Clock Frequency register (CKGR_MCFR). Thus, when CKGR_MCFR.MAINFRDY reads 1, another read access on
CKGR_MCFR provides an image of the frequency on CKGR_MCFR.MAINF. The software can calculate the error
with an expected frequency and correct the CAL4 (or CAL8/CAL12) field accordingly. This may be used to
compensate frequency drift due to derating factors such as temperature and/or voltage.

29.5.3 3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator

After reset, the 3 to 20 MHz crystal or ceramic resonator-based oscillator is disabled and is not selected as the source
of MAINCK.

As the source of MAINCK, the 3 to 20 MHz crystal or ceramic resonator-based oscillator provides a very precise
frequency. The software enables or disables this oscillator in order to reduce power consumption via
CKGR_MOR.MOSCXTEN.

When disabling this oscillator by clearing the CKGR_MOR.MOSCXTEN, PMC_SR.MOSCXTS is automatically
cleared, indicating the 3 to 20 MHz crystal oscillator is off.

 451SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

When enabling this oscillator, the user must initiate the startup time counter. The startup time depends on the
characteristics of the external device connected to this oscillator. Refer to the section “Electrical Characteristics” for
the startup time.

When CKGR_MOR.MOSCXTEN and CKGR_MOR.MOSCXTST are written to enable this oscillator, the XIN and
XOUT pins are automatically switched into oscillator mode. PMC_SR.MOSCXTS is cleared and the counter starts
counting down on the Slow clock divided by 8 from the CKGR_MOR.MOSCXTST value. Since the
CKGR_MOR.MOSCXTST value is coded with 8 bits, the maximum startup time is about 62 ms.

When the startup time counter reaches 0, PMC_SR.MOSCXTS is set, indicating that the 3 to 20 MHz crystal oscillator
is stabilized. Setting the MOSCXTS bit in the Interrupt Mask register (PMC_IMR) triggers an interrupt to the
processor.

29.5.4 Main Clock Source Selection

The user can select the source of the Main clock from either the 4/8/12 MHz RC oscillator, the 3 to 20 MHz Crystal
Oscillator or the Ceramic Resonator-based oscillator.

The advantage of the 4/8/12 MHz RC oscillator is its fast startup time. By default, this oscillator is selected to start the
system and when entering Wait mode.

The advantage of the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator is its precise frequency.

The selection of the oscillator is made by writing CKGR_MOR.MOSCSEL. The switch of the Main clock source is
glitch-free, so there is no need to run out of SLCK, PLLACK or PLLBCK in order to change the selection.
PMC_SR.MOSCSELS indicates when the switch sequence is done.

Setting PMC_IMR.MOSCSELS triggers an interrupt to the processor.

Enabling the 4/8/12 MHz RC oscillator (MOSCRCEN = 1) and changing its frequency (MOSCCRF) at the same time
is not allowed.

This oscillator must be enabled first and its frequency changed in a second step.

29.5.5 Bypassing the 3 to 20 MHz Crystal Oscillator

Prior to bypassing the 3 to 20 MHz crystal oscillator, the external clock frequency provided on the XIN pin must be
stable and within the values specified in the XIN Clock characteristics. Refer to the section “Electrical Characteristics”.

The sequence is as follows:
1. Ensure that an external clock is connected on XIN.
2. Enable the bypass by writing a 1 to CKGR_MOR.MOSCXTBY.
3. Disable the 3 to 20 MHz crystal oscillator by writing a 0 to CKGR_MOR.MOSCXTEN.

29.5.6 Main Clock Frequency Counter

The frequency counter is managed by CKGR_MCFR.

During the measurement period, the frequency counter increments at the Main clock speed.

A measurement is started in the following cases:
 When CKGR_MCFR.RCMEAS is written to 1.
 When the 4/8/12 MHz RC oscillator is selected as the source of Main clock and when this oscillator becomes

stable (i.e., when the MOSCRCS bit is set).
 When the 3 to 20 MHz crystal or ceramic resonator-based oscillator is selected as the source of Main clock and

when this oscillator becomes stable (i.e., when the MOSCXTS bit is set).
 When the Main clock source selection is modified.

The measurement period ends at the 16th falling edge of Slow clock, CKGR_MCFR.MAINFRDY is set and the
counter stops counting. Its value can be read in CKGR_MCFR.MAINF and gives the number of clock cycles during 16
periods of Slow clock, so that the frequency of the 4/8/12 MHz RC oscillator or 3 to 20 MHz crystal or ceramic
resonator-based oscillator can be determined.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 452

29.5.7 Switching Main Clock between the RC Oscillator and the Crystal Oscillator

When switching the source of the Main clock between the RC oscillator and the crystal oscillator, both oscillators must
be enabled. After completion of the switch, the unused oscillator can be disabled.

If switching to the crystal oscillator, a check must be carried out to ensure that the oscillator is present and that its
frequency is valid. Follow the sequence below:

1. Select the Slow clock as MCK by configuring CSS = 0 in the Master Clock register (PMC_MCKR).
2. Wait for PMC_SR.MCKRDY flag in PMC_SR to rise.
3. Enable the crystal oscillator by setting CKGR_MOR.MOSCXTEN. Configure the CKGR_MOR. MOSCXTST

field with the crystal oscillator startup time as defined in the section “Electrical Characteristics”.
4. Wait for PMC_SR.MOSCXTS flag to rise, indicating the end of a startup period of the crystal oscillator.
5. Select the crystal oscillator as the source of the Main clock by setting CKGR_MOR.MOSCSEL.
6. Read CKGR_MOR.MOSCSEL until its value equals 1.
7. Check the status of PMC_SR.MOSCSELS flag:

 If MOSCSELS = 1: There is a crystal oscillator connected.
a. Initiate a new frequency measurement by setting CKGR_MCFR.RCMEAS.
b. Read CKGR_MCFR.MAINFRDY until its value equals 1.
c. Read CKGR_MCFR.MAINF and compute the value of the crystal frequency.
d. If the MAINF value is valid, the Main clock can be switched to the crystal oscillator.

 If MOSCSELS = 0:
a. There is no crystal oscillator connected or the crystal oscillator is out of specification.
b. Select the RC oscillator as the source of the Main clock by clearing CKGR_MOR.MOSCSEL.

 453SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

29.6 Divider and PLL Blocks
The device features one divider block and two PLL blocks that permit a wide range of frequencies to be selected on
either the Master clock, the Processor clock or the Programmable clock outputs. Figure 29-3 shows the block diagram
of the divider and PLL blocks.

Figure 29-3. Divider and PLL Blocks Diagram

29.6.1 Divider and Phase Lock Loop Programming

The divider can be set between 1 and 255 in steps of 1. When a divider field (DIV) is cleared, the output of the
corresponding divider and the PLL output is a continuous signal at level 0. On reset, each DIV field is cleared, thus the
corresponding PLL input clock is stuck at 0.

The PLLs (PLLA, PLLB) allow multiplication of the SLCK clock source for PLLA or divided MAINCK or PLLA output
clock for PLLB. The PLL clock signal has a frequency that depends on the respective source signal frequency and on
the parameters DIV (DIVB) and MUL (MULA, MULB) and PLLEN (PLLAEN). The factor applied to the source signal
frequency is (MUL + 1)/DIV. When MUL is written to 0 or PLLEN=0, the PLL is disabled and its power consumption is
saved. Note that there is a delay of two SLCK clock cycles between the disable command and the real disable of the
PLL. Re-enabling the PLL can be performed by writing a value higher than 0 in the MUL field and PLLA(B)EN higher
than 0.

To change the frequency of the PLLA, the PLLA must be first disabled by writing 0 in the MULA field and 0 in
PLLACOUNT field. Then, wait for two SLCK clock cycles before configuring the PLLA to generate the new frequency
by programming a new multiplier in MULA and the PLLACOUNT field in the same register access. See the “Electrical
Characteristics” to get the PLLACOUNT values covering the PLL transient time.

Whenever the PLL is re-enabled or one of its parameters is changed, PMC_SR.LOCK (LOCKA, LOCKB) is
automatically cleared. The values written in the PLLCOUNT field (PLLACOUNT, PLLBCOUNT) in CKGR_PLLR
(CKGR_PLLAR, CKGR_PLLBR) are loaded in the PLL counter. The PLL counter then decrements at the speed of the

Divider B

DIVB

PLL B

MULB

PLL A

Counter

PLLBCOUNT

LOCKB

PLL A
Counter

PLLACOUNT

LOCKA

MULA

SLCK

PLLACK

PLLBCK

PLL B

MAINCK

PLLBDIV2

SRCB

0

1

SLCK PLLADIV2

CKGR_PLLBR

CKGR_PLLAR

CKGR_PLLAR

CKGR_PLLBR

CKGR_PLLBR

PMC_SR

PMC_SR

PMC_MCKR

PMC_MCKR

CKGR_PLLBR

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 454

Slow clock until it reaches 0. At this time, PMC_SR.LOCK is set and triggers an interrupt to the processor. The user
has to load the number of Slow clock cycles required to cover the PLL transient time into the PLLCOUNT field.

The PLL clock can be divided by 2 by writing PMC_MCKR.PLLDIV2 (PLLADIV2, PLLBDIV2).

The PLLADIV2 has no effect on PLLB clock input because the output of the PLLA is directly routed to PLLB input
selection.

It is prohibited to change the frequency of the 4/8/12 MHz RC oscillator or to change the source of the Main clock in
CKGR_MOR while the Master clock source is the PLL and the PLL reference clock is the 4/8/12 MHz RC oscillator.

The user must:
1. Switch on the 4/8/12 MHz RC oscillator by writing a 1 to PMC_MCKR.CSS.
2. Change the frequency (MOSCRCF) or oscillator selection (MOSCSEL) in CKGR_MOR.
3. Wait for PMC_SR.MOSCRCS (if frequency changes) or PMC_SR.MOSCSELS (if oscillator selection changes).
4. Disable and then enable the PLL.
5. Wait for PMC_SR.LOCK flag.
6. Switch back to the PLL by writing the appropriate value to PMC_MCKR.CSS.

 455SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30. Power Management Controller (PMC)

30.1 Description
The Power Management Controller (PMC) optimizes power consumption by controlling all system and user peripheral
clocks. The PMC enables/disables the clock inputs to many of the peripherals and the Cortex-M4 Processor.

The Supply Controller selects either the embedded 32 kHz RC oscillator or the 32.768 kHz crystal oscillator. The
unused oscillator is disabled automatically so that power consumption is optimized.

By default, at startup, the chip runs out of the Master clock using the 4/8/12 MHz RC oscillator running at 4 MHz.

The user can trim the 8 and 12 MHz RC oscillator frequencies by software.

30.2 Embedded Characteristics
The PMC provides the following clocks:
 Master Clock (MCK): programmable from a few hundred Hz to the maximum operating frequency of the device.

It is available to the modules running permanently, such as the Enhanced Embedded Flash Controller.
 Processor Clock (HCLK) and Coprocessor (second processor) Clock (CPHCLK): automatically switched off

when entering the processor in Sleep Mode.
 Free running Processor Clock (FCLK) and Free running Coprocessor Clock (CPFCLK).
 One SysTick external clock for each Cortex-M4 core.
 Peripheral Clocks: provided to the embedded peripherals (USART, SPI, TWI, TC, etc) and independently

controllable.
 Programmable Clock Outputs (PCKx): selected from the clock generator outputs to drive the device PCK pins.

The PMC also provides the following features on clocks:
 A 3 to 20 MHz crystal oscillator clock failure detector.
 A 32.768 kHz crystal oscillator frequency monitor.
 A frequency counter on Main clock.
 An on-the-fly adjustable 4/8/12 MHz RC oscillator frequency.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 456

30.3 Block Diagram

Figure 30-1. General Clock Block Diagram

M
ai

n
Cl

oc
k

M
AI

NC
K

pe
rip

h_
clk

[n
]

in
t

SL
CK

M
AI

NC
K

PL
LA

CK
Pr

es
ca

le
r

/1
,/2

,/3
,/4

,/8
,

/1
6,

/3
2,

/6
4

Pr
oc

es
so

r
Cl

oc
k

Co
nt

ro
lle

r

 S
le

ep
 M

od
e

M
as

te
r C

lo
ck

 C
on

tro
lle

r

 (P
M

C_
M

CK
R)

Pe
rip

he
ra

ls
Cl

oc
k

Co
nt

ro
lle

r
(P

M
C_

PC
ER

x
/

PM
C_

PC
R)

PL
LB

CK

Co
re

 0
 (C

M
4-

P0
 C

lo
ck

 S
ys

te
m

)
Co

re
 0

 (C
M

4-
P0

 C
lo

ck
 S

ys
te

m
)

Co
re

 1
 (C

M
4-

P1
 C

lo
ck

 S
ys

te
m

)
Co

re
 1

 (C
M

4-
P1

 C
lo

ck
 S

ys
te

m
)

PR
ES

CS
S

O
N/

O
FF

O
N/

O
FF

O
N/

O
FF

pe
rip

h_
clk

[n
+1

]

pe
rip

h_
clk

[n
+2

]

SL
CK

M
AI

NC
K

PL
LA

CK

Pr
es

ca
le

r

Di
vid

e
by

 1
 to

 1
6

M
as

te
r C

lo
ck

 C
on

tro
lle

r

 (P
M

C_
M

CK
R)

PL
LB

CK

CP
PR

ES
CP

CS
S

O
N/

O
FF

pe
rip

h_
clk

[m
+2

]

in
t

Co
pr

oc
es

so
r C

lo
ck

CP
HC

LK

W
he

re
 m

 is
 a

n
in

de
x

fo
r t

he
 c

op
ro

ce
ss

or
sy

st
em

 p
er

ip
he

ra
ls

CP
FC

LK
Co

pr
oc

es
so

r
Fr

ee
 R

un
ni

ng
 C

lo
ck

Co
pr

oc
es

so
r

Sy
sT

ick
 C

lo
ck

CP
SY

ST
IC

K
Di

vid
er

 /
8

Di
vid

er
 /

8

M
CK

PM
C_

SC
ER

/S
CD

R
 C

PC
K=

 O
N/

O
FF

W
he

re
 n

 is
 a

n
in

de
x

fo
r t

he
 p

ro
ce

ss
or

sy
st

em
 p

er
ip

he
ra

ls

O
N/

O
FF

pe
rip

h_
clk

[m
]

Co
pr

oc
es

so
r

Bu
s

M
as

te
r C

lo
ck

CP
BM

CK

Pr
oc

es
so

r C
lo

ck
HC

LK

FC
LK

Pr
oc

es
so

r
Fr

ee
 R

un
ni

ng
 C

lo
ck

Pr
oc

es
so

r
Sy

sT
ick

 C
lo

ck
SY

ST
IC

K

Pr
oc

es
so

r
Bu

s
M

as
te

r C
lo

ck

M
CK

PM
C_

SC
ER

/S
CD

R
CP

BM
CK

=
O

N/
O

FF

Co
pr

oc
es

so
r

Cl
oc

k
Co

nt
ro

lle
r

 S
le

ep
 M

od
e

PL
LB

 C
lo

ck
PL

LB
CK

PL
LA

 C
lo

ck
PL

LA
CK

Sl
ow

 C
lo

ck
SC

K

Co
nt

ro
l

St
at

us

M
O

SC
SE

L

XI
N

XO
UT

XI
N3

2

XO
UT

32

0 1

3–
20

 M
Hz

Cr
ys

ta
l

or
Ce

ra
m

ic
Re

so
na

to
r

O
sc

illa
to

r

Em
be

dd
ed

4/
8/

12
 M

Hz
RC

 O
sc

illa
to

r

en
32

76
8

Hz
Cr

ys
ta

l
O

sc
illa

to
r

or
 e

xt
er

na
l

os
cil

la
to

r

en
Em

be
dd

ed
32

 k
Hz

RC
 O

sc
illa

to
r

Cl
oc

k
G

en
er

at
or

XT
AL

SE
L

(S
UP

C_
CR

)

Po
we

r
M

an
ag

em
en

t
Co

nt
ro

lle
r

CK
G

R_
M

O
R

O
SC

BY
PA

SS
 (S

UP
C_

M
R)

0 1

PL
LA

PL
LB

 a
nd

Di

vid
er

 /2

PL
LA

DI
V2

PL
LB

DI
V2

SR
CB1 0

CK
G

R_
PL

LB
R

PM
C_

M
CK

R

PM
C_

M
CK

R

 457SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.4 Master Clock Controller
The Master Clock Controller provides selection and division of the Master clock (MCK) and coprocessor Master clock
(CPMCK). MCK is the source clock of the peripheral clocks in the subsystem 0 and CPMCK is the source of the
peripheral clocks in the subsystem 1. The Master Clock is selected from one of the clocks provided by the Clock
Generator.

Selecting the Slow clock provides a Slow clock signal to the whole device. Selecting the Main clock saves power
consumption of the PLLs. The Master Clock Controller is made up of a clock selector and a prescaler.

The Master clock selection is made by writing PMC_MCKR.CSS/CPCSS (Clock Source Selection/Coprocessor Clock
Source Selection). The prescaler supports the division by a power of 2 of the selected clock between 1 and 64, and
the division by 3. The PMC_MCKR.PRES/CPPRES programs the prescaler.

Each time PMC_MCKR is written to define a new Master clock, PMC_SR.MCKRDY is cleared. It reads 0 until the
Master clock is established. Then, MCKRDY is set and can trigger an interrupt to the processor. This feature is useful
when switching from a high-speed clock to a lower one to inform the software when the change is actually done.

Figure 30-2. Master Clock Controller

30.5 Processor Clock Controller
The PMC features a Processor Clock Controller (HCLK) and a Coprocessor Clock Controller (CPHCLK) that
implements the Processor Sleep mode. The processor clocks can be disabled by executing the WFI
(WaitForInterrupt) or the WFE (WaitForEvent) processor instruction while the LPM bit is at 0 in the PMC Fast Startup
Mode register (PMC_FSMR).

The Processor Clock Controller is enabled after a reset and is automatically re-enabled by any enabled interrupt. The
Coprocessor Clock Controller is disabled after reset. It is up to the Master application to enable the CPHCLK. Similar
to HCLK, CPHCLK is automatically re-enabled by any enabled instruction after having executed a WFI instruction.
The Processor Sleep mode is entered by disabling the Processor clock, which is automatically re-enabled by any
enabled fast or normal interrupt, or by the reset of the product.

When Processor Sleep mode is entered, the current instruction is finished before the clock is stopped, but this does
not prevent data transfers from other masters of the system bus.

30.6 SysTick Clock
The SysTick calibration value is fixed to 8000 which allows the generation of a time base of 1 ms with SysTick clock to
the maximum frequency on MCK divided by 8.

30.7 Peripheral Clock Controller
The PMC controls the clocks of each embedded peripheral by means of the Peripheral Clock Controller. The user can
individually enable and disable the Clock on the peripherals.

The user can also enable and disable these clocks by writing Peripheral Clock Enable 0 (PMC_PCER0), Peripheral
Clock Disable 0 (PMC_PCDR0), Peripheral Clock Enable 1 (PMC_PCER1) and Peripheral Clock Disable 1

SLCK

Master Clock
Prescaler

To the MCK Divider

PRESCSS

MAINCK

PLLACK

PLLBCK
To the Processor
Clock Controller (PCK)

PMC_MCKR PMC_MCKR

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 458

(PMC_PCDR1) registers. The status of the peripheral clock activity can be read in the Peripheral Clock Status register
(PMC_PCSR0) and Peripheral Clock Status register (PMC_PCSR1).

If the peripherals located on the coprocessor system bus require data exchange with the co-processor or the main
processor, the CPBMCK clock must be enabled prior to enable any co-processor peripheral clock.

When a peripheral clock is disabled, the clock is immediately stopped. The peripheral clocks are automatically
disabled after a reset.

To stop a peripheral, it is recommended that the system software wait until the peripheral has executed its last
programmed operation before disabling the clock. This is to avoid data corruption or erroneous behavior of the
system.

The bit number within the Peripheral Clock Control registers (PMC_PCER0-1, PMC_PCDR0-1, and PMC_PCSR0-1)
is the Peripheral Identifier defined at the product level. The bit number corresponds to the interrupt source number
assigned to the peripheral.

30.8 Free Running Processor Clock
The Free Running Processor Clock (FCLK) together with the Free Running Coprocessor Master clock (CPFCLK)
used for sampling interrupts and clocking debug blocks ensures that interrupts can be sampled, and sleep events can
be traced, while the processors are sleeping. It is connected to Master clock (MCK)/Coprocessor Master clock
(CPMCK).

30.9 Programmable Clock Output Controller
The PMC controls 3 signals to be outputs on external pins, PCKx. Each signal can be independently programmed via
the Programmable Clock registers (PMC_PCKx).

PCKx can be independently selected between the Slow clock (SLCK), the Main clock (MAINCK), the PLLA clock
(PLLACK), the PLLB clock (PLLBCK), and the Master clock (MCK) by writing PMC_PCKx.CSS. Each output signal
can also be divided by a power of 2 between 1 and 64 by writing PMC_PCKx.PRES.

Each output signal can be enabled and disabled by writing a 1 to the corresponding PMC_SCER.PCKx and
PMC_SCDR.PCKx, respectively. Status of the active programmable output clocks are given in PMC_SCSR.PCKx.

PMC_SR.PCKRDYx status flag indicates that the Programmable clock is actually what has been programmed in the
Programmable clock registers.

As the Programmable Clock Controller does not manage with glitch prevention when switching clocks, it is strongly
recommended to disable the Programmable clock before any configuration change and to re-enable it after the
change is actually performed.

30.10 Main Processor Fast Startup
At exit from Wait mode, the device allows the main processor to restart in less than 10 microseconds only if the
C-code function that manages the Wait mode entry and exit is linked to and executed from on-chip SRAM.
The fast startup time cannot be achieved if the first instruction after an exit is located in the embedded Flash.
If fast startup is not required, or if the first instruction after a Wait mode exit is located in embedded Flash, see Section
30.11 ”Main Processor Startup from Embedded Flash”.
Prior to instructing the device to enter Wait mode:

1. Select the 4/8/12 MHz RC oscillator as the Master clock source (PMC_MCKR.CSS must be written to 1).
2. Disable the PLL if enabled.
3. Clear the internal wake-up sources.

The system enters Wait mode either by setting CKGR_MOR.WAITMODE, or by executing the WaitForEvent (WFE)
instruction of the processor while the LPM bit is at 1 in the Fast Startup Mode register (PMC_FSMR). Immediately
after setting the WAITMODE bit or using the WFE instruction, wait for PMC_SR.MCKRDY to be set.

 459SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

In case of dual core activity, it is recommended to check the coprocessor state before instructing the main processor
to enter Wait mode.

A Fast Startup occurs upon the detection of a programmed level on one of the wake-up input pins WKUPx (For the
number of inputs, refer to section “Peripheral Signal Multiplexing on I/O Lines”) or upon an active alarm from the RTC
and RTT. The polarity of each wake-up input is programmable by writing the PMC Fast Startup Polarity register
(PMC_FSPR).

WARNING: The duration of the WKUPx pins active level must be greater than four Main clock cycles.

The Fast Startup circuitry, as shown in Figure 30-3, is fully asynchronous and provides a fast startup signal to the
PMC. As soon as the fast startup signal is asserted, the embedded 4/8/12MHz RC oscillator restarts automatically.

When entering Wait mode, the embedded Flash can be placed in one of the Low-power modes (Deep-power-down or
Standby modes) depending on the configuration of PMC_FSMR.FLPM. FLPM can be programmed at anytime and its
value will be applied to the next Wait mode period.

The power consumption reduction is optimal when configuring 1 (Deep-power-down mode) in PMC_FSMR.FLPM. If 0
is programmed (Standby mode), the power consumption is slightly higher than in Deep-power-down mode.

When programming 2 in PMC_FSMR.FLPM, the Wait mode Flash power consumption is equivalent to that of the
Active mode when there is no read access on the Flash.

Figure 30-3. Fast Startup Circuitry

Each wake-up input pin and alarm can be enabled to generate a Fast Startup event by setting the corresponding bit in
PMC_FSMR.

The user interface does not provide any status for Fast Startup. The status can be read in the PIO Controller and the
status registers of the RTC and RTT.

30.11 Main Processor Startup from Embedded Flash
The inherent startup time of the embedded Flash cannot provide a fast startup of the system.

If system fast startup time is not required, the first instruction after a Wait mode exit can be located in the embedded
Flash. Under these conditions, prior to entering Wait mode, the Flash controller must be programmed to perform
access in 0 wait-state. Refer to the Section 22. ”Enhanced Embedded Flash Controller (EEFC)”.

The procedure and conditions to enter Wait mode and the circuitry to exit Wait mode are strictly the same as fast
startup (see Section 30.10 ”Main Processor Fast Startup”).

fast_restartWKUP15

FSTT15

FSTP15

WKUP1

FSTT1

FSTP1

WKUP0

FSTT0

FSTP0

RTTAL

RTCAL

RTT Alarm

RTC Alarm

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 460

30.12 Coprocessor Sleep Mode
The coprocessor enters Sleep mode by executing the WaitForInterrupt (WFI) instruction of the coprocessor. Any
enabled interrupt can wake the processor up.

30.13 Main Clock Failure Detector
The clock failure detector monitors the 3 to 20 MHz crystal oscillator or ceramic resonator-based oscillator to identify a
failure of this oscillator when selected as Main clock.

The clock failure detector can be enabled or disabled by configuring CKGR_MOR.CFDEN. It is also disabled in either
of the following cases:
 after a VDDCORE reset
 when the 3 to 20 MHz crystal oscillator is disabled (MOSCXTEN = 0)

A failure is detected by means of a counter incrementing on the Main clock and detection logic is triggered by the 32
kHz (typical) RC oscillator which is automatically enabled when CFDEN = 1.

The counter is cleared when the 32 kHz (typical) RC oscillator clock signal is low and enabled when the signal is high.
Thus, the failure detection time is one RC oscillator period. If, during the high level period of the 32 kHz (typical) RC
oscillator clock signal, less than eight 3 to 20 MHz crystal oscillator clock periods have been counted, then a failure is
reported.

If a failure of the Main clock is detected, PMC_SR.CFDEV indicates a failure event and generates an interrupt if the
corresponding interrupt source is enabled. The interrupt remains active until a read occurs in PMC_SR. The current
status of the clock failure detection can be read at any time from PMC_SR.CFDS.

Figure 30-4. Clock Failure Detection (Example)

If the 3 to 20 MHz crystal oscillator or ceramic resonator-based oscillator is selected as the source clock of MAINCK
(CKGR_MOR.MOSCSEL = 1), and if MCK source is PLLACK or PLLBCK (CSS = 2), a clock failure detection
automatically forces MAINCK to be the source clock for MCK. Then, regardless of the PMC configuration, a clock
failure detection automatically forces the 4/8/12 MHz RC oscillator to be the source clock for MAINCK. If this oscillator
is disabled when a clock failure detection occurs, it is automatically re-enabled by the clock failure detection
mechanism.

Two 32 kHz (typical) RC oscillator clock cycles are necessary to detect and switch from the 3 to 20 MHz crystal
oscillator, to the 4/8/12 MHz RC oscillator if the source Master clock (MCK) is Main clock (MAINCK), or three 32 kHz
(typical) RC oscillator clock cycles if the source of MCK is PLLACK or PLLBCK.

The current status of the clock failure detection can be read at any time from PMC_SR.FOS.

This fault output remains active until the defect is detected and until it is cleared by the bit FOCLR in the PMC Fault
Output Clear register (PMC_FOCR).

Main Crystal Clock

SLCK

Note: ratio of clock periods is for illustration purposes only

CFDEV

CFDS

Read PMC_SR

 461SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.14 32.768 kHz Crystal Oscillator Frequency Monitor
The frequency of the 32.768 kHz crystal oscillator can be monitored by means of logic driven by the 4/8/12 MHz RC
oscillator known as a reliable clock source. This function is enabled by configuring CKGR_MOR.XT32KFME. The
PMC_OCR.SEL4/SEL8/SEL12 must be cleared.

An error flag (PMC_SR.XT32KERR) is asserted when the 32.768 kHz crystal oscillator frequency is out of the +/-10%
nominal frequency value (i.e., 32.768 kHz). The error flag can be cleared only if the Slow clock frequency monitoring
is disabled.

When the 4/8/12 MHz RC oscillator frequency is 4 MHz, the accuracy of the measurement is +/-40% as this frequency
is not trimmed during production. Therefore, +/-10% accuracy is obtained only if the RC oscillator frequency is
configured for 8 or 12 MHz.

The monitored clock frequency is declared invalid if at least 4 consecutive clock period measurement results are over
the nominal period +/-10%.

Due to the possible frequency variation of the embedded 4/8/12 MHz RC oscillator acting as reference clock for the
monitor logic, any 32.768 kHz crystal oscillator frequency deviation over +/-10% of the nominal frequency is
systematically reported as an error by the PMC_SR.XT32KERR. Between -1% and -10% and +1% and +10%, the
error is not systematically reported.

Thus only a crystal running at 32.768 kHz frequency ensures that the error flag will not be asserted. The permitted drift
of the crystal is 10000 ppm (1%), which allows any standard crystal to be used.

If the 4/8/12 MHz RC frequency needs to be changed while the frequency monitor is operating, the monitoring must
be stopped prior to changing the 4/8/12 MHz RC frequency. I t can then be re-enabled as soon as
PMC_SR.MOSCRCS is set.

The error flag can be defined as an interrupt source of the PMC by setting PMC_IER.XT32KERR.

30.15 Programming Sequence
1. If the 3 to 20 MHz crystal oscillator is not required, the PLL and divider can be directly configured (Step 6.) else

this oscillator must be started (Step 2.).
2. Enable the 3 to 20 MHz crystal oscillator by setting CKGR_MOR.MOSCXTEN:

The user can define a startup time. This is done by writing a value in CKGR_MOR.MOSCXTST. Once this
register has been correctly configured, the user must wait for PMC_SR.MOSCXTS to be set. This is done either
by polling PMC_SR.MOSCXTS, or by waiting for the interrupt line to be raised if the associated interrupt source
(PMC_IER.MOSCXTS) has been enabled.

3. Switch the MAINCK to the 3 to 20 MHz crystal oscillator by setting CKGR_MOR.MOSCSEL.
4. Wait for PMC_SR.MOSCSELS to be set to ensure the switch is complete.
5. Check the Main clock frequency:

This Main clock frequency can be measured via CKGR_MCFR.

Read CKGR_MCFR until the MAINFRDY field is set, after which the user can read the MAINF field by
performing an additional read. This provides the number of Main clock cycles that have been counted during a
period of 16 Slow clock cycles.

If MAINF = 0, switch the MAINCK to the 4/8/12 MHz RC oscillator by clearing CKGR_MOR.MOSCSEL. If
MAINF ≠ 0, proceed to Step 6.

6. Set PLLx and Divider (if not required, proceed to Step 7.):

In the names PLLx, DIVx, MULx, LOCKx, PLLxCOUNT, and CKGR_PLLxR, ‘x’ represents A or B.

All parameters needed to configure PLLx and the divider are located in CKGR_PLLxR.

The DIVx field is used to control the divider. This parameter can be programmed between 0 and 127. Divider
output is divider input divided by DIVx parameter. By default, DIVx field is cleared which means that the divider
and PLLx are turned off.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 462

The MULx field is the PLLx multiplier factor. This parameter can be programmed between 0 and 254. If MULx is
cleared, PLLx will be turned off, otherwise the PLLx output frequency is PLLx input frequency multiplied by
(MULx + 1).

The PLLxCOUNT field specifies the number of Slow clock cycles before the LOCKx bit is set in the PMC_SR
after CKGR_PLLxR has been written.

Once CKGR_PLLxR has been written, the user must wait for PMC_SR.LOCKx to be set. This can be done
either by polling PMC_SR.LOCKx or by waiting for the interrupt line to be raised if the associated interrupt
source (PMC_IER.LOCKx) has been enabled. All fields in CKGR_PLLxR can be programmed in a single write
operation. If at some stage one of the following parameters, MULx or DIVx is modified, the LOCKx bit goes low
to indicate that PLLx is not yet ready. When PLLx is locked, LOCKx is set again. The user must wait for the
LOCKx bit to be set before using the PLLx output clock.

7. Select the Master clock and Processor clock:

The Master clock and the Processor clock are configurable via PMC_MCKR.

The CSS field is used to select the clock source of the Master clock and Processor clock dividers. By default,
the selected clock source is the Main clock.

The PRES field is used to define the Processor clock and Master clock prescaler. The user can choose
between different values (1, 2, 3, 4, 8, 16, 32, 64). Prescaler output is the selected clock source frequency
divided by the PRES value.

Once the PMC_MCKR has been written, the user must wait for PMC_SR.MCKRDY to be set. This can be done
either by polling PMC_SR.MCKRDY or by waiting for the interrupt line to be raised if the associated interrupt
source (PMC_IER.MCKRDY) has been enabled. PMC_MCKR must not be programmed in a single write
operation. The programming sequence for PMC_MCKR is as follows:

 If a new value for CSS field corresponds to PLL clock,
 Program PMC_MCKR.PRES.
 Wait for PMC_SR.MCKRDY to be set.
 Program PMC_MCKR.CSS.
 Wait for PMC_SR.MCKRDY to be set.

 If a new value for CSS field corresponds to Main clock or Slow clock,
 Program PMC_MCKR.CSS.
 Wait for PMC_SR.MCKRDY to be set.
 Program PMC_MCKR.PRES.
 Wait for PMC_SR.MCKRDY to be set.

If CSS or PRES are modified at any stage, MCKRDY goes low to indicate that the Master clock and the
Processor clock are not yet ready. The user must wait for MCKRDY bit to be set again before using the master
and Processor clocks.
Note: If PLLx clock was selected as the Master clock and the user decides to modify it by writing in

CKGR_PLLxR, the MCKRDY flag will go low while PLLx is unlocked. Once PLLx is locked again,
LOCKx goes high and MCKRDY is set. While PLLx is unlocked, the Master clock selection is automati-
cally changed to Slow clock for PLLA and Main clock for PLLB. For further information, see Section
30.16.2 ”Clock Switching Waveforms”.

Code Example:
write_register(PMC_MCKR,0x00000001)
wait (MCKRDY=1)
write_register(PMC_MCKR,0x00000011)
wait (MCKRDY=1)

The Master clock is Main clock divided by 2.

 463SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

8. Select the Programmable clocks:

Programmable clocks are controlled via registers, PMC_SCER, PMC_SCDR and PMC_SCSR.

Programmable clocks can be enabled and/or disabled via PMC_SCER and PMC_SCDR. Three Programmable
clocks can be used. PMC_SCSR indicates which Programmable clock is enabled. By default all Programmable
clocks are disabled.

PMC_PCKx registers are used to configure Programmable clocks.

The CSS field is used to select the Programmable clock divider source. Several clock options are available:
Main clock, Slow clock, Master clock, PLLACK, PLLBCK. The Slow clock is the default clock source.

The PRES field is used to control the Programmable clock prescaler. It is possible to choose between different
values (1, 2, 4, 8, 16, 32, 64). Programmable clock output is prescaler input divided by PRES parameter. By
default, the PRES value is cleared which means that PCKx is equal to Slow clock.

Once PMC_PCKx has been configured, the corresponding Programmable clock must be enabled and the user
is constrained to wait for PMC_SR.PCKRDYx to be set. This can be done either by polling PMC_SR.PCKRDYx
or by waiting for the interrupt line to be raised if the associated interrupt source (PMC_IER.PCKRDYx) has
been enabled. All parameters in PMC_PCKx can be programmed in a single write operation.

If the CSS and PRES parameters are to be modified, the corresponding Programmable clock must be disabled
first. The parameters can then be modified. Once this has been done, the user must re-enable the Programma-
ble clock and wait for the PCKRDYx bit to be set.

9. Enable the peripheral clocks:

Once all of the previous steps have been completed, the peripheral clocks can be enabled and/or disabled via
registers PMC_PCER0, PMC_PCER, PMC_PCDR0 and PMC_PCDR.

30.16 Clock Switching Details

30.16.1 Master Clock Switching Timings

Table 30-1 and Table 30-2 give the worst case timings required for the Master clock to switch from one selected clock
to another one. This is in the event that the prescaler is de-activated. When the prescaler is activated, an additional
time of 64 clock cycles of the newly selected clock has to be added.

Notes: 1. PLL designates either the PLLA or the PLLB Clock.
2. PLLCOUNT designates either PLLACOUNT or PLLBCOUNT.

Table 30-1. Clock Switching Timings (Worst Case)

From Main Clock SLCK PLL Clock

To

Main Clock – 4 x SLCK +
2.5 x Main Clock

3 x PLL Clock +
4 x SLCK +

1 x Main Clock

SLCK 0.5 x Main Clock +
4.5 x SLCK – 3 x PLL Clock +

5 x SLCK

PLL Clock

0.5 x Main Clock +
4 x SLCK +

PLLCOUNT x SLCK +
2.5 x PLLx Clock

2.5 x PLL Clock +
5 x SLCK +

PLLCOUNT x SLCK

2.5 x PLL Clock +
4 x SLCK +

PLLCOUNT x SLCK

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 464

30.16.2 Clock Switching Waveforms

Figure 30-5. Switch Master Clock from Slow Clock to PLLx Clock

Table 30-2. Clock Switching Timings between Two PLLs (Worst Case)

From PLLA Clock PLLB Clock

To

PLLA Clock
2.5 x PLLA Clock +

4 x SLCK +
PLLACOUNT x SLCK

3 x PLLA Clock +
4 x SLCK +

1.5 x PLLA Clock

PLLB Clock
3 x PLLB Clock +

4 x SLCK +
1.5 x PLLB Clock

2.5 x PLLB Clock +
4 x SLCK+

PLLBCOUNT x SLCK

Slow Clock

LOCK

MCKRDY

Master Clock

Write PMC_MCKR

PLLx Clock

 465SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 30-6. Switch Master Clock from Main Clock to Slow Clock

Figure 30-7. Change PLLx Programming

Slow Clock

Main Clock

MCKRDY

Master Clock

Write PMC_MCKR

Slow Clock

Slow Clock

PLLx Clock

LOCKx

MCKRDY

Master Clock

Write CKGR_PLLxR

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 466

Figure 30-8. Programmable Clock Output Programming

30.17 Register Write Protection
To prevent any single software error from corrupting PMC behavior, certain registers in the address space can be
write-protected by setting the WPEN bit in the “PMC Write Protection Mode Register” (PMC_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the “PMC Write Protection Status Register”
(PMC_WPSR) is set and the field WPVSRC indicates the register in which the write access has been attempted.

The WPVS bit is automatically cleared after reading the PMC_WPSR.

The following registers can be write-protected:
 “PMC System Clock Enable Register”
 “PMC System Clock Disable Register”
 “PMC Peripheral Clock Enable Register 0”
 “PMC Peripheral Clock Disable Register 0”
 “PMC Clock Generator Main Oscillator Register”
 “PMC Clock Generator Main Clock Frequency Register”
 “PMC Clock Generator PLLA Register”
 “PMC Clock Generator PLLB Register”
 “PMC Master Clock Register”
 “PMC Programmable Clock Register”
 “PMC Fast Startup Mode Register”
 “PMC Fast Startup Polarity Register”
 “PMC Coprocessor Fast Startup Mode Register”
 “PMC Peripheral Clock Enable Register 1”
 “PMC Peripheral Clock Disable Register 1”
 “PMC Oscillator Calibration Register”

PLLx Clock

PCKRDY

PCKx Output

Write PMC_PCKx

Write PMC_SCER

Write PMC_SCDR PCKx is disabled

PCKx is enabled

PLL Clock is selected

 467SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.18 Power Management Controller (PMC) User Interface

Note: If an offset is not listed in the table it must be considered as “reserved”.

Table 30-3. Register Mapping

Offset Register Name Access Reset

0x0000 System Clock Enable Register PMC_SCER Write-only –

0x0004 System Clock Disable Register PMC_SCDR Write-only –

0x0008 System Clock Status Register PMC_SCSR Read-only 0x0000_0001

0x000C Reserved – – –

0x0010 Peripheral Clock Enable Register 0 PMC_PCER0 Write-only –

0x0014 Peripheral Clock Disable Register 0 PMC_PCDR0 Write-only –

0x0018 Peripheral Clock Status Register 0 PMC_PCSR0 Read-only 0x0000_0000

0x0020 Main Oscillator Register CKGR_MOR Read/Write 0x0000_0008

0x0024 Main Clock Frequency Register CKGR_MCFR Read/Write 0x0000_0000

0x0028 PLLA Register CKGR_PLLAR Read/Write 0x0000_3F00

0x002C PLLB Register CKGR_PLLBR Read/Write 0x0000_3F00

0x0030 Master Clock Register PMC_MCKR Read/Write 0x0000_0001

0x0034 - 0x003C Reserved – – –

0x0040 Programmable Clock 0 Register PMC_PCK0 Read/Write 0x0000_0000

0x0044 Programmable Clock 1 Register PMC_PCK1 Read/Write 0x0000_0000

0x0048 Programmable Clock 2 Register PMC_PCK2 Read/Write 0x0000_0000

0x004C - 0x005C Reserved – – –

0x0060 Interrupt Enable Register PMC_IER Write-only –

0x0064 Interrupt Disable Register PMC_IDR Write-only –

0x0068 Status Register PMC_SR Read-only 0x0003_0008

0x006C Interrupt Mask Register PMC_IMR Read-only 0x0000_0000

0x0070 Fast Startup Mode Register PMC_FSMR Read/Write 0x0000_0000

0x0074 Fast Startup Polarity Register PMC_FSPR Read/Write 0x0000_0000

0x0078 Fault Output Clear Register PMC_FOCR Write-only –

0x007C Coprocessor Fast Startup Mode Register PMC_CPFSMR Read/Write 0x0000_0000

0x0080 - 0x00E0 Reserved – – –

0x00E4 Write Protection Mode Register PMC_WPMR Read/Write 0x0000_0000

0x00E8 Write Protection Status Register PMC_WPSR Read-only 0x0000_0000

0x00EC - 0x00FC Reserved – – –

0x0100 Peripheral Clock Enable Register 1 PMC_PCER1 Write-only –

0x0104 Peripheral Clock Disable Register 1 PMC_PCDR1 Write-only –

0x0108 Peripheral Clock Status Register 1 PMC_PCSR1 Read-only 0x0000_0000

0x010C Reserved – – –

0x0110 Oscillator Calibration Register PMC_OCR Read/Write 0x0040_4040

0x0114 - 0x0120 Reserved – – –

0x0134 - 0x0144 Reserved – – –

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 468

30.18.1 PMC System Clock Enable Register

Name: PMC_SCER

Address: 0x400E0400

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• PCKx: Programmable Clock x Output Enable
0 = No effect.

1 = Enables the corresponding Programmable Clock output.

• CPCK: Coprocessor (Second Processor) Clocks Enable
0 = No effect.

1 = Enables the corresponding Coprocessor Clocks (CPHCLK, CPSYSTICK) if CPKEY = 0xA.

• CPBMCK: Coprocessor Bus Master Clocks Enable
0 = No effect.

1 = Enables the corresponding Coprocessor Bus Master Clock (CPBMCK, CPFCLK) if CPKEY = 0xA.
Note: Enabling CPBMCK must be performed prior to or at the same time as programming CPCK to 1 in PMC_SCER or prior

communication with one of the peripherals of the coprocessor system bus.

• CPKEY: Coprocessor Clocks Enable Key

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
CPKEY – – CPBMCK CPCK

15 14 13 12 11 10 9 8
– – – – – PCK2 PCK1 PCK0

7 6 5 4 3 2 1 0
– – – – – – – –

Value Name Description

0xA PASSWD This field must be written to 0xA in order to validate CPCK field.

 469SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.18.2 PMC System Clock Disable Register

Name: PMC_SCDR

Address: 0x400E0404

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• PCKx: Programmable Clock x Output Disable
0 = No effect.

1 = Disables the corresponding Programmable Clock output.

• CPCK: Coprocessor Clocks Disable
0 = No effect.

1 = Enables the corresponding Coprocessor Clocks (CPHCLK, CPFCLK, CPSYSTICK) if CPKEY = 0xA.

• CPBMCK: Coprocessor Bus Master Clocks Disable
0 = No effect.

1 = Disables the corresponding Coprocessor Bus Master Clock (CPBMCK, CPFCLK) if CPKEY = 0xA.
Note: Disabling CPBMCK must not be performed if CPCK is 1 in PMC_SCSR.

• CPKEY: Coprocessor Clocks Disable Key

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
CPKEY – – CPBMCK CPCK

15 14 13 12 11 10 9 8
– – – – – PCK2 PCK1 PCK0

7 6 5 4 3 2 1 0
– – – – – – – –

Value Name Description

0xA PASSWD This field must be written to 0xA in order to validate CPCK field.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 470

30.18.3 PMC System Clock Status Register

Name: PMC_SCSR

Address: 0x400E0408

Access: Read-only

• PCKx: Programmable Clock x Output Status
0 = The corresponding Programmable Clock output is disabled.

1 = The corresponding Programmable Clock output is enabled.

• CPCK: Coprocessor (Second Processor) Clocks Status
0 = Coprocessor Clocks (CPHCLK, CPSYSTICK) are disabled (value after reset).

1 = Coprocessor Clocks (CPHCLK, CPSYSTICK) are enabled.

• CPBMCK: Coprocessor Bus Master Clock Status
0 = Coprocessor Clocks (CPBMCK, CPFCLK) are disabled (value after reset).

1 = Coprocessor Clocks (CPBMCK, CPFCLK) are enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – CPBMCK CPCK

15 14 13 12 11 10 9 8
– – – – – PCK2 PCK1 PCK0

7 6 5 4 3 2 1 0
– – – – – – – –

 471SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.18.4 PMC Peripheral Clock Enable Register 0

Name: PMC_PCER0

Address: 0x400E0410

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• PIDx: Peripheral Clock x Enable
0 = No effect.

1 = Enables the corresponding peripheral clock.
Note: PIDx refers to identifiers defined in the section “Peripheral Identifiers”. Other peripherals can be enabled in

PMC_PCER1 (Section 30.18.23 ”PMC Peripheral Clock Enable Register 1”).
Note: Programming the control bits of the Peripheral ID that are not implemented has no effect on the behavior of the PMC.

31 30 29 28 27 26 25 24
PID31 – PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16
PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8
PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0
– – – – – – – –

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 472

30.18.5 PMC Peripheral Clock Disable Register 0

Name: PMC_PCDR0

Address: 0x400E0414

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• PIDx: Peripheral Clock x Disable
0 = No effect.

1 = Disables the corresponding peripheral clock.
Note: PIDx refers to identifiers defined in the section “Peripheral Identifiers”. Other peripherals can be disabled in

PMC_PCDR1 (Section 30.18.24 ”PMC Peripheral Clock Disable Register 1”).

31 30 29 28 27 26 25 24
PID31 – PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16
PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8
PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0
– – – – – – – –

 473SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.18.6 PMC Peripheral Clock Status Register 0

Name: PMC_PCSR0

Address: 0x400E0418

Access: Read-only

• PIDx: Peripheral Clock x Status
0 = The corresponding peripheral clock is disabled.

1 = The corresponding peripheral clock is enabled.
Note: PIDx refers to identifiers defined in the section “Peripheral Identifiers”. Other peripherals status can be read in

PMC_PCSR1 (Section 30.18.25 ”PMC Peripheral Clock Status Register 1”).

31 30 29 28 27 26 25 24
PID31 – PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16
PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8
PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0
– – – – – – – –

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 474

30.18.7 PMC Clock Generator Main Oscillator Register

Name: CKGR_MOR

Address: 0x400E0420

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• MOSCXTEN: 3 to 20 MHz Crystal Oscillator Enable
A crystal must be connected between XIN and XOUT.

0 = The 3 to 20 MHz crystal oscillator is disabled.

1 = The 3 to 20 MHz crystal oscillator is enabled. MOSCXTBY must be cleared.

When MOSCXTEN is set, the MOSCXTS flag is set once the crystal oscillator startup time is achieved.

• MOSCXTBY: 3 to 20 MHz Crystal Oscillator Bypass
0 = No effect.

1 = The 3 to 20 MHz crystal oscillator is bypassed. MOSCXTEN must be cleared. An external clock must be connected on XIN.

When MOSCXTBY is set, the MOSCXTS flag in PMC_SR is automatically set.

Clearing MOSCXTEN and MOSCXTBY bits resets the MOSCXTS flag.
Note: When the crystal oscillator bypass is disabled (MOSCXTBY=0), the MOSCXTS flag must be read at 0 in PMC_SR

before enabling the crystal oscillator (MOSCXTEN=1).

• WAITMODE: Wait Mode Command (Write-only)
0 = No effect.

1 = Puts the device in Wait mode.

• MOSCRCEN: 4/8/12 MHz RC Oscillator Enable
0 = The 4/8/12 MHz RC oscillator is disabled.

1 = The 4/8/12 MHz RC oscillator is enabled.

When MOSCRCEN is set, the MOSCRCS flag is set once the RC oscillator startup time is achieved.

31 30 29 28 27 26 25 24
– – – – – XT32KFME CFDEN MOSCSEL

23 22 21 20 19 18 17 16
KEY

15 14 13 12 11 10 9 8
MOSCXTST

7 6 5 4 3 2 1 0
– MOSCRCF MOSCRCEN WAITMODE MOSCXTBY MOSCXTEN

 475SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• MOSCRCF: 4/8/12 MHz RC Oscillator Frequency Selection
At startup, the RC oscillator frequency is 4 MHz.

Note: MOSCRCF must be changed only if MOSCRCS is set in the PMC_SR. Therefore MOSCRCF and MOSCRCEN can-
not be changed at the same time.

• MOSCXTST: 3 to 20 MHz Crystal Oscillator Startup Time
Specifies the number of Slow clock cycles multiplied by 8 for the crystal oscillator startup time.

• KEY: Write Access Password

• MOSCSEL: Main Clock Oscillator Selection
0 = The 4/8/12 MHz RC oscillator is selected.

1 = The 3 to 20 MHz crystal oscillator is selected.

• CFDEN: Clock Failure Detector Enable
0 = The clock failure detector is disabled.

1 = The clock failure detector is enabled.
Note: 1. The 32 kHz (typical) RC oscillator is automatically enabled when CFDEN = 1.

• XT32KFME: 32.768 kHz Crystal Oscillator Frequency Monitoring Enable
0 = The 32.768 kHz Crystal oscillator frequency monitoring is disabled.

1 = The 32.768 kHz Crystal oscillator frequency monitoring is enabled.

Value Name Description

0 4_MHz The RC oscillator Frequency is at 4 MHz (default)

1 8_MHz The RC oscillator Frequency is at 8 MHz

2 12_MHz The RC oscillator Frequency is at 12 MHz

Value Name Description
0x37 PASSWD Writing any other value in this field aborts the write operation. Always reads as 0.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 476

30.18.8 PMC Clock Generator Main Clock Frequency Register

Name: CKGR_MCFR

Address: 0x400E0424

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• MAINF: Main Clock Frequency
Gives the number of Main clock cycles within 16 Slow clock periods. To calculate the frequency of the measured clock:

fMAINCK = (MAINF x fSLCK) / 16 where frequency is in MHz.

• MAINFRDY: Main Clock Frequency Measure Ready
0 = MAINF value is not valid or the measured oscillator is disabled or a measure has just been started by means of RCMEAS.

1 = The measured oscillator has been enabled previously and MAINF value is available.
Note: To ensure that a correct value is read on the MAINF field, the MAINFRDY flag must be read at 1 then another read

access must be performed on the register to get a stable value on the MAINF field.

• RCMEAS: Restart Main Clock Source Frequency Measure (write-only)
0 = No effect.

1 = Restarts measuring of the frequency of the Main clock source. MAINF will carry the new frequency as soon as a low to high
transition occurs on the MAINFRDY flag.

The measure is performed on the main frequency (i.e., not limited to RC oscillator only), but if the Main clock frequency source
is the 3 to 20 MHz crystal oscillator, the restart of measuring is not needed because of the well known stability of crystal
oscillators.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – RCMEAS – – – MAINFRDY

15 14 13 12 11 10 9 8
MAINF

7 6 5 4 3 2 1 0
MAINF

 477SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.18.9 PMC Clock Generator PLLA Register

Name: CKGR_PLLAR

Address: 0x400E0428

Access: Read/Write

Possible limitations on PLLA input frequencies and multiplier factors should be checked before using the PMC.

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• PLLAEN: PLLA Control
0 = PLLA is disabled.

1 = PLLA is enabled.

2 - 255 = forbidden.

• PLLACOUNT: PLLA Counter
Specifies the number of Slow Clock cycles before the LOCKA bit is set in PMC_SR after CKGR_PLLAR is written.

• MULA: PLLA Multiplier
0 = The PLLA is disabled (PLLA also disabled if DIVA = 0).

200 up to 254 = The PLLA Clock frequency is the PLLA input frequency multiplied by MULA + 1.

Unlisted values are forbidden.

To change the PLLA frequency, please read Section 29.6.1 ”Divider and Phase Lock Loop Programming”.

31 30 29 28 27 26 25 24
– – – – – MULA

23 22 21 20 19 18 17 16
MULA

15 14 13 12 11 10 9 8
– – PLLACOUNT

7 6 5 4 3 2 1 0
PLLAEN

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 478

30.18.10 PMC Clock Generator PLLB Register

Name: CKGR_PLLBR

Address: 0x400E042C

Access: Read/Write

Possible limitations on PLLB input frequencies and multiplier factors should be checked before using the PMC.

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• DIVB: PLLB Front-End Divider

• PLLBCOUNT: PLLB Counter
Specifies the number of Slow clock cycles before the LOCKB bit is set in PMC_SR after CKGR_PLLBR is written.

• MULB: PLLB Multiplier
0 = The PLLB is disabled (PLLB also disabled if DIVB = 0).

1 up to 62 = The PLLB Clock frequency is the PLLB input frequency multiplied by MULB + 1.

Unlisted values are forbidden.

• SRCB: Source for PLLB

31 30 29 28 27 26 25 24
– – SRCB – – MULB

23 22 21 20 19 18 17 16
MULB

15 14 13 12 11 10 9 8
– – PLLBCOUNT

7 6 5 4 3 2 1 0
DIVB

Value Name Description

0 0 PLLB is disabled.

1 BYPASS Divider is bypassed.

2 - 255 - Divider output is the selected clock divided by DIVB.

Value Name Description

0 MAINCK_IN_PLLB The PLLB input clock is Main Clock.

1 PLLA_IN_PLLB The PLLB input clock is PLLA output.

 479SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.18.11 PMC Master Clock Register

Name: PMC_MCKR

Address: 0x400E0430

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• CSS: Master Clock Source Selection

• PRES: Processor Clock Prescaler

• PLLADIV2: PLLA Divisor by 2

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
CPPRES – CPCSS

15 14 13 12 11 10 9 8
– – PLLBDIV2 PLLADIV2 – – – –

7 6 5 4 3 2 1 0
– PRES – – CSS

Value Name Description

0 SLOW_CLK Slow Clock is selected

1 MAIN_CLK Main Clock is selected

2 PLLA_CLK PLLA Clock is selected

3 PLLB_CLK PLLB Clock is selected

Value Name Description

0 CLK_1 Selected clock

1 CLK_2 Selected clock divided by 2

2 CLK_4 Selected clock divided by 4

3 CLK_8 Selected clock divided by 8

4 CLK_16 Selected clock divided by 16

5 CLK_32 Selected clock divided by 32

6 CLK_64 Selected clock divided by 64

7 CLK_3 Selected clock divided by 3

PLLADIV2 PLLA Clock Division

0 PLLA clock frequency is divided by 1

1 PLLA clock frequency is divided by 2

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 480

• PLLBDIV2: PLLB Divisor by 2

• CPCSS: Coprocessor Master Clock Source Selection

• CPPRES: Coprocessor Programmable Clock Prescaler
0 - 15 = The selected clock is divided by CPPRES+1.

PLLBDIV2 PLLB Clock Division

0 PLLB clock frequency is divided by 1

1 PLLB clock frequency is divided by 2

Value Name Description

0 SLOW_CLK Slow Clock is selected

1 MAIN_CLK Main Clock is selected

2 PLLA_CLK PLLA Clock is selected

3 PLLB_CLK PLLB Clock is selected

4 MCK Master Clock is selected

 481SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.18.12 PMC Programmable Clock Register

Name: PMC_PCKx

Address: 0x400E0440

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• CSS: Master Clock Source Selection

• PRES: Programmable Clock Prescaler

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– PRES – CSS

Value Name Description

0 SLOW_CLK Slow Clock is selected

1 MAIN_CLK Main Clock is selected

2 PLLA_CLK PLLA Clock is selected

3 PLLB_CLK PLLB Clock is selected

4 MCK Master Clock is selected

Value Name Description

0 CLK_1 Selected clock

1 CLK_2 Selected clock divided by 2

2 CLK_4 Selected clock divided by 4

3 CLK_8 Selected clock divided by 8

4 CLK_16 Selected clock divided by 16

5 CLK_32 Selected clock divided by 32

6 CLK_64 Selected clock divided by 64

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 482

30.18.13 PMC Interrupt Enable Register

Name: PMC_IER

Address: 0x400E0460

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

• MOSCXTS: 3 to 20 MHz Crystal Oscillator Status Interrupt Enable

• LOCKA: PLLA Lock Interrupt Enable

• LOCKB: PLLB Lock Interrupt Enable

• MCKRDY: Master Clock Ready Interrupt Enable

• PCKRDYx: Programmable Clock Ready x Interrupt Enable

• MOSCSELS: Main Clock Source Oscillator Selection Status Interrupt Enable

• MOSCRCS: 4/8/12 MHz RC Oscillator Status Interrupt Enable

• CFDEV: Clock Failure Detector Event Interrupt Enable

• XT32KERR: 32.768 kHz Crystal Oscillator Error Interrupt Enable

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – XT32KERR – – CFDEV MOSCRCS MOSCSELS

15 14 13 12 11 10 9 8
– – – – – PCKRDY2 PCKRDY1 PCKRDY0

7 6 5 4 3 2 1 0
– – – – MCKRDY LOCKB LOCKA MOSCXTS

 483SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.18.14 PMC Interrupt Disable Register

Name: PMC_IDR

Address: 0x400E0464

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Disables the corresponding interrupt.

• MOSCXTS: 3 to 20 MHz Crystal Oscillator Status Interrupt Disable

• LOCKA: PLLA Lock Interrupt Disable

• LOCKB: PLLB Lock Interrupt Disable

• MCKRDY: Master Clock Ready Interrupt Disable

• PCKRDYx: Programmable Clock Ready x Interrupt Disable

• MOSCSELS: Main Clock Source Oscillator Selection Status Interrupt Disable

• MOSCRCS: 4/8/12 MHz RC Oscillator Status Interrupt Disable

• CFDEV: Clock Failure Detector Event Interrupt Disable

• XT32KERR: 32.768 kHz Crystal Oscillator Error Interrupt Disable

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – XT32KERR – – CFDEV MOSCRCS MOSCSELS

15 14 13 12 11 10 9 8
– – – – – PCKRDY2 PCKRDY1 PCKRDY0

7 6 5 4 3 2 1 0
– – – – MCKRDY LOCKB LOCKA MOSCXTS

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 484

30.18.15 PMC Status Register

Name: PMC_SR

Address: 0x400E0468

Access: Read-only

• MOSCXTS: 3 to 20 MHz Crystal Oscillator Status
0 = 3 to 20 MHz crystal oscillator is not stabilized.

1 = 3 to 20 MHz crystal oscillator is stabilized.

• LOCKA: PLLA Lock Status
0 = PLLA is not locked.

1 = PLLA is locked.

• LOCKB: PLLB Lock Status
0 = PLLB is not locked.

1 = PLLB is locked.

• MCKRDY: Master Clock Status
0 = Master Clock is not ready.

1 = Master Clock is ready.

• OSCSELS: Slow Clock Oscillator Selection
0 = Embedded 32 kHz RC oscillator is selected.

1 = 32.768 kHz crystal oscillator is selected.

• PCKRDYx: Programmable Clock Ready Status
0 = Programmable Clock x is not ready.

1 = Programmable Clock x is ready.

• MOSCSELS: Main Clock Source Oscillator Selection Status
0 = Selection is in progress.

1 = Selection is done.

• MOSCRCS: 4/8/12 MHz RC Oscillator Status
0 = 4/8/12 MHz RC oscillator is not stabilized.

1 = 4/8/12 MHz RC oscillator is stabilized.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – XT32KERR FOS CFDS CFDEV MOSCRCS MOSCSELS

15 14 13 12 11 10 9 8
– – – – – PCKRDY2 PCKRDY1 PCKRDY0

7 6 5 4 3 2 1 0
OSCSELS – – – MCKRDY LOCKB LOCKA MOSCXTS

 485SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• CFDEV: Clock Failure Detector Event
0 = No clock failure detection of the 3 to 20 MHz crystal oscillator has occurred since the last read of PMC_SR.

1 = At least one clock failure detection of the 3 to 20 MHz crystal oscillator has occurred since the last read of PMC_SR.

• CFDS: Clock Failure Detector Status
0 = A clock failure of the 3 to 20 MHz crystal oscillator is not detected.

1 = A clock failure of the 3 to 20 MHz crystal oscillator is detected.

• FOS: Clock Failure Detector Fault Output Status
0 = The fault output of the clock failure detector is inactive.

1 = The fault output of the clock failure detector is active.

• XT32KERR: 32.768 kHz Crystal Oscillator Error
0 = The frequency of the 32.768 kHz crystal oscillator is correct (32.768 kHz +/- 1%) or the monitoring is disabled.

1 = The frequency of the 32.768 kHz crystal oscillator is incorrect or has been incorrect for an elapsed period of time since the
monitoring has been enabled.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 486

30.18.16 PMC Interrupt Mask Register

Name: PMC_IMR

Address: 0x400E046C

Access: Read-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

• MOSCXTS: 3 to 20 MHz Crystal Oscillator Status Interrupt Mask

• LOCKA: PLLA Lock Interrupt Mask

• LOCKB: PLLB Lock Interrupt Mask

• MCKRDY: Master Clock Ready Interrupt Mask

• PCKRDYx: Programmable Clock Ready x Interrupt Mask

• MOSCSELS: Main Clock Source Oscillator Selection Status Interrupt Mask

• MOSCRCS: 4/8/12 MHz RC Oscillator Status Interrupt Mask

• CFDEV: Clock Failure Detector Event Interrupt Mask

• XT32KERR: 32.768 kHz Crystal Oscillator Error Interrupt Mask

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – XT32KERR – – CFDEV MOSCRCS MOSCSELS

15 14 13 12 11 10 9 8
– – – – – PCKRDY2 PCKRDY1 PCKRDY0

7 6 5 4 3 2 1 0
– – – – MCKRDY LOCKB LOCKA MOSCXTS

 487SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.18.17 PMC Fast Startup Mode Register

Name: PMC_FSMR

Address: 0x400E0470

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• FSTT0 - FSTT15: Fast Startup Input Enable 0 to 15
0 = The corresponding wake-up input has no effect on the PMC.

1 = The corresponding wake-up input enables a fast restart signal to the PMC.

• RTTAL: RTT Alarm Enable
0 = The RTT alarm has no effect on the PMC.

1 = The RTT alarm enables a fast restart signal to the PMC.

• RTCAL: RTC Alarm Enable
0 = The RTC alarm has no effect on the PMC.

1 = The RTC alarm enables a fast restart signal to the PMC.

• LPM: Low-power Mode
0 = The WaitForInterrupt (WFI) or the WaitForEvent (WFE) instruction of the processor makes the processor enter Sleep
mode.

1 = The WaitForEvent (WFE) instruction of the processor makes the system to enter Wait mode.

• FLPM: Flash Low-power Mode

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– FLPM LPM – – RTCAL RTTAL

15 14 13 12 11 10 9 8
FSTT15 FSTT14 FSTT13 FSTT12 FSTT11 FSTT10 FSTT9 FSTT8

7 6 5 4 3 2 1 0
FSTT7 FSTT6 FSTT5 FSTT4 FSTT3 FSTT2 FSTT1 FSTT0

Value Name Description

0 FLASH_STANDBY Flash is in Standby Mode when system enters Wait Mode

1 FLASH_DEEP_POWERDOWN Flash is in Deep-power-down mode when system enters Wait Mode

2 FLASH_IDLE Idle mode

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 488

30.18.18 PMC Fast Startup Polarity Register

Name: PMC_FSPR

Address: 0x400E0474

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• FSTPx: Fast Startup Input Polarityx
Defines the active polarity of the corresponding wake-up input. If the corresponding wake-up input is enabled and at the FSTP
level, it enables a fast restart signal.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
FSTP15 FSTP14 FSTP13 FSTP12 FSTP11 FSTP10 FSTP9 FSTP8

7 6 5 4 3 2 1 0
FSTP7 FSTP6 FSTP5 FSTP4 FSTP3 FSTP2 FSTP1 FSTP0

 489SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.18.19 PMC Coprocessor Fast Startup Mode Register

Name: PMC_CPFSMR

Address: 0x400E047C

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• FSTT0 - FSTT15: Fast Startup Input Enable 0 to 15
0 = The corresponding wake-up input has no effect on the PMC.

1 = The corresponding wake-up input enables a fast restart signal to the PMC.

• RTTAL: RTT Alarm Enable
0 = The RTT alarm has no effect on the PMC.

1 = The RTT alarm enables a fast restart signal to the PMC.

• RTCAL: RTC Alarm Enable
0 = The RTC alarm has no effect on the PMC.

1 = The RTC alarm enables a fast restart signal to the PMC.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – RTCAL RTTAL

15 14 13 12 11 10 9 8
FSTT15 FSTT14 FSTT13 FSTT12 FSTT11 FSTT10 FSTT9 FSTT8

7 6 5 4 3 2 1 0
FSTT7 FSTT6 FSTT5 FSTT4 FSTT3 FSTT2 FSTT1 FSTT0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 490

30.18.20 PMC Fault Output Clear Register

Name: PMC_FOCR

Address: 0x400E0478

Access: Write-only

• FOCLR: Fault Output Clear
Clears the clock failure detector fault output.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – FOCLR

 491SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.18.21 PMC Write Protection Mode Register

Name: PMC_WPMR

Address: 0x400E04E4

Access: Read/Write

• WPEN: Write Protection Enable
0 = Disables the write protection if WPKEY corresponds to 0x504D43 (“PMC” in ASCII).

1 = Enables the write protection if WPKEY corresponds to 0x504D43 (“PMC” in ASCII).

See Section 30.17 ”Register Write Protection” for the list of registers that can be write-protected.

• WPKEY: Write Protection Key

31 30 29 28 27 26 25 24
WPKEY

23 22 21 20 19 18 17 16
WPKEY

15 14 13 12 11 10 9 8
WPKEY

7 6 5 4 3 2 1 0
– – – – – – – WPEN

Value Name Description

0x504D43 PASSWD Writing any other value in this field aborts the write operation of the WPEN bit. Always reads as 0.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 492

30.18.22 PMC Write Protection Status Register

Name: PMC_WPSR

Address: 0x400E04E8

Access: Read-only

• WPVS: Write Protection Violation Status
0 = No write protection violation has occurred since the last read of the PMC_WPSR.

1 = A write protection violation has occurred since the last read of the PMC_WPSR. If this violation is an unauthorized attempt
to write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protection Violation Source
When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
WPVSRC

15 14 13 12 11 10 9 8
WPVSRC

7 6 5 4 3 2 1 0
– – – – – – – WPVS

 493SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.18.23 PMC Peripheral Clock Enable Register 1

Name: PMC_PCER1

Address: 0x400E0500

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• PIDx: Peripheral Clock x Enable
0 = No effect.

1 = Enables the corresponding peripheral clock.
Notes: 1. The values for PIDx are defined in the section “Peripheral Identifiers”.

2. Programming the control bits of the Peripheral ID that are not implemented has no effect on the behavior of the
PMC.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – PID43 PID42 PID41 PID40

7 6 5 4 3 2 1 0
PID39 PID38 PID37 PID36 PID35 PID34 PID33 PID32

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 494

30.18.24 PMC Peripheral Clock Disable Register 1

Name: PMC_PCDR1

Address: 0x400E0504

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• PIDx: Peripheral Clock x Disable
0 = No effect.

1 = Disables the corresponding peripheral clock.
Note: The values for PIDx are defined in the section “Peripheral Identifiers”.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – PID43 PID42 PID41 PID40

7 6 5 4 3 2 1 0
PID39 PID38 PID37 PID36 PID35 PID34 PID33 PID32

 495SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.18.25 PMC Peripheral Clock Status Register 1

Name: PMC_PCSR1

Address: 0x400E0508

Access: Read-only

• PIDx: Peripheral Clock x Status
0 = The corresponding peripheral clock is disabled.

1 = The corresponding peripheral clock is enabled.
Note: The values for PIDx are defined in the section “Peripheral Identifiers”.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – PID43 PID42 PID41 PID40

7 6 5 4 3 2 1 0
PID39 PID38 PID37 PID36 PID35 PID34 PID33 PID32

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 496

30.18.26 PMC Oscillator Calibration Register

Name: PMC_OCR

Address: 0x400E0510

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• CAL4: RC Oscillator Calibration bits for 4 MHz
Calibration bits applied to the RC oscillator when SEL4 is set.

• SEL4: Selection of RC Oscillator Calibration bits for 4 MHz
0 = Default value stored in Flash memory.

1 = Value written by user in CAL4 field of this register.

• CAL8: RC Oscillator Calibration bits for 8 MHz
Calibration bits applied to the RC oscillator when SEL8 is set.

• SEL8: Selection of RC Oscillator Calibration bits for 8 MHz
0 = Factory-determined value stored in Flash memory.

1 = Value written by user in CAL8 field of this register.

• CAL12: RC Oscillator Calibration bits for 12 MHz
Calibration bits applied to the RC oscillator when SEL12 is set.

• SEL12: Selection of RC Oscillator Calibration bits for 12 MHz
0 = Factory-determined value stored in Flash memory.

1 = Value written by user in CAL12 field of this register.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
SEL12 CAL12

15 14 13 12 11 10 9 8
SEL8 CAL8

7 6 5 4 3 2 1 0
SEL4 CAL4

 497SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

31. Chip Identifier (CHIPID)

31.1 Description
Chip Identifier (CHIPID) registers are used to recognize the device and its revision. These registers provide the sizes
and types of the on-chip memories, as well as the set of embedded peripherals.

Two CHIPID registers are embedded: Chip ID Register (CHIPID_CIDR) and Chip ID Extension Register
(CHIPID_EXID). Both registers contain a hard-wired value that is read-only.

The CHIPID_CIDR register contains the following fields:
 VERSION: Identifies the revision of the silicon.
 EPROC: Indicates the embedded ARM processor.
 NVPTYP and NVPSIZ: Identify the type of embedded non-volatile memory and the size.
 SRAMSIZ: Indicates the size of the embedded SRAM.
 ARCH: Identifies the set of embedded peripherals.
 EXT: Shows the use of the extension identifier register.

The CHIPID_EXID register is device-dependent and reads 0 if CHIPID_CIDR.EXT = 0.

31.2 Embedded Characteristics
 Chip ID Registers

 Identification of the Device Revision, Sizes of the Embedded Memories, Set of Peripherals, Embedded
Processor.

31.3 Chip Identifier (CHIPID) User Interface

Table 31-1. SAM4CP Chip IDs Registers

Chip Name CHIPID_CIDR CHIPID_EXID

SAM4CP16C 0xA64C_0CE0 0x4

Table 31-2. Register Mapping

Offset Register Name Access Reset

0x0 Chip ID Register CHIPID_CIDR Read-only –

0x4 Chip ID Extension Register CHIPID_EXID Read-only –

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 498

31.3.1 Chip ID Register

Name: CHIPID_CIDR

Address: 0x400E0740

Access: Read-only

• VERSION: Version of the Device
Current version of the device.

• EPROC: Embedded Processor

• NVPSIZ: Nonvolatile Program Memory Size

31 30 29 28 27 26 25 24
EXT NVPTYP ARCH

23 22 21 20 19 18 17 16
ARCH SRAMSIZ

15 14 13 12 11 10 9 8
NVPSIZ2 NVPSIZ

7 6 5 4 3 2 1 0
EPROC VERSION

Value Name Description
1 ARM946ES ARM946ES
2 ARM7TDMI ARM7TDMI
3 CM3 Cortex-M3
4 ARM920T ARM920T
5 ARM926EJS ARM926EJS
6 CA5 Cortex-A5
7 CM4 Cortex-M4

Value Name Description
0 NONE None
1 8K 8 Kbytes
2 16K 16 Kbytes
3 32K 32 Kbytes
4 – Reserved
5 64K 64 Kbytes
6 – Reserved
7 128K 128 Kbytes
8 160K 160 Kbytes
9 256K 256 Kbytes
10 512K 512 Kbytes
11 – Reserved
12 1024K 1024 Kbytes
13 – Reserved
14 2048K 2048 Kbytes
15 – Reserved

 499SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• NVPSIZ2: Second Nonvolatile Program Memory Size

• SRAMSIZ: Internal SRAM Size

• ARCH: Architecture Identifier

Value Name Description
0 NONE None
1 8K 8 Kbytes
2 16K 16 Kbytes
3 32K 32 Kbytes
4 – Reserved
5 64K 64 Kbytes
6 – Reserved
7 128K 128 Kbytes
8 – Reserved
9 256K 256 Kbytes

10 512K 512 Kbytes
11 – Reserved
12 1024K 1024 Kbytes
13 – Reserved
14 2048K 2048 Kbytes
15 – Reserved

Value Name Description
0 48K 48 Kbytes
1 192K 192 Kbytes
2 384K 384 Kbytes
3 6K 6 Kbytes
4 24K 24 Kbytes
5 4K 4 Kbytes
6 80K 80 Kbytes
7 160K 160 Kbytes
8 8K 8 Kbytes
9 16K 16 Kbytes
10 32K 32 Kbytes
11 64K 64 Kbytes
12 128K 128 Kbytes
13 256K 256 Kbytes
14 96K 96 Kbytes
15 512K 512 Kbytes

Value Device
0x64 SAM4CP16C

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 500

• NVPTYP: Nonvolatile Program Memory Type

• EXT: Extension Flag
0: Chip ID has a single register definition without extension.

1: An extended Chip ID exists.

Value Name Description
0 ROM ROM
1 ROMLESS ROMless or on-chip Flash
2 FLASH Embedded Flash Memory

3 ROM_FLASH

ROM and Embedded Flash Memory

• NVPSIZ is ROM size

• NVPSIZ2 is Flash size
4 SRAM SRAM emulating ROM

 501SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

31.3.2 Chip ID Extension Register

Name: CHIPID_EXID

Address: 0x400E0744

Access: Read-only

• EXID: Chip ID Extension
This field is cleared if CHIPID_CIDR.EXT = 0.

31 30 29 28 27 26 25 24
EXID

23 22 21 20 19 18 17 16
EXID

15 14 13 12 11 10 9 8
EXID

7 6 5 4 3 2 1 0
EXID

Value Name Description

0x4 SAM4CP SAM4C embedding GPLC peripheral

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 502

32. Parallel Input/Output Controller (PIO)

32.1 Description
The Parallel Input/Output Controller (PIO) manages up to 32 fully programmable input/output lines. Each I/O line may
be dedicated as a general-purpose I/O or be assigned to a function of an embedded peripheral. This ensures effective
optimization of the pins of the product.

Each I/O line is associated with a bit number in all of the 32-bit registers of the 32-bit wide user interface.

Each I/O line of the PIO Controller features the following:
 An input change interrupt enabling level change detection on any I/O line.
 Additional Interrupt modes enabling rising edge, falling edge, low-level or high-level detection on any I/O line.
 A glitch filter providing rejection of glitches lower than one-half of peripheral clock cycle.
 A debouncing filter providing rejection of unwanted pulses from key or push button operations.
 Multi-drive capability similar to an open drain I/O line.
 Control of the I/O line pull-up and pull-down.
 Input visibility and output control.

The PIO Controller also features a synchronous output providing up to 32 bits of data output in a single write
operation.

32.2 Embedded Characteristics
 Up to 32 Programmable I/O Lines.
 Fully Programmable through Set/Clear Registers.
 Multiplexing of Four Peripheral Functions per I/O Line.
 For each I/O Line (Whether Assigned to a Peripheral or Used as General Purpose I/O).

 Input Change Interrupt.
 Programmable Glitch Filter.
 Programmable Debouncing Filter.
 Multi-drive Option Enables Driving in Open Drain.
 Programmable Pull-Up on Each I/O Line.
 Pin Data Status Register, Supplies Visibility of the Level on the Pin at Any Time.
 Additional Interrupt Modes on a Programmable Event: Rising Edge, Falling Edge, Low-Level or High-

Level.
 Synchronous Output, Provides Set and Clear of Several I/O Lines in a Single Write.
 Register Write Protection.
 Programmable Schmitt Trigger Inputs.
 Programmable I/O Drive.

 503SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.3 Block Diagram

Figure 32-1. Block Diagram

Embedded
Peripheral

Embedded
Peripheral

PIO Interrupt

PIO Controller

Up to 32 pins

PMC

Up to 32
peripheral IOs

Up to 32
peripheral IOs

Peripheral Clock

APB

Interrupt Controller

Data, Enable

PIN 31

PIN 1

PIN 0

Data, Enable

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 504

32.4 Product Dependencies

32.4.1 Pin Multiplexing

Each pin is configurable, depending on the product, as either a general-purpose I/O line only, or as an I/O line
multiplexed with one or two peripheral I/Os. As the multiplexing is hardware defined and thus product-dependent, the
hardware designer and programmer must carefully determine the configuration of the PIO Controllers required by
their application. When an I/O line is general-purpose only, i.e., not multiplexed with any peripheral I/O, programming
of the PIO Controller regarding the assignment to a peripheral has no effect and only the PIO Controller can control
how the pin is driven by the product.

32.4.2 Power Management

The Power Management Controller controls the peripheral clock in order to save power. Writing any of the registers of
the user interface does not require the peripheral clock to be enabled. This means that the configuration of the I/O
lines does not require the peripheral clock to be enabled.

However, when the clock is disabled, not all of the features of the PIO Controller are available, including glitch filtering.
Note that the input change interrupt, the interrupt modes on a programmable event and the read of the pin level
require the clock to be validated.

After a hardware reset, the peripheral clock is disabled by default.

The user must configure the Power Management Controller before any access to the input line information.

32.4.3 Interrupt Sources

For interrupt handling, the PIO Controllers are considered as user peripherals. This means that the PIO Controller
interrupt lines are connected among the interrupt sources. Refer to the PIO Controller peripheral identifier in the
Peripheral Identifiers table to identify the interrupt sources dedicated to the PIO Controllers. Using the PIO Controller
requires the Interrupt Controller to be programmed first.

The PIO Controller interrupt can be generated only if the peripheral clock is enabled.

Table 32-1. Peripheral IDs

Instance ID

PIOA 11

PIOB 12

PIOC 37

 505SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.5 Functional Description
The PIO Controller features up to 32 fully-programmable I/O lines. Most of the control logic associated to each I/O
is represented in Figure 32-2. In this description each signal shown represents one of up to 32 possible indexes.

Figure 32-2. I/O Line Control Logic

32.5.1 Pull-up and Pull-down Resistor Control

Each I/O line is designed with an embedded pull-up resistor and an embedded pull-down resistor. The pull-up resistor
can be enabled or disabled by writing to the Pull-up Enable register (PIO_PUER) or Pull-up Disable register
(PIO_PUDR), respectively. Writing to these registers results in setting or clearing the corresponding bit in the Pull-up
Status register (PIO_PUSR). Reading a one in PIO_PUSR means the pull-up is disabled and reading a zero means
the pull-up is enabled. The pull-down resistor can be enabled or disabled by writing the Pull-down Enable register
(PIO_PPDER) or the Pull-down Disable register (PIO_PPDDR), respectively. Writing in these registers results in
setting or clearing the corresponding bit in the Pull-down Status register (PIO_PPDSR). Reading a one in
PIO_PPDSR means the pull-up is disabled and reading a zero means the pull-down is enabled.

1

0

1

0

1

0

1

0
D Q D Q

DFF

1

0

1

0

11

00

01

10

Programmable
Glitch

or
Debouncing

Filter

PIO_PDSR[0]
PIO_ISR[0]

PIO_IDR[0]

PIO_IMR[0]

PIO_IER[0]

PIO Interrupt

(Up to 32 possible inputs)

PIO_ISR[31]

PIO_IDR[31]

PIO_IMR[31]

PIO_IER[31]

Pad

PIO_PUDR[0]

PIO_PUSR[0]

PIO_PUER[0]

PIO_MDDR[0]

PIO_MDSR[0]

PIO_MDER[0]

PIO_CODR[0]

PIO_ODSR[0]

PIO_SODR[0]

PIO_PDR[0]

PIO_PSR[0]

PIO_PER[0]
PIO_ABCDSR1[0]

PIO_ODR[0]

PIO_OSR[0]

PIO_OER[0]

Peripheral Clock
Resynchronization

Stage

Peripheral A Input

Peripheral D Output Enable

Peripheral A Output Enable

EVENT
DETECTORDFF

PIO_IFDR[0]

PIO_IFSR[0]

PIO_IFER[0]

Peripheral Clock

Clock
Divider

PIO_IFSCSR[0]

PIO_IFSCER[0]

PIO_IFSCDR[0]

PIO_SCDR

Slow Clock

Peripheral B Output Enable

Peripheral C Output Enable

11

00

01

10

Peripheral D Output

Peripheral A Output

Peripheral B Output

Peripheral C Output

PIO_ABCDSR2[0]

Peripheral B Input

Peripheral C Input

Peripheral D Input

PIO_PPDDR[0]

PIO_PPDSR[0]

PIO_PPDER[0]

VDD

GND

Integrated
Pull-Down

Resistor

Integrated
Pull-Up
Resistor

div_slck

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 506

Enabling the pull-down resistor while the pull-up resistor is still enabled is not possible. In this case, the write of
PIO_PPDER for the relevant I/O line is discarded. Likewise, enabling the pull-up resistor while the pull-down resistor
is still enabled is not possible. In this case, the write of PIO_PUER for the relevant I/O line is discarded.

Control of the pull-up resistor is possible regardless of the configuration of the I/O line.

After reset, depending on the I/O, pull-up or pull-down can be set.

32.5.2 I/O Line or Peripheral Function Selection

When a pin is multiplexed with one or two peripheral functions, the selection is controlled with the Enable register
(PIO_PER) and the Disable Register (PIO_PDR). The Status Register (PIO_PSR) is the result of the set and clear
registers and indicates whether the pin is controlled by the corresponding peripheral or by the PIO Controller. A value
of zero indicates that the pin is controlled by the corresponding on-chip peripheral selected in the Peripheral ABCD
Select registers (PIO_ABCDSR1 and PIO_ABCDSR2). A value of one indicates the pin is controlled by the PIO
Controller.

If a pin is used as a general-purpose I/O line (not multiplexed with an on-chip peripheral), PIO_PER and PIO_PDR
have no effect and PIO_PSR returns a one for the corresponding bit.

After reset, the I/O lines are controlled by the PIO Controller, i.e., PIO_PSR resets at one. However, in some events, it
is important that PIO lines are controlled by the peripheral (as in the case of memory chip select lines that must be
driven inactive after reset, or for address lines that must be driven low for booting out of an external memory). Thus,
the reset value of PIO_PSR is defined at the product level and depends on the multiplexing of the device.

32.5.3 Peripheral A or B or C or D Selection

The PIO Controller provides multiplexing of up to four peripheral functions on a single pin. The selection is performed
by writing PIO_ABCDSR1 and PIO_ABCDSR2.

For each pin:
 The corresponding bit at level zero in PIO_ABCDSR1 and the corresponding bit at level zero in PIO_ABCDSR2

means peripheral A is selected.
 The corresponding bit at level one in PIO_ABCDSR1 and the corresponding bit at level zero in PIO_ABCDSR2

means peripheral B is selected.
 The corresponding bit at level zero in PIO_ABCDSR1 and the corresponding bit at level one in PIO_ABCDSR2

means peripheral C is selected.
 The corresponding bit at level one in PIO_ABCDSR1 and the corresponding bit at level one in PIO_ABCDSR2

means peripheral D is selected.

Note that multiplexing of peripheral lines A, B, C and D only affects the output line. The peripheral input lines are
always connected to the pin input (refer to Figure 32-2).

Writing in PIO_ABCDSR1 and PIO_ABCDSR2 manages the multiplexing regardless of the configuration of the pin.
However, assignment of a pin to a peripheral function requires a write in PIO_ABCDSR1 and PIO_ABCDSR2 in
addition to a write in PIO_PDR.

After reset, PIO_ABCDSR1 and PIO_ABCDSR2 are zero, thus indicating that all the PIO lines are configured on
peripheral A. However, peripheral A generally does not drive the pin as the PIO Controller resets in I/O line mode.

If the software selects a peripheral A, B, C or D which does not exist for a pin, no alternate functions are enabled for
this pin and the selection is taken into account. The PIO Controller does not carry out checks to prevent selection of a
peripheral which does not exist.

32.5.4 Output Control

When the I/O line is assigned to a peripheral function, i.e., the corresponding bit in PIO_PSR is at zero, the drive of
the I/O line is controlled by the peripheral. Peripheral A or B or C or D depending on the value in PIO_ABCDSR1 and
PIO_ABCDSR2 determines whether the pin is driven or not.

 507SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

When the I/O line is controlled by the PIO Controller, the pin can be configured to be driven. This is done by writing the
Output Enable register (PIO_OER) and Output Disable register (PIO_ODR). The results of these write operations are
detected in the Output Status register (PIO_OSR). When a bit in this register is at zero, the corresponding I/O line is
used as an input only. When the bit is at one, the corresponding I/O line is driven by the PIO Controller.

The level driven on an I/O line can be determined by writing in the Set Output Data register (PIO_SODR) and the
Clear Output Data register (PIO_CODR). These write operations, respectively, set and clear the Output Data Status
register (PIO_ODSR), which represents the data driven on the I/O lines. Writing in PIO_OER and PIO_ODR manages
PIO_OSR whether the pin is configured to be controlled by the PIO Controller or assigned to a peripheral function.
This enables configuration of the I/O line prior to setting it to be managed by the PIO Controller.

Similarly, writing in PIO_SODR and PIO_CODR affects PIO_ODSR. This is important as it defines the first level
driven on the I/O line.

32.5.5 Synchronous Data Output

Clearing one or more PIO line(s) and setting another one or more PIO line(s) synchronously cannot be done by using
PIO_SODR and PIO_CODR. It requires two successive write operations into two different registers. To overcome
this, the PIO Controller offers a direct control of PIO outputs by single write access to PIO_ODSR. Only bits
unmasked by the Output Write Status register (PIO_OWSR) are written. The mask bits in PIO_OWSR are set by
writing to the Output Write Enable register (PIO_OWER) and cleared by writing to the Output Write Disable register
(PIO_OWDR).

After reset, the synchronous data output is disabled on all the I/O lines as PIO_OWSR resets at 0x0.

32.5.6 Multi-Drive Control (Open Drain)

Each I/O can be independently programmed in open drain by using the multi-drive feature. This feature permits
several drivers to be connected on the I/O line which is driven low only by each device. An external pull-up resistor (or
enabling of the internal one) is generally required to guarantee a high level on the line.

The multi-drive feature is controlled by the Multi-driver Enable register (PIO_MDER) and the Multi-driver Disable
register (PIO_MDDR). The multi-drive can be selected whether the I/O line is controlled by the PIO Controller or
assigned to a peripheral function. The Multi-driver Status register (PIO_MDSR) indicates the pins that are configured
to support external drivers.

After reset, the multi-drive feature is disabled on all pins, i.e., PIO_MDSR resets at value 0x0.

32.5.7 Output Line Timings

Figure 32-3 shows how the outputs are driven either by writing PIO_SODR or PIO_CODR, or by directly writing
PIO_ODSR. This last case is valid only if the corresponding bit in PIO_OWSR is set. Figure 32-3 also shows when the
feedback in the Pin Data Status register (PIO_PDSR) is available.

Figure 32-3. Output Line Timings

2 cycles

APB Access

2 cycles

APB Access

Peripheral clock

Write PIO_SODR
Write PIO_ODSR at 1

PIO_ODSR

PIO_PDSR

Write PIO_CODR
Write PIO_ODSR at 0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 508

32.5.8 Inputs

The level on each I/O line can be read through PIO_PDSR. This register indicates the level of the I/O lines regardless
of their configuration, whether uniquely as an input, or driven by the PIO Controller, or driven by a peripheral.

Reading the I/O line levels requires the clock of the PIO Controller to be enabled, otherwise PIO_PDSR reads the
levels present on the I/O line at the time the clock was disabled.

32.5.9 Input Glitch and Debouncing Filters

Optional input glitch and debouncing filters are independently programmable on each I/O line.

The glitch filter can filter a glitch with a duration of less than 1/2 peripheral clock and the debouncing filter can filter a
pulse of less than 1/2 period of a programmable divided slow clock.

The selection between glitch filtering or debounce filtering is done by writing in the PIO Input Filter Slow Clock Disable
register (PIO_IFSCDR) and the PIO Input Filter Slow Clock Enable register (PIO_IFSCER). Writing PIO_IFSCDR and
PIO_IFSCER, respectively, sets and clears bits in the Input Filter Slow Clock Status register (PIO_IFSCSR).

The current selection status can be checked by reading the PIO_IFSCSR.
 If PIO_IFSCSR[i] = 0: The glitch filter can filter a glitch with a duration of less than 1/2 master clock period.
 If PIO_IFSCSR[i] = 1: The debouncing filter can filter a pulse with a duration of less than 1/2 programmable

divided slow clock period.

For the debouncing filter, the period of the divided slow clock is defined by writing in the DIV field of the Slow Clock
Divider Debouncing Register (PIO_SCDR).

tdiv_slck = ((DIV + 1)  2)  tslck

When the glitch or debouncing filter is enabled, a glitch or pulse with a duration of less than 1/2 selected clock cycle
(selected clock represents peripheral clock or divided slow clock depending on PIO_IFSCDR and PIO_IFSCER
programming) is automatically rejected, while a pulse with a duration of one selected clock (peripheral clock or divided
slow clock) cycle or more is accepted. For pulse durations between 1/2 selected clock cycle and one selected clock
cycle, the pulse may or may not be taken into account, depending on the precise timing of its occurrence. Thus for a
pulse to be visible, it must exceed one selected clock cycle, whereas for a glitch to be reliably filtered out, its duration
must not exceed 1/2 selected clock cycle.

The filters also introduce some latencies, illustrated in Figure 32-4 and Figure 32-5.

The glitch filters are controlled by the Input Filter Enable register (PIO_IFER), the Input Filter Disable register
(PIO_IFDR) and the Input Filter Status register (PIO_IFSR). Writing PIO_IFER and PIO_IFDR respectively sets and
clears bits in PIO_IFSR. This last register enables the glitch filter on the I/O lines.

When the glitch and/or debouncing filter is enabled, it does not modify the behavior of the inputs on the peripherals. It
acts only on the value read in PIO_PDSR and on the input change interrupt detection. The glitch and debouncing
filters require that the peripheral clock is enabled.

Figure 32-4. Input Glitch Filter Timing

Peripheral clcok

Pin Level

PIO_PDSR
if PIO_IFSR = 0

PIO_PDSR
if PIO_IFSR = 1

1 cycle 1 cycle 1 cycle

up to 1.5 cycles

2 cycles

up to 2.5 cycles

up to 2 cycles

1 cycle

1 cycle

PIO_IFCSR = 0

 509SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 32-5. Input Debouncing Filter Timing

32.5.10 Input Edge/Level Interrupt

The PIO Controller can be programmed to generate an interrupt when it detects an edge or a level on an I/O line. The
Input Edge/Level interrupt is controlled by writing the Interrupt Enable register (PIO_IER) and the Interrupt Disable
register (PIO_IDR), which enable and disable the input change interrupt respectively by setting and clearing the
corresponding bit in the Interrupt Mask register (PIO_IMR). As input change detection is possible only by comparing
two successive samplings of the input of the I/O line, the peripheral clock must be enabled. The Input Change
interrupt is available regardless of the configuration of the I/O line, i.e., configured as an input only, controlled by the
PIO Controller or assigned to a peripheral function.

By default, the interrupt can be generated at any time an edge is detected on the input.

Some additional interrupt modes can be enabled/disabled by writing in the Additional Interrupt Modes Enable register
(PIO_AIMER) and Additional Interrupt Modes Disable register (PIO_AIMDR). The current state of this selection can
be read through the Additional Interrupt Modes Mask register (PIO_AIMMR).

These additional modes are:
 Rising edge detection.
 Falling edge detection.
 Low-level detection.
 High-level detection.

In order to select an additional interrupt mode:
 The type of event detection (edge or level) must be selected by writing in the Edge Select Register (PIO_ESR)

and Level Select Register (PIO_LSR) which select, respectively, the edge and level detection. The current
status of this selection is accessible through the Edge/Level Status Register (PIO_ELSR).

 The polarity of the event detection (rising/falling edge or high/low-level) must be selected by writing in the
Falling Edge/Low-Level Select Register (PIO_FELLSR) and Rising Edge/High-Level Select Register
(PIO_REHLSR) which allow to select falling or rising edge (if edge is selected in PIO_ELSR) edge or high- or
low-level detection (if level is selected in PIO_ELSR). The current status of this selection is accessible through
the Fall/Rise - Low/High Status Register (PIO_FRLHSR).

When an input edge or level is detected on an I/O line, the corresponding bit in the Interrupt Status register (PIO_ISR)
is set. If the corresponding bit in PIO_IMR is set, the PIO Controller interrupt line is asserted.The interrupt signals of
the 32 channels are ORed-wired together to generate a single interrupt signal to the interrupt controller.

When the software reads PIO_ISR, all the interrupts are automatically cleared. This signifies that all the interrupts that
are pending when PIO_ISR is read must be handled. When an Interrupt is enabled on a “level”, the interrupt is
generated as long as the interrupt source is not cleared, even if some read accesses in PIO_ISR are performed.

Divided Slow Clock
(div_slck)

Pin Level

PIO_PDSR
if PIO_IFSR = 0

PIO_PDSR
if PIO_IFSR = 1

1 cycle tdiv_slck

up to 1.5 cycles tdiv_slck

1 cycle tdiv_slck

up to 2 cycles tperipheral clock
up to 2 cycles tperipheral clock

up to 2 cycles tperipheral clockup to 2 cycles tperipheral clock

up to 1.5 cycles tdiv_slck

PIO_IFCSR = 1

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 510

Figure 32-6. Event Detector on Input Lines (Figure Represents Line 0)

Example of interrupt generation on following lines:
 Rising edge on PIO line 0
 Falling edge on PIO line 1
 Rising edge on PIO line 2
 Low-level on PIO line 3
 High-level on PIO line 4
 High-level on PIO line 5
 Falling edge on PIO line 6
 Rising edge on PIO line 7
 Any edge on the other lines

Table 32-2 provides the required configuration for this example.

Table 32-2. Configuration for Example Interrupt Generation

Configuration Description

Interrupt Mode
All the interrupt sources are enabled by writing 32’hFFFF_FFFF in PIO_IER.

Then the additional Interrupt mode is enabled for lines 0 to 7 by writing 32’h0000_00FF
in PIO_AIMER.

Edge or Level Detection

Lines 3, 4 and 5 are configured in level detection by writing 32’h0000_0038 in PIO_LSR.

The other lines are configured in edge detection by default, if they have not been
previously configured. Otherwise, lines 0, 1, 2, 6 and 7 must be configured in edge
detection by writing 32’h0000_00C7 in PIO_ESR.

Falling/Rising Edge or
Low/High-Level Detection

Lines 0, 2, 4, 5 and 7 are configured in rising edge or high-level detection by writing
32’h0000_00B5 in PIO_REHLSR.

The other lines are configured in falling edge or low-level detection by default if they
have not been previously configured. Otherwise, lines 1, 3 and 6 must be configured in
falling edge/low-level detection by writing 32’h0000_004A in PIO_FELLSR.

Event Detector

0

1

0

1

1

0

0

1

Edge
Detector

Falling Edge
Detector

Rising Edge
Detector

PIO_FELLSR[0]

PIO_FRLHSR[0]

PIO_REHLSR[0]

Low Level
Detector

High Level
Detector

PIO_ESR[0]

PIO_ELSR[0]

PIO_LSR[0]

PIO_AIMDR[0]

PIO_AIMMR[0]

PIO_AIMER[0]

Event detection on line 0

Resynchronized input on line 0

 511SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 32-7. Input Change Interrupt Timings When No Additional Interrupt Modes

32.5.11 Programmable I/O Drive

It is possible to configure the I/O drive for pads PA0 to PA4 and PA9 to PA31. Refer to the section “Electrical
Characteristics”.

32.5.12 Programmable Schmitt Trigger

It is possible to configure each input for the Schmitt trigger. By default the Schmitt trigger is active. Disabling the
Schmitt trigger is requested when using the QTouch® Library.

32.5.13 I/O Lines Programming Example

The programming example shown in Table 32-3 is used to obtain the following configuration:
 4-bit output port on I/O lines 0 to 3 (should be written in a single write operation), open-drain, with pull-up

resistor.
 Four output signals on I/O lines 4 to 7 (to drive LEDs for example), driven high and low, no pull-up resistor, no

pull-down resistor.
 Four input signals on I/O lines 8 to 11 (to read push-button states for example), with pull-up resistors, glitch

filters and input change interrupts.
 Four input signals on I/O line 12 to 15 to read an external device status (polled, thus no input change interrupt),

no pull-up resistor, no glitch filter.
 I/O lines 16 to 19 assigned to peripheral A functions with pull-up resistor.
 I/O lines 20 to 23 assigned to peripheral B functions with pull-down resistor.
 I/O lines 24 to 27 assigned to peripheral C with input change interrupt, no pull-up resistor and no pull-down

resistor.
 I/O lines 28 to 31 assigned to peripheral D, no pull-up resistor and no pull-down resistor.

Peripheral clock

Pin Level

Read PIO_ISR APB Access

PIO_ISR

APB Access

Table 32-3. Programming Example

Register Value to be Written

PIO_PER 0x0000_FFFF

PIO_PDR 0xFFFF_0000

PIO_OER 0x0000_00FF

PIO_ODR 0xFFFF_FF00

PIO_IFER 0x0000_0F00

PIO_IFDR 0xFFFF_F0FF

PIO_SODR 0x0000_0000

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 512

32.5.14 Register Write Protection

To prevent any single software error from corrupting PIO behavior, certain registers in the address space can be
write-protected by setting the WPEN bit in the “PIO Write Protection Mode Register” (PIO_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the “PIO Write Protection Status Register”
(PIO_WPSR) is set and the field WPVSRC indicates the register in which the write access has been attempted.

The WPVS bit is automatically cleared after reading the PIO_WPSR.

The following registers can be write-protected:
 “PIO Enable Register”
 “PIO Disable Register”
 “PIO Output Enable Register”
 “PIO Output Disable Register”
 “PIO Input Filter Enable Register”
 “PIO Input Filter Disable Register”
 “PIO Multi-driver Enable Register”
 “PIO Multi-driver Disable Register”
 “PIO Pull-Up Disable Register”
 “PIO Pull-Up Enable Register”
 “PIO Peripheral ABCD Select Register 1”
 “PIO Peripheral ABCD Select Register 2”
 “PIO Output Write Enable Register”
 “PIO Output Write Disable Register”
 “PIO Pad Pull-Down Disable Register”
 “PIO Pad Pull-Down Enable Register”

PIO_CODR 0x0FFF_FFFF

PIO_IER 0x0F00_0F00

PIO_IDR 0xF0FF_F0FF

PIO_MDER 0x0000_000F

PIO_MDDR 0xFFFF_FFF0

PIO_PUDR 0xFFF0_00F0

PIO_PUER 0x000F_FF0F

PIO_PPDDR 0xFF0F_FFFF

PIO_PPDER 0x00F0_0000

PIO_ABCDSR1 0xF0F0_0000

PIO_ABCDSR2 0xFF00_0000

PIO_OWER 0x0000_000F

PIO_OWDR 0x0FFF_FFF0

Table 32-3. Programming Example (Continued)

 513SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6 Parallel Input/Output Controller (PIO) User Interface
Each I/O line controlled by the PIO Controller is associated with a bit in each of the PIO Controller User Interface
registers. Each register is 32-bit wide. If a parallel I/O line is not defined, writing to the corresponding bits has no
effect. Undefined bits read zero. If the I/O line is not multiplexed with any peripheral, the I/O line is controlled by the
PIO Controller and PIO_PSR returns one systematically.

Table 32-4. Register Mapping(1)

Offset Register Name Access Reset

0x0000 PIO Enable Register PIO_PER Write-only –

0x0004 PIO Disable Register PIO_PDR Write-only –

0x0008 PIO Status Register PIO_PSR Read-only (2)

0x000C Reserved – – –

0x0010 Output Enable Register PIO_OER Write-only –

0x0014 Output Disable Register PIO_ODR Write-only –

0x0018 Output Status Register PIO_OSR Read-only 0x00000000

0x001C Reserved – – –

0x0020 Glitch Input Filter Enable Register PIO_IFER Write-only –

0x0024 Glitch Input Filter Disable Register PIO_IFDR Write-only –

0x0028 Glitch Input Filter Status Register PIO_IFSR Read-only 0x00000000

0x002C Reserved – – –

0x0030 Set Output Data Register PIO_SODR Write-only –

0x0034 Clear Output Data Register PIO_CODR Write-only –

0x0038 Output Data Status Register PIO_ODSR
Read-only
or(3)

Read/Write
–

0x003C Pin Data Status Register PIO_PDSR Read-only (4)

0x0040 Interrupt Enable Register PIO_IER Write-only –

0x0044 Interrupt Disable Register PIO_IDR Write-only –

0x0048 Interrupt Mask Register PIO_IMR Read-only 0x00000000

0x004C Interrupt Status Register(5) PIO_ISR Read-only 0x00000000

0x0050 Multi-driver Enable Register PIO_MDER Write-only –

0x0054 Multi-driver Disable Register PIO_MDDR Write-only –

0x0058 Multi-driver Status Register PIO_MDSR Read-only 0x00000000

0x005C Reserved – – –

0x0060 Pull-up Disable Register PIO_PUDR Write-only –

0x0064 Pull-up Enable Register PIO_PUER Write-only –

0x0068 Pad Pull-up Status Register PIO_PUSR Read-only (2)

0x006C Reserved – – –

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 514

0x0070 Peripheral ABCD Select Register 1 PIO_ABCDSR1 Read/Write 0x00000000

0x0074 Peripheral ABCD Select Register 2 PIO_ABCDSR2 Read/Write 0x00000000

0x0078 - 0x007C Reserved – – –

0x0080 Input Filter Slow Clock Disable Register PIO_IFSCDR Write-only –

0x0084 Input Filter Slow Clock Enable Register PIO_IFSCER Write-only –

0x0088 Input Filter Slow Clock Status Register PIO_IFSCSR Read-only 0x00000000

0x008C Slow Clock Divider Debouncing Register PIO_SCDR Read/Write 0x00000000

0x0090 Pad Pull-Down Disable Register PIO_PPDDR Write-only –

0x0094 Pad Pull-Down Enable Register PIO_PPDER Write-only –

0x0098 Pad Pull-Down Status Register PIO_PPDSR Read-only (2)

0x009C Reserved – – –

0x00A0 Output Write Enable PIO_OWER Write-only –

0x00A4 Output Write Disable PIO_OWDR Write-only –

0x00A8 Output Write Status Register PIO_OWSR Read-only 0x00000000

0x00AC Reserved – – –

0x00B0 Additional Interrupt Modes Enable Register PIO_AIMER Write-only –

0x00B4 Additional Interrupt Modes Disable Register PIO_AIMDR Write-only –

0x00B8 Additional Interrupt Modes Mask Register PIO_AIMMR Read-only 0x00000000

0x00BC Reserved – – –

0x00C0 Edge Select Register PIO_ESR Write-only –

0x00C4 Level Select Register PIO_LSR Write-only –

0x00C8 Edge/Level Status Register PIO_ELSR Read-only 0x00000000

0x00CC Reserved – – –

0x00D0 Falling Edge/Low-Level Select Register PIO_FELLSR Write-only –

0x00D4 Rising Edge/High-Level Select Register PIO_REHLSR Write-only –

0x00D8 Fall/Rise - Low/High Status Register PIO_FRLHSR Read-only 0x00000000

0x00DC Reserved – – –

0x00E0 Reserved – – –

0x00E4 Write Protection Mode Register PIO_WPMR Read/Write 0x00000000

0x00E8 Write Protection Status Register PIO_WPSR Read-only 0x00000000

0x00EC - 0x00FC Reserved – – –

0x0100 Schmitt Trigger Register PIO_SCHMITT Read/Write 0x00000000

0x0104 - 0x010C Reserved – – –

0x0110 Reserved – – –

0x0114 Reserved – – –

Table 32-4. Register Mapping(1) (Continued)

Offset Register Name Access Reset

 515SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Notes: 1. If an offset is not listed in the table it must be considered as reserved.
2. Reset value depends on the product implementation.
3. PIO_ODSR is Read-only or Read/Write depending on PIO_OWSR I/O lines.
4. Reset value of PIO_PDSR depends on the level of the I/O lines. Reading the I/O line levels requires the

clock of the PIO Controller to be enabled, otherwise PIO_PDSR reads the levels present on the I/O line
at the time the clock was disabled.

5. PIO_ISR is reset at 0x0. However, the first read of the register may read a different value as input
changes may have occurred.

0x0118 I/O Drive Register PIO_DRIVER Read/Write 0x00000000

0x011C Reserved – – –

0x0120 - 0x014C Reserved – – –

Table 32-4. Register Mapping(1) (Continued)

Offset Register Name Access Reset

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 516

32.6.1 PIO Enable Register

Name: PIO_PER

Address: 0x400E0E00 (PIOA), 0x400E1000 (PIOB), 0x4800C000 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PIO Write Protection Mode Register” .

• P0 - P31: PIO Enable
0: No effect.

1: Enables the PIO to control the corresponding pin (disables peripheral control of the pin).

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 517SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.2 PIO Disable Register

Name: PIO_PDR

Address: 0x400E0E04 (PIOA), 0x400E1004 (PIOB), 0x4800C004 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PIO Write Protection Mode Register” .

• P0 - P31: PIO Disable
0: No effect.

1: Disables the PIO from controlling the corresponding pin (enables peripheral control of the pin).

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 518

32.6.3 PIO Status Register

Name: PIO_PSR

Address: 0x400E0E08 (PIOA), 0x400E1008 (PIOB), 0x4800C008 (PIOC)

Access: Read-only

• P0 - P31: PIO Status
0: PIO is inactive on the corresponding I/O line (peripheral is active).

1: PIO is active on the corresponding I/O line (peripheral is inactive).

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 519SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.4 PIO Output Enable Register

Name: PIO_OER

Address: 0x400E0E10 (PIOA), 0x400E1010 (PIOB), 0x4800C010 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PIO Write Protection Mode Register” .

• P0 - P31: Output Enable
0: No effect.

1: Enables the output on the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 520

32.6.5 PIO Output Disable Register

Name: PIO_ODR

Address: 0x400E0E14 (PIOA), 0x400E1014 (PIOB), 0x4800C014 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PIO Write Protection Mode Register” .

• P0 - P31: Output Disable
0: No effect.

1: Disables the output on the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 521SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.6 PIO Output Status Register

Name: PIO_OSR

Address: 0x400E0E18 (PIOA), 0x400E1018 (PIOB), 0x4800C018 (PIOC)

Access: Read-only

• P0 - P31: Output Status
0: The I/O line is a pure input.

1: The I/O line is enabled in output.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 522

32.6.7 PIO Input Filter Enable Register

Name: PIO_IFER

Address: 0x400E0E20 (PIOA), 0x400E1020 (PIOB), 0x4800C020 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PIO Write Protection Mode Register” .

• P0 - P31: Input Filter Enable
0: No effect.

1: Enables the input glitch filter on the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 523SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.8 PIO Input Filter Disable Register

Name: PIO_IFDR

Address: 0x400E0E24 (PIOA), 0x400E1024 (PIOB), 0x4800C024 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PIO Write Protection Mode Register” .

• P0 - P31: Input Filter Disable
0: No effect.

1: Disables the input glitch filter on the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 524

32.6.9 PIO Input Filter Status Register

Name: PIO_IFSR

Address: 0x400E0E28 (PIOA), 0x400E1028 (PIOB), 0x4800C028 (PIOC)

Access: Read-only

• P0 - P31: Input Filter Status
0: The input glitch filter is disabled on the I/O line.

1: The input glitch filter is enabled on the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 525SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.10 PIO Set Output Data Register

Name: PIO_SODR

Address: 0x400E0E30 (PIOA), 0x400E1030 (PIOB), 0x4800C030 (PIOC)

Access: Write-only

• P0 - P31: Set Output Data
0: No effect.

1: Sets the data to be driven on the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 526

32.6.11 PIO Clear Output Data Register

Name: PIO_CODR

Address: 0x400E0E34 (PIOA), 0x400E1034 (PIOB), 0x4800C034 (PIOC)

Access: Write-only

• P0 - P31: Clear Output Data
0: No effect.

1: Clears the data to be driven on the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 527SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.12 PIO Output Data Status Register

Name: PIO_ODSR

Address: 0x400E0E38 (PIOA), 0x400E1038 (PIOB), 0x4800C038 (PIOC)

Access: Read-only or Read/Write

• P0 - P31: Output Data Status
0: The data to be driven on the I/O line is 0.

1: The data to be driven on the I/O line is 1.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 528

32.6.13 PIO Pin Data Status Register

Name: PIO_PDSR

Address: 0x400E0E3C (PIOA), 0x400E103C (PIOB), 0x4800C03C (PIOC)

Access: Read-only

• P0 - P31: Output Data Status
0: The I/O line is at level 0.

1: The I/O line is at level 1.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 529SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.14 PIO Interrupt Enable Register

Name: PIO_IER

Address: 0x400E0E40 (PIOA), 0x400E1040 (PIOB), 0x4800C040 (PIOC)

Access: Write-only

• P0 - P31: Input Change Interrupt Enable
0: No effect.

1: Enables the input change interrupt on the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 530

32.6.15 PIO Interrupt Disable Register

Name: PIO_IDR

Address: 0x400E0E44 (PIOA), 0x400E1044 (PIOB), 0x4800C044 (PIOC)

Access: Write-only

• P0 - P31: Input Change Interrupt Disable
0: No effect.

1: Disables the input change interrupt on the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 531SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.16 PIO Interrupt Mask Register

Name: PIO_IMR

Address: 0x400E0E48 (PIOA), 0x400E1048 (PIOB), 0x4800C048 (PIOC)

Access: Read-only

• P0 - P31: Input Change Interrupt Mask
0: Input change interrupt is disabled on the I/O line.

1: Input change interrupt is enabled on the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 532

32.6.17 PIO Interrupt Status Register

Name: PIO_ISR

Address: 0x400E0E4C (PIOA), 0x400E104C (PIOB), 0x4800C04C (PIOC)

Access: Read-only

• P0 - P31: Input Change Interrupt Status
0: No input change has been detected on the I/O line since PIO_ISR was last read or since reset.

1: At least one input change has been detected on the I/O line since PIO_ISR was last read or since reset.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 533SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.18 PIO Multi-driver Enable Register

Name: PIO_MDER

Address: 0x400E0E50 (PIOA), 0x400E1050 (PIOB), 0x4800C050 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PIO Write Protection Mode Register” .

• P0 - P31: Multi-drive Enable
0: No effect.

1: Enables multi-drive on the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 534

32.6.19 PIO Multi-driver Disable Register

Name: PIO_MDDR

Address: 0x400E0E54 (PIOA), 0x400E1054 (PIOB), 0x4800C054 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PIO Write Protection Mode Register” .

• P0 - P31: Multi-drive Disable
0: No effect.

1: Disables multi-drive on the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 535SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.20 PIO Multi-driver Status Register

Name: PIO_MDSR

Address: 0x400E0E58 (PIOA), 0x400E1058 (PIOB), 0x4800C058 (PIOC)

Access: Read-only

• P0 - P31: Multi-drive Status
0: The multi-drive is disabled on the I/O line. The pin is driven at high- and low-level.

1: The multi-drive is enabled on the I/O line. The pin is driven at low-level only.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 536

32.6.21 PIO Pull-Up Disable Register

Name: PIO_PUDR

Address: 0x400E0E60 (PIOA), 0x400E1060 (PIOB), 0x4800C060 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PIO Write Protection Mode Register” .

• P0 - P31: Pull-Up Disable
0: No effect.

1: Disables the pull-up resistor on the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 537SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.22 PIO Pull-Up Enable Register

Name: PIO_PUER

Address: 0x400E0E64 (PIOA), 0x400E1064 (PIOB), 0x4800C064 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PIO Write Protection Mode Register” .

• P0 - P31: Pull-Up Enable
0: No effect.

1: Enables the pull-up resistor on the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 538

32.6.23 PIO Pull-Up Status Register

Name: PIO_PUSR

Address: 0x400E0E68 (PIOA), 0x400E1068 (PIOB), 0x4800C068 (PIOC)

Access: Read-only

• P0 - P31: Pull-Up Status
0: Pull-up resistor is enabled on the I/O line.

1: Pull-up resistor is disabled on the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 539SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.24 PIO Peripheral ABCD Select Register 1

Name: PIO_ABCDSR1

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “PIO Write Protection Mode Register” .

• P0 - P31: Peripheral Select
If the same bit is set to 0 in PIO_ABCDSR2:

0: Assigns the I/O line to the Peripheral A function.

1: Assigns the I/O line to the Peripheral B function.

If the same bit is set to 1 in PIO_ABCDSR2:

0: Assigns the I/O line to the Peripheral C function.

1: Assigns the I/O line to the Peripheral D function.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 540

32.6.25 PIO Peripheral ABCD Select Register 2

Name: PIO_ABCDSR2

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “PIO Write Protection Mode Register” .

• P0 - P31: Peripheral Select
If the same bit is set to 0 in PIO_ABCDSR1:

0: Assigns the I/O line to the Peripheral A function.

1: Assigns the I/O line to the Peripheral C function.

If the same bit is set to 1 in PIO_ABCDSR1:

0: Assigns the I/O line to the Peripheral B function.

1: Assigns the I/O line to the Peripheral D function.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 541SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.26 PIO Input Filter Slow Clock Disable Register

Name: PIO_IFSCDR

Address: 0x400E0E80 (PIOA), 0x400E1080 (PIOB), 0x4800C080 (PIOC)

Access: Write-only

• P0 - P31: Peripheral Clock Glitch Filtering Select
0: No effect.

1: The glitch filter is able to filter glitches with a duration < tperipheral clock/2.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 542

32.6.27 PIO Input Filter Slow Clock Enable Register

Name: PIO_IFSCER

Address: 0x400E0E84 (PIOA), 0x400E1084 (PIOB), 0x4800C084 (PIOC)

Access: Write-only

• P0 - P31: Slow Clock Debouncing Filtering Select
0: No effect.

1: The debouncing filter is able to filter pulses with a duration < tdiv_slck/2.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 543SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.28 PIO Input Filter Slow Clock Status Register

Name: PIO_IFSCSR

Address: 0x400E0E88 (PIOA), 0x400E1088 (PIOB), 0x4800C088 (PIOC)

Access: Read-only

• P0 - P31: Glitch or Debouncing Filter Selection Status
0: The glitch filter is able to filter glitches with a duration < tperipheral clock/2.

1: The debouncing filter is able to filter pulses with a duration < tdiv_slck/2.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 544

32.6.29 PIO Slow Clock Divider Debouncing Register

Name: PIO_SCDR

Address: 0x400E0E8C (PIOA), 0x400E108C (PIOB), 0x4800C08C (PIOC)

Access: Read/Write

• DIV: Slow Clock Divider Selection for Debouncing
tdiv_slck = ((DIV + 1)  2)  tslck

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – DIV

7 6 5 4 3 2 1 0
DIV

 545SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.30 PIO Pad Pull-Down Disable Register

Name: PIO_PPDDR

Address: 0x400E0E90 (PIOA), 0x400E1090 (PIOB), 0x4800C090 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PIO Write Protection Mode Register” .

• P0 - P31: Pull-Down Disable
0: No effect.

1: Disables the pull-down resistor on the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 546

32.6.31 PIO Pad Pull-Down Enable Register

Name: PIO_PPDER

Address: 0x400E0E94 (PIOA), 0x400E1094 (PIOB), 0x4800C094 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PIO Write Protection Mode Register” .

• P0 - P31: Pull-Down Enable
0: No effect.

1: Enables the pull-down resistor on the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 547SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.32 PIO Pad Pull-Down Status Register

Name: PIO_PPDSR

Address: 0x400E0E98 (PIOA), 0x400E1098 (PIOB), 0x4800C098 (PIOC)

Access: Read-only

• P0 - P31: Pull-Down Status
0: Pull-down resistor is enabled on the I/O line.

1: Pull-down resistor is disabled on the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 548

32.6.33 PIO Output Write Enable Register

Name: PIO_OWER

Address: 0x400E0EA0 (PIOA), 0x400E10A0 (PIOB), 0x4800C0A0 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PIO Write Protection Mode Register” .

• P0 - P31: Output Write Enable
0: No effect.

1: Enables writing PIO_ODSR for the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 549SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.34 PIO Output Write Disable Register

Name: PIO_OWDR

Address: 0x400E0EA4 (PIOA), 0x400E10A4 (PIOB), 0x4800C0A4 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PIO Write Protection Mode Register” .

• P0 - P31: Output Write Disable
0: No effect.

1: Disables writing PIO_ODSR for the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 550

32.6.35 PIO Output Write Status Register

Name: PIO_OWSR

Address: 0x400E0EA8 (PIOA), 0x400E10A8 (PIOB), 0x4800C0A8 (PIOC)

Access: Read-only

• P0 - P31: Output Write Status
0: Writing PIO_ODSR does not affect the I/O line.

1: Writing PIO_ODSR affects the I/O line.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 551SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.36 PIO Additional Interrupt Modes Enable Register

Name: PIO_AIMER

Address: 0x400E0EB0 (PIOA), 0x400E10B0 (PIOB), 0x4800C0B0 (PIOC)

Access: Write-only

• P0 - P31: Additional Interrupt Modes Enable
0: No effect.

1: The interrupt source is the event described in PIO_ELSR and PIO_FRLHSR.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 552

32.6.37 PIO Additional Interrupt Modes Disable Register

Name: PIO_AIMDR

Address: 0x400E0EB4 (PIOA), 0x400E10B4 (PIOB), 0x4800C0B4 (PIOC)

Access: Write-only

• P0 - P31: Additional Interrupt Modes Disable
0: No effect.

1: The Interrupt mode is set to the default Interrupt mode (Both-edge Detection).

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 553SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.38 PIO Additional Interrupt Modes Mask Register

Name: PIO_AIMMR

Address: 0x400E0EB8 (PIOA), 0x400E10B8 (PIOB), 0x4800C0B8 (PIOC)

Access: Read-only

• P0 - P31: IO Line Index
Selects the IO event type triggering an interrupt.

0: The interrupt source is a both-edge detection event.

1: The interrupt source is described by the registers PIO_ELSR and PIO_FRLHSR.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 554

32.6.39 PIO Edge Select Register

Name: PIO_ESR

Address: 0x400E0EC0 (PIOA), 0x400E10C0 (PIOB), 0x4800C0C0 (PIOC)

Access: Write-only

• P0 - P31: Edge Interrupt Selection
0: No effect.

1: The interrupt source is an edge-detection event.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 555SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.40 PIO Level Select Register

Name: PIO_LSR

Address: 0x400E0EC4 (PIOA), 0x400E10C4 (PIOB), 0x4800C0C4 (PIOC)

Access: Write-only

• P0 - P31: Level Interrupt Selection
0: No effect.

1: The interrupt source is a level-detection event.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 556

32.6.41 PIO Edge/Level Status Register

Name: PIO_ELSR

Address: 0x400E0EC8 (PIOA), 0x400E10C8 (PIOB), 0x4800C0C8 (PIOC)

Access: Read-only

• P0 - P31: Edge/Level Interrupt Source Selection
0: The interrupt source is an edge-detection event.

1: The interrupt source is a level-detection event.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 557SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.42 PIO Falling Edge/Low-Level Select Register

Name: PIO_FELLSR

Address: 0x400E0ED0 (PIOA), 0x400E10D0 (PIOB), 0x4800C0D0 (PIOC)

Access: Write-only

• P0 - P31: Falling Edge/Low-Level Interrupt Selection
0: No effect.

1: The interrupt source is set to a falling edge detection or low-level detection event, depending on PIO_ELSR.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 558

32.6.43 PIO Rising Edge/High-Level Select Register

Name: PIO_REHLSR

Address: 0x400E0ED4 (PIOA), 0x400E10D4 (PIOB), 0x4800C0D4 (PIOC)

Access: Write-only

• P0 - P31: Rising Edge/High-Level Interrupt Selection
0: No effect.

1: The interrupt source is set to a rising edge detection or high-level detection event, depending on PIO_ELSR.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

 559SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.44 PIO Fall/Rise - Low/High Status Register

Name: PIO_FRLHSR

Address: 0x400E0ED8 (PIOA), 0x400E10D8 (PIOB), 0x4800C0D8 (PIOC)

Access: Read-only

• P0 - P31: Edge/Level Interrupt Source Selection
0: The interrupt source is a falling edge detection (if PIO_ELSR = 0) or low-level detection event (if PIO_ELSR = 1).

1: The interrupt source is a rising edge detection (if PIO_ELSR = 0) or high-level detection event (if PIO_ELSR = 1).

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 560

32.6.45 PIO Write Protection Mode Register

Name: PIO_WPMR

Address: 0x400E0EE4 (PIOA), 0x400E10E4 (PIOB), 0x4800C0E4 (PIOC)

Access: Read/Write

• WPEN: Write Protection Enable
0: Disables the write protection if WPKEY corresponds to 0x50494F (“PIO” in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x50494F (“PIO” in ASCII).

Refer to Section 32.5.14 ”Register Write Protection” for the list of registers that can be protected.

• WPKEY: Write Protection Key

31 30 29 28 27 26 25 24
WPKEY

23 22 21 20 19 18 17 16
WPKEY

15 14 13 12 11 10 9 8
WPKEY

7 6 5 4 3 2 1 0

– – – – – – – WPEN

Value Name Description
0x50494F PASSWD Writing any other value in this field aborts the write operation of the WPEN bit. Always reads as 0.

 561SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.46 PIO Write Protection Status Register

Name: PIO_WPSR

Address: 0x400E0EE8 (PIOA), 0x400E10E8 (PIOB), 0x4800C0E8 (PIOC)

Access: Read-only

• WPVS: Write Protection Violation Status
0: No write protection violation has occurred since the last read of the PIO_WPSR.

1: A write protection violation has occurred since the last read of the PIO_WPSR. If this violation is an unauthorized attempt to
write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protection Violation Source
When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
WPVSRC

15 14 13 12 11 10 9 8
WPVSRC

7 6 5 4 3 2 1 0

– – – – – – – WPVS

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 562

32.6.47 PIO Schmitt Trigger Register

Name: PIO_SCHMITT

Address: 0x400E0F00 (PIOA), 0x400E1100 (PIOB), 0x4800C100 (PIOC)

Access: Read/Write

• SCHMITTx [x=0..31]: Schmitt Trigger Control
0: Schmitt trigger is enabled.

1: Schmitt trigger is disabled.

31 30 29 28 27 26 25 24
SCHMITT31 SCHMITT30 SCHMITT29 SCHMITT28 SCHMITT27 SCHMITT26 SCHMITT25 SCHMITT24

23 22 21 20 19 18 17 16
SCHMITT23 SCHMITT22 SCHMITT21 SCHMITT20 SCHMITT19 SCHMITT18 SCHMITT17 SCHMITT16

15 14 13 12 11 10 9 8
SCHMITT15 SCHMITT14 SCHMITT13 SCHMITT12 SCHMITT11 SCHMITT10 SCHMITT9 SCHMITT8

7 6 5 4 3 2 1 0
SCHMITT7 SCHMITT6 SCHMITT5 SCHMITT4 SCHMITT3 SCHMITT2 SCHMITT1 SCHMITT0

 563SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

32.6.48 PIO I/O Drive Register

Name: PIO_DRIVER

Address: 0x400E0F18 (PIOA), 0x400E1118 (PIOB), 0x4800C118 (PIOC)

Access: Read/Write

• LINEx [x=0..31]: Drive of PIO Line x

31 30 29 28 27 26 25 24
LINE31 LINE30 LINE29 LINE28 LINE27 LINE26 LINE25 LINE24

23 22 21 20 19 18 17 16
LINE23 LINE22 LINE21 LINE20 LINE19 LINE18 LINE17 LINE16

15 14 13 12 11 10 9 8
LINE15 LINE14 LINE13 LINE12 LINE11 LINE10 LINE9 LINE8

7 6 5 4 3 2 1 0
LINE7 LINE6 LINE5 LINE4 LINE3 LINE2 LINE1 LINE0

Value Name Description

0 LOW_DRIVE Lowest drive

1 HIGH_DRIVE Highest drive

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 564

33. Serial Peripheral Interface (SPI)

33.1 Description
The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides communication with
external devices in Master or Slave mode. It also enables communication between processors if an external
processor is connected to the system.

The Serial Peripheral Interface is essentially a Shift register that serially transmits data bits to other SPIs. During a
data transfer, one SPI system acts as the “master”' which controls the data flow, while the other devices act as
“slaves'' which have data shifted into and out by the master. Different CPUs can take turn being masters (multiple
master protocol, contrary to single master protocol where one CPU is always the master while all of the others are
always slaves). One master can simultaneously shift data into multiple slaves. However, only one slave can drive its
output to write data back to the master at any given time.

A slave device is selected when the master asserts its NSS signal. If multiple slave devices exist, the master
generates a separate slave select signal for each slave (NPCS).

The SPI system consists of two data lines and two control lines:
 Master Out Slave In (MOSI): This data line supplies the output data from the master shifted into the input(s) of

the slave(s).
 Master In Slave Out (MISO): This data line supplies the output data from a slave to the input of the master.

There may be no more than one slave transmitting data during any particular transfer.
 Serial Clock (SPCK): This control line is driven by the master and regulates the flow of the data bits. The master

can transmit data at a variety of baud rates; there is one SPCK pulse for each bit that is transmitted.
 Slave Select (NSS): This control line allows slaves to be turned on and off by hardware.

33.2 Embedded Characteristics
 Master or Slave Serial Peripheral Bus Interface

 8-bit to 16-bit programmable data length per chip select
 Programmable phase and polarity per chip select
 Programmable transfer delay between consecutive transfers and delay before SPI clock per chip select
 Programmable delay between chip selects
 Selectable mode fault detection

 Master Mode can drive SPCK up to Peripheral Clock
 Master Mode Bit Rate can be Independent of the Processor/Peripheral Clock
 Slave mode operates on SPCK, asynchronously with core and bus clock
 Four chip selects with external decoder support allow communication with up to 15 peripherals
 Communication with Serial External Devices Supported

 Serial memories, such as DataFlash and 3-wire EEPROMs
 Serial peripherals, such as ADCs, DACs, LCD controllers, CAN controllers and sensors
 External coprocessors

 Connection to PDC Channel Capabilities, Optimizing Data Transfers
 One channel for the receiver
 One channel for the transmitter

 Register Write Protection

 565SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

33.3 Block Diagram

Figure 33-1. Block Diagram

33.4 Application Block Diagram

Figure 33-2. Application Block Diagram: Single Master/Multiple Slave Implementation

PDC

SPI

Peripheral bridge

PMC

Peripheral
clock

Bus clock

AHB Matrix

Trigger
events

SPI Master

SPCK

MISO

MOSI

NPCS0

NPCS1

NPCS2

SPCK

MISO

MOSI

NSS

Slave 0

SPCK

MISO

MOSI

NSS

Slave 1

SPCK

MISO

MOSI

NSS

Slave 2

NC

NPCS3

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 566

33.5 Signal Description

33.6 Product Dependencies

33.6.1 I/O Lines

The pins used for interfacing the compliant external devices can be multiplexed with PIO lines. The programmer must
first program the PIO controllers to assign the SPI pins to their peripheral functions.

33.6.2 Power Management

The SPI can be clocked through the Power Management Controller (PMC), thus the programmer must first configure
the PMC to enable the SPI clock.

33.6.3 Interrupt

The SPI interface has an interrupt line connected to the interrupt controller. Handling the SPI interrupt requires
programming the interrupt controller before configuring the SPI.

33.6.4 Peripheral DMA Controller (PDC)

The SPI interface can be used in conjunction with the PDC in order to reduce processor overhead. For a full
description of the PDC, refer to Section 28. ”Peripheral DMA Controller (PDC)” .

Table 33-1. Signal Description

Pin Name Pin Description Type

Master Slave

MISO Master In Slave Out Input Output

MOSI Master Out Slave In Output Input

SPCK Serial Clock Output Input

NPCS1 - NPCS3 Peripheral Chip Selects Output Unused

NPCS0/NSS Peripheral Chip Select/Slave Select Output Input

Table 33-2. I/O Lines

Instance Signal I/O Line Peripheral

SPI1 SPI1_MISO PC3 A

SPI1 SPI1_MOSI PC4 A

SPI1 SPI1_NPCS0 PC2 A

SPI1 SPI1_NPCS1 PC6 B

SPI1 SPI1_NPCS2 PC7 B

SPI1 SPI1_NPCS3 PC8 B

SPI1 SPI1_SPCK PC5 A

Table 33-3. Peripheral IDs

Instance ID

SPI1 40

 567SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

33.7 Functional Description

33.7.1 Modes of Operation

The SPI operates in Master mode or in Slave mode.

 The SPI operates in Master mode by setting the MSTR bit in the SPI Mode Register (SPI_MR):
 Pins NPCS0 to NPCS3 are all configured as outputs.
 The SPCK pin is driven.
 The MISO line is wired on the receiver input.
 The MOSI line is driven as an output by the transmitter.

 The SPI operates in Slave mode if the MSTR bit in the SPI_MR is written to 0:
 The MISO line is driven by the transmitter output.
 The MOSI line is wired on the receiver input.
 The SPCK pin is driven by the transmitter to synchronize the receiver.
 The NPCS0 pin becomes an input, and is used as a slave select signal (NSS).
 Pins NPCS1 to NPCS3 are not driven and can be used for other purposes.

The data transfers are identically programmable for both modes of operation. The baud rate generator is activated
only in Master mode.

33.7.2 Data Transfer

Four combinations of polarity and phase are available for data transfers. The clock polarity is programmed with the
CPOL bit in the SPI Chip Select Registers (SPI_CSRx). The clock phase is programmed with the NCPHA bit. These
two parameters determine the edges of the clock signal on which data is driven and sampled. Each of the two
parameters has two possible states, resulting in four possible combinations that are incompatible with one another.
Consequently, a master/slave pair must use the same parameter pair values to communicate. If multiple slaves are
connected and require different configurations, the master must reconfigure itself each time it needs to communicate
with a different slave.

Table 33-4 shows the four modes and corresponding parameter settings.

Table 33-4. SPI Bus Protocol Modes

SPI Mode CPOL NCPHA Shift SPCK Edge Capture SPCK Edge SPCK Inactive Level

0 0 1 Falling Rising Low

1 0 0 Rising Falling Low

2 1 1 Rising Falling High

3 1 0 Falling Rising High

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 568

Figure 33-3 and Figure 33-4 show examples of data transfers.

Figure 33-3. SPI Transfer Format (NCPHA = 1, 8 bits per transfer)

Figure 33-4. SPI Transfer Format (NCPHA = 0, 8 bits per transfer)

6

*

SPCK
(CPOL = 0)

SPCK
(CPOL = 1)

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

SPCK cycle (for reference)

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

2

2

1

1

1 2 3 4 5 7 86

* Not defined

*

SPCK
(CPOL = 0)

SPCK
(CPOL = 1)

1 2 3 4 5 7

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

SPCK cycle (for reference) 8

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

1

1

2

2

6

* Not defined

 569SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

33.7.3 Master Mode Operations

When configured in Master mode, the SPI operates on the clock generated by the internal programmable baud rate
generator. It fully controls the data transfers to and from the slave(s) connected to the SPI bus. The SPI drives the
chip select line to the slave and the serial clock signal (SPCK).

The SPI features two holding registers, the Transmit Data Register (SPI_TDR) and the Receive Data Register
(SPI_RDR), and a single Shift register. The holding registers maintain the data flow at a constant rate.

After enabling the SPI, a data transfer starts when the processor writes to the SPI_TDR. The written data is
immediately transferred in the Shift register and the transfer on the SPI bus starts. While the data in the Shift register
is shifted on the MOSI line, the MISO line is sampled and shifted in the Shift register. Data cannot be loaded in the
SPI_RDR without transmitting data. If there is no data to transmit, dummy data can be used (SPI_TDR filled with
ones). If the SPI_MR.WDRBT bit is set, transmission can occur only if the SPI_RDR has been read. If Receiving
mode is not required, for example when communicating with a slave receiver only (such as an LCD), the receive
status flags in the SPI Status register (SPI_SR) can be discarded.

Before writing the SPI_TDR, the PCS field in the SPI_MR must be set in order to select a slave.

If new data is written in the SPI_TDR during the transfer, it is kept in the SPI_TDR until the current transfer is
completed. Then, the received data is transferred from the Shift register to the SPI_RDR, the data in the SPI_TDR is
loaded in the Shift register and a new transfer starts.

As soon as the SPI_TDR is written, the Transmit Data Register Empty (TDRE) flag in the SPI_SR is cleared. When
the data written in the SPI_TDR is loaded into the Shift register, the TDRE flag in the SPI_SR is set. The TDRE bit is
used to trigger the Transmit PDC channel.

See Figure 33-5.

The end of transfer is indicated by the TXEMPTY flag in the SPI_SR. If a transfer delay (DLYBCT) is greater than 0 for
the last transfer, TXEMPTY is set after the completion of this delay. The peripheral clock can be switched off at this
time.
Note: When the SPI is enabled, the TDRE and TXEMPTY flags are set.

Figure 33-5. TDRE and TXEMPTY flag behavior

The transfer of received data from the Shift register to the SPI_RDR is indicated by the Receive Data Register Full
(RDRF) bit in the SPI_SR. When the received data is read, the RDRF bit is cleared.

If the SPI_RDR has not been read before new data is received, the Overrun Error (OVRES) bit in the SPI_SR is set.
As long as this flag is set, data is loaded in the SPI_RDR. The user has to read the SPI_SR to clear the OVRES bit.

Figure 33-6, shows a block diagram of the SPI when operating in Master mode. Figure 33-7 shows a flow chart
describing how transfers are handled.

TDRE

TXEMPTY

Transfer

Write SPI_CR.SPIEN =1 Write SPI_TDR

Transfer Transfer

Write SPI_TDR Write SPI_TDR

automatic set
TDR loaded
in shifter

automatic set
TDR loaded
in shifterautomatic set

TDR loaded
in shifter

DLYBCT DLYBCTDLYBCT

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 570

33.7.3.1 Master Mode Block Diagram

Figure 33-6. Master Mode Block Diagram

Shift Register

SPCK

MOSI
LSB MSB

MISO

SPI_RDR
RD

SPI
Clock

TDRE
SPI_TDR

TD

RDRF
OVRES

SPI_CSRx

CPOL
NCPHA

BITS

Peripheral clock Baud Rate Generator

SPI_CSRx
SCBR

NPCSx

NPCS0

NPCS0

0

1

PS

SPI_MR
PCS

SPI_TDR
PCS

MODF

Current
Peripheral

SPI_RDR
PCS

SPI_CSRx

CSAAT

PCSDEC

MODFDIS

MSTR

 571SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

33.7.3.2 Master Mode Flow Diagram

Figure 33-7. Master Mode Flow Diagram

SPI Enable
TDRE/TXEMPTY are set

CSAAT ?
(HW check)

PS ?
(HW check)

1

0

0

1

1

NPCS <= SPI_TDR(PCS) NPCS <= SPI_MR(PCS)

Delay DLYBS

Shifter <= SPI_TDR(TD)
TDRE is set

Data Transfer
(SPI bus driven)

SPI_RDR(RD) <= Shifter
RDRF is set

TDRE ?
(HW check)

NPCS deasserted

Delay DLYBCS

Fixed
 peripheral

Variable
peripheral

Delay DLYBCT

0 (i.e., a new write to SPI_TDR occured while data transfer or delay DLYBCT)

1 CSAAT ?
(HW check)

0

PS ?
(HW check)

0

1

SPI_TDR(PCS)
= NPCS ?

(HW check)

no

yes SPI_MR(PCS)
= NPCS ?

(HW check)

no

NPCS deasserted

Delay DLYBCS

NPCS <= SPI_TDR(PCS)

NPCS deasserted

Delay DLYBCS

NPCS <= SPI_MR(PCS),
 SPI_TDR(PCS)

Fixed
 peripheral

Variable
peripheral

- NPCS defines the current Chip Select
- CSAAT, DLYBS, DLYBCT refer to the fields of the
 Chip Select Register corresponding to the Current Chip Select
- ‘x <= y’ must be interpreted as ‘x is loaded with y’ where x,y
 represent either register fields or SPI pins
- HW = hardware, SW = software

TDRE/TXEMPTY are cleared

Write SPI_TDR ?
no

yes

TXEMPTY is set

TDRE ?
(SW check)

0

1

Read SPI_RDR(RD)

if read is required

From this step,
SPI_TDR can be
rewritten for the
next transfer

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 572

Figure 33-8 shows the behavior of Transmit Data Register Empty (TDRE), Receive Data Register (RDRF) and
Transmission Register Empty (TXEMPTY) status flags within the SPI_SR during an 8-bit data transfer in Fixed mode
without the PDC involved.

Figure 33-8. Status Register Flags Behavior

Figure 33-9 shows the behavior of Transmission Register Empty (TXEMPTY), End of RX buffer (ENDRX), End of TX
buffer (ENDTX), RX Buffer Full (RXBUFF) and TX Buffer Empty (TXBUFE) status flags within the SPI_SR during an
8-bit data transfer in Fixed mode with the PDC involved. The PDC is programmed to transfer and receive three units
of data. The next pointer and counter are not used. The RDRF and TDRE are not shown because these flags are
managed by the PDC when using the PDC.

Figure 33-9. PDC Status Register Flags Behavior

6

SPCK

MOSI
(from master)

MISO
(from slave)

NPCS0

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

2

2

1

1

1 2 3 4 5 7 86

RDRF

TDRE

TXEMPTY

Write in
SPI_TDR

RDR read

shift register empty

6 5 4 3 2 1

SPCK

MOSI
(from master)

NPCS0

MSB LSB6 5 4 3 2 1

1 2 3

ENDTX

TXEMPTY

MSB LSB6 5 4 3 2 1

6 5 4 3 2 1MISO
(from slave)

6 5 4 3 2 1 6 5 4 3 2 1

ENDRX

TXBUFE

RXBUFF

TDRE
(not required

if PDC is used)
PDC loads first byte

PDC loads 2nd byte
(double buffer effect)

PDC loads last byte

MSB

MSBMSB MSBLSBLSB

LSB

LSB

 573SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

33.7.3.3 Clock Generation
The SPI Baud rate clock is generated by dividing the peripheral clock by a value between 1 and 255.

If the SCBR field in the SPI_CSRx is programmed to 1, the operating baud rate is peripheral clock (see the “Electrical
Characteristics” section for the SPCK maximum frequency). Triggering a transfer while SCBR is at 0 can lead to
unpredictable results.
At reset, SCBR is 0 and the user has to program it to a valid value before performing the first transfer.

The divisor can be defined independently for each chip select, as it has to be programmed in the SCBR field. This
allows the SPI to automatically adapt the baud rate for each interfaced peripheral without reprogramming.

33.7.3.4 Transfer Delays
Figure 33-10 shows a chip select transfer change and consecutive transfers on the same chip select. Three delays
can be programmed to modify the transfer waveforms:
 Delay between the chip selects — programmable only once for all chip selects by writing the DLYBCS field in

the SPI_MR. The SPI slave device deactivation delay is managed through DLYBCS. If there is only one SPI
slave device connected to the master, the DLYBCS field does not need to be configured. If several slave
devices are connected to a master, DLYBCS must be configured depending on the highest deactivation delay.
Refer to the SPI slave device electrical characteristics.

 Delay before SPCK — independently programmable for each chip select by writing the DLYBS field. The SPI
slave device activation delay is managed through DLYBS. Refer to the SPI slave device electrical
characteristics to define DLYBS.

 Delay between consecutive transfers — independently programmable for each chip select by writing the
DLYBCT field. The time required by the SPI slave device to process received data is managed through
DLYBCT. This time depends on the SPI slave system activity.

These delays allow the SPI to be adapted to the interfaced peripherals and their speed and bus release time.

Figure 33-10. Programmable Delays

33.7.3.5 Peripheral Selection
The serial peripherals are selected through the assertion of the NPCS0 to NPCS3 signals. By default, all NPCS
signals are high before and after each transfer.
 Fixed Peripheral Select Mode: SPI exchanges data with only one peripheral.

Fixed peripheral select mode is enabled by clearing the PS bit in the SPI_MR. In this case, the current
peripheral is defined by the PCS field in the SPI_MR and the PCS field in the SPI_TDR has no effect.

 Variable Peripheral Select Mode: Data can be exchanged with more than one peripheral without having to
reprogram the NPCS field in the SPI_MR.

Variable Peripheral Select mode is enabled by setting the PS bit in the SPI_MR. The PCS field in the SPI_TDR
is used to select the current peripheral. This means that the peripheral selection can be defined for each new
data. The value to write in the SPI_TDR has the following format:

DLYBCS DLYBS DLYBCT DLYBCT

Chip Select 1

Chip Select 2

SPCK

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 574

[xxxxxxx(7-bit) + LASTXFER(1-bit)(1)+ xxxx(4-bit) + PCS (4-bit) + DATA (8 to 16-bit)] with PCS equals the chip
select to assert, as defined in Section 33.8.4 ”SPI Transmit Data Register” and LASTXFER bit at 0 or 1
depending on the CSAAT bit.

Note: 1. Optional.

CSAAT, LASTXFER and CSNAAT bits are discussed in Section 33.7.3.9 ”Peripheral Deselection with PDC” .

If LASTXFER is used, the command must be issued after writing the last character. Instead of LASTXFER, the
user can use the SPIDIS command. After the end of the PDC transfer, it is necessary to wait for the TXEMPTY
flag and then write SPIDIS into the SPI Control Register (SPI_CR). This does not change the configuration
register values. The NPCS is disabled after the last character transfer. Then, another PDC transfer can be
started if the SPIEN has previously been written in the SPI_CR.

33.7.3.6 SPI Peripheral DMA Controller (PDC)
In both Fixed and Variable peripheral select modes, the Peripheral DMA Controller (PDC) can be used to reduce
processor overhead.

The fixed peripheral selection allows buffer transfers with a single peripheral. Using the PDC is an optimal means, as
the size of the data transfer between the memory and the SPI is either 8 bits or 16 bits. However, if the peripheral
selection is modified, the SPI_MR must be reprogrammed.

The variable peripheral selection allows buffer transfers with multiple peripherals without reprogramming the SPI_MR.
Data written in the SPI_TDR is 32 bits wide and defines the real data to be transmitted and the destination peripheral.
Using the PDC in this mode requires 32-bit wide buffers, with the data in the LSBs and the PCS and LASTXFER fields
in the MSBs. However, the SPI still controls the number of bits (8 to16) to be transferred through MISO and MOSI
lines with the chip select configuration registers (SPI_CSRx). This is not the optimal means in terms of memory size
for the buffers, but it provides a very effective means to exchange data with several peripherals without any
intervention of the processor.

Transfer Size

Depending on the data size to transmit, from 8 to 16 bits, the PDC manages automatically the type of pointer size it
has to point to. The PDC performs the following transfer, depending on the mode and number of bits per data.

Fixed mode:
 8-bit data:

1-Byte transfer,
PDC pointer address = address + 1 byte,
PDC counter = counter - 1

 9-bit to 16-bit data:
2-Byte transfer. n-bit data transfer with don’t care data (MSB) filled with 0’s,
PDC pointer address = address + 2 bytes,
PDC counter = counter - 1

Variable mode:
 In Variable mode, PDC pointer address = address + 4 bytes and PDC counter = counter - 1 for 8 to 16-bit

transfer size.
 When using the PDC, the TDRE and RDRF flags are handled by the PDC. The user’s application does not

have to check these bits. Only End of RX Buffer (ENDRX), End of TX Buffer (ENDTX), Buffer Full (RXBUFF),
TX Buffer Empty (TXBUFE) are significant. For further details about the Peripheral DMA Controller and user
interface, refer to Section 28. ”Peripheral DMA Controller (PDC)” .

33.7.3.7 Peripheral Chip Select Decoding
The user can program the SPI to operate with up to 15 slave peripherals by decoding the four chip select lines,
NPCS0 to NPCS3 with an external decoder/demultiplexer (refer to Figure 33-11). This can be enabled by setting the
PCSDEC bit in the SPI_MR.

 575SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

When operating without decoding, the SPI makes sure that in any case only one chip select line is activated, i.e., one
NPCS line driven low at a time. If two bits are defined low in a PCS field, only the lowest numbered chip select is
driven low.

When operating with decoding, the SPI directly outputs the value defined by the PCS field on the NPCS lines of either
SPI_MR or SPI_TDR (depending on PS).

As the SPI sets a default value of 0xF on the chip select lines (i.e., all chip select lines at 1) when not processing any
transfer, only 15 peripherals can be decoded.

The SPI has four Chip Select registers [SPI_CSR0...SPI_CSR3]. As a result, when external decoding is activated,
each NPCS chip select defines the characteristics of up to four peripherals. As an example, SPI_CRS0 defines the
characteristics of the externally decoded peripherals 0 to 3, corresponding to the PCS values 0x0 to 0x3.
Consequently, the user has to make sure to connect compatible peripherals on the decoded chip select lines 0 to 3, 4
to 7, 8 to 11 and 12 to 14. Figure 33-11 shows this type of implementation.

If the CSAAT bit is used, with or without the PDC, the Mode Fault detection for NPCS0 line must be disabled. This is
not required for all other chip select lines since Mode Fault detection is only on NPCS0.

Figure 33-11. Chip Select Decoding Application Block Diagram: Single Master/Multiple Slave Implementation

33.7.3.8 Peripheral Deselection without PDC
During a transfer of more than one unit of data on a Chip Select without the PDC, the SPI_TDR is loaded by the
processor, the TDRE flag rises as soon as the content of the SPI_TDR is transferred into the internal Shift register.
When this flag is detected high, the SPI_TDR can be reloaded. If this reload by the processor occurs before the end of
the current transfer and if the next transfer is performed on the same chip select as the current transfer, the Chip
Select is not deasserted between the two transfers. But depending on the application software handling the SPI status
register flags (by interrupt or polling method) or servicing other interrupts or other tasks, the processor may not reload
the SPI_TDR in time to keep the chip select active (low). A null DLYBCT value (delay between consecutive transfers)
in the SPI_CSR, gives even less time for the processor to reload the SPI_TDR. With some SPI slave peripherals, if
the chip select line must remain active (low) during a full set of transfers, communication errors can occur.

To facilitate interfacing with such devices, the Chip Select registers [SPI_CSR0...SPI_CSR3] can be programmed
with the Chip Select Active After Transfer (CSAAT) bit at 1. This allows the chip select lines to remain in their current
state (low = active) until a transfer to another chip select is required. Even if the SPI_TDR is not reloaded, the chip
select remains active. To deassert the chip select line at the end of the transfer, the Last Transfer (LASTXFER) bit in
SPI_CR must be set after writing the last data to transmit into SPI_TDR.

SPI Master

SPCK
MISO
MOSI

NPCS0

NPCS1

NPCS2

SPCK MISO MOSI

NSS

Slave 0

SPCK MISO MOSI

NSS

Slave 1

SPCK MISO MOSI

NSS

Slave 14

NPCS3

Decoded chip select lines

External 1-of-n Decoder/Demultiplexer

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 576

33.7.3.9 Peripheral Deselection with PDC
PDC provides faster reloads of the SPI_TDR compared to software. However, depending on the system activity, it is
not guaranteed that the SPI_TDR is written with the next data before the end of the current transfer. Consequently,
data can be lost by the deassertion of the NPCS line for SPI slave peripherals requiring the chip select line to remain
active between two transfers. The only way to guarantee a safe transfer in this case is the use of the CSAAT and
LASTXFER bits.

When the CSAAT bit is configured to 0, the NPCS does not rise in all cases between two transfers on the same
peripheral. During a transfer on a Chip Select, the TDRE flag rises as soon as the content of the SPI_TDR is
transferred into the internal Shift register. When this flag is detected, the SPI_TDR can be reloaded. If this reload
occurs before the end of the current transfer and if the next transfer is performed on the same chip select as the
current transfer, the Chip Select is not deasserted between the two transfers. This can lead to difficulties to interface
with some serial peripherals requiring the chip select to be deasserted after each transfer. To facilitate interfacing with
such devices, the SPI_CSR can be programmed with the Chip Select Not Active After Transfer (CSNAAT) bit at 1.
This allows the chip select lines to be deasserted systematically during a time “DLYBCS” (the value of the CSNAAT
bit is processed only if the CSAAT bit is configured to 0 for the same chip select).

Figure 33-12 shows different peripheral deselection cases and the effect of the CSAAT and CSNAAT bits.

Figure 33-12. Peripheral Deselection

A

NPCS[0..n]

Write SPI_TDR

TDRE

NPCS[0..n]

Write SPI_TDR

TDRE

NPCS[0..n]

Write SPI_TDR

TDRE

DLYBCS

PCS = A

DLYBCS

DLYBCT

A

PCS = B

B

DLYBCS

PCS = A

DLYBCS

DLYBCT

A

PCS = B

B

DLYBCS

DLYBCT

PCS=A

A

DLYBCS

DLYBCT

A

PCS = A

AA

DLYBCT

A A

CSAAT = 0 and CSNAAT = 0

DLYBCT

A A

 CSAAT = 1 and CSNAAT= 0 / 1

A

DLYBCS

PCS = A

DLYBCT

A A

CSAAT = 0 and CSNAAT = 1

NPCS[0..n]

Write SPI_TDR

TDRE

PCS = A

DLYBCT

A A

CSAAT = 0 and CSNAAT = 0

 577SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

33.7.3.10 Mode Fault Detection
The SPI has the capability to operate in multimaster environment. Consequently, the NPCS0/NSS line must be
monitored. If one of the masters on the SPI bus is currently transmitting, the NPCS0/NSS line is low and the SPI must
not transmit any data. A mode fault is detected when the SPI is programmed in Master mode and a low level is driven
by an external master on the NPCS0/NSS signal. In multimaster environment, NPCS0, MOSI, MISO and SPCK pins
must be configured in open drain (through the PIO controller). When a mode fault is detected, the SPI_SR.MODF bit
is set until SPI_SR is read and the SPI is automatically disabled until it is reenabled by setting the SPI_CR.SPIEN bit.

By default, the mode fault detection is enabled. The user can disable it by setting the SPI_MR.MODFDIS bit.

33.7.4 SPI Slave Mode

When operating in Slave mode, the SPI processes data bits on the clock provided on the SPI clock pin (SPCK).

The SPI waits until NSS goes active before receiving the serial clock from an external master. When NSS falls, the
clock is validated and the data is loaded in the SPI_RDR depending on the BITS field configured in SPI_CSR0. These
bits are processed following a phase and a polarity defined respectively by the NCPHA and CPOL bits in SPI_CSR0.
Note that the fields BITS, CPOL and NCPHA of the other Chip Select registers [SPI_CSR1...SPI_CSR3] have no
effect when the SPI is programmed in Slave mode.

The bits are shifted out on the MISO line and sampled on the MOSI line.
Note: For more information on the BITS field, see also the note (1) below the SPI_CSRx bitmap (Section 33.8.9 ”SPI Chip

Select Register”).

When all bits are processed, the received data is transferred in the SPI_RDR and the RDRF bit rises. If the SPI_RDR
has not been read before new data is received, the Overrun Error Status (OVRES) bit in the SPI_SR is set. As long as
this flag is set, data is loaded in the SPI_RDR. The user must read SPI_SR to clear the OVRES bit.

When a transfer starts, the data shifted out is the data present in the Shift register. If no data has been written in the
SPI_TDR, the last data received is transferred. If no data has been received since the last reset, all bits are
transmitted low, as the Shift register resets to 0.

When a first data is written in the SPI_TDR, it is transferred immediately in the Shift register and the TDRE flag rises.
If new data is written, it remains in the SPI_TDR until a transfer occurs, i.e., NSS falls and there is a valid clock on the
SPCK pin. When the transfer occurs, the last data written in the SPI_TDR is transferred in the Shift register and the
TDRE flag rises. This enables frequent updates of critical variables with single transfers.

Then, new data is loaded in the Shift register from the SPI_TDR. If no character is ready to be transmitted, i.e., no
character has been written in the SPI_TDR since the last load from the SPI_TDR to the Shift register, the SPI_TDR is
retransmitted. In this case the Underrun Error Status Flag (UNDES) is set in the SPI_SR.

Figure 33-13 shows a block diagram of the SPI when operating in Slave mode.

Figure 33-13. Slave Mode Functional Block Diagram

Shift Register

SPCK

SPIENS

LSB MSB

NSS

MOSI

SPI_RDR
RD

SPI
Clock

TDRE
SPI_TDR

TD

RDRF
OVRES

SPI_CSR0

CPOL
NCPHA

BITS

SPIEN

SPIDIS

MISO

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 578

33.7.5 Register Write Protection

To prevent any single software error from corrupting SPI behavior, certain registers in the address space can be write-
protected in the ”SPI Write Protection Mode Register” (SPI_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the ”SPI Write Protection Status Register”
(SPI_WPSR) is set and the WPVSRC field indicates the register in which the write access has been attempted.

The WPVS bit is automatically cleared after reading SPI_WPSR.

The following registers are write-protected when WPEN is set in SPI_WPMR:
 “SPI Mode Register”
 “SPI Chip Select Register”

33.8 Serial Peripheral Interface (SPI) User Interface

Table 33-5. Register Mapping

Offset Register Name Access Reset

0x00 Control Register SPI_CR Write-only –

0x04 Mode Register SPI_MR Read/Write 0x0

0x08 Receive Data Register SPI_RDR Read-only 0x0

0x0C Transmit Data Register SPI_TDR Write-only –

0x10 Status Register SPI_SR Read-only 0x000000F0

0x14 Interrupt Enable Register SPI_IER Write-only –

0x18 Interrupt Disable Register SPI_IDR Write-only –

0x1C Interrupt Mask Register SPI_IMR Read-only 0x0

0x20 - 0x2C Reserved – – –

0x30 Chip Select Register 0 SPI_CSR0 Read/Write 0x0

0x34 Chip Select Register 1 SPI_CSR1 Read/Write 0x0

0x38 Chip Select Register 2 SPI_CSR2 Read/Write 0x0

0x3C Chip Select Register 3 SPI_CSR3 Read/Write 0x0

0x40 - 0xE0 Reserved – – –

0xE4 Write Protection Mode Register SPI_WPMR Read/Write 0x0

0xE8 Write Protection Status Register SPI_WPSR Read-only 0x0

0xEC - 0xF8 Reserved – – –

0xFC Reserved – – –

0x100 - 0x124 Reserved for PDC Registers – – –

 579SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

33.8.1 SPI Control Register

Name: SPI_CR

Address: 0x48000000

Access: Write-only

• SPIEN: SPI Enable
0 = No effect.

1 = Enables the SPI to transfer and receive data.

• SPIDIS: SPI Disable
0 = No effect.

1 = Disables the SPI.

All pins are set in Input mode after completion of the transmission in progress, if any.

If a transfer is in progress when SPIDIS is set, the SPI completes the transmission of the shifter register and does not start any
new transfer, even if the SPI_THR is loaded.

If both SPIEN and SPIDIS are equal to one when the SPI_CR is written, the SPI is disabled.

• SWRST: SPI Software Reset
0 = No effect.

1 = Reset the SPI. A software-triggered hardware reset of the SPI interface is performed.

The SPI is in Slave mode after software reset.

PDC channels are not affected by software reset.

• REQCLR: Request to Clear the Comparison Trigger
0 = No effect.

1 = Restarts the comparison trigger to enable SPI_RDR loading.

• LASTXFER: Last Transfer
0 = No effect.

1 = The current NPCS is deasserted after the character written in TD has been transferred. When SPI_CSRx.CSAAT is set,
the communication with the current serial peripheral can be closed by raising the corresponding NPCS line as soon as TD
transfer is completed.

Refer to Section 33.7.3.5 ”Peripheral Selection” for more details.

31 30 29 28 27 26 25 24
– – – – – – – LASTXFER

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – REQCLR – – – –

7 6 5 4 3 2 1 0
SWRST – – – – – SPIDIS SPIEN

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 580

33.8.2 SPI Mode Register

Name: SPI_MR

Address: 0x48000004

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the ”SPI Write Protection Mode Register”.

• MSTR: Master/Slave Mode
0 = SPI is in Slave mode.

1 = SPI is in Master mode.

• PS: Peripheral Select
0 = Fixed Peripheral Select.

1 = Variable Peripheral Select.

• PCSDEC: Chip Select Decode
0 = The chip select lines are directly connected to a peripheral device.

1 = The four NPCS chip select lines are connected to a 4-bit to 16-bit decoder.

When PCSDEC = 1, up to 15 Chip Select signals can be generated with the four NPCS lines using an external 4-bit to 16-bit
decoder. The Chip Select registers define the characteristics of the 15 chip selects, with the following rules:

SPI_CSR0 defines peripheral chip select signals 0 to 3.

SPI_CSR1 defines peripheral chip select signals 4 to 7.

SPI_CSR2 defines peripheral chip select signals 8 to 11.

SPI_CSR3 defines peripheral chip select signals 12 to 14.

• MODFDIS: Mode Fault Detection
0 = Mode fault detection enabled.

1 = Mode fault detection disabled.

• WDRBT: Wait Data Read Before Transfer
0 = No Effect. In Master mode, a transfer can be initiated regardless of the SPI_RDR state.

1 = In Master mode, a transfer can start only if the SPI_RDR is empty, i.e., does not contain any unread data. This mode pre-
vents overrun error in reception.

31 30 29 28 27 26 25 24
DLYBCS

23 22 21 20 19 18 17 16
– – – – PCS

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
LLB – WDRBT MODFDIS – PCSDEC PS MSTR

 581SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• LLB: Local Loopback Enable
0 = Local loopback path disabled.

1 = Local loopback path enabled.

LLB controls the local loopback on the data shift register for testing in Master mode only (MISO is internally connected on
MOSI).

• PCS: Peripheral Chip Select
This field is only used if fixed peripheral select is active (PS = 0).

If SPI_MR.PCSDEC = 0:

PCS = xxx0 NPCS[3:0] = 1110

PCS = xx01 NPCS[3:0] = 1101

PCS = x011 NPCS[3:0] = 1011

PCS = 0111 NPCS[3:0] = 0111

PCS = 1111 forbidden (no peripheral is selected)

(x = don’t care)

If SPI_MR.PCSDEC = 1:

NPCS[3:0] output signals = PCS.

• DLYBCS: Delay Between Chip Selects
This field defines the delay between the inactivation and the activation of NPCS. The DLYBCS time guarantees
nonoverlapping chip selects and solves bus contentions in case of peripherals having long data float times.

If DLYBCS is lower than 6, six peripheral clock periods are inserted by default.

Otherwise, the following equation determines the delay:

Delay Between Chip Selects DLYBCS
f peripheralclock
--=

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 582

33.8.3 SPI Receive Data Register

Name: SPI_RDR

Address: 0x48000008

Access: Read-only

• RD: Receive Data
Data received by the SPI Interface is stored in this register in a right-justified format. Unused bits are read as zero.

• PCS: Peripheral Chip Select
In Master mode only, these bits indicate the value on the NPCS pins at the end of a transfer. Otherwise, these bits are read as
zero.
Note: When using Variable peripheral select mode (PS = 1 in SPI_MR), it is mandatory to set the SPI_MR.WDRBT bit if

the PCS field must be processed in SPI_RDR.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – PCS

15 14 13 12 11 10 9 8
RD

7 6 5 4 3 2 1 0
RD

 583SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

33.8.4 SPI Transmit Data Register

Name: SPI_TDR

Address: 0x4800000C

Access: Write-only

• TD: Transmit Data
Data to be transmitted by the SPI Interface is stored in this register. Information to be transmitted must be written to the
transmit data register in a right-justified format.

• PCS: Peripheral Chip Select
This field is only used if variable peripheral select is active (PS = 1).

If SPI_MR.PCSDEC = 0:

PCS = xxx0 NPCS[3:0] = 1110

PCS = xx01 NPCS[3:0] = 1101

PCS = x011 NPCS[3:0] = 1011

PCS = 0111 NPCS[3:0] = 0111

PCS = 1111 forbidden (no peripheral is selected)

(x = don’t care)

If SPI_MR.PCSDEC = 1:

NPCS[3:0] output signals = PCS

• LASTXFER: Last Transfer
0 = No effect.

1 = The current NPCS is deasserted after the transfer of the character written in TD. When SPI_CSRx.CSAAT is set, the
communication with the current serial peripheral can be closed by raising the corresponding NPCS line as soon as TD transfer
is completed.

This field is only used if variable peripheral select is active (SPI_MR.PS = 1).

31 30 29 28 27 26 25 24
– – – – – – – LASTXFER

23 22 21 20 19 18 17 16
– – – – PCS

15 14 13 12 11 10 9 8
TD

7 6 5 4 3 2 1 0
TD

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 584

33.8.5 SPI Status Register

Name: SPI_SR

Address: 0x48000010

Access: Read-only

• RDRF: Receive Data Register Full (cleared by reading SPI_RDR)
0 = No data has been received since the last read of SPI_RDR.

1 = Data has been received and the received data has been transferred from the shift register to SPI_RDR since the last read
of SPI_RDR.

• TDRE: Transmit Data Register Empty (cleared by writing SPI_TDR)
0 = Data has been written to SPI_TDR and not yet transferred to the shift register.

1 = The last data written in the SPI_TDR has been transferred to the shift register.

TDRE equals zero when the SPI is disabled or at reset. The SPI enable command sets this bit to 1.

• MODF: Mode Fault Error (cleared on read)
0 = No mode fault has been detected since the last read of SPI_SR.

1 = A mode fault occurred since the last read of SPI_SR.

• OVRES: Overrun Error Status (cleared on read)
0 = No overrun has been detected since the last read of SPI_SR.

1 = An overrun has occurred since the last read of SPI_SR.

An overrun occurs when SPI_RDR is loaded at least twice from the shift register since the last read of the SPI_RDR.

• ENDRX: End of RX Buffer (cleared by writing SPI_RCR or SPI_RNCR)
0 = The Receive Counter register has not reached 0 since the last write in SPI_RCR(1) or SPI_RNCR(1).

1 = The Receive Counter register has reached 0 since the last write in SPI_RCR(1) or SPI_RNCR(1).

• ENDTX: End of TX Buffer (cleared by writing SPI_TCR or SPI_TNCR)
0 = The Transmit Counter register has not reached 0 since the last write in SPI_TCR(1) or SPI_TNCR(1).

1 = The Transmit Counter register has reached 0 since the last write in SPI_TCR(1) or SPI_TNCR(1).

• RXBUFF: RX Buffer Full (cleared by writing SPI_RCR or SPI_RNCR)
0 = SPI_RCR(1) or SPI_RNCR(1) has a value other than 0.

1 = Both SPI_RCR(1) and SPI_RNCR(1) have a value of 0.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – SPIENS

15 14 13 12 11 10 9 8
– – – – – UNDES TXEMPTY NSSR

7 6 5 4 3 2 1 0
TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

 585SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• TXBUFE: TX Buffer Empty (cleared by writing SPI_TCR or SPI_TNCR)
0 = SPI_TCR(1) or SPI_TNCR(1) has a value other than 0.

1 = Both SPI_TCR(1) and SPI_TNCR(1) have a value of 0.

• NSSR: NSS Rising (cleared on read)
0 = No rising edge detected on NSS pin since the last read of SPI_SR.

1 = A rising edge occurred on NSS pin since the last read of SPI_SR.

• TXEMPTY: Transmission Registers Empty (cleared by writing SPI_TDR)
0 = As soon as data is written in SPI_TDR.

1 = SPI_TDR and internal shift register are empty. If a transfer delay has been defined, TXEMPTY is set after the end of this
delay.

• UNDES: Underrun Error Status (Slave mode only) (cleared on read)
0 = No underrun has been detected since the last read of SPI_SR.

1 = A transfer starts whereas no data has been loaded in SPI_TDR.

• SPIENS: SPI Enable Status
0 = SPI is disabled.

1 = SPI is enabled.

Note: 1. SPI_RCR, SPI_RNCR, SPI_TCR, SPI_TNCR are PDC registers.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 586

33.8.6 SPI Interrupt Enable Register

Name: SPI_IER

Address: 0x48000014

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0 = No effect.

1 = Enables the corresponding interrupt.

• RDRF: Receive Data Register Full Interrupt Enable

• TDRE: SPI Transmit Data Register Empty Interrupt Enable

• MODF: Mode Fault Error Interrupt Enable

• OVRES: Overrun Error Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• ENDTX: End of Transmit Buffer Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable

• NSSR: NSS Rising Interrupt Enable

• TXEMPTY: Transmission Registers Empty Enable

• UNDES: Underrun Error Interrupt Enable

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – UNDES TXEMPTY NSSR

7 6 5 4 3 2 1 0
TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

 587SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

33.8.7 SPI Interrupt Disable Register

Name: SPI_IDR

Address: 0x48000018

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0 = No effect.

1 = Disables the corresponding interrupt.

• RDRF: Receive Data Register Full Interrupt Disable

• TDRE: SPI Transmit Data Register Empty Interrupt Disable

• MODF: Mode Fault Error Interrupt Disable

• OVRES: Overrun Error Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable

• ENDTX: End of Transmit Buffer Interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable

• TXBUFE: Transmit Buffer Empty Interrupt Disable

• NSSR: NSS Rising Interrupt Disable

• TXEMPTY: Transmission Registers Empty Disable

• UNDES: Underrun Error Interrupt Disable

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – UNDES TXEMPTY NSSR

7 6 5 4 3 2 1 0
TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 588

33.8.8 SPI Interrupt Mask Register

Name: SPI_IMR

Address: 0x4800001C

Access: Read-only

The following configuration values are valid for all listed bit names of this register:

0 = The corresponding interrupt is not enabled.

1 = The corresponding interrupt is enabled.

• RDRF: Receive Data Register Full Interrupt Mask

• TDRE: SPI Transmit Data Register Empty Interrupt Mask

• MODF: Mode Fault Error Interrupt Mask

• OVRES: Overrun Error Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• ENDTX: End of Transmit Buffer Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask

• NSSR: NSS Rising Interrupt Mask

• TXEMPTY: Transmission Registers Empty Mask

• UNDES: Underrun Error Interrupt Mask

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – UNDES TXEMPTY NSSR

7 6 5 4 3 2 1 0
TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

 589SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

33.8.9 SPI Chip Select Register

Name: SPI_CSRx [x=0..3]

Address: 0x48000030, 0x48000034, 0x48000038, 0x4800003C

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the ”SPI Write Protection Mode Register”.
Note: 1. SPI_CSRx must be written even if the user wants to use the default reset values. The BITS field is not updated

with the translated value unless the register is written.

• CPOL: Clock Polarity
0 = The inactive state value of SPCK is logic level zero.

1 = The inactive state value of SPCK is logic level one.

CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the required
clock/data relationship between master and slave devices.

• NCPHA: Clock Phase
0 = Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.

1 = Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.

NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is used
with CPOL to produce the required clock/data relationship between master and slave devices.

• CSNAAT: Chip Select Not Active After Transfer (Ignored if CSAAT = 1)
0 = The Peripheral Chip Select Line does not rise between two transfers if the SPI_TDR is reloaded before the end of the first
transfer and if the two transfers occur on the same Chip Select.

1 = The Peripheral Chip Select Line rises systematically after each transfer performed on the same slave. It remains inactive
after the end of transfer for a minimal duration of:

(If field DLYBCS is lower than 6, a minimum of six periods is introduced.)

• CSAAT: Chip Select Active After Transfer
0 = The Peripheral Chip Select Line rises as soon as the last transfer is achieved.

1 = The Peripheral Chip Select Line does not rise after the last transfer is achieved. It remains active until a new transfer is
requested on a different chip select.

31 30 29 28 27 26 25 24
DLYBCT

23 22 21 20 19 18 17 16
DLYBS

15 14 13 12 11 10 9 8
SCBR

7 6 5 4 3 2 1 0
BITS CSAAT CSNAAT NCPHA CPOL

DLYBCS
f peripheralclock
--

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 590

• BITS: Bits Per Transfer
(See the note (1) below the SPI_CSR bitmap).

The BITS field determines the number of data bits transferred. Reserved values should not be used.

• SCBR: Serial Clock Bit Rate
In Master mode, the SPI Interface uses a modulus counter to derive the SPCK bit rate from the peripheral clock. The bit rate is
selected by writing a value from 1 to 255 in the SCBR field. The following equation determines the SPCK bit rate:

SCBR = fperipheral clock / SPCK Bit Rate

Programming the SCBR field to 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead to unpredictable results.

At reset, SCBR is 0 and the user has to program it at a valid value before performing the first transfer.
Note: If one of the SCBR fields in SPI_CSRx is set to 1, the other SCBR fields in SPI_CSRx must be set to 1 as well, if

they are used to process transfers. If they are not used to transfer data, they can be set at any value.

• DLYBS: Delay Before SPCK
This field defines the delay from NPCS falling edge (activation) to the first valid SPCK transition.

When DLYBS = 0, the delay is half the SPCK clock period.

Otherwise, the following equation determines the delay:

DLYBS = Delay Before SPCK x fperipheral clock

Value Name Description

0 8_BIT 8 bits for transfer

1 9_BIT 9 bits for transfer

2 10_BIT 10 bits for transfer

3 11_BIT 11 bits for transfer

4 12_BIT 12 bits for transfer

5 13_BIT 13 bits for transfer

6 14_BIT 14 bits for transfer

7 15_BIT 15 bits for transfer

8 16_BIT 16 bits for transfer

9 – Reserved

10 – Reserved

11 – Reserved

12 – Reserved

13 – Reserved

14 – Reserved

15 – Reserved

 591SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• DLYBCT: Delay Between Consecutive Transfers
This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select. The
delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT = 0, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the character
transfers.

Otherwise, the following equation determines the delay:

DLYBCT = (Delay Between Consecutive Transfers x fperipheral clock) / 32

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 592

33.8.10 SPI Write Protection Mode Register

Name: SPI_WPMR

Address: 0x480000E4

Access: Read/Write

• WPEN: Write Protection Enable
0: Disables the write protection if WPKEY corresponds to 0x535049 (“SPI” in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x535049 (“SPI” in ASCII).

• WPKEY: Write Protection Key

See Section 33.7.5 ”Register Write Protection” for the list of registers that can be write-protected.

31 30 29 28 27 26 25 24
WPKEY

23 22 21 20 19 18 17 16
WPKEY

15 14 13 12 11 10 9 8
WPKEY

7 6 5 4 3 2 1 0
– – – – – – – WPEN

Value Name Description

0x535049 PASSWD Writing any other value in this field aborts the write operation of the WPEN bit. Always reads as 0.

 593SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

33.8.11 SPI Write Protection Status Register

Name: SPI_WPSR

Address: 0x480000E8

Access: Read-only

• WPVS: Write Protection Violation Status
0 = No write protection violation has occurred since the last read of SPI_WPSR.

1 = A write protection violation has occurred since the last read of SPI_WPSR. If this violation is an unauthorized attempt to
write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protection Violation Source
When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
WPVSRC

7 6 5 4 3 2 1 0
– – – – – – – WPVS

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 594

34. Two-wire Interface (TWI)

34.1 Description
The Atmel Two-wire Interface (TWI) interconnects components on a unique two-wire bus, made up of one clock line
and one data line with speeds of up to 400 Kbits per second, based on a byte-oriented transfer format. It can be used
with any Atmel Two-wire Interface bus Serial EEPROM and I²C compatible device such as a Real Time Clock (RTC),
Dot Matrix/Graphic LCD Controllers and temperature sensor. The TWI is programmable as a master or a slave with
sequential or single-byte access. Multiple master capability is supported.

A configurable baud rate generator permits the output data rate to be adapted to a wide range of core clock
frequencies.

Table 34-1 lists the compatibility level of the Atmel Two-wire Interface in Master mode and a full I2C compatible
device.

Note: 1. START + b000000001 + Ack + Sr

34.2 Embedded Characteristics
 Compatible with Atmel Two-wire Interface Serial Memory and I²C Compatible Devices(1)

 One, Two or Three Bytes for Slave Address
 Sequential Read/Write Operations
 Master, Multi-master and Slave Mode Operation
 Bit Rate: Up to 400 Kbit/s
 General Call Supported in Slave mode
 SMBus Quick Command Supported in Master mode
 Connection to Peripheral DMA Controller (PDC) Channel Capabilities Optimizes Data Transfers

 One Channel for the Receiver, One Channel for the Transmitter
 Register Write Protection

Note: 1. See Table 34-1 for details on compatibility with I²C Standard.

Table 34-1. Atmel TWI Compatibility with I2C Standard

I2C Standard Atmel TWI

Standard Mode Speed (100 kHz) Supported

Fast Mode Speed (400 kHz) Supported

7- or 10-bit Slave Addressing Supported

START byte(1) Not Supported

Repeated Start (Sr) Condition Supported

ACK and NACK Management Supported

Slope Control and Input Filtering (Fast mode) Not Supported

Clock Stretching/Synchronization Supported

Multi Master Capability Supported

 595SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

34.3 List of Abbreviations

34.4 Block Diagram

Figure 34-1. Block Diagram

34.5 I/O Lines Description

34.6 Product Dependencies

34.6.1 I/O Lines

Both TWD and TWCK are bidirectional lines, connected to a positive supply voltage via a current source or pull-up
resistor. When the bus is free, both lines are high. The output stages of devices connected to the bus must have an
open-drain or open-collector to perform the wired-AND function.

Table 34-2. Abbreviations

Abbreviation Description

TWI Two-wire Interface

A Acknowledge

NA Non Acknowledge

P Stop

S Start

Sr Repeated Start

SADR Slave Address

ADR Any address except SADR

R Read

W Write

Peripheral Bridge

PMC

Peripheral
clock

Two-wire
Interface

PIO

Interrupt
Controller

TWI
Interrupt

TWCK

TWD

Bus clock

Table 34-3. I/O Lines Description

Name Description Type

TWD Two-wire Serial Data (drives external serial data line - SDA) Input/Output

TWCK Two-wire Serial Clock (drives external serial clock line - SCL) Input/Output

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 596

TWD and TWCK pins may be multiplexed with PIO lines. To enable the TWI, the user must program the PIO
Controller to dedicate TWD and TWCK as peripheral lines.

The user must not program TWD and TWCK as open-drain. This is already done by the hardware.

34.6.2 Power Management

The TWI may be clocked through the Power Management Controller (PMC), thus the user must first configure the
PMC to enable the TWI clock.

34.6.3 Interrupt Sources

The TWI has an interrupt line connected to the Interrupt Controller. In order to handle interrupts, the Interrupt
Controller must be programmed before configuring the TWI.

34.7 Functional Description

34.7.1 Transfer Format

The data put on the TWD line must be 8 bits long. Data is transferred MSB first; each byte must be followed by an
acknowledgement. The number of bytes per transfer is unlimited (see Figure 34-3).

Each transfer begins with a START condition and terminates with a STOP condition (see Figure 34-2).
 A high-to-low transition on the TWD line while TWCK is high defines the START condition.
 A low-to-high transition on the TWD line while TWCK is high defines the STOP condition.

Figure 34-2. START and STOP Conditions

Table 34-4. I/O Lines

Instance Signal I/O Line Peripheral

TWI0 TWCK0 PA25 A

TWI0 TWD0 PA24 A

TWI1 TWCK1 PB1 A

TWI1 TWD1 PB0 A

Table 34-5. Peripheral IDs

Instance ID

TWI0 19

TWI1 20

TWD

TWCK

Start Stop

 597SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 34-3. Transfer Format

34.7.2 Modes of Operation

The TWI has different modes of operations:
 Master transmitter mode
 Master receiver mode
 Multi-master transmitter mode
 Multi-master receiver mode
 Slave transmitter mode
 Slave receiver mode

These modes are described in the following sections.

34.7.3 Master Mode

34.7.3.1 Definition
The master is the device that starts a transfer, generates a clock and stops it.

34.7.3.2 Application Block Diagram

Figure 34-4. Master Mode Typical Application Block Diagram

TWD

TWCK

Start Address R/W Ack Data Ack Data Ack Stop

Host with TWI

SDA

SCL

Atmel TWI
Serial EEPROM I²C RTC I²C LCD

Controller

Slave 1 Slave 2 Slave 3

VDD

I²C
Temperature

Sensor
Slave 4

* Rp: Pull-up value as given by the I²C Standard

Rp* Rp*

TWD

TWCK

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 598

34.7.3.3 Programming Master Mode
The following fields must be programmed before entering Master mode:

1. TWI_MMR.DADR (+ IADRSZ + IADR if a 10-bit device is addressed): The device address is used to access
slave devices in Read or Write mode.

2. TWI_CWGR.CKDIV + CHDIV + CLDIV: Clock waveform.
3. TWI_CR.SVDIS: Disables the Slave mode.
4. TWI_CR.MSEN: Enables the Master mode.

Note: If the TWI is already in Master mode, the device address (DADR) can be configured without disabling the
Master mode.

34.7.3.4 Master Transmitter Mode
After the master initiates a START condition when writing into the Transmit Holding Register (TWI_THR), it sends a 7-
bit slave address, configured in the Master Mode register (DADR in TWI_MMR), to notify the slave device. The bit
following the slave address indicates the transfer direction, 0 in this case (MREAD = 0 in TWI_MMR).

The TWI transfers require the slave to acknowledge each received byte. During the acknowledge clock pulse (9th
pulse), the master releases the data line (HIGH), enabling the slave to pull it down in order to generate the
acknowledge. If the slave does not acknowledge the byte, then the Not Acknowledge flag (NACK) is set in the TWI
Status Register (TWI_SR) of the master and a STOP condition is sent. The NACK flag must be cleared by reading the
TWI Status Register (TWI_SR) before the next write into the TWI Transmit Holding Register (TWI_THR). As with the
other status bits, an interrupt can be generated if enabled in the Interrupt Enable register (TWI_IER). If the slave
acknowledges the byte, the data written in the TWI_THR is then shifted in the internal shifter and transferred. When
an acknowledge is detected, the TXRDY bit is set until a new write in the TWI_THR.

TXRDY is used as Transmit Ready for the PDC transmit channel.

While no new data is written in the TWI_THR, the serial clock line (SCL) is tied low. When new data is written in the
TWI_THR, the TWCK/SCL is released and the data is sent. Setting the STOP bit in TWI_CR generates a STOP
condition.

After a master write transfer, the SCL is stretched (tied low) as long as no new data is written in the TWI_THR or until
a STOP command is performed. See Figure 34-5, Figure 34-6, and Figure 34-7.

To clear the TXRDY flag, first set the bit TWI_CR.MSDIS, then set the bit TWI_CR.MSEN.

Figure 34-5. Master Write with One Data Byte

TXCOMP

TXRDY

Write THR (DATA)

STOP Command sent (write in TWI_CR)

TWD A DATA AS DADR W P

 599SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 34-6. Master Write with Multiple Data Bytes

Figure 34-7. Master Write with One Byte Internal Address and Multiple Data Bytes

34.7.3.5 Master Receiver Mode
The read sequence begins by setting the START bit. After the START condition has been sent, the master sends a 7-
bit slave address to notify the slave device. The bit following the slave address indicates the transfer direction—1 in
this case (MREAD = 1 in TWI_MMR). During the acknowledge clock pulse (9th pulse), the master releases the data
line (HIGH), enabling the slave to pull it down in order to generate the acknowledge. The master polls the data line
during this clock pulse and sets the NACK bit in the TWI_SR if the slave does not acknowledge the byte.

If an acknowledge is received, the master is then ready to receive data from the slave. After data has been received,
the master sends an acknowledge condition to notify the slave that the data has been received except for the last
data. See Figure 34-8. When the RXRDY bit is set in the TWI_SR, a character has been received in the Receive
Holding Register (TWI_RHR). The RXRDY bit is reset when reading the TWI_RHR.

RXRDY is used as Receive Ready for the PDC receive channel.

When a single data byte read is performed, with or without internal address (IADR), the START and STOP bits must
be set at the same time. See Figure 34-8. When a multiple data byte read is performed, with or without internal
address (IADR), the STOP bit must be set after the next-to-last data received. See Figure 34-9. For internal address
usage, see Section 34.7.3.6.

A DATA n AS DADR W DATA n+1 A PDATA n+2 A

TXCOMP

TXRDY

Write THR (Data n)

Write THR (Data n+1) Write THR (Data n+2)
Last data sent

STOP command performed
(by writing in the TWI_CR)

TWD

TWCK

A DATA n AS DADR W DATA n+1 A PDATA n+2 A

TXCOMP

TXRDY

Write THR (Data n)

Write THR (Data n+1) Write THR (Data n+2)
Last data sent

STOP command performed
(by writing in the TWI_CR)

TWD IADR A

TWCK

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 600

If the Receive Holding Register (TWI_RHR) is full (RXRDY high) and the master is receiving data, the serial clock line
is tied low before receiving the last bit of the data and until the TWI_RHR is read. Once the TWI_RHR is read, the
master stops stretching the serial clock line and ends the data reception. See Figure 34-10.

Warning: When receiving multiple bytes in Master read mode, if the next-to-last access is not read (the RXRDY flag
remains high), the last access is not completed until TWI_RHR is read. The last access stops on the next-to-last bit.
When the TWI_RHR is read, the STOP bit command must be sent within a period of half a bit only, otherwise another
read access might occur (spurious access).

A possible workaround is to set the STOP bit before reading the TWI_RHR on the next-to-last access (within the
interrupt handler).

Figure 34-8. Master Read with One Data Byte

Figure 34-9. Master Read with Multiple Data Bytes

Figure 34-10. Master Read Wait State with Multiple Data Bytes

AS DADR R DATA NA P

TXCOMP

Write START &
STOP Bit

RXRDY

Read RHR

TWD

NAAS DADR R DATA n A ADATA (n+1) A DATA (n+m)DATA (n+m)-1 PTWD

TXCOMP

Write START Bit

RXRDY

Write STOP Bit
after next-to-last data read

Read RHR
DATA n

Read RHR
DATA (n+1)

Read RHR
DATA (n+m)-1

Read RHR
DATA (n+m)

A DATA n AS DADR W DATA n+1 A PDATA n+2 A

TXCOMP

RXRDY

Read RHR (Data n)

STOP command performed
(by writing in the TWI_CR)

TWD

TWCK

Read RHR (Data n+1) Read RHR (Data n+2)

Clock Wait State

 601SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

34.7.3.6 Internal Address
The TWI can perform transfers with 7-bit slave address devices and 10-bit slave address devices.

7-bit Slave Addressing
When addressing 7-bit slave devices, the internal address bytes are used to perform random address (read or write)
accesses to reach one or more data bytes, i.e., within a memory page location in a serial memory. When performing
read operations with an internal address, the TWI performs a write operation to set the internal address into the slave
device, and then switch to Master receiver mode. Note that the second START condition (after sending the IADR) is
sometimes called “repeated start” (Sr) in I2C fully-compatible devices. See Figure 34-12. See Figure 34-11 and Figure
34-13 for master write operation with internal address.

The three internal address bytes are configurable through the Master Mode register (TWI_MMR).

If the slave device supports only a 7-bit address, i.e., no internal address, IADRSZ must be set to 0.

Table 34-6 shows the abbreviations used in Figure 34-11 and Figure 34-12.

Figure 34-11. Master Write with One, Two or Three Bytes Internal Address and One Data Byte

Figure 34-12. Master Read with One, Two or Three Bytes Internal Address and One Data Byte

Table 34-6. Abbreviations

Abbreviation Definition

S Start

Sr Repeated Start

P Stop

W Write

R Read

A Acknowledge

NA Not Acknowledge

DADR Device Address

IADR Internal Address

S DADR W A IADR(23:16) A IADR(15:8) A IADR(7:0) A DATA A P

S DADR W A IADR(15:8) A IADR(7:0) A PDATA A

A IADR(7:0) A PDATA AS DADR W

TWD

Three bytes internal address

Two bytes internal address

One byte internal address

TWD

TWD

S DADR W A IADR(23:16) A IADR(15:8) A IADR(7:0) A

S DADR W A IADR(15:8) A IADR(7:0) A

A IADR(7:0) AS DADR W

DATA NA P

Sr DADR R A

Sr DADR R A DATA NA P

Sr DADR R A DATA NA P

TWD

TWD

TWD

Three bytes internal address

Two bytes internal address

One byte internal address

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 602

10-bit Slave Addressing
For a slave address higher than seven bits, the user must configure the address size (IADRSZ) and set the other
slave address bits in the Internal Address register (TWI_IADR). The two remaining internal address bytes, IADR[15:8]
and IADR[23:16] can be used the same way as in 7-bit slave addressing.

Example: Address a 10-bit device (10-bit device address is b1 b2 b3 b4 b5 b6 b7 b8 b9 b10)
1. Program IADRSZ = 1.
2. Program DADR with 1 1 1 1 0 b1 b2 (b1 is the MSB of the 10-bit address, b2, etc).
3. Program TWI_IADR with b3 b4 b5 b6 b7 b8 b9 b10 (b10 is the LSB of the 10-bit address).

Figure 34-13 below shows a byte write to a memory device. This demonstrates the use of internal addresses to
access the device.

Figure 34-13. Internal Address Usage

34.7.3.7 Using the Peripheral DMA Controller (PDC)
The use of the PDC significantly reduces the CPU load.

To ensure correct implementation, proceed as follows.

Data Transmit with the PDC
1. Initialize the transmit PDC (memory pointers, transfer size - 1).
2. Configure the master (DADR, CKDIV, MREAD = 0, etc).
3. Start the transfer by setting the PDC TXTEN bit.
4. Wait for the PDC ENDTX Flag either by using the polling method or ENDTX interrupt.
5. Disable the PDC by setting the PDC TXTDIS bit.
6. Wait for the TXRDY flag in TWI_SR.
7. Set the STOP bit in TWI_CR.
8. Write the last character in TWI_THR.
9. (Only if peripheral clock must be disabled) Wait for the TXCOMP flag to be raised in TWI_SR.

Data Receive with the PDC
The PDC transfer size must be defined with the buffer size minus 2. The two remaining characters must be managed
without PDC to ensure that the exact number of bytes are received regardless of system bus latency conditions
encountered during the end of buffer transfer period.

In Slave mode, the number of characters to receive must be known in order to configure the PDC.
1. Initialize the receive PDC (memory pointers, transfer size - 2).
2. Configure the master (DADR, CKDIV, MREAD = 1, etc).
3. Set the PDC RXTEN bit.
4. (Master Only) Write the START bit in the TWI_CR to start the transfer.
5. Wait for the PDC ENDRX Flag either by using polling method or ENDRX interrupt.
6. Disable the PDC by setting the PDC RXTDIS bit.
7. Wait for the RXRDY flag in TWI_SR.
8. Set the STOP bit in TWI_CR.
9. Read the penultimate character in TWI_RHR.

S
T
A
R
T

M
S
B

Device
Address

0

L
S
B

R
/

W

A
C
K

M
S
B

W
R
I
T
E

A
C
K

A
C
K

L
S
B

A
C
K

FIRST
WORD ADDRESS

SECOND
WORD ADDRESS DATA

S
T
O
P

 603SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

10. Wait for the RXRDY flag in TWI_SR.
11. Read the last character in TWI_RHR.
12. (Only if peripheral clock must be disabled) Wait for the TXCOMP flag to be raised in TWI_SR.

34.7.3.8 SMBus Quick Command (Master Mode Only)
The TWI can perform a quick command:

1. Configure the Master mode (DADR, CKDIV, etc).
2. Write the MREAD bit in the TWI_MMR at the value of the one-bit command to be sent.
3. Start the transfer by setting the QUICK bit in the TWI_CR.

Figure 34-14. SMBus Quick Command

TXCOMP

TXRDY

Write QUICK command in TWI_CR

TWD AS DADR R/W P

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 604

34.7.3.9 Read/Write Flowcharts
The flowcharts in the following figures provide examples of read and write operations. A polling or interrupt method
can be used to check the status bits. The interrupt method requires that the Interrupt Enable Register (TWI_IER) be
configured first.

Figure 34-15. TWI Write Operation with Single Data Byte without Internal Address

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address (DADR)

- Transfer direction bit
Write ==> bit MREAD = 0

Load Transmit register
TWI_THR = Data to send

Read Status register

TXRDY = 1?

Read Status register

TXCOMP = 1?

Transfer finished

Yes

Yes

BEGIN

No

No

Write STOP Command
TWI_CR = STOP

 605SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 34-16. TWI Write Operation with Single Data Byte and Internal Address

BEGIN

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address (DADR)

- Internal address size (IADRSZ)
- Transfer direction bit

Write ==> bit MREAD = 0

Load transmit register
TWI_THR = Data to send

Read Status register

TXRDY = 1?

Read Status register

TXCOMP = 1?

Transfer finished

Set the internal address
TWI_IADR = address

Yes

Yes

No

No

Write STOP command
TWI_CR = STOP

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 606

Figure 34-17. TWI Write Operation with Multiple Data Bytes with or without Internal Address

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address

- Internal address size (if IADR used)
- Transfer direction bit

Write ==> bit MREAD = 0

Internal address size = 0?

Load Transmit register
TWI_THR = Data to send

Read Status register

TXRDY = 1?

Data to send?

Read Status register

TXCOMP = 1?

END

BEGIN

Set the internal address
TWI_IADR = address

Yes

TWI_THR = data to send

Yes

Yes

Yes

No

No

No

Write STOP Command
TWI_CR = STOP

No

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

 607SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 34-18. TWI Read Operation with Single Data Byte without Internal Address

BEGIN

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address
- Transfer direction bit

Read ==> bit MREAD = 1

Start the transfer
TWI_CR = START | STOP

Read status register

No

No

RXRDY = 1?

Read Receive Holding Register

Yes

Yes

Read Status register

TXCOMP = 1?

END

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 608

Figure 34-19. TWI Read Operation with Single Data Byte and Internal Address

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address

- Internal address size (IADRSZ)
- Transfer direction bit

Read ==> bit MREAD = 1

Read Status register

TXCOMP = 1?

END

BEGIN

Yes

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Yes

Set the internal address
TWI_IADR = address

Start the transfer
TWI_CR = START | STOP

Read Status register

RXRDY = 1?

Read Receive Holding register

No

No

 609SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 34-20. TWI Read Operation with Multiple Data Bytes with or without Internal Address

Internal address size = 0?

Start the transfer
TWI_CR = START

Stop the transfer
TWI_CR = STOP

Read Status register

RXRDY = 1?

Last data to read
but one?

Read status register

TXCOMP = 1?

END

Set the internal address
TWI_IADR = address

Yes

Yes

Yes

No

Yes

Read Receive Holding register (TWI_RHR)

No

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address

- Internal address size (if IADR used)
- Transfer direction bit

Read ==> bit MREAD = 1

BEGIN

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

No

No

Read Status register

RXRDY = 1?

Yes

Read Receive Holding register (TWI_RHR)

No

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 610

34.7.4 Multi-master Mode

34.7.4.1 Definition
In Multi-master mode, more than one master may handle the bus at the same time without data corruption by using
arbitration.

Arbitration starts as soon as two or more masters place information on the bus at the same time, and stops (arbitration
is lost) for the master that intends to send a logical one while the other master sends a logical zero.

As soon as a master lose arbitration, it stops sending data and listens to the bus in order to detect a stop. When the
stop is detected, the master may put its data on the bus by performing arbitration.

Arbitration is illustrated in Figure 34-22.

34.7.4.2 Two Multi-master Modes
Two Multi-master modes may be distinguished:

1. TWI is considered as a master only and will never be addressed.
2. TWI may be either a master or a slave and may be addressed.

Note: Arbitration is supported in both Multi-master modes.
TWI as Master Only
In this mode, TWI is considered as a Master only (MSEN is always one) and must be driven like a Master with the
ARBLST (Arbitration Lost) flag in addition.

If arbitration is lost (ARBLST = 1), the user must reinitiate the data transfer.

If the user starts a transfer (i.e., DADR + START + W + Write in THR) and if the bus is busy, the TWI automatically
waits for a STOP condition on the bus to initiate the transfer (see Figure 34-21).
Note: The state of the bus (busy or free) is not shown in the user interface.
TWI as Master or Slave
The automatic reversal from Master to Slave is not supported in case of a lost arbitration.

Then, in the case where TWI may be either a Master or a Slave, the user must manage the pseudo Multi-master
mode described in the steps below.

1. Program TWI in Slave mode (SADR + MSDIS + SVEN) and perform a slave access (if TWI is addressed).
2. If the TWI has to be set in Master mode, wait until the TXCOMP flag is at 1.
3. Program the Master mode (DADR + SVDIS + MSEN) and start the transfer (ex: START + Write in THR).
4. As soon as the Master mode is enabled, the TWI scans the bus in order to detect if it is busy or free. When the

bus is considered free, TWI initiates the transfer.
5. As soon as the transfer is initiated and until a STOP condition is sent, the arbitration becomes relevant and the

user must monitor the ARBLST flag.
6. If the arbitration is lost (ARBLST is set to 1), the user must program the TWI in Slave mode in case the Master

that won the arbitration is required to access the TWI.
7. If the TWI has to be set in Slave mode, wait until TXCOMP flag is at 1 and then program the Slave mode.

Note: If the arbitration is lost and the TWI is addressed, the TWI will not acknowledge even if it is programmed in
Slave mode as soon as ARBLST is set to 1. Then the Master must repeat SADR.

 611SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 34-21. Programmer Sends Data While the Bus is Busy

Figure 34-22. Arbitration Cases

TWCK

TWD DATA sent by a master

STOP sent by the master START sent by the TWI

DATA sent by the TWI

Bus is busy

Bus is free

A transfer is programmed
(DADR + W + START + Write THR) Transfer is initiated

TWI DATA transfer Transfer is kept

Bus is considered as free

TWCK

Bus is busy Bus is free

A transfer is programmed
(DADR + W + START + Write THR) Transfer is initiated

TWI DATA transfer Transfer is kept

Bus is considered as free

Data from a Master

Data from TWI S 0

S 0 0

1

1

1

ARBLST

S 0

S 0 0

1

1

1

TWD S 0 01

1 1

1 1

Arbitration is lost

TWI stops sending data

P

S 01P 0

1 1

1 1Data from the master Data from the TWI

Arbitration is lost

The master stops sending data

Transfer is stopped
Transfer is programmed again

(DADR + W + START + Write THR)

TWCK

TWD

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 612

The flowchart shown in Figure 34-23 gives an example of read and write operations in Multi-master mode.

Figure 34-23. Multi-master Flowchart

Program the SLAVE mode:
SADR + MSDIS + SVEN

SVACC = 1 ?

TXCOMP = 1 ?

GACC = 1 ?

Decoding of the
programming sequence

Prog seq
OK ?

Change SADR

SVREAD = 1 ?

Read Status Register

RXRDY= 1 ?

Read TWI_RHR

TXRDY= 1 ?EOSACC = 1 ?

Write in TWI_THR

Need to perform
a master access ?

Program the Master mode
DADR + SVDIS + MSEN + CLK + R / W

Read Status Register

ARBLST = 1 ?

MREAD = 1 ?

TXRDY= 0 ?

Write in TWI_THRData to send ?

RXRDY= 0 ?

Read TWI_RHR Data to read?

Read Status Register

TXCOMP = 0 ?

GENERAL CALL TREATMENT

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Stop Transfer
TWI_CR = STOP

No

No No

No

No

No

No

No

No

No

No

No

No

No No

No

START

 613SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

34.7.5 Slave Mode

34.7.5.1 Definition
Slave mode is defined as a mode where the device receives the clock and the address from another device called the
master.

In this mode, the device never initiates and never completes the transmission (START, REPEATED START and
STOP conditions are always provided by the master).

34.7.5.2 Application Block Diagram

Figure 34-24. Slave Mode Typical Application Block Diagram

34.7.5.3 Programming Slave Mode
The following fields must be programmed before entering Slave mode:

1. TWI_SMR.SADR: The slave device address is used in order to be accessed by master devices in Read or
Write mode.

2. TWI_CR.MSDIS: Disables the Master mode.
3. TWI_CR.SVEN: Enables the Slave mode.

As the device receives the clock, values written in TWI_CWGR are ignored.

34.7.5.4 Receiving Data
After a START or REPEATED START condition is detected and if the address sent by the Master matches with the
Slave address programmed in the SADR (Slave Address) field, SVACC (Slave Access) flag is set and SVREAD
(Slave Read) indicates the direction of the transfer.

SVACC remains high until a STOP condition or a repeated START is detected. When such a condition is detected,
the EOSACC (End Of Slave Access) flag is set.

Read Sequence
In the case of a read sequence (SVREAD is high), TWI transfers data written in the TWI_THR (TWI Transmit Holding
Register) until a STOP condition or a REPEATED START + an address different from SADR is detected. Note that at
the end of the read sequence TXCOMP (Transmission Complete) flag is set and SVACC reset.

As soon as data is written in the TWI_THR, the TXRDY (Transmit Holding Register Ready) flag is reset, and it is set
when the internal shifter is empty and the sent data acknowledged or not. If the data is not acknowledged, the NACK
flag is set.

Note that a STOP or a REPEATED START always follows a NACK.

To clear the TXRDY flag, first set the bit TWI_CR.SVDIS, then set the bit TWI_CR.SVEN.

See Figure 34-25.

LCD Controller

Slave 1 Slave 2 Slave 3

R R

VDD

Host with TWI Host with TWI

Master

Host with TWI

SDA

SCL

TWD

TWCK

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 614

Write Sequence
In the case of a write sequence (SVREAD is low), the RXRDY (Receive Holding Register Ready) flag is set as soon
as a character has been received in the TWI_RHR (TWI Receive Holding Register). RXRDY is reset when reading the
TWI_RHR.

TWI continues receiving data until a STOP condition or a REPEATED START + an address different from SADR is
detected. Note that at the end of the write sequence TXCOMP flag is set and SVACC reset.

See Figure 34-26.

Clock Synchronization Sequence
If TWI_RHR is not read in time, the TWI performs a clock synchronization.

Clock synchronization information is given by the bit SCLWS (Clock Wait State).

See Figure 34-29.

Clock Stretching Sequence
If TWI_THR is not written in time, the TWI performs a clock stretching.

Clock stretching information is given by the bit SCLWS (Clock Wait State).

See Figure 34-28.

General Call
In the case where a GENERAL CALL is performed, the GACC (General Call Access) flag is set.

After GACC is set, the user must interpret the meaning of the GENERAL CALL and decode the new address
programming sequence.

See Figure 34-27.

34.7.5.5 Data Transfer
Read Operation
The Read mode is defined as a data requirement from the master.

After a START or a REPEATED START condition is detected, the decoding of the address starts. If the slave address
(SADR) is decoded, SVACC is set and SVREAD indicates the direction of the transfer.

Until a STOP or REPEATED START condition is detected, TWI continues sending data loaded in the TWI_THR.

If a STOP condition or a REPEATED START + an address different from SADR is detected, SVACC is reset.

Figure 34-25 describes the write operation.

Figure 34-25. Read Access Ordered by a Master

Notes: 1. When SVACC is low, the state of SVREAD becomes irrelevant.
2. TXRDY is reset when data has been transmitted from TWI_THR to the internal shifter and set when this

data has been acknowledged or non acknowledged.

Write THR Read RHR

SVREAD has to be taken into account only while SVACC is active

TWD

TXRDY

NACK

SVACC

SVREAD

EOSACC

SADRS ADR R NA R A DATA A A DATA NA S/SrDATA NA P/S/Sr

SADR matches,
TWI answers with an ACK

SADR does not match,
TWI answers with a NACK

ACK/NACK from the Master

 615SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Write Operation
The Write mode is defined as a data transmission from the master.

After a START or a REPEATED START, the decoding of the address starts. If the slave address is decoded, SVACC
is set and SVREAD indicates the direction of the transfer (SVREAD is low in this case).

Until a STOP or REPEATED START condition is detected, TWI stores the received data in the TWI_RHR.

If a STOP condition or a REPEATED START + an address different from SADR is detected, SVACC is reset.

Figure 34-26 describes the write operation.

Figure 34-26. Write Access Ordered by a Master

Notes: 1. When SVACC is low, the state of SVREAD becomes irrelevant.
2. RXRDY is set when data has been transmitted from the internal shifter to the TWI_RHR and reset when

this data is read.

General Call
The general call is performed in order to change the address of the slave.

If a GENERAL CALL is detected, GACC is set.

After the detection of GENERAL CALL, it is up to the programmer to decode the commands which come afterwards.

In case of a WRITE command, the programmer has to decode the programming sequence and program a new SADR
if the programming sequence matches.

Figure 34-27 describes the GENERAL CALL access.

Figure 34-27. Master Performs a General Call

Note: This method allows the user to create a personal programming sequence by choosing the programming
bytes and the number of them. The programming sequence has to be provided to the master.

RXRDY

Read RHR

SVREAD has to be taken into account only while SVACC is active

TWD

SVACC

SVREAD

EOSACC

SADR does not match,
TWI answers with a NACK

SADRS ADR W NA W A DATA A A DATA NA S/SrDATA NA P/S/Sr

SADR matches,
TWI answers with an ACK

0000000 + W

GENERAL CALL PS AGENERAL CALL Reset or write DADD A New SADRDATA1 A DATA2 AA

New SADR
Programming sequence

TXD

GACC

SVACC

RESET command = 00000110X
WRITE command = 00000100X

Reset after read

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 616

Clock Synchronization/Stretching
In both Read and Write modes, it may occur that TWI_THR/TWI_RHR buffer is not filled/emptied before
transmission/reception of a new character. In this case, to avoid sending/receiving undesired data, a clock
stretching/synchronization mechanism is implemented.

Clock Stretching in Read Mode

The clock is tied low during the acknowledge phase if the internal shifter is empty and if a STOP or REPEATED
START condition was not detected. It is tied low until the internal shifter is loaded.

Figure 34-28 describes clock stretching in Read mode.

Figure 34-28. Clock Stretching in Read Mode

Notes: 1. TXRDY is reset when data has been written in the TWI_THR to the internal shifter and set when this data
has been acknowledged or non acknowledged.

2. At the end of the read sequence, TXCOMP is set after a STOP or after a REPEATED START + an
address different from SADR.

3. SCLWS is automatically set when the clock stretching mechanism is started.

DATA1

The clock is stretched after the ACK, the state of TWD is undefined during clock stretching

SCLWS

SVACC
SVREAD

TXRDY

TWCK

TWI_THR

TXCOMP

The data is memorized in TWI_THR until a new value is written

TWI_THR is transmitted to the shift register Ack or Nack from the master

DATA0DATA0 DATA2

1

2

1

CLOCK is tied low by the TWI
as long as THR is empty

S SADRS R DATA0A A DATA1 A DATA2 NA SXXXXXXX

2

Write THR

As soon as a START is detected

 617SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Clock Synchronization in Write Mode

The clock is tied low outside of the acknowledge phase if the internal shifter and the TWI_RHR is full. If a STOP or
REPEATED START condition was not detected, it is tied low until TWI_RHR is read.

Figure 34-29 describes the clock synchronization in Write mode.

Figure 34-29. Clock Synchronization in Write Mode

Notes: 1. At the end of the read sequence, TXCOMP is set after a STOP or after a REPEATED START + an
address different from SADR.

2. SCLWS is automatically set when the clock synchronization mechanism is started and automatically
reset when the mechanism is finished.

Reversal After a Repeated Start
Reversal of Read to Write

The master initiates the communication by a read command and finishes it by a write command.

Figure 34-30 describes the repeated start + reversal from Read to Write mode.

Figure 34-30. Repeated Start + Reversal from Read to Write Mode

Notes: 1. TXCOMP is only set at the end of the transmission because after the repeated start, SADR is detected
again.

Rd DATA0 Rd DATA1 Rd DATA2
SVACC

SVREAD

RXRDY

SCLWS

TXCOMP

DATA1 DATA2

TWCK is stretched on the last bit of DATA1

As soon as a START is detected

TWCK

TWD

TWI_RHR

CLOCK is tied low by the TWI as long as RHR is full

DATA0 is not read in the RHR

ADRS SADR W ADATA0A A DATA2DATA1 SNA

S SADR R ADATA0A DATA1 SADRSrNA W A DATA2 A DATA3 A P

Cleared after read

DATA0 DATA1

DATA2 DATA3

SVACC

SVREAD

TWD

TWI_THR

TWI_RHR

EOSACC

TXRDY

RXRDY

TXCOMP As soon as a START is detected

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 618

Reversal of Write to Read
The master initiates the communication by a write command and finishes it by a read command. Figure 34-31
describes the repeated start + reversal from Write to Read mode.

Figure 34-31. Repeated Start + Reversal from Write to Read Mode

Notes: 1. In this case, if TWI_THR has not been written at the end of the read command, the clock is automatically
stretched before the ACK.

2. TXCOMP is only set at the end of the transmission because after the repeated start, SADR is detected
again.

34.7.5.6 Using the Peripheral DMA Controller (PDC) in Slave Mode
The use of the PDC significantly reduces the CPU load.

Data Transmit with the PDC in Slave Mode
The following procedure shows an example of data transmission with PDC.

1. Initialize the transmit PDC (memory pointers, transfer size).
2. Start the transfer by setting the PDC TXTEN bit.
3. Wait for the PDC ENDTX flag by using either the polling method or the ENDTX interrupt.
4. Disable the PDC by setting the PDC TXTDIS bit.
5. (Only if peripheral clock must be disabled) Wait for the TXCOMP flag to be raised in TWI_SR.

Data Receive with the PDC in Slave Mode
The following procedure shows an example of data transmission with PDC where the number of characters to be
received is known.

1. Initialize the receive PDC (memory pointers, transfer size).
2. Set the PDC RXTEN bit.
3. Wait for the PDC ENDRX flag by using either the polling method or the ENDRX interrupt.
4. Disable the PDC by setting the PDC RXTDIS bit.
5. (Only if peripheral clock must be disabled) Wait for the TXCOMP flag to be raised in TWI_SR.

S SADR W ADATA0A DATA1 SADRSrA R A DATA2 A DATA3 NA P

Cleared after read

DATA0

DATA2 DATA3

DATA1

TXCOMP

TXRDY

RXRDY

As soon as a START is detected

Read TWI_RHR

SVACC

SVREAD

TWD

TWI_RHR

TWI_THR

EOSACC

 619SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

34.7.5.7 Read Write Flowcharts
The flowchart shown in Figure 34-32 gives an example of read and write operations in Slave mode. A polling or
interrupt method can be used to check the status bits. The interrupt method requires that the Interrupt Enable Register
(TWI_IER) be configured first.

Figure 34-32. Read Write Flowchart in Slave Mode

34.7.6 Register Write Protection

To prevent any single software error from corrupting TWI behavior, certain registers in the address space can be
write-protected by setting the WPEN bit in the ”TWI Write Protection Mode Register” (TWI_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the ”TWI Write Protection Status Register”
(TWI_WPSR) is set and the WPVSRC field shows the register in which the write access has been attempted.

The WPVS bit is automatically cleared after reading the TWI_WPSR.

The following registers can be write-protected:
 ”TWI Slave Mode Register”.
 ”TWI Clock Waveform Generator Register”

Set the SLAVE mode:
SADR + MSDIS + SVEN

SVACC = 1 ?

TXCOMP = 1 ?

GACC = 1 ?

Decoding of the
programming sequence

Prog seq
OK ?

Change SADR

SVREAD = 1 ?

Read Status Register

RXRDY= 1 ?

Read TWI_RHR

TXRDY= 1 ?EOSACC = 1 ?

Write in TWI_THR

END

GENERAL CALL TREATMENT

No

No

No
No

No

No

No

No

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 620

34.8 Two-wire Interface (TWI) User Interface

Note: All unlisted offset values are considered as “reserved”.

Table 34-7. Register Mapping

Offset Register Name Access Reset

0x00 Control Register TWI_CR Write-only –

0x04 Master Mode Register TWI_MMR Read/Write 0x00000000

0x08 Slave Mode Register TWI_SMR Read/Write 0x00000000

0x0C Internal Address Register TWI_IADR Read/Write 0x00000000

0x10 Clock Waveform Generator Register TWI_CWGR Read/Write 0x00000000

0x14 - 0x1C Reserved – – –

0x20 Status Register TWI_SR Read-only 0x0000F009

0x24 Interrupt Enable Register TWI_IER Write-only –

0x28 Interrupt Disable Register TWI_IDR Write-only –

0x2C Interrupt Mask Register TWI_IMR Read-only 0x00000000

0x30 Receive Holding Register TWI_RHR Read-only 0x00000000

0x34 Transmit Holding Register TWI_THR Write-only –

0x38 - 0xE0 Reserved – – –

0xE4 Write Protection Mode Register TWI_WPMR Read/Write 0x00000000

0xE8 Write Protection Status Register TWI_WPSR Read-only 0x00000000

0xEC - 0xFC Reserved – – –

0x100 - 0x128 Reserved for PDC registers – – –

 621SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

34.8.1 TWI Control Register

Name: TWI_CR

Address: 0x40018000 (0), 0x4001C000 (1)

Access: Write-only

• START: Send a START Condition
0 = No effect.

1 = A frame beginning with a START bit is transmitted according to the features defined in the TWI Master Mode Register
(TWI_MMR).

This action is necessary for the TWI to read data from a slave. When configured in Master mode with a write operation, a frame
is sent as soon as the user writes a character in the Transmit Holding Register (TWI_THR).

• STOP: Send a STOP Condition
0 = No effect.

1 = STOP condition is sent just after completing the current byte transmission in Master read mode.
– In single data byte master read, the START and STOP must both be set.
– In multiple data bytes master read, the STOP must be set after the last data received but one.
– In Master read mode, if a NACK bit is received, the STOP is automatically performed.
– In master data write operation, a STOP condition is sent when transmission of the current data has ended.

• MSEN: TWI Master Mode Enabled
0 = No effect.

1 = Enables the Master mode (MSDIS must be written to 0).
Note: Switching from Slave to Master mode is only permitted when TXCOMP = 1.

• MSDIS: TWI Master Mode Disabled
0 = No effect.

1 = The Master mode is disabled, all pending data is transmitted. The shifter and holding characters (if it contains data) are
transmitted in case of write operation. In read operation, the character being transferred must be completely received before
disabling.

• SVEN: TWI Slave Mode Enabled
0 = No effect.

1 = Enables the Slave mode (SVDIS must be written to 0).
Note: Switching from Master to Slave mode is only permitted when TXCOMP = 1.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
SWRST QUICK SVDIS SVEN MSDIS MSEN STOP START

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 622

• SVDIS: TWI Slave Mode Disabled
0 = No effect.

1 = The Slave mode is disabled. The shifter and holding characters (if it contains data) are transmitted in case of read opera-
tion. In write operation, the character being transferred must be completely received before disabling.

• QUICK: SMBus Quick Command
0 = No effect.

1 = If Master mode is enabled, a SMBus Quick Command is sent.

• SWRST: Software Reset
0 = No effect.

1 = Equivalent to a system reset.

 623SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

34.8.2 TWI Master Mode Register

Name: TWI_MMR

Address: 0x40018004 (0), 0x4001C004 (1)

Access: Read/Write

• IADRSZ: Internal Device Address Size

• MREAD: Master Read Direction
0 = Master write direction.

1 = Master read direction.

• DADR: Device Address
The device address is used to access slave devices in Read or Write mode. These bits are only used in Master mode.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– DADR

15 14 13 12 11 10 9 8
– – – MREAD – – IADRSZ

7 6 5 4 3 2 1 0
– – – – – – – –

Value Name Description

0 NONE No internal device address

1 1_BYTE One-byte internal device address

2 2_BYTE Two-byte internal device address

3 3_BYTE Three-byte internal device address

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 624

34.8.3 TWI Slave Mode Register

Name: TWI_SMR

Address: 0x40018008 (0), 0x4001C008 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the ”TWI Write Protection Mode Register”.

• SADR: Slave Address
The slave device address is used in Slave mode in order to be accessed by master devices in Read or Write mode.

SADR must be programmed before enabling the Slave mode or after a general call. Writes at other times have no effect.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– SADR

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – –

 625SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

34.8.4 TWI Internal Address Register

Name: TWI_IADR

Address: 0x4001800C (0), 0x4001C00C (1)

Access: Read/Write

• IADR: Internal Address
0, 1, 2 or 3 bytes depending on IADRSZ.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
IADR

15 14 13 12 11 10 9 8
IADR

7 6 5 4 3 2 1 0
IADR

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 626

34.8.5 TWI Clock Waveform Generator Register

Name: TWI_CWGR

Address: 0x40018010 (0), 0x4001C010 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the ”TWI Write Protection Mode Register”.

TWI_CWGR is only used in Master mode.

• CLDIV: Clock Low Divider
The TWCK low period is defined as follows:

• CHDIV: Clock High Divider
The TWCK high period is defined as follows:

• CKDIV: Clock Divider
The CKDIV field is used to increase both TWCK high and low periods.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – CKDIV

15 14 13 12 11 10 9 8
CHDIV

7 6 5 4 3 2 1 0
CLDIV

tlow CLDIV 2CKDIV  4+ t peripheralclock=

thigh CHDIV 2CKDIV  4+ t peripheralclock=

 627SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

34.8.6 TWI Status Register

Name: TWI_SR

Address: 0x40018020 (0), 0x4001C020 (1)

Access: Read-only

• TXCOMP: Transmission Completed (cleared by writing TWI_THR)
TXCOMP used in Master mode:

0 = During the length of the current frame.

1 = When both holding register and internal shifter are empty and STOP condition has been sent.

TXCOMP behavior in Master mode can be seen in Figure 34-7 and in Figure 34-9.

TXCOMP used in Slave mode:

0 = As soon as a START is detected.

1 = After a STOP or a REPEATED START + an address different from SADR is detected.

TXCOMP behavior in Slave mode can be seen in Figure 34-28, Figure 34-29, Figure 34-30 and Figure 34-31.

• RXRDY: Receive Holding Register Ready (cleared by reading TWI_RHR)
0 = No character has been received since the last TWI_RHR read operation.

1 = A byte has been received in the TWI_RHR since the last read.

RXRDY behavior in Master mode can be seen in Figure 34-9.

RXRDY behavior in Slave mode can be seen in Figure 34-26, Figure 34-29, Figure 34-30 and Figure 34-31.

• TXRDY: Transmit Holding Register Ready (cleared by writing TWI_THR)
TXRDY used in Master mode:

0 = The transmit holding register has not been transferred into internal shifter. Set to 0 when writing into TWI_THR.

1 = As soon as a data byte is transferred from TWI_THR to internal shifter or if a NACK error is detected, TXRDY is set at the
same time as TXCOMP and NACK. TXRDY is also set when MSEN is set (enable TWI).

TXRDY behavior in Master mode can be seen in Figure 34-5, Figure 34-6 and Figure 34-7.

TXRDY used in Slave mode:

0 = As soon as data is written in the TWI_THR, until this data has been transmitted and acknowledged (ACK or NACK).

1 = It indicates that the TWI_THR is empty and that data has been transmitted and acknowledged.

If TXRDY is high and if a NACK has been detected, the transmission will be stopped. Thus when TRDY = NACK = 1, the
programmer must not fill TWI_THR to avoid losing it.

TXRDY behavior in Slave mode can be seen in Figure 34-25, Figure 34-28, Figure 34-30 and Figure 34-31.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TXBUFE RXBUFF ENDTX ENDRX EOSACC SCLWS ARBLST NACK

7 6 5 4 3 2 1 0
– OVRE GACC SVACC SVREAD TXRDY RXRDY TXCOMP

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 628

• SVREAD: Slave Read
This bit is only used in Slave mode. When SVACC is low (no Slave access has been detected) SVREAD is irrelevant.

0 = Indicates that a write access is performed by a Master.

1 = Indicates that a read access is performed by a Master.

SVREAD behavior can be seen in Figure 34-25, Figure 34-26, Figure 34-30 and Figure 34-31.

• SVACC: Slave Access
This bit is only used in Slave mode.

0 = TWI is not addressed. SVACC is automatically cleared after a NACK or a STOP condition is detected.

1 = Indicates that the address decoding sequence has matched (A Master has sent SADR). SVACC remains high until a
NACK or a STOP condition is detected.

SVACC behavior can be seen in Figure 34-25, Figure 34-26, Figure 34-30 and Figure 34-31.

• GACC: General Call Access (cleared on read)
This bit is only used in Slave mode.

0 = No General Call has been detected.

1 = A General Call has been detected. After the detection of General Call, if need be, the programmer may acknowledge this
access and decode the following bytes and respond according to the value of the bytes.

GACC behavior can be seen in Figure 34-27.

• OVRE: Overrun Error (cleared on read)
This bit is only used in Master mode.

0 = TWI_RHR has not been loaded while RXRDY was set.

1 = TWI_RHR has been loaded while RXRDY was set. Reset by read in TWI_SR when TXCOMP is set.

• NACK: Not Acknowledged (cleared on read)
NACK used in Master mode:

0 = Each data byte has been correctly received by the far-end side TWI slave component.

1 = A data byte or an address byte has not been acknowledged by the slave component. Set at the same time as TXCOMP.

NACK used in Slave Read mode:

0 = Each data byte has been correctly received by the Master.

1 = In Read mode, a data byte has not been acknowledged by the Master. When NACK is set, the programmer must not fill
TWI_THR even if TXRDY is set, because that means that the Master will stop the data transfer or reinitiate it.

Note that in Slave write mode all data are acknowledged by the TWI.

• ARBLST: Arbitration Lost (cleared on read)
This bit is only used in Master mode.

0 = Arbitration won.

1 = Arbitration lost. Another master of the TWI bus has won the multi-master arbitration. TXCOMP is set at the same time.

 629SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• SCLWS: Clock Wait State
This bit is only used in Slave mode.

0 = The clock is not stretched.

1 = The clock is stretched. TWI_THR / TWI_RHR buffer is not filled / emptied before transmission / reception of a new
character.

SCLWS behavior can be seen in Figure 34-28 and Figure 34-29.

• EOSACC: End Of Slave Access (cleared on read)
This bit is only used in Slave mode.

0 = A slave access is being performed.

1 = The Slave access is finished. End Of Slave Access is automatically set as soon as SVACC is reset.

EOSACC behavior can be seen in Figure 34-30 and Figure 34-31.

• ENDRX: End of RX buffer (cleared by writing TWI_RCR or TWI_RNCR)
0 = The Receive Counter Register has not reached 0 since the last write in TWI_RCR or TWI_RNCR.

1 = The Receive Counter Register has reached 0 since the last write in TWI_RCR or TWI_RNCR.

• ENDTX: End of TX buffer (cleared by writing TWI_TCR or TWI_TNCR)
0 = The Transmit Counter Register has not reached 0 since the last write in TWI_TCR or TWI_TNCR.

1 = The Transmit Counter Register has reached 0 since the last write in TWI_TCR or TWI_TNCR.

• RXBUFF: RX Buffer Full (cleared by writing TWI_RCR or TWI_RNCR)
0 = TWI_RCR or TWI_RNCR have a value other than 0.

1 = Both TWI_RCR and TWI_RNCR have a value of 0.

• TXBUFE: TX Buffer Empty (cleared by writing TWI_TCR or TWI_TNCR)
0 = TWI_TCR or TWI_TNCR have a value other than 0.

1 = Both TWI_TCR and TWI_TNCR have a value of 0.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 630

34.8.7 TWI Interrupt Enable Register

Name: TWI_IER

Address: 0x40018024 (0), 0x4001C024 (1)

Access: Write-only

The following configuration values are valid for all listed bit names of this register.

0 = No effect.

1 = Enables the corresponding interrupt.

• TXCOMP: Transmission Completed Interrupt Enable

• RXRDY: Receive Holding Register Ready Interrupt Enable

• TXRDY: Transmit Holding Register Ready Interrupt Enable

• SVACC: Slave Access Interrupt Enable

• GACC: General Call Access Interrupt Enable

• OVRE: Overrun Error Interrupt Enable

• NACK: Not Acknowledge Interrupt Enable

• ARBLST: Arbitration Lost Interrupt Enable

• SCL_WS: Clock Wait State Interrupt Enable

• EOSACC: End Of Slave Access Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• ENDTX: End of Transmit Buffer Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TXBUFE RXBUFF ENDTX ENDRX EOSACC SCL_WS ARBLST NACK

7 6 5 4 3 2 1 0
– OVRE GACC SVACC – TXRDY RXRDY TXCOMP

 631SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

34.8.8 TWI Interrupt Disable Register

Name: TWI_IDR

Address: 0x40018028 (0), 0x4001C028 (1)

Access: Write-only

The following configuration values are valid for all listed bit names of this register.

0 = No effect.

1 = Disables the corresponding interrupt.

• TXCOMP: Transmission Completed Interrupt Disable

• RXRDY: Receive Holding Register Ready Interrupt Disable

• TXRDY: Transmit Holding Register Ready Interrupt Disable

• SVACC: Slave Access Interrupt Disable

• GACC: General Call Access Interrupt Disable

• OVRE: Overrun Error Interrupt Disable

• NACK: Not Acknowledge Interrupt Disable

• ARBLST: Arbitration Lost Interrupt Disable

• SCL_WS: Clock Wait State Interrupt Disable

• EOSACC: End Of Slave Access Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable

• ENDTX: End of Transmit Buffer Interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable

• TXBUFE: Transmit Buffer Empty Interrupt Disable

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TXBUFE RXBUFF ENDTX ENDRX EOSACC SCL_WS ARBLST NACK

7 6 5 4 3 2 1 0
– OVRE GACC SVACC – TXRDY RXRDY TXCOMP

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 632

34.8.9 TWI Interrupt Mask Register

Name: TWI_IMR

Address: 0x4001802C (0), 0x4001C02C (1)

Access: Read-only

The following configuration values are valid for all listed bit names of this register.

0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

• TXCOMP: Transmission Completed Interrupt Mask

• RXRDY: Receive Holding Register Ready Interrupt Mask

• TXRDY: Transmit Holding Register Ready Interrupt Mask

• SVACC: Slave Access Interrupt Mask

• GACC: General Call Access Interrupt Mask

• OVRE: Overrun Error Interrupt Mask

• NACK: Not Acknowledge Interrupt Mask

• ARBLST: Arbitration Lost Interrupt Mask

• SCL_WS: Clock Wait State Interrupt Mask

• EOSACC: End Of Slave Access Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• ENDTX: End of Transmit Buffer Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TXBUFE RXBUFF ENDTX ENDRX EOSACC SCL_WS ARBLST NACK

7 6 5 4 3 2 1 0
– OVRE GACC SVACC – TXRDY RXRDY TXCOMP

 633SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

34.8.10 TWI Receive Holding Register

Name: TWI_RHR

Address: 0x40018030 (0), 0x4001C030 (1)

Access: Read-only

• RXDATA: Master or Slave Receive Holding Data

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
RXDATA

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 634

34.8.11 TWI Transmit Holding Register

Name: TWI_THR

Address: 0x40018034 (0), 0x4001C034 (1)

Access: Write-only

• TXDATA: Master or Slave Transmit Holding Data

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
TXDATA

 635SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

34.8.12 TWI Write Protection Mode Register

Name: TWI_WPMR

Address: 0x400180E4 (0), 0x4001C0E4 (1)

Access: Read/Write

• WPEN: Write Protection Enable
0 = Disables the write protection if WPKEY corresponds to 0x545749 (“TWI” in ASCII).

1 = Enables the write protection if WPKEY corresponds to 0x545749 (“TWI” in ASCII).

See Section 34.7.6 ”Register Write Protection” for the list of registers that can be write-protected.

• WPKEY: Write Protection Key

31 30 29 28 27 26 25 24
WPKEY

23 22 21 20 19 18 17 16
WPKEY

15 14 13 12 11 10 9 8
WPKEY

7 6 5 4 3 2 1 0
– – – – – – – WPEN

Value Name Description

0x545749 PASSWD Writing any other value in this field aborts the write operation of the WPEN bit. Always reads as 0.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 636

34.8.13 TWI Write Protection Status Register

Name: TWI_WPSR

Address: 0x400180E8 (0), 0x4001C0E8 (1)

Access: Read-only

• WPVS: Write Protection Violation Status
0 = No write protection violation has occurred since the last read of the TWI_WPSR.

1 = A write protection violation has occurred since the last read of the TWI_WPSR. If this violation is an unauthorized attempt
to write a protected register, the violation is reported into field WPVSRC.

• WPVSRC: Write Protection Violation Source
When WPVS = 1, WPVSRC shows the register address offset at which a write access has been attempted.

31 30 29 28 27 26 25 24
WPVSRC

23 22 21 20 19 18 17 16
WPVSRC

15 14 13 12 11 10 9 8
WPVSRC

7 6 5 4 3 2 1 0
– – – – – – – WPVS

 637SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

35. Universal Asynchronous Receiver Transmitter (UART)

35.1 Description
The Universal Asynchronous Receiver Transmitter (UART) features a two-pin UART that can be used for
communication and trace purposes and offers an ideal medium for in-situ programming solutions.

Moreover, the association with a peripheral DMA controller (PDC) permits packet handling for these tasks with
processor time reduced to a minimum.

The optical link transceiver establishes electrically isolated serial communication with hand-held equipment, such as
calibrators compliant with ANSI-C12.18 or IEC62056-21 norms.

35.2 Embedded Characteristics
 Two-pin UART

 Independent Receiver and Transmitter with a Common Programmable Baud Rate Generator
 Even, Odd, Mark or Space Parity Generation
 Parity, Framing and Overrun Error Detection
 Automatic Echo, Local Loopback and Remote Loopback Channel Modes
 Digital Filter on Receive Line
 Interrupt Generation
 Support for Two PDC Channels with Connection to Receiver and Transmitter
 Optical Link Transceiver for Communication Compliant with ANSI-C12.18 or IEC62056-21 Norms

35.3 Block Diagram

Figure 35-1. UART Block Diagram

Table 35-1. UART Pin Description

Pin Name Description Type

URXD UART Receive Data Input

UTXD UART Transmit Data Output

Peripheral DMA Controller
Baud Rate
Generator

Transmit

Receive

Interrupt
Control

Parallel
Input/
Output

UTXD

URXD

uart_irq

APB

bus clock Bridge

peripheral clockPMC

UART

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 638

35.4 Product Dependencies

35.4.1 I/O Lines

The UART pins are multiplexed with PIO lines. The user must first configure the corresponding PIO Controller to
enable I/O line operations of the UART.

35.4.2 Power Management

The UART clock can be controlled through the Power Management Controller (PMC). In this case, the user must first
configure the PMC to enable the UART clock. Usually, the peripheral identifier used for this purpose is 1.

35.4.3 Interrupt Sources

The UART interrupt line is connected to one of the interrupt sources of the Interrupt Controller. Interrupt handling
requires programming of the Interrupt Controller before configuring the UART.

35.4.4 Optical Interface

The UART optical interface requires configuration of the PMC to generate 4096 kHz or 8192 kHz on the PLLA prior to
any transfer.

35.5 Functional Description
The UART operates in Asynchronous mode only and supports only 8-bit character handling (with parity). It has no
clock pin.

The UART is made up of a receiver and a transmitter that operate independently, and a common baud rate generator.
Receiver timeout and transmitter time guard are not implemented. However, all the implemented features are
compatible with those of a standard USART.

35.5.1 Baud Rate Generator

The baud rate generator provides the bit period clock named baud rate clock to both the receiver and the transmitter.
The baud rate clock is the peripheral clock divided by 16 times the clock divisor (CD) value written in the Baud Rate
Generator Register (UART_BRGR). If UART_BRGR is set to 0, the baud rate clock is disabled and the UART remains
inactive. The maximum allowable baud rate is peripheral clock divided by 16. The minimum allowable baud rate is
peripheral clock divided by (16 x 65536).

Table 35-2. I/O Lines

Instance Signal I/O Line Peripheral

UART0 URXD0 PB4 A

UART0 UTXD0 PB5 A

UART1 URXD1 PC1 A

UART1 UTXD1 PC0 A

Table 35-3. Peripherals IDs

Instance ID

UART0 8

UART1 38

 639SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 35-2. Baud Rate Generator

35.5.2 Receiver

35.5.2.1 Receiver Reset, Enable and Disable
After device reset, the UART receiver is disabled and must be enabled before being used. The receiver can be
enabled by writing the Control Register (UART_CR) with the bit RXEN at 1. At this command, the receiver starts
looking for a start bit.

The programmer can disable the receiver by writing UART_CR with the bit RXDIS at 1. If the receiver is waiting for a
start bit, it is immediately stopped. However, if the receiver has already detected a start bit and is receiving the data, it
waits for the stop bit before actually stopping its operation.

The receiver can be put in reset state by writing UART_CR with the bit RSTRX at 1. In this case, the receiver
immediately stops its current operations and is disabled, whatever its current state. If RSTRX is applied when data is
being processed, this data is lost.

35.5.2.2 Start Detection and Data Sampling
The UART only supports asynchronous operations, and this affects only its receiver. The UART receiver detects the
start of a received character by sampling the URXD signal until it detects a valid start bit. A low level (space) on URXD
is interpreted as a valid start bit if it is detected for more than seven cycles of the sampling clock, which is 16 times the
baud rate. Hence, a space that is longer than 7/16 of the bit period is detected as a valid start bit. A space which is
7/16 of a bit period or shorter is ignored and the receiver continues to wait for a valid start bit.

When a valid start bit has been detected, the receiver samples the URXD at the theoretical midpoint of each bit. It is
assumed that each bit lasts 16 cycles of the sampling clock (1-bit period) so the bit sampling point is eight cycles (0.5-
bit period) after the start of the bit. The first sampling point is therefore 24 cycles (1.5-bit periods) after detecting the
falling edge of the start bit.

Each subsequent bit is sampled 16 cycles (1-bit period) after the previous one.

Figure 35-3. Start Bit Detection

0 0

1

>1

CD

CD

Peripheral clock 16-bit Counter OUT

Divide
by 16

Baud Rate
Clock

Receiver
Sampling Clock

D0 D1 D2 D3 D4 D5 D6 D7 PS S D0 D1 D2 D3 D4 D5 D6 D7 PURXD

RSTSTA

RXRDY

OVRE

stop stop

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 640

Figure 35-4. Character Reception

35.5.2.3 Receiver Ready
When a complete character is received, it is transferred to the Receive Holding Register (UART_RHR) and the
RXRDY status bit in the Status Register (UART_SR) is set. The bit RXRDY is automatically cleared when
UART_RHR is read.

Figure 35-5. Receiver Ready

35.5.2.4 Receiver Overrun
The OVRE status bit in UART_SR is set if UART_RHR has not been read by the software (or the PDC) since the last
transfer, the RXRDY bit is still set and a new character is received. OVRE is cleared when the software writes a 1 to
the bit RSTSTA (Reset Status) in UART_CR.

Figure 35-6. Receiver Overrun

35.5.2.5 Parity Error
Each time a character is received, the receiver calculates the parity of the received data bits, in accordance with the
field PAR in the Mode Register (UART_MR). It then compares the result with the received parity bit. If different, the
parity error bit PARE in UART_SR is set at the same time RXRDY is set. The parity bit is cleared when UART_CR is
written with the bit RSTSTA (Reset Status) at 1. If a new character is received before the reset status command is
written, the PARE bit remains at 1.

D0 D1 D2 D3 D4 D5 D6 D7

URXD

True Start Detection
Sampling

Parity Bit
Stop Bit

Example: 8-bit, parity enabled 1 stop

1 bit
period

0.5 bit
period

D0 D1 D2 D3 D4 D5 D6 D7 PS S D0 D1 D2 D3 D4 D5 D6 D7 PURXD

Read UART_RHR

RXRDY

D0 D1 D2 D3 D4 D5 D6 D7 PS S D0 D1 D2 D3 D4 D5 D6 D7 PURXD

RSTSTA

RXRDY

OVRE

stop stop

 641SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 35-7. Parity Error

35.5.2.6 Receiver Framing Error
When a start bit is detected, it generates a character reception when all the data bits have been sampled. The stop bit
is also sampled and when it is detected at 0, the FRAME (Framing Error) bit in UART_SR is set at the same time the
RXRDY bit is set. The FRAME bit remains high until the Control Register (UART_CR) is written with the bit RSTSTA
at 1.

Figure 35-8. Receiver Framing Error

35.5.2.7 Receiver Digital Filter
The UART embeds a digital filter on the receive line. It is disabled by default and can be enabled by writing a logical 1
in the FILTER bit of UART_MR. When enabled, the receive line is sampled using the 16x bit clock and a three-sample
filter (majority 2 over 3) determines the value of the line.

35.5.3 Transmitter

35.5.3.1 Transmitter Reset, Enable and Disable
After device reset, the UART transmitter is disabled and must be enabled before being used. The transmitter is
enabled by writing UART_CR with the bit TXEN at 1. From this command, the transmitter waits for a character to be
written in the Transmit Holding Register (UART_THR) before actually starting the transmission.

The programmer can disable the transmitter by writing UART_CR with the bit TXDIS at 1. If the transmitter is not
operating, it is immediately stopped. However, if a character is being processed into the internal shift register and/or a
character has been written in the UART_THR, the characters are completed before the transmitter is actually stopped.

The programmer can also put the transmitter in its reset state by writing the UART_CR with the bit RSTTX at 1. This
immediately stops the transmitter, whether or not it is processing characters.

35.5.3.2 Transmit Format
The UART transmitter drives the pin UTXD at the baud rate clock speed. The line is driven depending on the format
defined in UART_MR and the data stored in the internal shift register. One start bit at level 0, then the 8 data bits, from
the lowest to the highest bit, one optional parity bit and one stop bit at 1 are consecutively shifted out as shown in the
following figure. The field PARE in UART_MR defines whether or not a parity bit is shifted out. When a parity bit is
enabled, it can be selected between an odd parity, an even parity, or a fixed space or mark bit.

stopD0 D1 D2 D3 D4 D5 D6 D7 PSURXD

RSTSTA

RXRDY

PARE

Wrong Parity Bit

D0 D1 D2 D3 D4 D5 D6 D7 PSURXD

RSTSTA

RXRDY

FRAME

Stop Bit
Detected at 0

stop

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 642

Figure 35-9. Character Transmission

35.5.3.3 Transmitter Control
When the transmitter is enabled, the bit TXRDY (Transmitter Ready) is set in UART_SR. The transmission starts
when the programmer writes in the UART_THR, and after the written character is transferred from UART_THR to the
internal shift register. The TXRDY bit remains high until a second character is written in UART_THR. As soon as the
first character is completed, the last character written in UART_THR is transferred into the internal shift register and
TXRDY rises again, showing that the holding register is empty.

When both the internal shift register and UART_THR are empty, i.e., all the characters written in UART_THR have
been processed, the TXEMPTY bit rises after the last stop bit has been completed.

Figure 35-10. Transmitter Control

35.5.4 Optical Interface

To use the optical interface circuitry, the PLLA clock must be ready and programmed to generate a frequency within
the range of 4096 up to 8192 kHz. This range allows a modulation by a clock with an adjustable frequency from 30 up
to 60 kHz.

The optical interface is enabled by writing a 1 to the bit OPT_EN in UART_MR (see “UART Mode Register”).

When OPT_EN = 1, the URXD pad is automatically configured in Analog mode and the analog comparator is enabled
(see Figure 35-11).

To match the characteristics of the off-chip optical receiver circuitry, the voltage reference threshold of the embedded
comparator can be adjusted from VDDIO/10 up to VDD/2 by programming the OPT_CMPTH field in UART_MR.

The NRZ output of the UART transmitter sub-module is modulated with the 30 up to 60 kHz modulation clock prior to
driving the PIO controller.

A logical 0 on the UART transmitter sub-module output generates the said modulated signal (see Figure 35-12)
having a frequency programmable from 30 kHz up to 60 kHz (38 kHz is the default value assuming the PLLA clock

D0 D1 D2 D3 D4 D5 D6 D7

UTXD

Start
Bit

Parity
Bit

Stop
Bit

Example: Parity enabled

Baud Rate
 Clock

UART_THR

Shift Register

UTXD

TXRDY

TXEMPTY

Data 0 Data 1

Data 0

Data 0

Data 1

Data 1S S PP

Write Data 0
in UART_THR

Write Data 1
in UART_THR

stopstop

 643SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

frequency is 8192 kHz). A logical 1 on the UART transmitter sub-module output generates a stuck-at 1 output signal
(no modulation). The idle polarity of the modulated signal is 1 (OPT_MDINV = 0 in UART_MR).

The idle polarity of the modulated signal can be inverted by writing a 1 to the OPT_MDINV bit in UART_MR.

The duty cycle of the modulated signal can be adjusted from 6.25% up to 50% (default value) by steps of 6.25% by
programming the OPT_DUTY field in UART_MR.

Figure 35-11. Optical Interface Block Diagram

Figure 35-12. Optical Interface Waveforms

OPT_EN OPT_CLKDIV OPT_DUTY OPT_MDINV

OPT_CMPTH

OPT_EN

Baud Rate
Generator

Transmit

Receive

Interrupt
Control

Power
Management

Controller

Peripheral
Clock

uart_irq

UAR T

PLLACK

0

pio_irq

1

on

Optical Clock
Divider

Optical Duty Cycle
Generator

/8

1

Optical Modulation

Parallel
Input/

Output

UTXD

URXD

Analog
Comparator

0

vth

OPT_EN

OPT_RXINV

Optical Receive Logic

UART Transmitter Ouput

UTXD (OPT_MDINV = 1)

UTXD (OPT_MDINV = 0)

tperipheral clock * (8 * (OPT_CLKDIV + 8))

OPT_DUTY = 0

OPT_DUTY = 3

OPT_DUTY = 7

UTXD (OPT_EN = 0)

OPT_EN = 1

OPT_MDINV = 0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 644

The default configuration values of the optical link circuitries allow the 38 kHz modulation, a 50% duty cycle and an
idle polarity allowing a direct drive of an IR LED through a resistor (see Figure 35-13).

Refer to the section “Electrical Characteristics” for drive capability of the buffer associated with the UTXD output.

In case of direct drive of the IR LED as shown in Figure 35-13, the PIO must be programmed in Multi-driver mode
(open-drain). To do so, the adequate index and values must be programmed into the PIO Multi-driver Enable Register
(PIO_MDER) (status reported on the PIO Multi-driver Status Register (PIO_MDSR)). Refer to the section “Parallel
Input/Output (PIO)” for details.

If an off-chip current amplifier is used to drive the transmitting of the IR LED, the PIO may be programmed in Default
drive mode (non open-drain) for the line index driving the UTXD output, or in Open-drain mode depending on the type
of external circuitry.

Figure 35-13. Optical Interface Connected to IR Components

35.5.5 Peripheral DMA Controller (PDC)

Both the receiver and the transmitter of the UART are connected to a PDC.

The PDC channels are programmed via registers that are mapped within the UART user interface from the offset
0x100. The status bits are reported in UART_SR and generate an interrupt.

The RXRDY bit triggers the PDC channel data transfer of the receiver. This results in a read of the data in
UART_RHR. The TXRDY bit triggers the PDC channel data transfer of the transmitter. This results in a write of data in
UART_THR.

35.5.6 Test Modes

The UART supports three test modes. These modes of operation are programmed by using the CHMODE field in
UART_MR.

The Automatic Echo mode allows a bit-by-bit retransmission. When a bit is received on the URXD line, it is sent to the
UTXD line. The transmitter operates normally, but has no effect on the UTXD line.

The Local Loopback mode allows the transmitted characters to be received. UTXD and URXD pins are not used and
the output of the transmitter is internally connected to the input of the receiver. The URXD pin level has no effect and
the UTXD line is held high, as in idle state.

The Remote Loopback mode directly connects the URXD pin to the UTXD line. The transmitter and the receiver are
disabled and have no effect. This mode allows a bit-by-bit retransmission.

UAR T PIO

UTXD

URXD

txd

rxd

Re
si

st
orPIO_MDSR [UTXD]

I.R. LED

VDDIO

VDDIO

PhotoTransistor

1

1

0

0

0

0

 645SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 35-14. Test Modes

35.6 Universal Asynchronous Receiver Transmitter (UART) User Interface

Receiver

Transmitter
Disabled

RXD

TXD

Receiver

Transmitter
Disabled

RXD

TXD

VDD

Disabled

Receiver

Transmitter
Disabled

RXD

TXD

Disabled

Automatic Echo

Local Loopback

Remote Loopback VDD

Table 35-4. Register Mapping

Offset Register Name Access Reset

0x0000 Control Register UART_CR Write-only –

0x0004 Mode Register UART_MR Read/Write 0x0013_0000

0x0008 Interrupt Enable Register UART_IER Write-only –

0x000C Interrupt Disable Register UART_IDR Write-only –

0x0010 Interrupt Mask Register UART_IMR Read-only 0x0

0x0014 Status Register UART_SR Read-only –

0x0018 Receive Holding Register UART_RHR Read-only 0x0

0x001C Transmit Holding Register UART_THR Write-only –

0x0020 Baud Rate Generator Register UART_BRGR Read/Write 0x0

0x0024 - 0x003C Reserved – – –

0x0040 - 0x00E8 Reserved – – –

0x00EC - 0x00FC Reserved – – –

0x0100 - 0x0128 Reserved for PDC registers – – –

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 646

35.6.1 UART Control Register

Name: UART_CR

Address: 0x400E0600 (0), 0x48004000 (1)

Access: Write-only

• RSTRX: Reset Receiver
0: No effect.

1: The receiver logic is reset and disabled. If a character is being received, the reception is aborted.

• RSTTX: Reset Transmitter
0: No effect.

1: The transmitter logic is reset and disabled. If a character is being transmitted, the transmission is aborted.

• RXEN: Receiver Enable
0: No effect.

1: The receiver is enabled if RXDIS is 0.

• RXDIS: Receiver Disable
0: No effect.

1: The receiver is disabled. If a character is being processed and RSTRX is not set, the character is completed before the
receiver is stopped.

• TXEN: Transmitter Enable
0: No effect.

1: The transmitter is enabled if TXDIS is 0.

• TXDIS: Transmitter Disable
0: No effect.

1: The transmitter is disabled. If a character is being processed and a character has been written in the UART_THR and
RSTTX is not set, both characters are completed before the transmitter is stopped.

• RSTSTA: Reset Status
0: No effect.

1: Resets the status bits PARE, FRAME and OVRE in the UART_SR.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – RSTSTA

7 6 5 4 3 2 1 0
TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –

 647SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

35.6.2 UART Mode Register

Name: UART_MR

Address: 0x400E0604 (0), 0x48004004 (1)

Access: Read/Write

• OPT_EN: UART Optical Interface Enable

• OPT_RXINV: UART Receive Data Inverted

• OPT_MDINV: UART Modulated Data Inverted

• FILTER: Receiver Digital Filter
0 (DISABLED): UART does not filter the receive line.

1 (ENABLED): UART filters the receive line using a three-sample filter (16x-bit clock) (2 over 3 majority).

31 30 29 28 27 26 25 24
– OPT_CMPTH – OPT_DUTY

23 22 21 20 19 18 17 16
– – – OPT_CLKDIV

15 14 13 12 11 10 9 8
CHMODE – – PAR –

7 6 5 4 3 2 1 0
– – – FILTER – OPT_MDINV OPT_RXINV OPT_EN

Value Name Description

0 DISABLED The UART transmitter data is not inverted before modulation.

1 ENABLED The UART transmitter data is inverted before modulation.

Value Name Description

0 DISABLED The comparator data output is not inverted before entering UART.

1 ENABLED The comparator data output is inverted before entering UART.

Value Name Description

0 DISABLED The output of the modulator is not inverted.

1 ENABLED The output of the modulator is inverted.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 648

• PAR: Parity Type

• CHMODE: Channel Mode

• OPT_CLKDIV: Optical Link Clock Divider
0 - 31: The optical modulation clock frequency is defined by PLLACK / (8 * (OPT_CLKDIV + 8)).

• OPT_DUTY: Optical Link Modulation Clock Duty Cycle

• OPT_CMPTH: Receive Path Comparator Threshold

Value Name Description

0 EVEN Even parity

1 ODD Odd parity

2 SPACE Space: parity forced to 0

3 MARK Mark: parity forced to 1

4 NO No parity

Value Name Description

0 NORMAL Normal mode

1 AUTOMATIC Automatic echo

2 LOCAL_LOOPBACK Local loopback

3 REMOTE_LOOPBACK Remote loopback

Value Name Description

0 DUTY_50 Modulation clock duty cycle is 50%.

1 DUTY_43P75 Modulation clock duty cycle is 43.75%.

2 DUTY_37P5 Modulation clock duty cycle is 37.5%.

3 DUTY_31P25 Modulation clock duty cycle is 31.75%.

4 DUTY_25 Modulation clock duty cycle is 25%.

5 DUTY_18P75 Modulation clock duty cycle is 18.75%.

6 DUTY_12P5 Modulation clock duty cycle is 12.5%.

7 DUTY_6P25 Modulation clock duty cycle is 6.25%.

Value Name Description

0 VDDIO_DIV2 Comparator threshold is VDDIO/2 volts.

1 VDDIO_DIV2P5 Comparator threshold is VDDIO/2.5 volts.

2 VDDIO_DIV3P3 Comparator threshold is VDDIO/3.3 volts.

3 VDDIO_DIV5 Comparator threshold is VDDIO/5 volts.

4 VDDIO_DIV10 Comparator threshold is VDDIO/10 volts.

 649SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

35.6.3 UART Interrupt Enable Register

Name: UART_IER

Address: 0x400E0608 (0), 0x48004008 (1)

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

• RXRDY: Enable RXRDY Interrupt

• TXRDY: Enable TXRDY Interrupt

• ENDRX: Enable End of Receive Interrupt

• ENDTX: Enable End of Transmit Interrupt

• OVRE: Enable Overrun Error Interrupt

• FRAME: Enable Framing Error Interrupt

• PARE: Enable Parity Error Interrupt

• TXEMPTY: Enable TXEMPTY Interrupt

• TXBUFE: Enable Buffer Empty Interrupt

• RXBUFF: Enable Buffer Full Interrupt

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0
PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 650

35.6.4 UART Interrupt Disable Register

Name: UART_IDR

Address: 0x400E060C (0), 0x4800400C (1)

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Disables the corresponding interrupt.

• RXRDY: Disable RXRDY Interrupt

• TXRDY: Disable TXRDY Interrupt

• ENDRX: Disable End of Receive Interrupt

• ENDTX: Disable End of Transmit Interrupt

• OVRE: Disable Overrun Error Interrupt

• FRAME: Disable Framing Error Interrupt

• PARE: Disable Parity Error Interrupt

• TXEMPTY: Disable TXEMPTY Interrupt

• TXBUFE: Disable Buffer Empty Interrupt

• RXBUFF: Disable Buffer Full Interrupt

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0
PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY

 651SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

35.6.5 UART Interrupt Mask Register

Name: UART_IMR

Address: 0x400E0610 (0), 0x48004010 (1)

Access: Read-only

The following configuration values are valid for all listed bit names of this register:

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

• RXRDY: Mask RXRDY Interrupt

• TXRDY: Mask TXRDY Interrupt

• ENDRX: Mask End of Receive Interrupt

• ENDTX: Mask End of Transmit Interrupt

• OVRE: Mask Overrun Error Interrupt

• FRAME: Mask Framing Error Interrupt

• PARE: Mask Parity Error Interrupt

• TXEMPTY: Mask TXEMPTY Interrupt

• TXBUFE: Mask TXBUFE Interrupt

• RXBUFF: Mask RXBUFF Interrupt

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0
PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 652

35.6.6 UART Status Register

Name: UART_SR

Address: 0x400E0614 (0), 0x48004014 (1)

Access: Read-only

• RXRDY: Receiver Ready
0: No character has been received since the last read of the UART_RHR, or the receiver is disabled.

1: At least one complete character has been received, transferred to UART_RHR and not yet read.

• TXRDY: Transmitter Ready
0: A character has been written to UART_THR and not yet transferred to the internal shift register, or the transmitter is
disabled.

1: There is no character written to UART_THR not yet transferred to the internal shift register.

• ENDRX: End of Receiver Transfer
0: The end of transfer signal from the receiver PDC channel is inactive.

1: The end of transfer signal from the receiver PDC channel is active.

• ENDTX: End of Transmitter Transfer
0: The end of transfer signal from the transmitter PDC channel is inactive.

1: The end of transfer signal from the transmitter PDC channel is active.

• OVRE: Overrun Error
0: No overrun error has occurred since the last RSTSTA.

1: At least one overrun error has occurred since the last RSTSTA.

• FRAME: Framing Error
0: No framing error has occurred since the last RSTSTA.

1: At least one framing error has occurred since the last RSTSTA.

• PARE: Parity Error
0: No parity error has occurred since the last RSTSTA.

1: At least one parity error has occurred since the last RSTSTA.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0
PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY

 653SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• TXEMPTY: Transmitter Empty
0: There are characters in UART_THR, or characters being processed by the transmitter, or the transmitter is disabled.

1: There are no characters in UART_THR and there are no characters being processed by the transmitter.

• TXBUFE: Transmission Buffer Empty
0: The buffer empty signal from the transmitter PDC channel is inactive.

1: The buffer empty signal from the transmitter PDC channel is active.

• RXBUFF: Receive Buffer Full
0: The buffer full signal from the receiver PDC channel is inactive.

1: The buffer full signal from the receiver PDC channel is active.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 654

35.6.7 UART Receiver Holding Register

Name: UART_RHR

Address: 0x400E0618 (0), 0x48004018 (1)

Access: Read-only

• RXCHR: Received Character
Last received character if RXRDY is set.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
RXCHR

 655SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

35.6.8 UART Transmit Holding Register

Name: UART_THR

Address: 0x400E061C (0), 0x4800401C (1)

Access: Write-only

• TXCHR: Character to be Transmitted
Next character to be transmitted after the current character if TXRDY is not set.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
TXCHR

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 656

35.6.9 UART Baud Rate Generator Register

Name: UART_BRGR

Address: 0x400E0620 (0), 0x48004020 (1)

Access: Read/Write

• CD: Clock Divisor
0: Baud rate clock is disabled.

1 to 65,535:

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
CD

7 6 5 4 3 2 1 0
CD

CD
fperipheral clock

16 Baud Rate
--------------------------------------- =

 657SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

36. Universal Synchronous Asynchronous Receiver Transmitter (USART)

36.1 Description
The Universal Synchronous Asynchronous Receiver Transmitter (USART) provides one full duplex universal
synchronous asynchronous serial link. Data frame format is widely programmable (data length, parity, number of stop
bits) to support a maximum of standards. The receiver implements parity error, framing error and overrun error
detection. The receiver time-out enables handling variable-length frames and the transmitter timeguard facilitates
communications with slow remote devices. Multidrop communications are also supported through address bit
handling in reception and transmission.

The USART features three test modes: Remote loopback, Local loopback and Automatic echo.

The USART supports specific operating modes providing interfaces on RS485 and SPI buses, with ISO7816 T = 0 or
T = 1 smart card slots and infrared transceivers. The hardware handshaking feature enables an out-of-band flow
control by automatic management of the pins RTS and CTS.

The USART supports the connection to the Peripheral DMA Controller, which enables data transfers to the transmitter
and from the receiver. The PDC provides chained buffer management without any intervention of the processor.

36.2 Embedded Characteristics
 Programmable Baud Rate Generator
 5- to 9-bit Full-duplex Synchronous or Asynchronous Serial Communications

 1, 1.5 or 2 Stop Bits in Asynchronous Mode or 1 or 2 Stop Bits in Synchronous Mode
 Parity Generation and Error Detection
 Framing Error Detection, Overrun Error Detection
 Digital Filter on Receive Line
 MSB- or LSB-first
 Optional Break Generation and Detection
 By 8 or by 16 Oversampling Receiver Frequency
 Optional Hardware Handshaking RTS-CTS
 Receiver Time-out and Transmitter Timeguard
 Optional Multidrop Mode with Address Generation and Detection

 RS485 with Driver Control Signal
 ISO7816, T = 0 or T = 1 Protocols for Interfacing with Smart Cards

 NACK Handling, Error Counter with Repetition and Iteration Limit
 IrDA Modulation and Demodulation

 Communication at up to 115.2 kbit/s
 SPI Mode

 Master or Slave
 Serial Clock Programmable Phase and Polarity
 SPI Serial Clock (SCK) Frequency up to fperipheral clock/6

 Test Modes
 Remote Loopback, Local Loopback, Automatic Echo

 Supports Connection of:
 Two Peripheral DMA Controller Channels (PDC)

 Offers Buffer Transfer without Processor Intervention
 Register Write Protection

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 658

36.3 Block Diagram

Figure 36-1. USART Block Diagram

36.4 I/O Lines Description

(Peripheral)
DMA Controller

Channel

Channel

Interrupt
Controller

Receiver

USART Interrupt

RXD

TXD

SCK

USART PIO
Controller

CTS

RTS

Transmitter

Baud Rate
Generator

PMC

Peripheral clock

APB

Peripheral clock/DIV

Bus clock Bridge

User
Interface

Table 36-1. I/O Line Description

Name Description Type Active Level

SCK Serial Clock I/O --

TXD

Transmit Serial Data

or Master Out Slave In (MOSI) in SPI Master mode

or Master In Slave Out (MISO) in SPI Slave mode

I/O --

RXD

Receive Serial Data

or Master In Slave Out (MISO) in SPI Master mode

or Master Out Slave In (MOSI) in SPI Slave mode

Input --

CTS
Clear to Send

or Slave Select (NSS) in SPI Slave mode
Input Low

RTS
Request to Send

or Slave Select (NSS) in SPI Master mode
Output Low

 659SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

36.5 Product Dependencies

36.5.1 I/O Lines

The pins used for interfacing the USART may be multiplexed with the PIO lines. The programmer must first program
the PIO controller to assign the desired USART pins to their peripheral function. If I/O lines of the USART are not used
by the application, they can be used for other purposes by the PIO Controller.

36.5.2 Power Management

The USART is not continuously clocked. The programmer must first enable the USART clock in the Power
Management Controller (PMC) before using the USART. However, if the application does not require USART
operations, the USART clock can be stopped when not needed and be restarted later. In this case, the USART will
resume its operations where it left off.

Table 36-2. I/O Lines
Instance Signal I/O Line Peripheral
USART0 CTS0 PA20 A

USART0 RTS0 PA19 A

USART0 RXD0 PB16 A

USART0 SCK0 PB18 A

USART0 TXD0 PB17 A

USART1 CTS1 PA18 A

USART1 RTS1 PA17 A

USART1 RXD1 PA11 A

USART1 SCK1 PA16 A

USART1 TXD1 PA12 A

USART2 CTS2 PA15 A

USART2 RTS2 PA14 A

USART2 RXD2 PA9 A

USART2 SCK2 PA13 A

USART2 TXD2 PA10 A

USART3 CTS3 PA1 A

USART3 RTS3 PA0 A

USART3 RXD3 PA3 A

USART3 SCK3 PA2 A

USART3 TXD3 PA4 A

USART4 CTS4 PA26 A

USART4 RTS4 PB22 A

USART4 RXD4 PB19 A

USART4 SCK4 PB21 A

USART4 TXD4 PB20 A

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 660

36.5.3 Interrupt Sources

The USART interrupt line is connected on one of the internal sources of the Interrupt Controller. Using the USART
interrupt requires the Interrupt Controller to be programmed first.

36.6 Functional Description

36.6.1 Baud Rate Generator

The baud rate generator provides the bit period clock, also named the baud rate clock, to both the receiver and the
transmitter.

The baud rate generator clock source is selected by configuring the USCLKS field in the USART Mode Register
(US_MR) to one of the following:
 The peripheral clock.
 A division of the peripheral clock, where the divider is product-dependent, but generally set to 8.
 The external clock, available on the SCK pin.

The baud rate generator is based upon a 16-bit divider, which is configured using the CD field of the Baud Rate
Generator Register (US_BRGR). If CD is configured to ‘0’, the baud rate generator does not generate any clocks. If
CD is configured to ‘1’, the divider is bypassed and becomes inactive.

If the external SCK clock is selected, the duration of the low and high levels of the signal provided on the SCK pin
must be longer than a peripheral clock period. The frequency of the signal provided on SCK must be at least 3 times
lower than the frequency provided on the peripheral clock in USART mode (field USART_MODE differs from 0xE or
0xF), or 6 times lower in SPI mode (field USART_MODE equals 0xE or 0xF).

Figure 36-2. Baud Rate Generator

Table 36-3. Peripheral IDs

Instance ID

USART0 14

USART1 15

USART2 16

USART3 17

USART4 18

Peripheral clock/DIV
16-bit Counter

0

Baud Rate
Clock

CD

CD

Sampling
Divider

0

1

>1

Sampling
Clock

Reserved

Peripheral clock

USCLKS

OVER
SYNC

SYNC

USCLKS = 3

1
0

2
3

0

1

0

1

FIDI

SCK
(CLKO = 1)

SCK
(CLKO = 0) Selected Clock

Selected
Clock

 661SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

36.6.1.1 Baud Rate in Asynchronous Mode
If the USART is programmed to operate in Asynchronous mode, the selected clock is first divided by the value of
US_BRGR.CD. The resulting clock is provided to the receiver as a sampling clock and then divided by 16 or 8,
depending on the value of US_MR.OVER.

If OVER is set to ‘1’, the receiver sampling is eight times higher than the baud rate clock. If OVER is set to ‘0’, the
sampling is performed at 16 times the baud rate clock.

The baud rate is calculated as per the following formula:

This gives a maximum baud rate of peripheral clock divided by 8, assuming that the peripheral clock is the highest
possible clock and that the OVER is written to ‘1’.

Baud Rate Calculation Example

Table 36-4 shows calculations of CD to obtain a baud rate at 38,400 bit/s for different source clock frequencies. This
table also shows the actual resulting baud rate and the error.

In this example, the baud rate is calculated with the following formula:

 Baud Rate = Selected Clock / CD x 16

The baud rate error is calculated with the following formula. It is not recommended to work with an error higher than
5%.

Baudrate SelectedClock
8 2 Over– CD 

--=

Table 36-4. Baud Rate Example (OVER = 0)

Source Clock
(Hz)

Expected Baud Rate
(Bit/s) Calculation Result CD

Actual Baud Rate
(Bit/s) Error

3,686,400 38,400 6.00 6 38,400.00 0.00%

4,915,200 38,400 8.00 8 38,400.00 0.00%

5,000,000 38,400 8.14 8 39,062.50 1.70%

7,372,800 38,400 12.00 12 38,400.00 0.00%

8,000,000 38,400 13.02 13 38,461.54 0.16%

12,000,000 38,400 19.53 20 37,500.00 2.40%

12,288,000 38,400 20.00 20 38,400.00 0.00%

14,318,180 38,400 23.30 23 38,908.10 1.31%

14,745,600 38,400 24.00 24 38,400.00 0.00%

18,432,000 38,400 30.00 30 38,400.00 0.00%

24,000,000 38,400 39.06 39 38,461.54 0.16%

24,576,000 38,400 40.00 40 38,400.00 0.00%

25,000,000 38,400 40.69 40 38,109.76 0.76%

32,000,000 38,400 52.08 52 38,461.54 0.16%

32,768,000 38,400 53.33 53 38,641.51 0.63%

33,000,000 38,400 53.71 54 38,194.44 0.54%

40,000,000 38,400 65.10 65 38,461.54 0.16%

50,000,000 38,400 81.38 81 38,580.25 0.47%

Error 1 ExpectedBaudRate
ActualBaudRate

--- 
 –=

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 662

36.6.1.2 Fractional Baud Rate in Asynchronous Mode
The baud rate generator is subject to the following limitation: the output frequency changes only by integer multiples of
the reference frequency. An approach to this problem is to integrate a fractional N clock generator that has a high
resolution. The generator architecture is modified to obtain baud rate changes by a fraction of the reference source
clock. This fractional part is programmed using US_BRGR.FP. If FP is not 0, the fractional part is activated. The
resolution is one-eighth of the clock divider. The fractional baud rate is calculated using the following formula:

The modified architecture is presented in the Figure 36-3.

Figure 36-3. Fractional Baud Rate Generator

Warning: When the value of US_BRGR.FP is greater than 0, the SCK (oversampling clock) generates nonconstant
duty cycles. The SCK high duration is increased by “selected clock” period from time to time. The duty cycle depends
on the value of US_BRGR.CD.

36.6.1.3 Baud Rate in Synchronous Mode or SPI Mode
If the USART is programmed to operate in Synchronous mode, the selected clock is divided by the value of
US_BRGR.CD.

In Synchronous mode, if the external clock is selected (USCLKS = 3), the clock is provided directly by the signal on
the USART SCK pin. No division is active. The value written in US_BRGR has no effect. The external clock frequency
must be at least 3 times lower than the system clock. In Master mode, Synchronous mode (USCLKS = 0 or 1, CLKO
set to 1), the receive part limits the SCK maximum frequency to Selected Clock/3 in USART mode, or Selected
Clock/6 in SPI mode.

When either the external clock SCK or the internal clock divided (peripheral clock/DIV) is selected, the value of CD
must be even if the user has to ensure a 50:50 mark/space ratio on the SCK pin. When the peripheral clock is
selected, the baud rate generator ensures a 50:50 duty cycle on the SCK pin, even if the value of CD is odd.

Baudrate SelectedClock

8 2 Over–  CD FP
8

--------+ 
 

 
 
---=

MCK/DIV
16-bit Counter

0

Baud Rate
Clock

CD

CD

Sampling
Divider

0

1

>1

Sampling
Clock

Reserved

MCK

USCLKS

OVER
SYNC

SYNC

USCLKS = 3

1
0

2
3

0

1

0

1

FIDIGlitch-free
 Logic

Modulus
Control

FP

FP
SCK

(CLKO = 1)

SCK
(CLKO = 0)

Selected Clock

Selected
Clock

BaudRate SelectedClock
CD

--=

 663SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

36.6.1.4 Baud Rate in ISO 7816 Mode
The ISO7816 specification defines the bit rate with the following formula:

where:
 B is the bit rate.
 Di is the bit-rate adjustment factor.
 Fi is the clock frequency division factor.
 f is the ISO7816 clock frequency (Hz).

Di is a binary value encoded on a 4-bit field, named DI, as represented in Table 36-5.

Fi is a binary value encoded on a 4-bit field, named FI, as represented in Table 36-6.

Table 36-7 shows the resulting Fi/Di ratio, which is the ratio between the ISO7816 clock and the baud rate clock.

If the USART is configured in ISO7816 mode, the clock selected by US_MR.USCLKS is first divided by the value
programmed in US_BRGR.CD. The resulting clock can be provided to the SCK pin to feed the smart card clock
inputs. This means that the US_MR.CLKO bit can be written to ‘1’.

This clock is then divided by the value programmed in the FI_DI_RATIO field in the FI DI Ratio register (US_FIDI).
This is performed by the Sampling Divider, which performs a division by up to 2047 in ISO7816 mode. The noninteger
values of the Fi/Di ratio are not supported and the user must program FI_DI_RATIO to a value as close as possible to
the expected value.

FI_DI_RATIO resets to the value 0x174 (372 in decimal) and is the most common divider between the ISO7816 clock
and the bit rate (Fi = 372, Di = 1).

Table 36-5. Binary and Decimal Values for Di

DI field 0001 0010 0011 0100 0101 0110 1000 1001

Di (decimal) 1 2 4 8 16 32 12 20

Table 36-6. Binary and Decimal Values for Fi

FI field 0000 0001 0010 0011 0100 0101 0110 1001 1010 1011 1100 1101

Fi (decimal) 372 372 558 744 1116 1488 1860 512 768 1024 1536 2048

Table 36-7. Possible Values for the Fi/Di Ratio

Fi/Di 372 558 744 1116 1488 1806 512 768 1024 1536 2048

1 372 558 744 1116 1488 1860 512 768 1024 1536 2048

2 186 279 372 558 744 930 256 384 512 768 1024

4 93 139.5 186 279 372 465 128 192 256 384 512

8 46.5 69.75 93 139.5 186 232.5 64 96 128 192 256

16 23.25 34.87 46.5 69.75 93 116.2 32 48 64 96 128

32 11.62 17.43 23.25 34.87 46.5 58.13 16 24 32 48 64

12 31 46.5 62 93 124 155 42.66 64 85.33 128 170.6

20 18.6 27.9 37.2 55.8 74.4 93 25.6 38.4 51.2 76.8 102.4

B Di
Fi
------ f=

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 664

Figure 36-4 shows the relation between the Elementary Time Unit, corresponding to a bit time, and the ISO 7816
clock.

Figure 36-4. Elementary Time Unit (ETU)

36.6.2 Receiver and Transmitter Control

After reset, the receiver is disabled. The user must enable the receiver by setting the RXEN bit in the Control Register
(US_CR). However, the receiver registers can be programmed before the receiver clock is enabled.

After reset, the transmitter is disabled. The user must enable it by writing a ‘1’ to US_CR.TXEN. However, the
transmitter registers can be programmed before being enabled.

The receiver and the transmitter can be enabled together or independently.

At any time, the software can perform a reset on the receiver or the transmitter of the USART by writing a ‘1’ to the
corresponding bit US_CR.RSTRX and US_CR.RSTTX respectively. The software resets clear the status flag and
reset internal state machines but the user interface configuration registers hold the value configured prior to software
reset. Regardless of what the receiver or the transmitter is performing, the communication is immediately stopped.

The user can also independently disable the receiver or the transmitter by writing a ‘1’ to US_CR.RXDIS and
US_CR.TXDIS, respectively. If the receiver is disabled during a character reception, the USART waits until the end of
reception of the current character, then the reception is stopped. If the transmitter is disabled while it is operating, the
USART waits the end of transmission of both the current character and character being stored in the Transmit Holding
Register (US_THR). If a timeguard is programmed, it is handled normally.

36.6.3 Synchronous and Asynchronous Modes

36.6.3.1 Transmitter Operations
The transmitter performs the same in both Synchronous and Asynchronous operating modes (SYNC = 0 or
SYNC = 1). One start bit, up to 9 data bits, one optional parity bit and up to two stop bits are successively shifted out
on the TXD pin at each falling edge of the programmed serial clock.

The number of data bits is configured in the US_MR.CHRL and the US_MR.MODE9. Nine bits are selected by writing
a ‘1’ to US_MR.MODE9 regardless of the CHRL field. The parity is selected by US_MR.PAR. Even, odd, space,
marked or none parity bit can be configured. US_MR.MSBF configures which data bit is sent first. If written to ‘1’, the
most significant bit is sent first. If written to ‘0’, the less significant bit is sent first. The number of stop bits is selected
by US_MR.NBSTOP. The 1.5 stop bit is supported in Asynchronous mode only.

Figure 36-5. Character Transmit

1 ETU

ISO7816 Clock
on SCK

ISO7816 I/O Line
on TXD

FI_DI_RATIO
ISO7816 Clock Cycles

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Example: 8-bit, Parity Enabled One Stop

Baud Rate
 Clock

 665SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

The characters are sent by writing in the US_THR. The transmitter reports two status bits in the Channel Status
Register (US_CSR): TXRDY (Transmitter Ready), which indicates that US_THR is empty, and TXEMPTY, which
indicates that all the characters written in US_THR have been processed. When the current character processing is
completed, the last character written in US_THR is transferred into the Shift register of the transmitter and US_THR
becomes empty, thus TXRDY rises.

Both TXRDY and TXEMPTY are low when the transmitter is disabled. Writing a character in US_THR while TXRDY is
low has no effect and the written character is lost.

Figure 36-6. Transmitter Status

36.6.3.2 Manchester Encoder
When the Manchester encoder is in use, characters transmitted through the USART are encoded based on biphase
Manchester II format. To enable this mode, write a ‘1’ to USART_MR.MAN. Depending on polarity configuration, a
logic level (zero or one), is transmitted as a coded signal one-to-zero or zero-to-one. Thus, a transition always occurs
at the midpoint of each bit time. It consumes more bandwidth than the original NRZ signal (2x) but the receiver has
more error control since the expected input must show a change at the center of a bit cell. An example of Manchester
encoded sequence is: the byte 0xB1 or 10110001 encodes to 10 01 10 10 01 01 01 10, assuming the default polarity
of the encoder. Figure 36-7 illustrates this coding scheme.

Figure 36-7. NRZ to Manchester Encoding

The Manchester encoded character can also be encapsulated by adding both a configurable preamble and a start
frame delimiter pattern. Depending on the configuration, the preamble is a training sequence, composed of a
predefined pattern with a programmable length from 1 to 15 bit times. If the preamble length is set to 0, the preamble
waveform is not generated prior to any character. The preamble pattern is chosen among the following sequences:
ALL_ONE, ALL_ZERO, ONE_ZERO or ZERO_ONE by configuring US_MAN.TX_PP. US_MAN.TX_PL is used to
configure the preamble length. Figure 36-8 illustrates and defines the valid patterns. To improve flexibility, the
encoding scheme can be configured using US_MAN.TX_MPOL. If TX_MPOL is set to ‘0’ (default), a logic zero is
encoded with a zero-to-one transition and a logic one is encoded with a one-to-zero transition. If TX_MPOL is set to
‘1’, a logic one is encoded with a one-to-zero transition and a logic zero is encoded with a zero-to-one transition.

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Start
Bit

Write
US_THR

D0 D1 D2 D3 D4 D5 D6 D7
Parity

Bit
Stop
Bit

TXRDY

TXEMPTY

NRZ
encoded

data

Manchester
encoded

data

1 0 1 1 0 0 0 1

Txd

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 666

Figure 36-8. Preamble Patterns, Default Polarity Assumed

A start frame delimiter is configured using US_MR.ONEBIT. It consists of a user-defined pattern that indicates the
beginning of a valid data. Figure 36-9 illustrates these patterns. If the start frame delimiter, also known as the start bit,
is one bit, (ONEBIT = 1), a logic zero is Manchester encoded and indicates that a new character is being sent serially
on the line. If the start frame delimiter is a synchronization pattern also referred to as sync (ONEBIT = 0), a sequence
of three bit times is sent serially on the line to indicate the start of a new character. The sync waveform is in itself an
invalid Manchester waveform as the transition occurs at the middle of the second bit time. Two distinct sync patterns
are used: the command sync and the data sync. The command sync has a logic one level for one and a half bit times,
then a transition to logic zero for the second one and a half bit times. If US_MR.MODSYNC is written to ‘1’, the next
character is a command. If it is written to ‘0’, the next character is a data. When direct memory access is used,
MODSYNC can be immediately updated with a modified character located in memory. To enable this mode,
US_MR.VAR_SYNC must be written to ‘1’. In this case, MODSYNC is bypassed and the sync configuration is held in
US_THR.TXSYNH. The USART character format is modified and includes sync information.

Figure 36-9. Start Frame Delimiter

Manchester
encoded

data Txd SFD DATA

8 bit width ALL_ONE Preamble

Manchester
encoded

data Txd SFD DATA

8 bit width ALL_ZERO Preamble

Manchester
encoded

data Txd SFD DATA

8 bit width ZERO_ONE Preamble

Manchester
encoded

data Txd SFD DATA

8 bit width ONE_ZERO Preamble

Manchester
encoded

data Txd

SFD

DATA

One bit start frame delimiter

Preamble Length
is set to 0

Manchester
encoded

data
Txd

SFD

DATA

Command Sync
start frame delimiter

Manchester
encoded

data Txd

SFD

DATA

Data Sync
start frame delimiter

 667SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Drift Compensation

Drift compensation is available only in 16X oversampling mode. A hardware recovery system allows a larger clock
drift. To enable the hardware system, USART_MAN.DRIFT must be written to ‘1’. If the RXD edge is one 16X clock
cycle from the expected edge, this is considered as normal jitter and no corrective action is taken. If the RXD event is
between 4 and 2 clock cycles before the expected edge, then the current period is shortened by one clock cycle. If the
RXD event is between 2 and 3 clock cycles after the expected edge, then the current period is lengthened by one
clock cycle. These intervals are considered to be drift and so corrective actions are automatically taken.

Figure 36-10. Bit Resynchronization

36.6.3.3 Asynchronous Receiver
If the USART is programmed in Asynchronous operating mode (SYNC = 0), the receiver oversamples the RXD input
line. The oversampling is either 16 or 8 times the baud rate clock, depending on the value of US_MR.OVER.

The receiver samples the RXD line. If the line is sampled during one half of a bit time to 0, a start bit is detected and
data, parity and stop bits are successively sampled on the bit rate clock.

If the oversampling is 16 (OVER = 0), a start is detected at the eighth sample to 0. Data bits, parity bit and stop bit are
assumed to have a duration corresponding to 16 oversampling clock cycles. If the oversampling is 8 (OVER = 1), a
start bit is detected at the fourth sample to 0. Data bits, parity bit and stop bit are assumed to have a duration
corresponding to 8 oversampling clock cycles.

The number of data bits, first bit sent and Parity mode are selected by the same fields and bits as the transmitter, i.e.,
respectively CHRL, MODE9, MSBF and PAR. For the synchronization mechanism only, the number of stop bits has
no effect on the receiver as it considers only one stop bit, regardless of the field NBSTOP, so that resynchronization
between the receiver and the transmitter can occur. Moreover, as soon as the stop bit is sampled, the receiver starts
looking for a new start bit so that resynchronization can also be accomplished when the transmitter is operating with
one stop bit.

RXD

Oversampling
 16x Clock

Sampling
point

Expected edge

ToleranceSynchro.
Jump

Sync
JumpSynchro.

Error

Synchro.
Error

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 668

Figure 36-11 and Figure 36-12 illustrate start detection and character reception when USART operates in
Asynchronous mode.

Figure 36-11. Asynchronous Start Detection

Figure 36-12. Asynchronous Character Reception

36.6.3.4 Manchester Decoder
When US_MR.MAN is ‘1’, the Manchester decoder is enabled. The decoder performs both preamble and start frame
delimiter detection. One input line is dedicated to Manchester encoded input data.

An optional preamble sequence can be defined, and its length is user-defined and totally independent of the emitter
side. The length of the preamble sequence is configured using US_MAN.RX_PL. If RX_PL is ‘0’, no preamble is
detected and the function is disabled. The polarity of the input stream is configured with US_MAN.RX_MPOL.
Depending on the desired application, the preamble pattern matching is to be defined via the US_MAN. See Figure
36-8 for available preamble patterns.

Unlike preamble, the start frame delimiter is shared between Manchester Encoder and Decoder. If US_MR.ONEBIT is
written to ‘1’, only a zero encoded Manchester can be detected as a valid start frame delimiter. If US_MR.ONEBIT is
written to ‘0’, only a sync pattern is detected as a valid start frame delimiter. Decoder operates by detecting transition
on incoming stream. If RXD is sampled during one quarter of a bit time to zero, a start bit is detected. See Figure 36-
13. The sample pulse rejection mechanism applies.

Sampling
Clock (x16)

RXD

Start
Detection

Sampling

Baud Rate
Clock

RXD

Start
Rejection

Sampling

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 0 1 2 3 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
D0

Sampling

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Parity
Bit

Stop
Bit

Example: 8-bit, Parity Enabled

Baud Rate
Clock

Start
Detection

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

 669SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 36-13. Asynchronous Start Bit Detection

The receiver is activated and starts preamble and frame delimiter detection, sampling the data at one quarter and then
three quarters. If a valid preamble pattern or start frame delimiter is detected, the receiver continues decoding with the
same synchronization. If the stream does not match a valid pattern or a valid start frame delimiter, the receiver
resynchronizes on the next valid edge.The minimum time threshold to estimate the bit value is three quarters of a bit
time.

If a valid preamble (if used) followed with a valid start frame delimiter is detected, the incoming stream is decoded into
NRZ data and passed to the USART for processing. Figure 36-14 illustrates Manchester pattern mismatch. When
incoming data stream is passed to the USART, the receiver is also able to detect Manchester code violation. A code
violation is a lack of transition in the middle of a bit cell. In this case, the US_CSR.MANERR flag is raised. It is cleared
by writing a ‘1’ to US_CR.RSTSTA. See Figure 36-15 for an example of Manchester error detection during data
phase.

Figure 36-14. Preamble Pattern Mismatch

Figure 36-15. Manchester Error Flag

When the start frame delimiter is a sync pattern (US_MR.ONEBIT = 0), both command and data delimiter are
supported. If a valid sync is detected, the received character is written in RXCHR in the Receive Holding register
(US_RHR) and RXSYNH is updated. RXSYNH is set to ‘1’ when the received character is a command, and to ‘0’ if the
received character is a data. This alleviates and simplifies the direct memory access as the character contains its own
sync field in the same register.

As the decoder is setup to be used in Unipolar mode, the first bit of the frame has to be a zero-to-one transition.

Manchester
encoded

data Txd

1 2 3 4

Sampling
Clock
(16 x)

Start
Detection

Manchester
encoded

data Txd SFD DATA

Preamble Length is set to 8

Preamble Mismatch
invalid pattern

Preamble Mismatch
Manchester coding error

Manchester
encoded

data Txd

SFD

Preamble Length
is set to 4

Elementary character bit time

Manchester
Coding Error

detected

sampling points

Preamble subpacket
and Start Frame Delimiter

were successfully
decoded

Entering USART character area

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 670

36.6.3.5 Radio Interface: Manchester Encoded USART Application
This section describes low data rate RF transmission systems and their integration with a Manchester encoded
USART. These systems are based on transmitter and receiver ICs that support ASK and FSK modulation schemes.

The goal is to perform full duplex radio transmission of characters using two different frequency carriers. See the
configuration in Figure 36-16.

Figure 36-16. Manchester Encoded Characters RF Transmission

The USART peripheral is configured as a Manchester encoder/decoder. Looking at the downstream communication
channel, Manchester encoded characters are serially sent to the RF emitter. This may also include a user defined
preamble and a start frame delimiter. Mostly, preamble is used in the RF receiver to distinguish between a valid data
from a transmitter and signals due to noise. The Manchester stream is then modulated. See Figure 36-17 for an
example of ASK modulation scheme. When a logic one is sent to the ASK modulator, the power amplifier, referred to
as PA, is enabled and transmits an RF signal at downstream frequency. When a logic zero is transmitted, the RF
signal is turned off. If the FSK modulator is activated, two different frequencies are used to transmit data. When a logic
one is sent, the modulator outputs an RF signal at frequency F0 and switches to F1 if the data sent is a zero. See
Figure 36-18.

From the receiver side, another carrier frequency is used. The RF receiver performs a bit check operation examining
demodulated data stream. If a valid pattern is detected, the receiver switches to Receiving mode. The demodulated
stream is sent to the Manchester decoder. Because of bit checking inside RF IC, the data transferred to the
microcontroller is reduced by a user-defined number of bits. The Manchester preamble length is to be defined in
accordance with the RF IC configuration.

LNA
VCO

RF filter
Demod

control
bi-dir

line

PA
RF filter

Mod
VCO

control

Manchester
decoder

Manchester
encoder

USART
Receiver

USART
Emitter

ASK/FSK
Upstream Receiver

ASK/FSK
downstream transmitter

Upstream
Emitter

Downstream
Receiver

Serial
Configuration

Interface

Fup frequency Carrier

Fdown frequency Carrier

 671SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 36-17. ASK Modulator Output

Figure 36-18. FSK Modulator Output

36.6.3.6 Synchronous Receiver
In Synchronous mode (US_MR.SYNC = 1), the receiver samples the RXD signal on each rising edge of the baud rate
clock. If a low level is detected, it is considered as a start. All data bits, the parity bit and the stop bits are sampled and
the receiver waits for the next start bit. Synchronous mode operations provide a high-speed transfer capability.

Configuration fields and bits are the same as in Asynchronous mode.

Figure 36-19 illustrates a character reception in Synchronous mode.

Figure 36-19. Synchronous Mode Character Reception

36.6.3.7 Receiver Operations
When a character reception is completed, it is transferred to the Receive Holding Register (US_RHR) and
US_CSR.RXRDY rises. If a character is completed while RXRDY is set, the OVRE (Overrun Error) bit is set. The last
character is transferred into US_RHR and overwrites the previous one. The OVRE bit is cleared by writing a ‘1’ to
US_CR.RSTSTA.

Manchester
encoded

data
default polarity
unipolar output

Txd

ASK Modulator
Output

Uptstream Frequency F0

NRZ stream
1 0 0 1

Manchester
encoded

data
default polarity
unipolar output

Txd

FSK Modulator
Output

Uptstream Frequencies
[F0, F0+offset]

NRZ stream
1 0 0 1

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Sampling

Parity Bit
Stop Bit

Example: 8-bit, Parity Enabled 1 Stop

Baud Rate
Clock

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 672

Figure 36-20. Receiver Status

36.6.3.8 Parity
The USART supports five Parity modes. The PAR field also enables Multidrop mode, see Section 36.6.3.9 ”Multidrop
Mode”. Even and odd parity bit generation and error detection are supported. The configuration is done in
US_MR.PAR.

If even parity is selected, the parity generator of the transmitter drives the parity bit to 0 if a number of 1s in the
character data bit is even, and to 1 if the number of 1s is odd. Accordingly, the receiver parity checker counts the
number of received 1s and reports a parity error if the sampled parity bit does not correspond. If odd parity is selected,
the parity generator of the transmitter drives the parity bit to 1 if a number of 1s in the character data bit is even, and to
0 if the number of 1s is odd. Accordingly, the receiver parity checker counts the number of received 1s and reports a
parity error if the sampled parity bit does not correspond. If the mark parity is used, the parity generator of the
transmitter drives the parity bit to 1 for all characters. The receiver parity checker reports an error if the parity bit is
sampled to 0. If the space parity is used, the parity generator of the transmitter drives the parity bit to 0 for all
characters. The receiver parity checker reports an error if the parity bit is sampled to 1. If parity is disabled, the
transmitter does not generate any parity bit and the receiver does not report any parity error.

Table 36-8 shows an example of the parity bit for the character 0x41 (character ASCII “A”) depending on the
configuration of the USART. Because there are two bits set to 1 in the character value, the parity bit is set to ‘1’ when
the parity is odd, or configured to ‘0’ when the parity is even.

When the receiver detects a parity error, it sets US_CSR.PARE (Parity Error). PARE can be cleared by writing a ‘1’ to
the RSTSTA bit in the US_CR. Figure 36-21 illustrates the parity bit status setting and clearing.

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

RXRDY

OVRE

D0 D1 D2 D3 D4 D5 D6 D7
Start

Bit
Parity

Bit
Stop
Bit

RSTSTA = 1

Read
US_RHR

Table 36-8. Parity Bit Examples

Character Hexadecimal Binary Parity Bit Parity Mode

A 0x41 0100 0001 1 Odd

A 0x41 0100 0001 0 Even

A 0x41 0100 0001 1 Mark

A 0x41 0100 0001 0 Space

A 0x41 0100 0001 None None

 673SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 36-21. Parity Error

36.6.3.9 Multidrop Mode
If the value 0x6 or 0x07 is written to US_MR.PAR, the USART runs in Multidrop mode. This mode differentiates the
data characters and the address characters. Data is transmitted with the parity bit at 0 and addresses are transmitted
with the parity bit at 1.

If the USART is configured in Multidrop mode, the receiver sets PARE when the parity bit is high and the transmitter is
able to send a character with the parity bit high when a ‘1’ is written to US_CR.SENDA.

To handle parity error, PARE is cleared when a ‘1’ is written to US_CR.RSTSTA.

The transmitter sends an address byte (parity bit set) when US_CR.SENDA = 1. In this case, the next byte written to
US_THR is transmitted as an address. Any character written in the US_THR without having written SENDA is
transmitted normally with the parity at 0.

36.6.3.10 Transmitter Timeguard
The timeguard feature enables the USART interface with slow remote devices.

The timeguard function enables the transmitter to insert an idle state on the TXD line between two characters. This
idle state acts as a long stop bit.

The duration of the idle state is programmed in the TG field of the Transmitter Timeguard Register (US_TTGR). When
this field is written to ‘0’, no timeguard is generated. Otherwise, the transmitter holds a high level on TXD after each
transmitted byte during the number of bit periods programmed in TG in addition to the number of stop bits.

As illustrated in Figure 36-22, the behavior of TXRDY and TXEMPTY status bits is modified by the programming of a
timeguard. TXRDY rises only when the start bit of the next character is sent, and thus remains at 0 during the
timeguard transmission if a character has been written in US_THR. TXEMPTY remains low until the timeguard
transmission is completed as the timeguard is part of the current character being transmitted.

Figure 36-22. Timeguard Operations

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Bad
Parity

Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

PARE

RXRDY

RSTSTA = 1

Parity Error
Detect
Time Flags

Report
Time

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Start
Bit

TG = 4

Write
US_THR

D0 D1 D2 D3 D4 D5 D6 D7
Parity

Bit
Stop
Bit

TXRDY

TXEMPTY

TG = 4

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 674

Table 36-9 indicates the maximum length of a timeguard period that the transmitter can handle depending on the
baud rate.

36.6.3.11 Receiver Time-out
The Receiver Time-out provides support in handling variable-length frames. This feature detects an idle condition on
the RXD line. When a time-out is detected, US_CSR.TIMEOUT rises and can generate an interrupt, thus indicating to
the driver an end of frame.

The time-out delay period (during which the receiver waits for a new character) is programmed in the TO field of the
Receiver Time-out Register (US_RTOR). If TO is written to ‘0’, the Receiver Time-out is disabled and no time-out is
detected. US_CSR.TIMEOUT remains at ‘0’. Otherwise, the receiver loads a 16-bit counter with the value
programmed in US_RTOR.TO. This counter is decremented at each bit period and reloaded each time a new
character is received. If the counter reaches 0, TIMEOUT rises. Then, the user can either:
 Stop the counter clock until a new character is received. This is performed by writing a ‘1’ to US_CR.STTTO. In

this case, the idle state on RXD before a new character is received will not provide a time-out. This prevents
having to handle an interrupt before a character is received and allows waiting for the next idle state on RXD
after a frame is received.

 Obtain an interrupt while no character is received. This is performed by writing a ‘1’ to the RETTO (Reload and
Start Time-out) bit in the US_CR. In this case, the counter starts counting down immediately from the value TO.
This generates of a periodic interrupt so that a user time-out can be handled, for example when no key is
pressed on a keyboard.

Figure 36-23 shows the block diagram of the Receiver Time-out feature.

Figure 36-23. Receiver Time-out Block Diagram

Table 36-9. Maximum Timeguard Length Depending on Baud Rate

Baud Rate (Bit/s) Bit Time (μs) Timeguard (ms)

1,200 833 212.50

9,600 104 26.56

14,400 69.4 17.71

19,200 52.1 13.28

28,800 34.7 8.85

38,400 26 6.63

56,000 17.9 4.55

57,600 17.4 4.43

115,200 8.7 2.21

16-bit Time-out
Counter

0

TO

TIMEOUT

Baud Rate
Clock

=

Character
Received

RETTO

Load

Clock

16-bit
Value

STTTO

D Q1

Clear

 675SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Table 36-10 gives the maximum time-out period for some standard baud rates.

36.6.3.12 Framing Error
The receiver is capable of detecting framing errors. A framing error happens when the stop bit of a received character
is detected at level 0. This can occur if the receiver and the transmitter are fully desynchronized.

A framing error is reported in US_CSR.FRAME. FRAME is asserted in the middle of the stop bit as soon as the
framing error is detected. It is cleared by writing a ‘1’ to US_CR.RSTSTA.

Figure 36-24. Framing Error Status

36.6.3.13 Transmit Break
The user can request the transmitter to generate a break condition on the TXD line. A break condition drives the TXD
line low during at least one complete character. It appears the same as a 0x00 character sent with the parity and the
stop bits at 0. However, the transmitter holds the TXD line at least during one character until the user requests the
break condition to be removed.

A break is transmitted by writing a ‘1’ to US_CR.STTBRK. This can be performed at any time, either while the
transmitter is empty (no character in either the Shift Register or in US_THR) or when a character is being transmitted.
If a break is requested while a character is being shifted out, the character is first completed before the TXD line is
held low.

Once STTBRK command is requested, further STTBRK commands are ignored until the end of the break is
completed.

Table 36-10. Maximum Time-out Period
Baud Rate (Bit/s) Bit Time (μs) Time-out (ms)

600 1,667 109,225

1,200 833 54,613

2,400 417 27,306

4,800 208 13,653

9,600 104 6,827

14,400 69 4,551

19,200 52 3,413

28,800 35 2,276

38,400 26 1,704

56,000 18 1,170

57,600 17 1,138

200,000 5 328

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

FRAME

RXRDY

RSTSTA = 1

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 676

The break condition is removed by writing a ‘1’ to US_CR.STPBRK. If the STPBRK is requested before the end of the
minimum break duration (one character, including start, data, parity and stop bits), the transmitter ensures that the
break condition completes.

The transmitter considers the break as though it is a character, i.e., the STTBRK and STPBRK commands are
processed only if US_CSR.TXRDY = 1 and the start of the break condition clears the TXRDY and TXEMPTY bits as if
a character is processed.

Writing US_CR with both STTBRK and STPBRK bits to ‘1’ can lead to an unpredictable result. All STPBRK
commands requested without a previous STTBRK command are ignored. A byte written into US_THR while a break is
pending, but not started, is ignored.

After the break condition, the transmitter returns the TXD line to 1 for a minimum of 12 bit times. Thus, the transmitter
ensures that the remote receiver detects correctly the end of break and the start of the next character. If the timeguard
is programmed with a value higher than 12, the TXD line is held high for the timeguard period.

After holding the TXD line for this period, the transmitter resumes normal operations.

Figure 36-25 illustrates the effect of both the Start Break (STTBRK) and Stop Break (STPBRK) commands on
the TXD line.

Figure 36-25. Break Transmission

36.6.3.14 Receive Break
The receiver detects a break condition when all data, parity and stop bits are low. This corresponds to detecting a
framing error with data to 0x00, but FRAME remains low.

When the low stop bit is detected, the receiver asserts US_CSR.RXBRK. This bit may be cleared by writing a ‘1’ to
US_CR.RSTSTA.

An end of receive break is detected by a high level for at least 2/16 of a bit period in Asynchronous operating mode or
one sample at high level in Synchronous operating mode. The end of break detection also asserts US_CSR.RXBRK.

36.6.3.15 Hardware Handshaking
The USART features a hardware handshaking out-of-band flow control. The RTS and CTS pins are used to connect
with the remote device, as shown in Figure 36-26.

Figure 36-26. Connection with a Remote Device for Hardware Handshaking

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

TXRDY

TXEMPTY

STPBRK = 1STTBRK = 1

Break Transmission End of Break

USART

TXD

CTS

Remote
Device

RXD

TXDRXD

RTS

RTS

CTS

 677SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Sett ing the USART to operate with hardware handshaking is performed by writ ing the value 0x2 to
US_MR.USART_MODE.

When hardware handshaking is enabled, the USART displays similar behavior as in standard Synchronous or
Asynchronous modes, with the difference that the receiver drives the RTS pin and the level on the CTS pin modifies
the behavior of the transmitter, as shown in the figure below. Using this mode requires using the PDC channel for
reception. The transmitter can handle hardware handshaking in any case.

Figure 36-27 shows how the receiver operates if hardware handshaking is enabled. The RTS pin is driven high if the
receiver is disabled or if the status RXBUFF (Receive Buffer Full) coming from the PDC channel is high. Normally, the
remote device does not start transmitting while its CTS pin (driven by RTS) is high. As soon as the receiver is
enabled, the RTS falls, indicating to the remote device that it can start transmitting. Defining a new buffer in the PDC
clears the status bit RXBUFF and, as a result, asserts the pin RTS low.

Figure 36-27. Receiver Behavior when Operating with Hardware Handshaking

Figure 36-28 shows how the transmitter operates if hardware handshaking is enabled. The CTS pin disables the
transmitter. If a character is being processed, the transmitter is disabled only after the completion of the current
character and transmission of the next character occurs as soon as the pin CTS falls.

Figure 36-28. Transmitter Behavior when Operating with Hardware Handshaking

36.6.4 ISO7816 Mode

The USART features an ISO7816-compatible operating mode. This mode permits interfacing with smart cards and
Security Access Modules (SAM) communicating through an ISO7816 link. Both T = 0 and T = 1 protocols defined by
the ISO7816 specification are supported.

Setting the USART in ISO7816 mode is performed by writing US_MR.USART_MODE to the value 0x4 for protocol T
= 0 and to the value 0x6 for protocol T = 1.

36.6.4.1 Overview
The ISO7816 is a half duplex communication on only one bidirectional line. The baud rate is determined by a division
of the clock provided to the remote device (see Section 36-2 ”Baud Rate Generator”).

The USART connects to a smart card as shown in Figure 36-29. The TXD line becomes bidirectional and the baud
rate generator feeds the ISO7816 clock on the SCK pin. As the TXD pin becomes bidirectional, its output remains
driven by the output of the transmitter but only when the transmitter is active while its input is directed to the input of
the receiver. The USART is considered as the master of the communication as it generates the clock.

RTS

RXBUFF

Write
US_CR

RXEN = 1

RXD

RXDIS = 1

CTS

TXD

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 678

Figure 36-29. Connection of a Smart Card to the USART

When operating in ISO7816, either in T = 0 or T = 1 modes, the character format is fixed. The configuration is 8 data
bits, even parity and 1 or 2 stop bits, regardless of the values programmed in the Mode register fields CHRL, MODE9,
PAR and CHMODE. US_MR.MSBF can be used to transmit LSB or MSB first. US_MR.PAR can be used to transmit
in normal or inverse mode. Refer to Section 36.7.3 ”USART Mode Register” and “PAR: Parity Type” .

The USART cannot operate concurrently in both Receiver and Transmitter modes as the communication is
unidirectional at a time. It has to be configured according to the required mode by enabling or disabling either the
receiver or the transmitter as desired. Enabling both the receiver and the transmitter at the same time in ISO7816
mode may lead to unpredictable results.

The ISO7816 specification defines an inverse transmission format. Data bits of the character must be transmitted on
the I/O line at their negative value.

36.6.4.2 Protocol T = 0
In T = 0 protocol, a character is made up of one start bit, eight data bits, one parity bit and one guard time, which lasts
two bit times. The transmitter shifts out the bits and does not drive the I/O line during the guard time.

If no parity error is detected, the I/O line remains at 1 during the guard time and the transmitter can continue with the
transmission of the next character, as shown in Figure 36-30.

If a parity error is detected by the receiver, it drives the I/O line to 0 during the guard time, as shown in Figure 36-31.
This error bit, NACK, for Non Acknowledge. In this case, the character lasts one additional bit time, as the guard time
does not change and is added to the error bit time, which lasts one bit time.

When the USART is the receiver and it detects an error, it does not load the erroneous character in US_RHR. It sets
US_SR.PARE so that the software can handle the error.

Figure 36-30. T = 0 Protocol without Parity Error

Figure 36-31. T = 0 Protocol with Parity Error

Receive Error Counter

The USART receiver also records the total number of errors. This can be read in the Number of Errors (US_NER)
register. The NB_ERRORS field can record up to 255 errors. Reading US_NER automatically clears the
NB_ERRORS field.

Smart
Card

SCK
CLK

TXD
I/O

USART

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Parity
Bit

Baud Rate
Clock

Start
Bit

Guard
Time 1

Next
Start

Bit

Guard
Time 2

D0 D1 D2 D3 D4 D5 D6 D7

I/O

Parity
Bit

Baud Rate
Clock

Start
Bit

Guard
Time 1

Start
Bit

Guard
Time 2

D0 D1

Error

Repetition

 679SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Receive NACK Inhibit

The USART can be configured to inhibit an error. This is done by writing a ‘1’ to US_MR.INACK. In this case, no error
signal is driven on the I/O line even if a parity bit is detected.

Moreover, if INACK = 1, the erroneous received character is stored in the Receive Holding Register as if no error
occurred, and the RXRDY bit rises.

Transmit Character Repetition

When the USART is transmitting a character and gets a NACK, it can automatically repeat the character before
moving on to the next one. Repetition is enabled by writing US_MR.MAX_ITERATION to a value greater than 0. Each
character can be transmitted up to eight times; the first transmission plus seven repetitions.

If MAX_ITERATION does not equal zero, the USART repeats the character as many times as the value loaded in
MAX_ITERATION.

When the USART repetition number reaches MAX_ITERATION and the last repeated character is not acknowledged,
the US_CSR.ITER is set. If the repetition of the character is acknowledged by the receiver, the repetitions are stopped
and the iteration counter is cleared.

US_CSR.ITER can be cleared by writing a ‘1’ to US_CR.RSTIT.
Disable Successive Receive NACK

The receiver can limit the number of successive NACKs sent back to the remote transmitter. This is programmed by
setting US_MR.DSNACK. The maximum number of NACKs transmitted is configured in US_MR.MAX_ITERATION.
As soon as MAX_ITERATION is reached, no error signal is driven on the I/O line and US_CSR.ITER is set.

36.6.4.3 Protocol T = 1
When operating in ISO7816 protocol T = 1, the transmission is similar to an asynchronous format with only one stop
bit. The parity is generated when transmitting and checked when receiving. Parity error detection sets
US_CSR.PARE.

36.6.5 IrDA Mode

The USART features an IrDA mode supplying half-duplex point-to-point wireless communication. It embeds the
modulator and demodulator which allows a glueless connection to the infrared transceivers, as shown in Figure 36-32.
The modulator and demodulator are compliant with the IrDA specification version 1.1 and support data transfer
speeds ranging from 2.4 kbit/s to 115.2 kbit/s.

The IrDA mode is enabled by writing the value 0x8 to US_MR.USART_MODE. The IrDA Filter register (US_IF) is
used to configure the demodulator filter. The USART transmitter and receiver operate in a normal Asynchronous
mode and all parameters are accessible. Note that the modulator and the demodulator are activated.

Figure 36-32. Connection to IrDA Transceivers

IrDA
Transceivers

RXD RX

TXD

TX

USART

Demodulator

Modulator

Receiver

Transmitter

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 680

The receiver and the transmitter must be enabled or disabled depending on the direction of the transmission to be
managed.

To receive IrDA signals, the following needs to be done:
 Disable TX and Enable RX.
 Configure the TXD pin as PIO and set it as an output to 0 (to avoid LED emission). Disable the internal pull-up

(better for power consumption).
 Receive data.

36.6.5.1 IrDA Modulation
For baud rates up to and including 115.2 kbit/s, the RZI modulation scheme is used. “0” is represented by a light pulse
of 3/16th of a bit time. Some examples of signal pulse duration are shown in Table 36-11.

Figure 36-33 shows an example of character transmission.

Figure 36-33. IrDA Modulation

36.6.5.2 IrDA Baud Rate
Table 36-12 gives some examples of CD values, baud rate error and pulse duration. Note that the requirement on the
maximum acceptable error of ±1.87% must be met.

Table 36-11. IrDA Pulse Duration

Baud Rate Pulse Duration (3/16)

2.4 kbit/s 78.13 μs

9.6 kbit/s 19.53 μs

19.2 kbit/s 9.77 μs

38.4 kbit/s 4.88 μs

57.6 kbit/s 3.26 μs

115.2 kbit/s 1.63 μs

Bit Period Bit Period3
16

Start
Bit

Data Bits Stop
Bit

0 00 0 01 11 11
Transmitter

Output

TXD

Table 36-12. IrDA Baud Rate Error
Peripheral Clock Baud Rate (Bit/s) CD Baud Rate Error Pulse Time (μs)

3,686,400 115,200 2 0.00% 1.63

20,000,000 115,200 11 1.38% 1.63

32,768,000 115,200 18 1.25% 1.63

40,000,000 115,200 22 1.38% 1.63

3,686,400 57,600 4 0.00% 3.26

20,000,000 57,600 22 1.38% 3.26

32,768,000 57,600 36 1.25% 3.26

 681SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

36.6.5.3 IrDA Demodulator
The demodulator is based on the IrDA Receive filter comprised of an 8-bit down counter which is loaded with the
value programmed in US_IF. When a falling edge is detected on the RXD pin, the Filter Counter starts counting down
at the peripheral clock speed. If a rising edge is detected on the RXD pin, the counter stops and is reloaded with
US_IF. If no rising edge is detected when the counter reaches 0, the input of the receiver is driven low during one bit
time.

Figure 36-34 illustrates the operations of the IrDA demodulator.

Figure 36-34. IrDA Demodulator Operations

The programmed value in the US_IF register must always meet the following criterion:

tperipheral clock  (IRDA_FILTER + 3) < 1.41 μs

As the IrDA mode uses the same logic as the ISO7816, note that the FI_DI_RATIO field in US_FIDI must be set to a
value higher than 0 in order to ensure IrDA communications operate correctly.

40,000,000 57,600 43 0.93% 3.26

3,686,400 38,400 6 0.00% 4.88

20,000,000 38,400 33 1.38% 4.88

32,768,000 38,400 53 0.63% 4.88

40,000,000 38,400 65 0.16% 4.88

3,686,400 19,200 12 0.00% 9.77

20,000,000 19,200 65 0.16% 9.77

32,768,000 19,200 107 0.31% 9.77

40,000,000 19,200 130 0.16% 9.77

3,686,400 9,600 24 0.00% 19.53

20,000,000 9,600 130 0.16% 19.53

32,768,000 9,600 213 0.16% 19.53

40,000,000 9,600 260 0.16% 19.53

3,686,400 2,400 96 0.00% 78.13

20,000,000 2,400 521 0.03% 78.13

32,768,000 2,400 853 0.04% 78.13

Table 36-12. IrDA Baud Rate Error (Continued)
Peripheral Clock Baud Rate (Bit/s) CD Baud Rate Error Pulse Time (μs)

MCK

RXD

Receiver
Input

Pulse
Rejected

6 5 4 3 2 6 16 5 4 3 2 0

Pulse
Accepted

Counter
Value

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 682

36.6.6 RS485 Mode

The USART features the RS485 mode to enable line driver control. While operating in RS485 mode, the USART
behaves as though in Asynchronous or Synchronous mode and configuration of all the parameters is possible. The
difference is that the RTS pin is driven high when the transmitter is operating. The behavior of the RTS pin is
controlled by the TXEMPTY bit. A typical connection of the USART to an RS485 bus is shown in Figure 36-35.

Figure 36-35. Typical Connection to a RS485 Bus

RS485 mode is enabled by writing the value 0x1 to the US_MR.USART_MODE.

The RTS pin is at a level inverse to the TXEMPTY bit. Significantly, the RTS pin remains high when a timeguard is
programmed so that the line can remain driven after the last character completion. Figure 36-36 gives an example of
the RTS waveform during a character transmission when the timeguard is enabled.

Figure 36-36. Example of RTS Drive with Timeguard

36.6.7 SPI Mode

The Serial Peripheral Interface (SPI) mode is a synchronous serial data link that provides communication with
external devices in Master or Slave mode. It also enables communication between processors if an external
processor is connected to the system.

The Serial Peripheral Interface is a shift register that serially transmits data bits to other SPIs. During a data transfer,
one SPI system acts as the “master” which controls the data flow, while the other devices act as “slaves'' which have
data shifted into and out by the master. Different CPUs can take turns being masters and one master may
simultaneously shift data into multiple slaves. (Multiple master protocol is the opposite of single master protocol,
where one CPU is always the master while all of the others are always slaves.) However, only one slave may drive its
output to write data back to the master at any given time.

A slave device is selected when its NSS signal is asserted by the master. The USART in SPI Master mode can
address only one SPI Slave because it can generate only one NSS signal.

USART

RTS

TXD

RXD

Differential
Bus

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

TG = 4

Write
US_THR

TXRDY

TXEMPTY

RTS

1

 683SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

The SPI system consists of two data lines and two control lines:
 Master Out Slave In (MOSI): This data line supplies the output data from the master shifted into the input of the

slave.
 Master In Slave Out (MISO): This data line supplies the output data from a slave to the input of the master.
 Serial Clock (SCK): This control line is driven by the master and regulates the flow of the data bits. The master

may transmit data at a variety of baud rates. The SCK line cycles once for each bit that is transmitted.
 Slave Select (NSS): This control line allows the master to select or deselect the slave.

36.6.7.1 Modes of Operation
The USART can operate in SPI Master mode or in SPI Slave mode.

SPI Master mode is enabled by writing 0xE to US_MR.USART_MODE. In this case, the SPI lines must be connected
as described below:
 The MOSI line is driven by the output pin TXD.
 The MISO line drives the input pin RXD.
 The SCK line is driven by the output pin SCK.
 The NSS line is driven by the output pin RTS.

SPI Slave mode is enabled by writing 0xF to US_MR.USART_MODE. In this case, the SPI lines must be connected
as described below:
 The MOSI line drives the input pin RXD.
 The MISO line is driven by the output pin TXD.
 The SCK line drives the input pin SCK.
 The NSS line drives the input pin CTS.

In order to avoid unpredictable behavior, any change of the SPI mode must be followed by a software reset of the
transmitter and of the receiver (except the initial configuration after a hardware reset). See Section 36.6.7.4.

36.6.7.2 Baud Rate
In SPI mode, the baud rate generator operates in the same way as in USART Synchronous mode. See Section
36.6.1.3 ”Baud Rate in Synchronous Mode or SPI Mode”. However, there are some restrictions:

In SPI Master mode:
 The external clock SCK must not be selected (USCLKS  0x3), and US_MR.CLKO must be written to ‘1’, in

order to generate correctly the serial clock on the SCK pin.
 To obtain correct behavior of the receiver and the transmitter, the value programmed in US_BRGR.CD must be

greater than or equal to 6.
 If the divided peripheral clock is selected, the value programmed in CD must be even to ensure a 50:50

mark/space ratio on the SCK pin. This value can be odd if the peripheral clock is selected.

In SPI Slave mode:
 The external clock (SCK) selection is forced regardless of the value of the US_MR.USCLKS. Likewise, the

value written in US_BRGR has no effect, because the clock is provided directly by the signal on the USART
SCK pin.

 To obtain correct behavior of the receiver and the transmitter, the external clock (SCK) frequency must be at
least 6 times lower than the system clock.

36.6.7.3 Data Transfer
Up to nine data bits are successively shifted out on the TXD pin at each rising or falling edge (depending on CPOL
and CPHA) of the programmed serial clock. There is no Start bit, no Parity bit and no Stop bit.

The number of data bits is selected using US_MR.CHRL and US_MR.MODE9. The nine bits are selected by setting
the MODE9 bit regardless of the CHRL field. The MSB data bit is always sent first in SPI mode (Master or Slave).

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 684

Four combinations of polarity and phase are available for data transfers. The clock polarity is programmed using
US_MR.CPOL. The clock phase is programmed using US_MR.CPHA. These two parameters determine the edges of
the clock signal upon which data is driven and sampled. Each of the two parameters has two possible states, resulting
in four possible combinations that are incompatible with one another. Thus, a master/slave pair must use the same
parameter pair values to communicate. If multiple slaves are used and fixed in different configurations, the master
must reconfigure itself each time it needs to communicate with a different slave.

Figure 36-37. SPI Transfer Format (CPHA = 1, 8 bits per transfer)

Figure 36-38. SPI Transfer Format (CPHA = 0, 8 bits per transfer)

Table 36-13. SPI Bus Protocol Mode

SPI Bus Protocol Mode CPOL CPHA

0 0 1

1 0 0

2 1 1

3 1 0

6

SCK
(CPOL = 0)

SCK
(CPOL = 1)

MOSI
SPI Master ->TXD
SPI Slave -> RXD

NSS
SPI Master -> RTS
SPI Slave -> CTS

SCK cycle (for reference)

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

2

2

1

1

1 2 3 4 5 7 86

MISO
SPI Master ->RXD
SPI Slave -> TXD

SCK
(CPOL = 0)

SCK
(CPOL = 1)

1 2 3 4 5 7

MOSI
SPI Master -> TXD
SPI Slave -> RXD

MISO
SPI Master -> RXD

SPI Slave -> TXD

NSS
SPI Master -> RTS
SPI Slave -> CTS

SCK cycle (for reference) 8

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

1

1

2

2

6

 685SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

36.6.7.4 Receiver and Transmitter Control
See Section 36.6.2 ”Receiver and Transmitter Control”.

36.6.7.5 Character Transmission
The characters are sent by writing in the US_THR. An additional condition for transmitting a character can be added
when the USART is configured in SPI Master mode. In the USART_MR (SPI_MODE), the value of WRDBT can
prevent any character transmission (even if US_THR has been written) while the receiver side is not ready (character
not read). When WRDBT equals ‘0’, the character is transmitted whatever the receiver status. If WRDBT is set to ‘1’,
the transmitter waits for US_RHR to be read before transmitting the character (RXRDY flag cleared), thus preventing
any overflow (character loss) on the receiver side.

The chip select line is deasserted for a period equivalent to three bits between the transmission of two data.

The transmitter reports two status bits in US_CSR: TXRDY (Transmitter Ready), which indicates that US_THR is
empty and TXEMPTY, which indicates that all the characters written in US_THR have been processed. When the
current character processing is completed, the last character written in US_THR is transferred into the Shift register of
the transmitter and US_THR becomes empty, thus TXRDY rises.

Both TXRDY and TXEMPTY bits are low when the transmitter is disabled. Writing a character in US_THR while
TXRDY is low has no effect and the written character is lost.

If the USART is in SPI Slave mode and if a character must be sent while the US_THR is empty, the UNRE (Underrun
Error) bit is set. The TXD transmission line stays at high level during all this time. The UNRE bit is cleared by writing a
1 to the RSTSTA (Reset Status) bit in US_CR.

In SPI Master mode, the slave select line (NSS) is asserted at low level one tbit (tbit being the nominal time required to
transmit a bit) before the transmission of the MSB bit and released at high level one tbit after the transmission of the
LSB bit. So, the slave select line (NSS) is always released between each character transmission and a minimum
delay of three tbit always inserted. However, in order to address slave devices supporting the CSAAT mode (Chip
Select Active After Transfer), the slave select line (NSS) can be forced at low level by writing a 1 to the RCS bit in the
US_CR. The slave select line (NSS) can be released at high level only by writing a ‘1’ to US_CR.FCS (for example,
when all data have been transferred to the slave device).

In SPI Slave mode, the transmitter does not require a falling edge of the slave select line (NSS) to initiate a character
transmission but only a low level. However, this low level must be present on the slave select line (NSS) at least one
tbit before the first serial clock cycle corresponding to the MSB bit.

36.6.7.6 Character Reception
When a character reception is completed, it is transferred to US_RHR and US_CSR.RXRDY rises. If a character is
completed while RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is transferred into US_RHR
and overwrites the previous one. The OVRE bit is cleared by writing a ‘1’ to US_CR.RSTSTA.

To ensure correct behavior of the receiver in SPI Slave mode, the master device sending the frame must ensure a
minimum delay of one tbit between each character transmission. The receiver does not require a falling edge of the
slave select line (NSS) to initiate a character reception but only a low level. However, this low level must be present on
the slave select line (NSS) at least one tbit before the first serial clock cycle corresponding to the MSB bit.

36.6.7.7 Receiver Timeout
Because the receiver baud rate clock is active only during data transfers in SPI mode, a receiver timeout is impossible
in this mode, whatever the value is in US_RTOR.TO.

36.6.8 Test Modes

The USART can be programmed to operate in three different test modes. The internal loopback capability allows
on-board diagnostics. In Loopback mode, the USART interface pins are disconnected or not and reconfigured for
loopback internally or externally.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 686

36.6.8.1 Normal Mode
Normal mode connects the RXD pin on the receiver input and the transmitter output on the TXD pin.

Figure 36-39. Normal Mode Configuration

36.6.8.2 Automatic Echo Mode
Automatic echo mode allows bit-by-bit retransmission. When a bit is received on the RXD pin, it is sent to the TXD pin,
as shown in Figure 36-40. Programming the transmitter has no effect on the TXD pin. The RXD pin is still connected
to the receiver input, thus the receiver remains active.

Figure 36-40. Automatic Echo Mode Configuration

36.6.8.3 Local Loopback Mode
Local loopback mode connects the output of the transmitter directly to the input of the receiver, as shown in
Figure 36-41. The TXD and RXD pins are not used. The RXD pin has no effect on the receiver and the TXD pin is
continuously driven high, as in idle state.

Figure 36-41. Local Loopback Mode Configuration

36.6.8.4 Remote Loopback Mode
Remote loopback mode directly connects the RXD pin to the TXD pin, as shown in Figure 36-42. The transmitter and
the receiver are disabled and have no effect. This mode allows bit-by-bit retransmission.

Figure 36-42. Remote Loopback Mode Configuration

Receiver

Transmitter

RXD

TXD

Receiver

Transmitter

RXD

TXD

Receiver

Transmitter

RXD

TXD
1

Receiver

Transmitter

RXD

TXD

1

 687SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

36.6.9 Register Write Protection

To prevent any single software error from corrupting USART behavior, certain registers in the address space can be
write-protected by setting the WPEN bit in the “USART Write Protection Mode Register” (US_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the “USART Write Protection Status
Register” (US_WPSR) is set and the field WPVSRC indicates the register in which the write access has been
attempted.

The WPVS bit is automatically cleared after reading the US_WPSR.

The following registers can be write-protected:
 “USART Mode Register”
 “USART Baud Rate Generator Register”
 “USART Receiver Time-out Register”
 “USART Transmitter Timeguard Register”
 “USART Manchester Configuration Register”

36.7 Universal Synchronous Asynchronous Receiver Transmitter (USART) User Interface

Table 36-14. Register Mapping
Offset Register Name Access Reset
0x0000 Control Register US_CR Write-only –

0x0004 Mode Register US_MR Read/Write 0x0

0x0008 Interrupt Enable Register US_IER Write-only –

0x000C Interrupt Disable Register US_IDR Write-only –

0x0010 Interrupt Mask Register US_IMR Read-only 0x0

0x0014 Channel Status Register US_CSR Read-only 0x0

0x0018 Receive Holding Register US_RHR Read-only 0x0

0x001C Transmit Holding Register US_THR Write-only –

0x0020 Baud Rate Generator Register US_BRGR Read/Write 0x0

0x0024 Receiver Time-out Register US_RTOR Read/Write 0x0

0x0028 Transmitter Timeguard Register US_TTGR Read/Write 0x0

0x002C - 0x003C Reserved – – –

0x0040 FI DI Ratio Register US_FIDI Read/Write 0x174

0x0044 Number of Errors Register US_NER Read-only 0x0

0x0048 Reserved – – –

0x004C IrDA Filter Register US_IF Read/Write 0x0

0x0050 Manchester Configuration Register US_MAN Read/Write 0x30011004

0x0054 - 0x005C Reserved – – –

0x0060 - 0x00E0 Reserved – – –

0x00E4 Write Protection Mode Register US_WPMR Read/Write 0x0

0x00E8 Write Protection Status Register US_WPSR Read-only 0x0

0x00EC - 0x00FC Reserved – – –

0x0100 - 0x0128 Reserved for PDC Registers – – –

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 688

36.7.1 USART Control Register

Name: US_CR

Address: 0x40024000 (0), 0x40028000 (1), 0x4002C000 (2), 0x40030000 (3), 0x40034000 (4)

Access: Write-only

For SPI control, see Section 36.7.2 ”USART Control Register (SPI_MODE)”.

• RSTRX: Reset Receiver
0: No effect.

1: Resets the receiver.

• RSTTX: Reset Transmitter
0: No effect.

1: Resets the transmitter.

• RXEN: Receiver Enable
0: No effect.

1: Enables the receiver, if RXDIS is 0.

• RXDIS: Receiver Disable
0: No effect.

1: Disables the receiver.

• TXEN: Transmitter Enable
0: No effect.

1: Enables the transmitter if TXDIS is 0.

• TXDIS: Transmitter Disable
0: No effect.

1: Disables the transmitter.

• RSTSTA: Reset Status Bits
0: No effect.

1: Resets the status bits PARE, FRAME, OVRE, MANERR and RXBRK in US_CSR.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – RTSDIS RTSEN – –

15 14 13 12 11 10 9 8
RETTO RSTNACK RSTIT SENDA STTTO STPBRK STTBRK RSTSTA

7 6 5 4 3 2 1 0
TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –

 689SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• STTBRK: Start Break
0: No effect.

1: Starts transmission of a break after the characters present in US_THR and the Transmit Shift Register have been
transmitted. No effect if a break is already being transmitted.

• STPBRK: Stop Break
0: No effect.

1: Stops transmission of the break after a minimum of one character length and transmits a high level during 12-bit periods. No
effect if no break is being transmitted.

• STTTO: Clear TIMEOUT Flag and Start Time-out After Next Character Received
0: No effect.

1: Starts waiting for a character before enabling the time-out counter. Immediately disables a time-out period in progress.
Resets the status bit TIMEOUT in US_CSR.

• SENDA: Send Address
0: No effect.

1: In Multidrop mode only, the next character written to the US_THR is sent with the address bit set.

• RSTIT: Reset Iterations
0: No effect.

1: Resets ITER in US_CSR. No effect if the ISO7816 is not enabled.

• RSTNACK: Reset Non Acknowledge
0: No effect.

1: Resets NACK in US_CSR.

• RETTO: Start Time-out Immediately
0: No effect.

1: Immediately restarts time-out period.

• RTSEN: Request to Send Pin Control
0: No effect.

1: Drives RTS pin to 0 if US_MR.USART_MODE field = 0.

• RTSDIS: Request to Send Pin Control
0: No effect.

1: Drives RTS pin to 1 if US_MR.USART_MODE field = 0.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 690

36.7.2 USART Control Register (SPI_MODE)

Name: US_CR (SPI_MODE)

Address: 0x40024000 (0), 0x40028000 (1), 0x4002C000 (2), 0x40030000 (3), 0x40034000 (4)

Access: Write-only

This configuration is relevant only if USART_MODE = 0xE or 0xF in the “USART Mode Register” .

• RSTRX: Reset Receiver
0: No effect.

1: Resets the receiver.

• RSTTX: Reset Transmitter
0: No effect.

1: Resets the transmitter.

• RXEN: Receiver Enable
0: No effect.

1: Enables the receiver, if RXDIS is 0.

• RXDIS: Receiver Disable
0: No effect.

1: Disables the receiver.

• TXEN: Transmitter Enable
0: No effect.

1: Enables the transmitter if TXDIS is 0.

• TXDIS: Transmitter Disable
0: No effect.

1: Disables the transmitter.

• RSTSTA: Reset Status Bits
0: No effect.

1: Resets the status bits OVRE, UNRE in US_CSR.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – RCS FCS – –

15 14 13 12 11 10 9 8
– – – – – – – RSTSTA

7 6 5 4 3 2 1 0
TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –

 691SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• FCS: Force SPI Chip Select
Applicable if USART operates in SPI Master mode (USART_MODE = 0xE):

0: No effect.

1: Forces the Slave Select Line NSS (RTS pin) to 0, even if USART is not transmitting, in order to address SPI Slave devices
supporting the CSAAT mode (Chip Select Active After Transfer).

• RCS: Release SPI Chip Select
Applicable if USART operates in SPI Master mode (USART_MODE = 0xE):

0: No effect.

1: Releases the Slave Select Line NSS (RTS pin).

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 692

36.7.3 USART Mode Register

Name: US_MR

Address: 0x40024004 (0), 0x40028004 (1), 0x4002C004 (2), 0x40030004 (3), 0x40034004 (4)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “USART Write Protection Mode Register” .

For SPI configuration, see Section 36.7.4 ”USART Mode Register (SPI_MODE)”.

• USART_MODE: USART Mode of Operation

The PDC transfers are supported in all USART modes of operation.

• USCLKS: Clock Selection

31 30 29 28 27 26 25 24
ONEBIT MODSYNC MAN FILTER – MAX_ITERATION

23 22 21 20 19 18 17 16
INVDATA VAR_SYNC DSNACK INACK OVER CLKO MODE9 MSBF

15 14 13 12 11 10 9 8
CHMODE NBSTOP PAR SYNC

7 6 5 4 3 2 1 0
CHRL USCLKS USART_MODE

Value Name Description
0x0 NORMAL Normal mode

0x1 RS485 RS485

0x2 HW_HANDSHAKING Hardware Handshaking

0x3 - Reserved

0x4 IS07816_T_0 IS07816 Protocol: T = 0

0x6 IS07816_T_1 IS07816 Protocol: T = 1

0x8 IRDA IrDA

0xE SPI_MASTER SPI Master mode (CLKO must be written to 1 and USCLKS = 0, 1 or 2)

0xF SPI_SLAVE SPI Slave mode

Value Name Description
0 MCK Peripheral clock is selected

1 DIV Peripheral clock divided (DIV = 8) is selected

2 - Reserved

3 SCK Serial Clock (SCK) is selected

 693SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• CHRL: Character Length

• SYNC: Synchronous Mode Select
0: USART operates in Asynchronous mode.

1: USART operates in Synchronous mode.

• PAR: Parity Type

• NBSTOP: Number of Stop Bits

• CHMODE: Channel Mode

• MSBF: Bit Order
0: Least significant bit is sent/received first.

1: Most significant bit is sent/received first.

• MODE9: 9-bit Character Length
0: CHRL defines character length.

1: 9-bit character length.

Value Name Description
0 5_BIT Character length is 5 bits

1 6_BIT Character length is 6 bits

2 7_BIT Character length is 7 bits

3 8_BIT Character length is 8 bits

Value Name Description
0 EVEN Even parity

1 ODD Odd parity

2 SPACE Parity forced to 0 (Space)

3 MARK Parity forced to 1 (Mark)

4 NO No parity

6 MULTIDROP Multidrop mode

Value Name Description
0 1_BIT 1 stop bit

1 1_5_BIT 1.5 stop bit (SYNC = 0) or reserved (SYNC = 1)

2 2_BIT 2 stop bits

Value Name Description
0 NORMAL Normal mode

1 AUTOMATIC Automatic Echo. Receiver input is connected to the TXD pin

2 LOCAL_LOOPBACK Local Loopback. Transmitter output is connected to the Receiver Input

3 REMOTE_LOOPBACK Remote Loopback. RXD pin is internally connected to the TXD pin

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 694

• CLKO: Clock Output Select
0: The USART does not drive the SCK pin.

1: The USART drives the SCK pin if USCLKS does not select the external clock SCK.

• OVER: Oversampling Mode
0: 16X Oversampling.

1: 8X Oversampling.

• INACK: Inhibit Non Acknowledge
0: The NACK is generated.

1: The NACK is not generated.

• DSNACK: Disable Successive NACK
0: NACK is sent on the ISO line as soon as a parity error occurs in the received character (unless INACK is set).

1: Successive parity errors are counted up to the value specified in the MAX_ITERATION field. These parity errors generate a
NACK on the ISO line. As soon as this value is reached, no additional NACK is sent on the ISO line. The flag ITER is asserted.
Note: MAX_ITERATION field must be set to 0 if DSNACK is cleared.

• INVDATA: Inverted Data
0: The data field transmitted on TXD line is the same as the one written in US_THR or the content read in US_RHR is the
same as RXD line. Normal mode of operation.

1: The data field transmitted on TXD line is inverted (voltage polarity only) compared to the value written on US_THR or the
content read in US_RHR is inverted compared to what is received on RXD line (or ISO7816 IO line). Inverted mode of opera-
tion, useful for contactless card application. To be used with configuration bit MSBF.

• VAR_SYNC: Variable Synchronization of Command/Data Sync Start Frame Delimiter
0: User defined configuration of command or data sync field depending on MODSYNC value.

1: The sync field is updated when a character is written into US_THR.

• MAX_ITERATION: Maximum Number of Automatic Iteration
0 - 7: Defines the maximum number of iterations in ISO7816 mode, protocol T = 0.

• FILTER: Receive Line Filter
0: The USART does not filter the receive line.

1: The USART filters the receive line using a three-sample filter (1/16-bit clock) (2 over 3 majority).

• MAN: Manchester Encoder/Decoder Enable
0: Manchester encoder/decoder are disabled.

1: Manchester encoder/decoder are enabled.

• MODSYNC: Manchester Synchronization Mode
0: The Manchester start bit is a 0 to 1 transition.

1: The Manchester start bit is a 1 to 0 transition.

• ONEBIT: Start Frame Delimiter Selector
0: Start frame delimiter is COMMAND or DATA SYNC.

1: Start frame delimiter is one bit.

 695SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

36.7.4 USART Mode Register (SPI_MODE)

Name: US_MR (SPI_MODE)

Address: 0x40024004 (0), 0x40028004 (1), 0x4002C004 (2), 0x40030004 (3), 0x40034004 (4)

Access: Read/Write

This configuration is relevant only if USART_MODE = 0xE or 0xF in the “USART Mode Register” .

This register can only be written if the WPEN bit is cleared in the “USART Write Protection Mode Register” .

• USART_MODE: USART Mode of Operation

• USCLKS: Clock Selection

• CHRL: Character Length

• CPHA: SPI Clock Phase
Applicable if USART operates in SPI mode (USART_MODE = 0xE or 0xF):

0: Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.

1: Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.

CPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. CPHA is used
with CPOL to produce the required clock/data relationship between master and slave devices.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – WRDBT – CLKO – CPOL

15 14 13 12 11 10 9 8
– – – – – – – CPHA

7 6 5 4 3 2 1 0
CHRL USCLKS USART_MODE

Value Name Description

0xE SPI_MASTER SPI Master

0xF SPI_SLAVE SPI Slave

Value Name Description

0 MCK Peripheral clock is selected

1 DIV Peripheral clock divided (DIV = 8) is selected

3 SCK Serial Clock (SCK) is selected

Value Name Description

3 8_BIT Character length is 8 bits

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 696

• CPOL: SPI Clock Polarity
Applicable if USART operates in SPI mode (slave or master, USART_MODE = 0xE or 0xF):

0: The inactive state value of SPCK is logic level zero.

1: The inactive state value of SPCK is logic level one.

CPOL is used to determine the inactive state value of the serial clock (SCK). It is used with CPHA to produce the required
clock/data relationship between master and slave devices.

• CLKO: Clock Output Select
0: The USART does not drive the SCK pin.

1: The USART drives the SCK pin if USCLKS does not select the external clock SCK.

• WRDBT: Wait Read Data Before Transfer
0: The character transmission starts as soon as a character is written into US_THR (assuming TXRDY was set).

1: The character transmission starts when a character is written and only if RXRDY flag is cleared (Receive Holding Register
has been read).

 697SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

36.7.5 USART Interrupt Enable Register

Name: US_IER

Address: 0x40024008 (0), 0x40028008 (1), 0x4002C008 (2), 0x40030008 (3), 0x40034008 (4)

Access: Write-only

For SPI specific configuration, see Section 36.7.6 ”USART Interrupt Enable Register (SPI_MODE)”.

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

• RXRDY: RXRDY Interrupt Enable

• TXRDY: TXRDY Interrupt Enable

• RXBRK: Receiver Break Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable (available in all USART modes of operation)

• ENDTX: End of Transmit Buffer Interrupt Enable (available in all USART modes of operation)

• OVRE: Overrun Error Interrupt Enable

• FRAME: Framing Error Interrupt Enable

• PARE: Parity Error Interrupt Enable

• TIMEOUT: Time-out Interrupt Enable

• TXEMPTY: TXEMPTY Interrupt Enable

• ITER: Max number of Repetitions Reached Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable (available in all USART modes of operation)

• RXBUFF: Receive Buffer Full Interrupt Enable (available in all USART modes of operation)

• NACK: Non Acknowledge Interrupt Enable

• CTSIC: Clear to Send Input Change Interrupt Enable

• MANE: Manchester Error Interrupt Enable

31 30 29 28 27 26 25 24
– – – – – – – MANE

23 22 21 20 19 18 17 16
– – – – CTSIC – – –

15 14 13 12 11 10 9 8
– – NACK RXBUFF TXBUFE ITER TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0
PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 698

36.7.6 USART Interrupt Enable Register (SPI_MODE)

Name: US_IER (SPI_MODE)

Address: 0x40024008 (0), 0x40028008 (1), 0x4002C008 (2), 0x40030008 (3), 0x40034008 (4)

Access: Write-only

This configuration is relevant only if USART_MODE = 0xE or 0xF in the “USART Mode Register” .

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

• RXRDY: RXRDY Interrupt Enable

• TXRDY: TXRDY Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• ENDTX: End of Transmit Buffer Interrupt Enable

• OVRE: Overrun Error Interrupt Enable

• TXEMPTY: TXEMPTY Interrupt Enable

• UNRE: SPI Underrun Error Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable

• NSSE: NSS Line (Driving CTS Pin) Rising or Falling Edge Event Interrupt Enable

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – NSSE – – –

15 14 13 12 11 10 9 8
– – – RXBUFF TXBUFE UNRE TXEMPTY –

7 6 5 4 3 2 1 0
– – OVRE ENDTX ENDRX – TXRDY RXRDY

 699SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

36.7.7 USART Interrupt Disable Register

Name: US_IDR

Address: 0x4002400C (0), 0x4002800C (1), 0x4002C00C (2), 0x4003000C (3), 0x4003400C (4)

Access: Write-only

For SPI specific configuration, see Section 36.7.8 ”USART Interrupt Disable Register (SPI_MODE)”.

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Disables the corresponding interrupt.

• RXRDY: RXRDY Interrupt Disable

• TXRDY: TXRDY Interrupt Disable

• RXBRK: Receiver Break Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable (available in all USART modes of operation)

• ENDTX: End of Transmit Buffer Interrupt Disable (available in all USART modes of operation)

• OVRE: Overrun Error Interrupt Disable

• FRAME: Framing Error Interrupt Disable

• PARE: Parity Error Interrupt Disable

• TIMEOUT: Time-out Interrupt Disable

• TXEMPTY: TXEMPTY Interrupt Disable

• ITER: Max Number of Repetitions Reached Interrupt Disable

• TXBUFE: Transmit Buffer Empty Interrupt Disable (available in all USART modes of operation)

• RXBUFF: Receive Buffer Full Interrupt Disable (available in all USART modes of operation)

• NACK: Non Acknowledge Interrupt Disable

• CTSIC: Clear to Send Input Change Interrupt Disable

• MANE: Manchester Error Interrupt Disable

31 30 29 28 27 26 25 24
– – – – – – – MANE

23 22 21 20 19 18 17 16
– – – – CTSIC – – –

15 14 13 12 11 10 9 8
– – NACK RXBUFF TXBUFE ITER TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0
PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 700

36.7.8 USART Interrupt Disable Register (SPI_MODE)

Name: US_IDR (SPI_MODE)

Address: 0x4002400C (0), 0x4002800C (1), 0x4002C00C (2), 0x4003000C (3), 0x4003400C (4)

Access: Write-only

This configuration is relevant only if USART_MODE = 0xE or 0xF in the “USART Mode Register” .

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Disables the corresponding interrupt.

• RXRDY: RXRDY Interrupt Disable

• TXRDY: TXRDY Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable

• ENDTX: End of Transmit Buffer Interrupt Disable

• OVRE: Overrun Error Interrupt Disable

• TXEMPTY: TXEMPTY Interrupt Disable

• UNRE: SPI Underrun Error Interrupt Disable

• TXBUFE: Transmit Buffer Empty Interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable

• NSSE: NSS Line (Driving CTS Pin) Rising or Falling Edge Event Interrupt Disable

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – NSSE – – –

15 14 13 12 11 10 9 8
– – – RXBUFF TXBUFE UNRE TXEMPTY –

7 6 5 4 3 2 1 0
– – OVRE ENDTX ENDRX – TXRDY RXRDY

 701SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

36.7.9 USART Interrupt Mask Register

Name: US_IMR

Address: 0x40024010 (0), 0x40028010 (1), 0x4002C010 (2), 0x40030010 (3), 0x40034010 (4)

Access: Read-only

For SPI specific configuration, see Section 36.7.10 ”USART Interrupt Mask Register (SPI_MODE)”.

The following configuration values are valid for all listed bit names of this register:

0: The corresponding interrupt is not enabled.

1: The corresponding interrupt is enabled.

• RXRDY: RXRDY Interrupt Mask

• TXRDY: TXRDY Interrupt Mask

• RXBRK: Receiver Break Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask (available in all USART modes of operation)

• ENDTX: End of Transmit Buffer Interrupt Mask (available in all USART modes of operation)

• OVRE: Overrun Error Interrupt Mask

• FRAME: Framing Error Interrupt Mask

• PARE: Parity Error Interrupt Mask

• TIMEOUT: Time-out Interrupt Mask

• TXEMPTY: TXEMPTY Interrupt Mask

• ITER: Max Number of Repetitions Reached Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask (available in all USART modes of operation)

• RXBUFF: Receive Buffer Full Interrupt Mask (available in all USART modes of operation)

• NACK: Non Acknowledge Interrupt Mask

• CTSIC: Clear to Send Input Change Interrupt Mask

• MANE: Manchester Error Interrupt Mask

31 30 29 28 27 26 25 24
– – – – – – – MANE

23 22 21 20 19 18 17 16
– – – – CTSIC – – –

15 14 13 12 11 10 9 8
– – NACK RXBUFF TXBUFE ITER TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0
PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 702

36.7.10 USART Interrupt Mask Register (SPI_MODE)

Name: US_IMR (SPI_MODE)

Address: 0x40024010 (0), 0x40028010 (1), 0x4002C010 (2), 0x40030010 (3), 0x40034010 (4)

Access: Read-only

This configuration is relevant only if USART_MODE = 0xE or 0xF in the “USART Mode Register” .

The following configuration values are valid for all listed bit names of this register:

0: The corresponding interrupt is not enabled.

1: The corresponding interrupt is enabled.

• RXRDY: RXRDY Interrupt Mask

• TXRDY: TXRDY Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• ENDTX: End of Transmit Buffer Interrupt Mask

• OVRE: Overrun Error Interrupt Mask

• TXEMPTY: TXEMPTY Interrupt Mask

• UNRE: SPI Underrun Error Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

• NSSE: NSS Line (Driving CTS Pin) Rising or Falling Edge Event Interrupt Mask

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – NSSE – – –

15 14 13 12 11 10 9 8
– – – RXBUFF TXBUFE UNRE TXEMPTY –

7 6 5 4 3 2 1 0
– – OVRE ENDTX ENDRX – TXRDY RXRDY

 703SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

36.7.11 USART Channel Status Register

Name: US_CSR

Address: 0x40024014 (0), 0x40028014 (1), 0x4002C014 (2), 0x40030014 (3), 0x40034014 (4)

Access: Read-only

For SPI specific configuration, see Section 36.7.12 ”USART Channel Status Register (SPI_MODE)”.

• RXRDY: Receiver Ready (cleared by reading US_RHR)
0: No complete character has been received since the last read of US_RHR or the receiver is disabled. If characters were
being received when the receiver was disabled, RXRDY changes to 1 when the receiver is enabled.

1: At least one complete character has been received and US_RHR has not yet been read.

• TXRDY: Transmitter Ready (cleared by writing US_THR)
0: A character is in the US_THR waiting to be transferred to the Transmit Shift Register, or an STTBRK command has been
requested, or the transmitter is disabled. As soon as the transmitter is enabled, TXRDY becomes 1.

1: There is no character in the US_THR.

• RXBRK: Break Received/End of Break (cleared by writing a one to bit US_CR.RSTSTA)
0: No break received or end of break detected since the last RSTSTA.

1: Break received or end of break detected since the last RSTSTA.

• ENDRX: End of RX Buffer (cleared by writing US_RCR or US_RNCR)
0: The Receive Counter Register has not reached 0 since the last write in US_RCR or US_RNCR(1).

1: The Receive Counter Register has reached 0 since the last write in US_RCR or US_RNCR(1).

• ENDTX: End of TX Buffer (cleared by writing US_TCR or US_TNCR)
0: The Transmit Counter Register has not reached 0 since the last write in US_TCR or US_TNCR(1).

1: The Transmit Counter Register has reached 0 since the last write in US_TCR or US_TNCR(1).

• OVRE: Overrun Error (cleared by writing a one to bit US_CR.RSTSTA)
0: No overrun error has occurred since the last RSTSTA.

1: At least one overrun error has occurred since the last RSTSTA.

• FRAME: Framing Error (cleared by writing a one to bit US_CR.RSTSTA)
0: No stop bit has been detected low since the last RSTSTA.

1: At least one stop bit has been detected low since the last RSTSTA.

31 30 29 28 27 26 25 24
– – – – – – – MANERR

23 22 21 20 19 18 17 16
CTS – – – CTSIC – – –

15 14 13 12 11 10 9 8
– – NACK RXBUFF TXBUFE ITER TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0
PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 704

• PARE: Parity Error (cleared by writing a one to bit US_CR.RSTSTA)
0: No parity error has been detected since the last RSTSTA.

1: At least one parity error has been detected since the last RSTSTA.

• TIMEOUT: Receiver Time-out (cleared by writing a one to bit US_CR.STTTO)
0: There has not been a time-out since the last Start Time-out command (STTTO in US_CR) or the Time-out Register is 0.

1: There has been a time-out since the last Start Time-out command (STTTO in US_CR).

• TXEMPTY: Transmitter Empty (cleared by writing US_THR)
0: There are characters in either US_THR or the Transmit Shift Register, or the transmitter is disabled.

1: There are no characters in US_THR, nor in the Transmit Shift Register.

• ITER: Max Number of Repetitions Reached (cleared by writing a one to bit US_CR.RSTIT)
0: Maximum number of repetitions has not been reached since the last RSTIT.

1: Maximum number of repetitions has been reached since the last RSTIT.

• TXBUFE: TX Buffer Empty (cleared by writing US_TCR or US_TNCR)
0: US_TCR or US_TNCR have a value other than 0(1).

1: Both US_TCR and US_TNCR have a value of 0(1).

• RXBUFF: RX Buffer Full (cleared by writing US_RCR or US_RNCR)
0: US_RCR or US_RNCR have a value other than 0(1).

1: Both US_RCR and US_RNCR have a value of 0(1).
Note: 1. US_RCR, US_RNCR, US_TCR and US_TNCR are PDC registers.

• NACK: Non Acknowledge Interrupt (cleared by writing a one to bit US_CR.RSTNACK)
0: Non acknowledge has not been detected since the last RSTNACK.

1: At least one non acknowledge has been detected since the last RSTNACK.

• CTSIC: Clear to Send Input Change Flag (cleared on read)
0: No input change has been detected on the CTS pin since the last read of US_CSR.

1: At least one input change has been detected on the CTS pin since the last read of US_CSR.

• CTS: Image of CTS Input
0: CTS input is driven low.

1: CTS input is driven high.

• MANERR: Manchester Error (cleared by writing a one to the bit US_CR.RSTSTA)
0: No Manchester error has been detected since the last RSTSTA.

1: At least one Manchester error has been detected since the last RSTSTA.

 705SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

36.7.12 USART Channel Status Register (SPI_MODE)

Name: US_CSR (SPI_MODE)

Address: 0x40024014 (0), 0x40028014 (1), 0x4002C014 (2), 0x40030014 (3), 0x40034014 (4)

Access: Read-only

This configuration is relevant only if USART_MODE = 0xE or 0xF in the “USART Mode Register” .

• RXRDY: Receiver Ready (cleared by reading US_RHR)
0: No complete character has been received since the last read of US_RHR or the receiver is disabled. If characters were
being received when the receiver was disabled, RXRDY changes to 1 when the receiver is enabled.

1: At least one complete character has been received and US_RHR has not yet been read.

• TXRDY: Transmitter Ready (cleared by writing US_THR)
0: A character is in the US_THR waiting to be transferred to the Transmit Shift Register or the transmitter is disabled. As soon
as the transmitter is enabled, TXRDY becomes 1.

1: There is no character in the US_THR.

• ENDRX: End of RX Buffer (cleared by writing US_RCR or US_RNCR)
0: The Receive Counter Register has not reached 0 since the last write in US_RCR or US_RNCR(1).

1: The Receive Counter Register has reached 0 since the last write in US_RCR or US_RNCR(1).

• ENDTX: End of TX Buffer (cleared by writing US_TCR or US_TNCR)
0: The Transmit Counter Register has not reached 0 since the last write in US_TCR or US_TNCR(1).

1: The Transmit Counter Register has reached 0 since the last write in US_TCR or US_TNCR(1).

• OVRE: Overrun Error (cleared by writing a one to bit US_CR.RSTSTA)
0: No overrun error has occurred since the last RSTSTA.

1: At least one overrun error has occurred since the last RSTSTA.

• TXEMPTY: Transmitter Empty (cleared by writing US_THR)
0: There are characters in either US_THR or the Transmit Shift Register, or the transmitter is disabled.

1: There are no characters in US_THR, nor in the Transmit Shift Register.

• UNRE: Underrun Error (cleared by writing a one to bit US_CR.RSTSTA)
0: No SPI underrun error has occurred since the last RSTSTA.

1: At least one SPI underrun error has occurred since the last RSTSTA.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
NSS – – – NSSE – – –

15 14 13 12 11 10 9 8
– – – RXBUFF TXBUFE UNRE TXEMPTY –

7 6 5 4 3 2 1 0
– – OVRE ENDTX ENDRX – TXRDY RXRDY

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 706

• TXBUFE: TX Buffer Empty (cleared by writing US_TCR or US_TNCR)
0: US_TCR or US_TNCR have a value other than 0(1).

1: Both US_TCR and US_TNCR have a value of 0(1).

• RXBUFF: RX Buffer Full (cleared by writing US_RCR or US_RNCR)
0: US_RCR or US_RNCR have a value other than 0(1).

1: Both US_RCR and US_RNCR have a value of 0(1).
Note: 1. US_RCR, US_RNCR, US_TCR and US_TNCR are PDC registers.

• NSSE: NSS Line (Driving CTS Pin) Rising or Falling Edge Event (cleared on read)
0: No NSS line event has been detected since the last read of US_CSR.

1: A rising or falling edge event has been detected on NSS line since the last read of US_CSR.

• NSS: Image of NSS Line
0: NSS line is driven low (if NSSE = 1, falling edge occurred on NSS line).

1: NSS line is driven high (if NSSE = 1, rising edge occurred on NSS line).

 707SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

36.7.13 USART Receive Holding Register

Name: US_RHR

Address: 0x40024018 (0), 0x40028018 (1), 0x4002C018 (2), 0x40030018 (3), 0x40034018 (4)

Access: Read-only

• RXCHR: Received Character
Last character received if RXRDY is set.

• RXSYNH: Received Sync
0: Last character received is a data.

1: Last character received is a command.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
RXSYNH – – – – – – RXCHR

7 6 5 4 3 2 1 0
RXCHR

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 708

36.7.14 USART Transmit Holding Register

Name: US_THR

Address: 0x4002401C (0), 0x4002801C (1), 0x4002C01C (2), 0x4003001C (3), 0x4003401C (4)

Access: Write-only

• TXCHR: Character to be Transmitted
Next character to be transmitted after the current character if TXRDY is not set.

• TXSYNH: Sync Field to be Transmitted
0: The next character sent is encoded as a data. Start frame delimiter is DATA SYNC.

1: The next character sent is encoded as a command. Start frame delimiter is COMMAND SYNC.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TXSYNH – – – – – – TXCHR

7 6 5 4 3 2 1 0
TXCHR

 709SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

36.7.15 USART Baud Rate Generator Register

Name: US_BRGR

Address: 0x40024020 (0), 0x40028020 (1), 0x4002C020 (2), 0x40030020 (3), 0x40034020 (4)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “USART Write Protection Mode Register” .

• CD: Clock Divider

• FP: Fractional Part
0: Fractional divider is disabled.

1 - 7: Baud rate resolution, defined by FP  1/8.

Warning: When the value of field FP is greater than 0, the SCK (oversampling clock) generates nonconstant duty cycles. The
SCK high duration is increased by “selected clock” period from time to time. The duty cycle depends on the value of the CD
field.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – FP

15 14 13 12 11 10 9 8
CD

7 6 5 4 3 2 1 0
CD

CD

USART_MODE ≠ ISO7816

USART_MODE =
ISO7816

SYNC = 0 SYNC = 1
or

USART_MODE = SPI
(Master or Slave)OVER = 0 OVER = 1

0 Baud Rate Clock Disabled

1 to 65535 CD = Selected Clock / (16
Baud Rate)

CD = Selected Clock / (8 
Baud Rate)

CD = Selected Clock / Baud
Rate

CD = Selected Clock /
(FI_DI_RATIO Baud Rate)

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 710

36.7.16 USART Receiver Time-out Register

Name: US_RTOR

Address: 0x40024024 (0), 0x40028024 (1), 0x4002C024 (2), 0x40030024 (3), 0x40034024 (4)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “USART Write Protection Mode Register” .

• TO: Time-out Value
0: The receiver time-out is disabled.

1 - 65535: The receiver time-out is enabled and TO is Time-out Delay  Bit Period.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TO

7 6 5 4 3 2 1 0
TO

 711SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

36.7.17 USART Transmitter Timeguard Register

Name: US_TTGR

Address: 0x40024028 (0), 0x40028028 (1), 0x4002C028 (2), 0x40030028 (3), 0x40034028 (4)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “USART Write Protection Mode Register” .

• TG: Timeguard Value
0: The transmitter timeguard is disabled.

1 - 255: The transmitter timeguard is enabled and TG is Timeguard Delay / Bit Period.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
TG

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 712

36.7.18 USART FI DI RATIO Register

Name: US_FIDI

Address: 0x40024040 (0), 0x40028040 (1), 0x4002C040 (2), 0x40030040 (3), 0x40034040 (4)

Access: Read/Write

Reset: 0x174

This register can only be written if the WPEN bit is cleared in the “USART Write Protection Mode Register” .

• FI_DI_RATIO: FI Over DI Ratio Value
0: If ISO7816 mode is selected, the baud rate generator generates no signal.

1 - 2: Do not use.

3 - 2047: If ISO7816 mode is selected, the baud rate is the clock provided on SCK divided by FI_DI_RATIO.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – FI_DI_RATIO

7 6 5 4 3 2 1 0
FI_DI_RATIO

 713SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

36.7.19 USART Number of Errors Register

Name: US_NER

Address: 0x40024044 (0), 0x40028044 (1), 0x4002C044 (2), 0x40030044 (3), 0x40034044 (4)

Access: Read-only

This register is relevant only if USART_MODE = 0x4 or 0x6 in the “USART Mode Register” .

• NB_ERRORS: Number of Errors
Total number of errors that occurred during an ISO7816 transfer. This register automatically clears when read.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
NB_ERRORS

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 714

36.7.20 USART IrDA Filter Register

Name: US_IF

Address: 0x4002404C (0), 0x4002804C (1), 0x4002C04C (2), 0x4003004C (3), 0x4003404C (4)

Access: Read/Write

This register is relevant only if USART_MODE = 0x8 in the “USART Mode Register” .

This register can only be written if the WPEN bit is cleared in the “USART Write Protection Mode Register” .

• IRDA_FILTER: IrDA Filter
The IRDA_FILTER value must be defined to meet the following criteria:

tperipheral clock  (IRDA_FILTER + 3) < 1.41 μs

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
IRDA_FILTER

 715SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

36.7.21 USART Manchester Configuration Register

Name: US_MAN

Address: 0x40024050 (0), 0x40028050 (1), 0x4002C050 (2), 0x40030050 (3), 0x40034050 (4)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “USART Write Protection Mode Register” .

• TX_PL: Transmitter Preamble Length
0: The transmitter preamble pattern generation is disabled.

1 - 15: The preamble length is TX_PL x Bit Period.

• TX_PP: Transmitter Preamble Pattern
The following values assume that TX_MPOL field is not set:

• TX_MPOL: Transmitter Manchester Polarity
0: Logic zero is coded as a zero-to-one transition, Logic one is coded as a one-to-zero transition.

1: Logic zero is coded as a one-to-zero transition, Logic one is coded as a zero-to-one transition.

• RX_PL: Receiver Preamble Length
0: The receiver preamble pattern detection is disabled.

1 - 15: The detected preamble length is RX_PL x Bit Period.

• RX_PP: Receiver Preamble Pattern detected
The following values assume that RX_MPOL field is not set:

31 30 29 28 27 26 25 24
– DRIFT ONE RX_MPOL – – RX_PP

23 22 21 20 19 18 17 16
– – – – RX_PL

15 14 13 12 11 10 9 8
– – – TX_MPOL – – TX_PP

7 6 5 4 3 2 1 0
– – – – TX_PL

Value Name Description
0 ALL_ONE The preamble is composed of ‘1’s

1 ALL_ZERO The preamble is composed of ‘0’s

2 ZERO_ONE The preamble is composed of ‘01’s

3 ONE_ZERO The preamble is composed of ‘10’s

Value Name Description
00 ALL_ONE The preamble is composed of ‘1’s

01 ALL_ZERO The preamble is composed of ‘0’s

10 ZERO_ONE The preamble is composed of ‘01’s

11 ONE_ZERO The preamble is composed of ‘10’s

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 716

• RX_MPOL: Receiver Manchester Polarity
0: Logic zero is coded as a zero-to-one transition, Logic one is coded as a one-to-zero transition.

1: Logic zero is coded as a one-to-zero transition, Logic one is coded as a zero-to-one transition.

• ONE: Must Be Set to 1
Bit 29 must always be set to 1 when programming the US_MAN register.

• DRIFT: Drift Compensation
0: The USART cannot recover from an important clock drift.

1: The USART can recover from clock drift. The 16X clock mode must be enabled.

 717SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

36.7.22 USART Write Protection Mode Register

Name: US_WPMR

Address: 0x400240E4 (0), 0x400280E4 (1), 0x4002C0E4 (2), 0x400300E4 (3), 0x400340E4 (4)

Access: Read/Write

Reset: See Table 36-14

• WPEN: Write Protection Enable
0: Disables the write protection if WPKEY corresponds to 0x555341 (“USA” in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x555341 (“USA” in ASCII).

See Section 36.6.9 ”Register Write Protection” for the list of registers that can be write-protected.

• WPKEY: Write Protection Key

31 30 29 28 27 26 25 24
WPKEY

23 22 21 20 19 18 17 16
WPKEY

15 14 13 12 11 10 9 8
WPKEY

7 6 5 4 3 2 1 0
– – – – – – – WPEN

Value Name Description

0x555341 PASSWD Writing any other value in this field aborts the write operation of the WPEN bit. Always reads as 0.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 718

36.7.23 USART Write Protection Status Register

Name: US_WPSR

Address: 0x400240E8 (0), 0x400280E8 (1), 0x4002C0E8 (2), 0x400300E8 (3), 0x400340E8 (4)

Access: Read-only

Reset: See Table 36-14

• WPVS: Write Protection Violation Status
0: No write protection violation has occurred since the last read of the US_WPSR.

1: A write protection violation has occurred since the last read of the US_WPSR. If this violation is an unauthorized attempt to
write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protection Violation Source
When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
WPVSRC

15 14 13 12 11 10 9 8
WPVSRC

7 6 5 4 3 2 1 0
– – – – – – – WPVS

 719SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

37. Timer Counter (TC)

37.1 Description
A Timer Counter (TC) module includes three identical TC channels. The number of implemented TC modules is
device-specific.

Each TC channel can be independently programmed to perform a wide range of functions including frequency
measurement, event counting, interval measurement, pulse generation, delay timing and pulse width modulation.

Each channel has three external clock inputs, five internal clock inputs and two multipurpose input/output signals
which can be configured by the user. Each channel drives an internal interrupt signal which can be programmed to
generate processor interrupts.

The TC embeds a quadrature decoder (QDEC) connected in front of the timers and driven by TIOA0, TIOB0 and
TIOB1 inputs. When enabled, the QDEC performs the input lines filtering, decoding of quadrature signals and
connects to the timers/counters in order to read the position and speed of the motor through the user interface.

The TC block has two global registers which act upon all TC channels:
 Block Control register (TC_BCR)—allows channels to be started simultaneously with the same instruction.
 Block Mode register (TC_BMR)—defines the external clock inputs for each channel, allowing them to be

chained.

37.2 Embedded Characteristics
 Total number of TC channels implemented on this device: three
 TC channel size: 16-bit
 Wide range of functions including:

 Frequency measurement
 Event counting
 Interval measurement
 Pulse generation
 Delay timing
 Pulse Width Modulation
 Up/down capabilities
 Quadrature decoder
 2-bit Gray up/down count for stepper motor

 Each channel is user-configurable and contains:
 Three external clock inputs
 Five Internal clock inputs
 Two multipurpose input/output signals acting as trigger event

 Internal interrupt signal
 Register Write Protection

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 720

37.3 Block Diagram

Note: 1. When SLCK is selected for Peripheral Clock (CSS = 0 in PMC Master Clock register), SLCK input is
equivalent to Peripheral Clock.

Figure 37-1. Timer Counter Block Diagram

Table 37-1. Timer Counter Clock Assignment
Name Definition
TIMER_CLOCK1 MCK/2

TIMER_CLOCK2 MCK/8

TIMER_CLOCK3 MCK/32

TIMER_CLOCK4 MCK/128

TIMER_CLOCK5(1) SLCK

Table 37-2. Channel Signal Description

Signal Name Description

XC0, XC1, XC2 External Clock Inputs

TIOAx Capture Mode: Timer Counter Input
Waveform Mode: Timer Counter Output

TIOBx Capture Mode: Timer Counter Input
Waveform Mode: Timer Counter Input/Output

INT Interrupt Signal Output (internal signal)

SYNC Synchronization Input Signal (from configuration register)

Timer/Counter
Channel 0

Timer/Counter
Channel 1

Timer/Counter
Channel 2

SYNC

Parallel I/O
Controller

TC1XC1S

TC0XC0S

TC2XC2S

INT0

INT1

INT2

TIOA0

TIOA1

TIOA2

TIOB0

TIOB1

TIOB2

XC0

XC1

XC2

XC0

XC1

XC2

XC0

XC1

XC2

TCLK0

TCLK1

TCLK2

TCLK0

TCLK1

TCLK2

TCLK0

TCLK1

TCLK2

TIOA1

TIOA2

TIOA0

TIOA2

TIOA0

TIOA1

Interrupt
Controller

TCLK0
TCLK1
TCLK2

TIOA0
TIOB0

TIOA1
TIOB1

TIOA2
TIOB2

Timer Counter

TIOA

TIOB

TIOA

TIOB

TIOA

TIOB

SYNC

SYNC

TIMER_CLOCK2

TIMER_CLOCK3

TIMER_CLOCK4

TIMER_CLOCK5

TIMER_CLOCK1

 721SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

37.4 Pin List

37.5 Product Dependencies

37.5.1 I/O Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines. The programmer must
first program the PIO controllers to assign the TC pins to their peripheral functions.

37.5.2 Power Management

The TC is clocked through the Power Management Controller (PMC), thus the programmer must first configure the
PMC to enable the Timer Counter clock of each channel.

Table 37-3. TC Pin List

Pin Name Description Type

TCLK0 - TCLK2 External Clock Input Input

TIOA0 - TIOA2 I/O Line A I/O

TIOB0 - TIOB2 I/O Line B I/O

Table 37-4. I/O Lines

Instance Signal I/O Line Peripheral

TC0 TCLK0 PB4 B

TC0 TCLK1 PB9 A

TC0 TCLK2 PB12 A

TC0 TIOA0 PA13 B

TC0 TIOA1 PB7 A

TC0 TIOA2 PB10 A

TC0 TIOB0 PA14 B

TC0 TIOB1 PB8 A

TC0 TIOB2 PB11 A

TC1 TCLK3 PB26 A

TC1 TCLK4 PA17 B

TC1 TCLK5 PA19 B

TC1 TIOA3 PB24 A

TC1 TIOA4 PA15 B

TC1 TIOA5 PA18 B

TC1 TIOB3 PB25 A

TC1 TIOB4 PA16 B

TC1 TIOB5 PA20 B

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 722

37.5.3 Interrupt Sources

The TC has an interrupt line per channel connected to the interrupt controller. Handling the TC interrupt requires
programming the interrupt controller before configuring the TC.

37.6 Functional Description

37.6.1 Description

All channels of the Timer Counter are independent and identical in operation except when the QDEC is enabled. The
registers for channel programming are listed in Table 37-6.

37.6.2 16-bit Counter

Each 16-bit channel is organized around a 16-bit counter. The value of the counter is incremented at each positive
edge of the selected clock. When the counter has reached the value 216 - 1 and passes to zero, an overflow occurs
and the COVFS bit in the TC Status register (TC_SR) is set.

The current value of the counter is accessible in real time by reading the TC Counter Value register (TC_CV). The
counter can be reset by a trigger. In this case, the counter value passes to zero on the next valid edge of the selected
clock.

37.6.3 Clock Selection

At block level, input clock signals of each channel can be connected either to the external inputs TCLKx, or to the
internal I/O signals TIOAx for chaining(1) by programming the TC Block Mode register (TC_BMR). See Figure 37-2
”Clock Chaining Selection”.

Each channel can independently select an internal or external clock source for its counter:
 External clock signals(2): XC0, XC1 or XC2
 Internal clock signals: MCK/2, MCK/8, MCK/32, MCK/128, SLCK

This selection is made by the TCCLKS bits in the TC Channel Mode register (TC_CMR).

The selected clock can be inverted with TC_CMR.CLKI. This allows counting on the opposite edges of the clock.

The burst function allows the clock to be validated when an external signal is high. The BURST parameter in the
TC_CMR defines this signal (none, XC0, XC1, XC2). See Figure 37-3 ”Clock Selection”.
Notes: 1. In Waveform mode, to chain two timers, it is mandatory to initialize some parameters:

- Configure TIOx outputs to 1 or 0 by writing the required value to TC_CMR.ASWTRG.

- Bit TC_BCR.SYNC must be written to 1 to start the channels at the same time.
2. In all cases, if an external clock is used, the duration of each of its levels must be longer than the

peripheral clock period, so the clock frequency will be at least 2.5 times lower than the peripheral clock.

Table 37-5. Peripheral IDs

Instance ID

TC0 23

TC1 24

 723SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 37-2. Clock Chaining Selection

Figure 37-3. Clock Selection

Timer/Counter
Channel 0

SYNC

TC0XC0S

TIOA0

TIOB0

XC0

XC1 = TCLK1

XC2 = TCLK2

TCLK0
TIOA1

TIOA2

Timer/Counter
Channel 1

SYNC

TC1XC1S

TIOA1

TIOB1

XC0 = TCLK0

XC1

XC2 = TCLK2

TCLK1
TIOA0

TIOA2

Timer/Counter
Channel 2

SYNC

TC2XC2S

TIOA2

TIOB2

XC0 = TCLK0

XC1 = TCLK1

XC2

TCLK2
TIOA0

TIOA1

TIMER_CLOCK1

TIMER_CLOCK2

TIMER_CLOCK3

TIMER_CLOCK4

TIMER_CLOCK5

XC0

XC1

XC2

TCCLKS

CLKI
Synchronous

Edge Detection

BURST

Peripheral
Clock

1

Selected
Clock

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 724

37.6.4 Clock Control

The clock of each counter can be controlled in two different ways: it can be enabled/disabled and started/stopped.
See Figure 37-4.

 The clock can be enabled or disabled by the user with the CLKEN and the CLKDIS commands in the TC
Channel Control register (TC_CCR). In Capture mode it can be disabled by an RB load event if
TC_CMR.LDBDIS is set to 1. In Waveform mode, it can be disabled by an RC Compare event if
TC_CMR.CPCDIS is set to 1. When disabled, the start or the stop actions have no effect: only a CLKEN
command in the TC_CCR can reenable the clock. When the clock is enabled, TC_SR.CLKSTA is set.

 The clock can also be started or stopped: a trigger (software, synchro, external or compare) always starts the
clock. The clock can be stopped by an RB load event in Capture mode (LDBSTOP = 1 in TC_CMR) or an RC
compare event in Waveform mode (CPCSTOP = 1 in TC_CMR). The start and the stop commands are
effective only if the clock is enabled.

Figure 37-4. Clock Control

37.6.5 Operating Modes

Each channel can operate independently in two different modes:
 Capture mode provides measurement on signals.
 Waveform mode provides wave generation.

The TC operating mode is programmed with TC_CMR.WAVE.

In Capture mode, TIOAx and TIOBx are configured as inputs.

In Waveform mode, TIOAx is always configured to be an output and TIOBx is an output if it is not selected to be the
external trigger.

37.6.6 Trigger

A trigger resets the counter and starts the counter clock. Three types of triggers are common to both modes, and a
fourth external trigger is available to each mode.

Regardless of the trigger used, it will be taken into account at the following active edge of the selected clock. This
means that the counter value can be read differently from zero just after a trigger, especially when a low frequency
signal is selected as the clock.

Q S

R

S

R

Q

CLKSTA CLKEN CLKDIS

Stop
Event

Disable
EventCounter

Clock

Selected
Clock Trigger

 725SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

The following triggers are common to both modes:
 Software Trigger: Each channel has a software trigger, available by setting TC_CCR.SWTRG.
 SYNC: Each channel has a synchronization signal SYNC. When asserted, this signal has the same effect as a

software trigger. The SYNC signals of all channels are asserted simultaneously by writing TC_BCR (Block
Control) with SYNC set.

 Compare RC Trigger: RC is implemented in each channel and can provide a trigger when the counter value
matches the RC value if TC_CMR.CPCTRG is set.

The channel can also be configured to have an external trigger. In Capture mode, the external trigger signal can be
selected between TIOAx and TIOBx. In Waveform mode, an external event can be programmed on one of the
following signals: TIOBx, XC0, XC1 or XC2. This external event can then be programmed to perform a trigger by
setting TC_CMR.ENETRG.

If an external trigger is used, the duration of the pulses must be longer than the peripheral clock period in order to be
detected.

37.6.7 Capture Mode

Capture mode is entered by clearing TC_CMR.WAVE.

Capture mode allows the TC channel to perform measurements such as pulse timing, frequency, period, duty cycle
and phase on TIOAx and TIOBx signals which are considered as inputs.

Figure 37-5 shows the configuration of the TC channel when programmed in Capture mode.

37.6.8 Capture Registers A and B

Registers A and B (TC_RA and TC_RB) are used as capture registers. They can be loaded with the counter value
when a programmable event occurs on the signal TIOAx.

TC_CMR.LDRA defines the TIOAx selected edge for the loading of TC_RA, and TC_CMR.LDRB defines the TIOAx
selected edge for the loading of TC_RB.

TC_RA is loaded only if it has not been loaded since the last trigger or if TC_RB has been loaded since the last
loading of TC_RA.

TC_RB is loaded only if TC_RA has been loaded since the last trigger or the last loading of TC_RB.

Loading TC_RA or TC_RB before the read of the last value loaded sets the Overrun Error Flag (LOVRS bit) in the
TC_SR. In this case, the old value is overwritten.

37.6.9 Trigger Conditions

In addition to the SYNC signal, the software trigger and the RC compare trigger, an external trigger can be defined.

The ABETRG bit in the TC_CMR selects TIOAx or TIOBx input signal as an external trigger. The External Trigger
Edge Selection parameter (ETRGEDG field in TC_CMR) defines the edge (rising, falling or both) detected to generate
an external trigger. If ETRGEDG = 0 (none), the external trigger is disabled.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 726

Figure 37-5. Capture Mode

TI
M

ER
_C

LO
C

K1

TI
M

ER
_C

LO
C

K2

TI
M

ER
_C

LO
C

K3

TI
M

ER
_C

LO
C

K4

TI
M

ER
_C

LO
C

K5

XC
0

XC
1

XC
2

TC
C

LK
S

C
LK

I

Q
S R

S R

Q

C
LK

ST
A

C
LK

EN
C

LK
D

IS

BU
RS

T

TI
O

B

Re
gi

st
er

 C

C
ap

tu
re

Re

gi
st

er
 A

C

ap
tu

re

Re
gi

st
er

 B
C

om
pa

re
 R

C
 =

C
ou

nt
er

A
BE

TR
G

SW
TR

G

ET
RG

ED
G

C
PC

TR
G

TC1_IMR

Tr
ig

LDRBS

LDRAS

ETRGS

TC1_SR

LOVRS

COVFS

SY
N

C

1

M
TI

O
B

TI
O

A

M
TI

O
A

LD
RA

LD
BS

TO
P

If
RA

 is
 n

ot
 lo

ad
ed

or
 R

B
is

 L
oa

de
d

If
RA

 is
 L

oa
de

d

LD
BD

IS

CPCS

IN
T

Ed
ge

D
et

ec
to

r

Ed
ge

D

et
ec

to
r

LD
RB

Ed
ge

D

et
ec

to
r

C
LK

O
VF

RE
SE

T

Ti
m

er
/C

ou
nt

er
 C

ha
nn

el

Pe
rip

he
ra

l
C

lo
ck

Sy
nc

hr
on

ou
s

Ed
ge

 D
et

ec
tio

n

 727SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

37.6.10 Waveform Mode

Waveform mode is entered by setting the TC_CMRx.WAVE bit.

In Waveform mode, the TC channel generates one or two PWM signals with the same frequency and independently
programmable duty cycles, or generates different types of one-shot or repetitive pulses.

In this mode, TIOAx is configured as an output and TIOBx is defined as an output if it is not used as an external event
(EEVT parameter in TC_CMR).

Figure 37-6 shows the configuration of the TC channel when programmed in Waveform operating mode.

37.6.11 Waveform Selection

Depending on the WAVSEL parameter in TC_CMR, the behavior of TC_CV varies.

With any selection, TC_RA, TC_RB and TC_RC can all be used as compare registers.

RA Compare is used to control the TIOAx output, RB Compare is used to control the TIOBx output (if correctly
configured) and RC Compare is used to control TIOAx and/or TIOBx outputs.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 728

Figure 37-6. Waveform Mode

TC
C

LK
S

C
LK

I

Q
S R

S R

Q

C
LK

ST
A

C
LK

EN
C

LK
D

IS

C
PC

D
IS

BU
RS

T

TI
O

B

Re
gi

st
er

 A
Re

gi
st

er
 B

Re
gi

st
er

 C

C
om

pa
re

 R
A

 =

C
om

pa
re

 R
B

=

C
om

pa
re

 R
C

 =

C
PC

ST
O

P

C
ou

nt
er

EE
VT

EE
VT

ED
G

SY
N

C

SW
TR

G

EN
ET

RG

W
A

VS
EL

TC1_IMR

Tr
ig

A
C

PC

A
C

PA

A
EE

VT

A
SW

TR
G

BC
PC

BC
PB

BE
EV

T

BS
W

TR
G

TI
O

A

M
TI

O
A TI
O

B

M
TI

O
B

CPAS

COVFS

ETRGS

TC1_SR

CPCS

CPBS

C
LK

O
VF

RE
SE

T

Output Controller Output Controller

IN
T

1

Ed
ge

D

et
ec

to
r

Ti
m

er
/C

ou
nt

er
 C

ha
nn

el

TI
M

ER
_C

LO
C

K1

TI
M

ER
_C

LO
C

K2

TI
M

ER
_C

LO
C

K3

TI
M

ER
_C

LO
C

K4

TI
M

ER
_C

LO
C

K5

XC
0

XC
1

XC
2

W
A

VS
EL

Pe
rip

he
ra

l
C

lo
ck

Sy
nc

hr
on

ou
s

Ed
ge

 D
et

ec
tio

n

 729SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

37.6.11.1 WAVSEL = 00
When WAVSEL = 00, the value of TC_CV is incremented from 0 to 216 - 1. Once 216 - 1 has been reached, the value
of TC_CV is reset. Incrementation of TC_CV starts again and the cycle continues. See Figure 37-7.

An external event trigger or a software trigger can reset the value of TC_CV. It is important to note that the trigger may
occur at any time. See Figure 37-8.

RC Compare cannot be programmed to generate a trigger in this configuration. At the same time, RC Compare can
stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable the counter clock (CPCDIS = 1 in TC_CMR).

Figure 37-7. WAVSEL = 00 without Trigger

Figure 37-8. WAVSEL = 00 with Trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with 0xFFFF

0xFFFF

Waveform Examples

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with 0xFFFF

0xFFFF

Waveform Examples

Counter cleared by trigger

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 730

37.6.11.2 WAVSEL = 10
When WAVSEL = 10, the value of TC_CV is incremented from 0 to the value of RC, then automatically reset on a RC
Compare. Once the value of TC_CV has been reset, it is then incremented and so on. See Figure 37-9.

It is important to note that TC_CV can be reset at any time by an external event or a software trigger if both
are programmed correctly. See Figure 37-10.

In addition, RC Compare can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable the counter clock
(CPCDIS = 1 in TC_CMR).

Figure 37-9. WAVSEL = 10 without Trigger

Figure 37-10. WAVSEL = 10 with Trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with RC

Waveform Examples

2n-1
(n = counter size)

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with RC

Waveform Examples

Counter cleared by trigger

2n-1
(n = counter size)

 731SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

37.6.11.3 WAVSEL = 01
When WAVSEL = 01, the value of TC_CV is incremented from 0 to 216 - 1. Once 216 - 1 is reached, the value
of TC_CV is decremented to 0, then reincremented to 216 - 1 and so on. See Figure 37-11.

A trigger such as an external event or a software trigger can modify TC_CV at any time. If a trigger occurs while
TC_CV is incrementing, TC_CV then decrements. If a trigger is received while TC_CV is decrementing, TC_CV then
increments. See Figure 37-12.

RC Compare cannot be programmed to generate a trigger in this configuration.

At the same time, RC Compare can stop the counter clock (CPCSTOP = 1) and/or disable the counter clock
(CPCDIS = 1).

Figure 37-11. WAVSEL = 01 without Trigger

Figure 37-12. WAVSEL = 01 with Trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter decremented by compare match with 0xFFFF

0xFFFF

Waveform Examples

Time

Counter Value

TIOB

TIOA

Counter decremented by compare match with 0xFFFF

0xFFFF

Waveform Examples

Counter decremented
by trigger

Counter incremented
by trigger

RC

RB

RA

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 732

37.6.11.4 WAVSEL = 11
When WAVSEL = 11, the value of TC_CV is incremented from 0 to RC. Once RC is reached, the value of TC_CV
is decremented to 0, then reincremented to RC and so on. See Figure 37-13.

A trigger such as an external event or a software trigger can modify TC_CV at any time. If a trigger occurs while
TC_CV is incrementing, TC_CV then decrements. If a trigger is received while TC_CV is decrementing, TC_CV then
increments. See Figure 37-14.

RC Compare can stop the counter clock (CPCSTOP = 1) and/or disable the counter clock (CPCDIS = 1).

Figure 37-13. WAVSEL = 11 without Trigger

Figure 37-14. WAVSEL = 11 with Trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter decremented by compare match with RC

Waveform Examples

2n-1
(n = counter size)

Time

Counter Value

TIOB

TIOA

Counter decremented by compare match with RC

Waveform Examples

Counter decremented
by trigger

Counter incremented
by trigger

RC

RB

RA

2n-1
(n = counter size)

 733SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

37.6.12 External Event/Trigger Conditions

An external event can be programmed to be detected on one of the clock sources (XC0, XC1, XC2) or TIOBx.
The external event selected can then be used as a trigger.

The event trigger is selected using TC_CMR.EEVT. The trigger edge (rising, falling or both) for each of the possible
external triggers is defined in TC_CMR.EEVTEDG. If EEVTEDG is cleared (none), no external event is defined.

If TIOBx is defined as an external event signal (EEVT = 0), TIOBx is no longer used as an output and the compare
register B is not used to generate waveforms and subsequently no IRQs. In this case, the TC channel can only
generate a waveform on TIOAx.

When an external event is defined, it can be used as a trigger by setting TC_CMR.ENETRG.

As in Capture mode, the SYNC signal and the software trigger are also available as triggers. RC Compare can also be
used as a trigger depending on the parameter WAVSEL.

37.6.13 Output Controller

The output controller defines the output level changes on TIOAx and TIOBx following an event. TIOBx control is used
only if TIOBx is defined as output (not as an external event).

The following events control TIOAx and TIOBx:
 Software trigger.
 External event.
 RC compare.

RA Compare controls TIOAx, and RB Compare controls TIOBx. Each of these events can be programmed to set,
clear or toggle the output as defined in the corresponding parameter in TC_CMR.

37.6.14 Quadrature Decoder

37.6.14.1 Description
The quadrature decoder (QDEC) is driven by TIOA0, TIOB0 and TIOB1 input pins and drives the timer counter of
channel 0 and channel 1. Channel 2 can be used as a time base in case of speed measurement requirements (refer
to Figure 37-15 ”Predefined Connection of the Quadrature Decoder with Timer Counters”).

When writing a 0 to TC_BMR.QDEN, the QDEC is bypassed and the IO pins are directly routed to the timer counter
function.

TIOA0 and TIOB0 are to be driven by the two dedicated quadrature signals from a rotary sensor mounted on the shaft
of the off-chip motor.

A third signal from the rotary sensor can be processed through pin TIOB1 and is typically dedicated to be driven by an
index signal if it is provided by the sensor. This signal is not required to decode the quadrature signals PHA, PHB.

TC_CMRx.TCCLKS must be configured to select XC0 input (i.e., 0x101). Field TC0XC0S has no effect as soon as the
QDEC is enabled.

Either speed or position/revolution can be measured. Position channel 0 accumulates the edges of PHA, PHB input
signals giving a high accuracy on motor position whereas channel 1 accumulates the index pulses of the sensor,
therefore the number of rotations. Concatenation of both values provides a high level of precision on motion system
position.

In Speed mode, position cannot be measured but revolution can be measured.

Inputs from the rotary sensor can be filtered prior to downstream processing. Accommodation of input polarity, phase
definition and other factors are configurable.

Interruptions can be generated on different events.

A compare function (using TC_RC) is available on channel 0 (speed/position) or channel 1 (rotation) and can
generate an interrupt by means of TC_SRx.CPCS.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 734

Figure 37-15. Predefined Connection of the Quadrature Decoder with Timer Counters

Timer/Counter
Channel 0

1

XC0

TIOA

TIOB

Timer/Counter
Channel 1

1

XC0

TIOB

QDEN

Timer/Counter
Channel 2

1

TIOB0
XC0

1

1

SPEEDEN

1
XC0

Quadrature
Decoder

(Filter + Edge
Detect + QD)

PHA

PHB

IDX

TIOA0

TIOB0

TIOB1

TIOB1

TIOA0

Index

Speed/Position

Rotation

Speed Time Base

Reset pulse

Direction

PHEdges QDEN

 735SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

37.6.14.2 Input Preprocessing
Input preprocessing consists of capabilities to take into account rotary sensor factors such as polarities and phase
definition followed by configurable digital filtering.

Each input can be negated and swapping PHA, PHB is also configurable.

TC_BMR.MAXFILT is used to configure a minimum duration for which the pulse is stated as valid. When the filter is
active, pulses with a duration lower than MAXFILT + 1 * tperipheral clock are not passed to downstream logic.

The value of (MAXFILT +1) * tperipheral clock must not be greater than 10% of the minimum pulse on PHA, PHB or index
when the rotary encoder speed is at its maximun. This speed depends on the application.

Figure 37-16. Input Stage

Input filtering can efficiently remove spurious pulses that might be generated by the presence of particulate
contamination on the optical or magnetic disk of the rotary sensor.

Spurious pulses can also occur in environments with high levels of electromagnetic interference. Or, simply if vibration
occurs even when rotation is fully stopped and the shaft of the motor is in such a position that the beginning of one of
the reflective or magnetic bars on the rotary sensor disk is aligned with the light or magnetic (Hall) receiver cell of the
rotary sensor. Any vibration can make the PHA, PHB signals toggle for a short duration.

1

1

1

MAXFILT

PHA

PHB

IDX

TIOA0

TIOB0

TIOB1

INVA

1

INVB

1

INVIDX

SWAP

1

IDXPHB

Filter

Filter

Filter 1

MAXFILT > 0

Direction
and
Edge
Detection

IDX

PHedge

DIR

Input Pre-Processing

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 736

Figure 37-17. Filtering Examples

PHA,B

Filter Out

Peripheral
Clock

MAXFILT=2

particulate contamination

PHA

PHB
motor shaft stopped in such a position that
rotary sensor cell is aligned with an edge of the disk

rotation

PHA

PHB

PHB Edge area due to system vibration

Resulting PHA, PHB electrical waveforms

PHA

Optical/Magnetic disk strips

stop

PHB

mechanical shock on system

vibration

stop

PHA, PHB electrical waveforms after filtering

PHA

PHB

 737SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

37.6.14.3 Direction Status and Change Detection
After filtering, the quadrature signals are analyzed to extract the rotation direction and edges of the two quadrature
signals detected in order to be counted by TC logic downstream.

The direction status can be directly read at anytime in the TC_QISR. The polarity of the direction flag status depends
on the configuration written in TC_BMR. INVA, INVB, INVIDX, SWAP modify the polarity of DIR flag.

Any change in rotation direction is reported in the TC_QISR and can generate an interrupt.

The direction change condition is reported as soon as two consecutive edges on a phase signal have sampled the
same value on the other phase signal and there is an edge on the other signal. The two consecutive edges of one
phase signal sampling the same value on other phase signal is not sufficient to declare a direction change, as
particulate contamination may mask one or more reflective bars on the optical or magnetic disk of the sensor. Refer to
Figure 37-18 ”Rotation Change Detection” for waveforms.

Figure 37-18. Rotation Change Detection

The direction change detection is disabled when TC_BMR.QDTRANS is set. In this case, the DIR flag report must not
be used.

A quadrature error is also reported by the QDEC via TC_QISR.QERR. This error is reported if the time difference
between two edges on PHA, PHB is lower than a predefined value. This predefined value is configurable and
corresponds to (MAXFILT + 1) * tperipheral clock ns. After being filtered there is no reason to have two edges closer than
(MAXFILT + 1) * tperipheral clock ns under normal mode of operation.

PHA

PHB

Direction Change under normal conditions

DIR

DIRCHG

change condition

Report Time

No direction change due to particulate contamination masking a reflective bar

PHA

PHB

DIR

DIRCHG
spurious change condition (if detected in a simple way)

same phase

missing pulse

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 738

Figure 37-19. Quadrature Error Detection

MAXFILT must be tuned according to several factors such as the peripheral clock frequency, type of rotary sensor
and rotation speed to be achieved.

37.6.14.4 Position and Rotation Measurement
When TC_BMR.POSEN is set, the motor axis position is processed on channel 0 (by means of the PHA, PHB edge
detections) and the number of motor revolutions are recorded on channel 1 if the IDX signal is provided on the TIOB1
input. If no IDX signal is available, the internal counter can be cleared for each revolution if the number of counts per
revolution is configured in TC_RC0.RC and the TC_CMR.CPCTRG bit is written to 1. The position measurement can
be read in the TC_CV0 register and the rotation measurement can be read in the TC_CV1 register.

Channel 0 and 1 must be configured in Capture mode (TC_CMR0.WAVE = 0). ‘Rising edge’ must be selected as the
External Trigger Edge (TC_CMR.ETRGEDG = 0x01) and ‘TIOAx’ must be selected as the External Trigger
(TC_CMR.ABETRG = 0x1). The process must be started by configuring TC_CCR.CLKEN and TC_CCR.SWTRG.

In parallel, the number of edges are accumulated on TC channel 0 and can be read on the TC_CV0 register.

Therefore, the accurate position can be read on both TC_CV registers and concatenated to form a 32-bit word.

The TC channel 0 is cleared for each increment of IDX count value.
Depending on the quadrature signals, the direction is decoded and allows to count up or down in TC channels 0 and
1. The direction status is reported on TC_QISR.

37.6.14.5 Speed Measurement
When TC_BMR.SPEEDEN is set, the speed measure is enabled on channel 0.

A time base must be defined on channel 2 by writing the TC_RC2 period register. Channel 2 must be configured in
Waveform mode (WAVE bit set) in TC_CMR2. The WAVSEL field must be defined with 0x10 to clear the counter by
comparison and matching with TC_RC value. Field ACPC must be defined at 0x11 to toggle TIOAx output.

Peripheral
Clock

MAXFILT = 2

PHA

PHB

Abnormally formatted optical disk strips (theoretical view)

PHA

PHB

strip edge inaccurary due to disk etching/printing process

resulting PHA, PHB electrical waveforms

PHA

PHB

Even with an abnormally formatted disk, there is no occurence of PHA, PHB switching at the same time.

QERR

duration < MAXFILT

 739SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

This time base is automatically fed back to TIOAx of channel 0 when QDEN and SPEEDEN are set.

Channel 0 must be configured in Capture mode (WAVE = 0 in TC_CMR0). TC_CMR0.ABETRG must be configured at
1 to select TIOAx as a trigger for this channel.
EDGTRG must be set to 0x01, to clear the counter on a rising edge of the TIOAx signal and field LDRA must be set
accordingly to 0x01, to load TC_RA0 at the same time as the counter is cleared (LDRB must be set to 0x01).
As a consequence, at the end of each time base period the differentiation required for the speed calculation is
performed.
The process must be started by configuring bits CLKEN and SWTRG in the TC_CCR.

The speed can be read on field RA in TC_RA0.

Channel 1 can still be used to count the number of revolutions of the motor.

37.6.14.6 Detecting a Missing Index Pulse
To detect a missing index pulse due contamination, dust, etc., the TC_SR0.CPCS flag can be used. It is also possible
to assert the interrupt line if the TC_SR0.CPCS flag is enabled as a source of the interrupt by writing a ‘1’ to
TC_IER0.CPCS.

The TC_RC0.RC field must be written with the nominal number of counts per revolution provided by the rotary
encoder, plus a margin to eliminate potential noise (e.g., if nominal count per revolution is 1024, then
TC_RC0.RC=1026).

If the index pulse is missing, the timer value is not cleared and the nominal value is exceeded, then the comparator on
the RC triggers an event, TC_SR0.CPCS=1, and the interrupt line is asserted if TC_IER0.CPCS=1.

The missing index pulse detection is only valid if the bit TC_QISR.DIRCHG = 0.

37.6.14.7 Detecting Contamination/Dust at Rotary Encoder Low Speed
The contamination/dust that can be filtered when the rotary encoder speed is high may not be filtered at low speed,
thus creating unsollicited direction change, etc.

At low speed, even a minor contamination may appear as a long pulse, and thus not filtered and processed as a
standard quadrature encoder pulse.

This contamination can be detected by using the similar method as the missing index detection.

A contamination exists on a phase line if TC_SR.CPCS = 1 and TC_QISR.DIRCHG = 1 when there is no sollicited
change of direction.

37.6.15 2-bit Gray Up/Down Counter for Stepper Motor

Each channel can be independently configured to generate a 2-bit Gray count waveform on corresponding TIOAx,
TIOBx outputs by means of TC_SMMRx.GCEN.

Up or Down count can be defined by writing TC_SMMRx.DOWN.

It is mandatory to configure the channel in Waveform mode in the TC_CMR.

The period of the counters can be programmed in TC_RCx.

Figure 37-20. 2-bit Gray Up/Down Counter

TIOAx

TIOBx

DOWNx

TC_RCx

WAVEx = GCENx =1

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 740

37.6.16 Register Write Protection

To prevent any single software error from corrupting TC behavior, certain registers in the address space can be write-
protected by setting the WPEN bit in the “TC Write Protection Mode Register” (TC_WPMR).

The Timer Counter clock of the first channel must be enabled to access TC_WPMR.

The following registers can be write-protected:
 ”TC Block Mode Register”
 ”TC Channel Mode Register: Capture Mode”
 ”TC Channel Mode Register: Waveform Mode”
 ”TC Stepper Motor Mode Register”
 ”TC Register A”
 ”TC Register B”
 ”TC Register C”

37.7 Timer Counter (TC) User Interface

Notes: 1. Channel index ranges from 0 to 2.
2. Read-only if TC_CMRx.WAVE = 0.

Table 37-6. Register Mapping

Offset(1) Register Name Access Reset

0x00 + channel * 0x40 + 0x00 Channel Control Register TC_CCR Write-only –

0x00 + channel * 0x40 + 0x04 Channel Mode Register TC_CMR Read/Write 0

0x00 + channel * 0x40 + 0x08 Stepper Motor Mode Register TC_SMMR Read/Write 0

0x00 + channel * 0x40 + 0x0C Reserved – – –

0x00 + channel * 0x40 + 0x10 Counter Value TC_CV Read-only 0

0x00 + channel * 0x40 + 0x14 Register A TC_RA Read/Write(2) 0

0x00 + channel * 0x40 + 0x18 Register B TC_RB Read/Write(2) 0

0x00 + channel * 0x40 + 0x1C Register C TC_RC Read/Write 0

0x00 + channel * 0x40 + 0x20 Status Register TC_SR Read-only 0

0x00 + channel * 0x40 + 0x24 Interrupt Enable Register TC_IER Write-only –

0x00 + channel * 0x40 + 0x28 Interrupt Disable Register TC_IDR Write-only –

0x00 + channel * 0x40 + 0x2C Interrupt Mask Register TC_IMR Read-only 0

0xC0 Block Control Register TC_BCR Write-only –

0xC4 Block Mode Register TC_BMR Read/Write 0

0xC8 QDEC Interrupt Enable Register TC_QIER Write-only –

0xCC QDEC Interrupt Disable Register TC_QIDR Write-only –

0xD0 QDEC Interrupt Mask Register TC_QIMR Read-only 0

0xD4 QDEC Interrupt Status Register TC_QISR Read-only 0

0xD8 Reserved – – –

0xE4 Write Protection Mode Register TC_WPMR Read/Write 0

 0xE8 - 0xFC Reserved – – –

 741SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

37.7.1 TC Channel Control Register

Name: TC_CCRx [x=0..2]

Address: 0x40010000 (0)[0], 0x40010040 (0)[1], 0x40010080 (0)[2],
0x40014000 (1)[0], 0x40014040 (1)[1], 0x40014080 (1)[2]

Access: Write-only

• CLKEN: Counter Clock Enable Command
0 = No effect.

1 = Enables the clock if CLKDIS is not 1.

• CLKDIS: Counter Clock Disable Command
0 = No effect.

1 = Disables the clock.

• SWTRG: Software Trigger Command
0 = No effect.

1 = A software trigger is performed: the counter is reset and the clock is started.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – SWTRG CLKDIS CLKEN

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 742

37.7.2 TC Channel Mode Register: Capture Mode

Name: TC_CMRx [x=0..2] (CAPTURE_MODE)

Address: 0x40010004 (0)[0], 0x40010044 (0)[1], 0x40010084 (0)[2],
0x40014004 (1)[0], 0x40014044 (1)[1], 0x40014084 (1)[2]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “TC Write Protection Mode Register” .

• TCCLKS: Clock Selection

• CLKI: Clock Invert
0 = Counter is incremented on rising edge of the clock.

1 = Counter is incremented on falling edge of the clock.

• BURST: Burst Signal Selection

• LDBSTOP: Counter Clock Stopped with RB Loading
0 = Counter clock is not stopped when RB loading occurs.

1 = Counter clock is stopped when RB loading occurs.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – LDRB LDRA

15 14 13 12 11 10 9 8
WAVE CPCTRG – – – ABETRG ETRGEDG

7 6 5 4 3 2 1 0
LDBDIS LDBSTOP BURST CLKI TCCLKS

Value Name Description

0 TIMER_CLOCK1 Clock selected: internal MCK/2 clock signal (from PMC).

1 TIMER_CLOCK2 Clock selected: internal MCK/8 clock signal (from PMC).

2 TIMER_CLOCK3 Clock selected: internal MCK/32 clock signal (from PMC).

3 TIMER_CLOCK4 Clock selected: internal MCK/128 clock signal (from PMC).

4 TIMER_CLOCK5 Clock selected: internal SLCK clock signal (from PMC).

5 XC0 Clock selected: XC0.

6 XC1 Clock selected: XC1.

7 XC2 Clock selected: XC2.

Value Name Description

0 NONE The clock is not gated by an external signal.

1 XC0 XC0 is ANDed with the selected clock.

2 XC1 XC1 is ANDed with the selected clock.

3 XC2 XC2 is ANDed with the selected clock.

 743SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• LDBDIS: Counter Clock Disable with RB Loading
0 = Counter clock is not disabled when RB loading occurs.

1 = Counter clock is disabled when RB loading occurs.

• ETRGEDG: External Trigger Edge Selection

• ABETRG: TIOAx or TIOBx External Trigger Selection
0 = TIOBx is used as an external trigger.

1 = TIOAx is used as an external trigger.

• CPCTRG: RC Compare Trigger Enable
0 = RC Compare has no effect on the counter and its clock.

1 = RC Compare resets the counter and starts the counter clock.

• WAVE: Waveform Mode
0 = Capture mode is enabled.

1 = Capture mode is disabled (Waveform mode is enabled).

• LDRA: RA Loading Edge Selection

• LDRB: RB Loading Edge Selection

Value Name Description

0 NONE The clock is not gated by an external signal.

1 RISING Rising edge.

2 FALLING Falling edge.

3 EDGE Each edge.

Value Name Description

0 NONE None.

1 RISING Rising edge of TIOAx.

2 FALLING Falling edge of TIOAx.

3 EDGE Each edge of TIOAx.

Value Name Description

0 NONE None.

1 RISING Rising edge of TIOAx.

2 FALLING Falling edge of TIOAx.

3 EDGE Each edge of TIOAx.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 744

37.7.3 TC Channel Mode Register: Waveform Mode

Name: TC_CMRx [x=0..2] (WAVEFORM_MODE)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “TC Write Protection Mode Register” .

• TCCLKS: Clock Selection

• CLKI: Clock Invert
0 = Counter is incremented on rising edge of the clock.

1 = Counter is incremented on falling edge of the clock.

• BURST: Burst Signal Selection

• CPCSTOP: Counter Clock Stopped with RC Compare
0 = Counter clock is not stopped when counter reaches RC.

1 = Counter clock is stopped when counter reaches RC.

31 30 29 28 27 26 25 24
BSWTRG BEEVT BCPC BCPB

23 22 21 20 19 18 17 16
ASWTRG AEEVT ACPC ACPA

15 14 13 12 11 10 9 8
WAVE WAVSEL ENETRG EEVT EEVTEDG

7 6 5 4 3 2 1 0
CPCDIS CPCSTOP BURST CLKI TCCLKS

Value Name Description

0 TIMER_CLOCK1 Clock selected: internal MCK/2 clock signal (from PMC).

1 TIMER_CLOCK2 Clock selected: internal MCK/8 clock signal (from PMC).

2 TIMER_CLOCK3 Clock selected: internal MCK/32 clock signal (from PMC).

3 TIMER_CLOCK4 Clock selected: internal MCK/128 clock signal (from PMC).

4 TIMER_CLOCK5 Clock selected: internal SLCK clock signal (from PMC).

5 XC0 Clock selected: XC0.

6 XC1 Clock selected: XC1.

7 XC2 Clock selected: XC2.

Value Name Description

0 NONE The clock is not gated by an external signal.

1 XC0 XC0 is ANDed with the selected clock.

2 XC1 XC1 is ANDed with the selected clock.

3 XC2 XC2 is ANDed with the selected clock.

 745SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• CPCDIS: Counter Clock Disable with RC Compare
0 = Counter clock is not disabled when counter reaches RC.

1 = Counter clock is disabled when counter reaches RC.

• EEVTEDG: External Event Edge Selection

• EEVT: External Event Selection
Signal selected as external event.

Notes: 1. If TIOB is chosen as the external event signal, it is configured as an input and no longer generates waveforms and
subsequently no IRQs.

• ENETRG: External Event Trigger Enable
0 = The external event has no effect on the counter and its clock.

1 = The external event resets the counter and starts the counter clock.
Note: Whatever the value programmed in ENETRG, the selected external event only controls the TIOAx output and TIOBx if

not used as input (trigger event input or other input used).

• WAVSEL: Waveform Selection

• WAVE: Waveform Mode
0 = Waveform mode is disabled (Capture mode is enabled).

1 = Waveform mode is enabled.

Value Name Description

0 NONE None

1 RISING Rising edge

2 FALLING Falling edge

3 EDGE Each edge

Value Name Description TIOB Direction

0 TIOB TIOB(1) Input

1 XC0 XC0 Output

2 XC1 XC1 Output

3 XC2 XC2 Output

Value Name Description

0 UP UP mode without automatic trigger on RC Compare.

1 UPDOWN UPDOWN mode without automatic trigger on RC Compare.

2 UP_RC UP mode with automatic trigger on RC Compare.

3 UPDOWN_RC UPDOWN mode with automatic trigger on RC Compare.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 746

• ACPA: RA Compare Effect on TIOAx

• ACPC: RC Compare Effect on TIOAx

• AEEVT: External Event Effect on TIOAx

• ASWTRG: Software Trigger Effect on TIOAx

• BCPB: RB Compare Effect on TIOBx

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

 747SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• BCPC: RC Compare Effect on TIOBx

• BEEVT: External Event Effect on TIOBx

• BSWTRG: Software Trigger Effect on TIOBx

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 748

37.7.4 TC Stepper Motor Mode Register

Name: TC_SMMRx [x=0..2]

Address: 0x40010008 (0)[0], 0x40010048 (0)[1], 0x40010088 (0)[2],
0x40014008 (1)[0], 0x40014048 (1)[1], 0x40014088 (1)[2]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “TC Write Protection Mode Register” .

• GCEN: Gray Count Enable
0 = TIOAx [x=0..2] and TIOBx [x=0..2] are driven by internal counter of channel x.

1 = TIOAx [x=0..2] and TIOBx [x=0..2] are driven by a 2-bit Gray counter.

• DOWN: Down Count
0 = Up counter.

1 = Down counter.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – DOWN GCEN

 749SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

37.7.5 TC Counter Value Register

Name: TC_CVx [x=0..2]

Address: 0x40010010 (0)[0], 0x40010050 (0)[1], 0x40010090 (0)[2],
0x40014010 (1)[0], 0x40014050 (1)[1], 0x40014090 (1)[2]

Access: Read-only

• CV: Counter Value
CV contains the counter value in real time.

IMPORTANT: For 16-bit channels, CV field size is limited to register bits 15:0.

31 30 29 28 27 26 25 24
CV

23 22 21 20 19 18 17 16
CV

15 14 13 12 11 10 9 8
CV

7 6 5 4 3 2 1 0
CV

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 750

37.7.6 TC Register A

Name: TC_RAx [x=0..2]

Address: 0x40010014 (0)[0], 0x40010054 (0)[1], 0x40010094 (0)[2],
0x40014014 (1)[0], 0x40014054 (1)[1], 0x40014094 (1)[2]

Access: Read-only if TC_CMRx.WAVE = 0, Read/Write if TC_CMRx.WAVE = 1

This register can only be written if the WPEN bit is cleared in the “TC Write Protection Mode Register” .

• RA: Register A
RA contains the Register A value in real time.

IMPORTANT: For 16-bit channels, RA field size is limited to register bits 15:0.

31 30 29 28 27 26 25 24
RA

23 22 21 20 19 18 17 16
RA

15 14 13 12 11 10 9 8
RA

7 6 5 4 3 2 1 0
RA

 751SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

37.7.7 TC Register B

Name: TC_RBx [x=0..2]

Address: 0x40010018 (0)[0], 0x40010058 (0)[1], 0x40010098 (0)[2],
0x40014018 (1)[0], 0x40014058 (1)[1], 0x40014098 (1)[2]

Access: Read-only if TC_CMRx.WAVE = 0, Read/Write if TC_CMRx.WAVE = 1

This register can only be written if the WPEN bit is cleared in the “TC Write Protection Mode Register” .

• RB: Register B
RB contains the Register B value in real time.

IMPORTANT: For 16-bit channels, RB field size is limited to register bits 15:0.

31 30 29 28 27 26 25 24
RB

23 22 21 20 19 18 17 16
RB

15 14 13 12 11 10 9 8
RB

7 6 5 4 3 2 1 0
RB

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 752

37.7.8 TC Register C

Name: TC_RCx [x=0..2]

Address: 0x4001001C (0)[0], 0x4001005C (0)[1], 0x4001009C (0)[2],
0x4001401C (1)[0], 0x4001405C (1)[1], 0x4001409C (1)[2]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “TC Write Protection Mode Register” .

• RC: Register C
RC contains the Register C value in real time.

IMPORTANT: For 16-bit channels, RC field size is limited to register bits 15:0.

31 30 29 28 27 26 25 24
RC

23 22 21 20 19 18 17 16
RC

15 14 13 12 11 10 9 8
RC

7 6 5 4 3 2 1 0
RC

 753SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

37.7.9 TC Status Register

Name: TC_SRx [x=0..2]

Address: 0x40010020 (0)[0], 0x40010060 (0)[1], 0x400100A0 (0)[2],
0x40014020 (1)[0], 0x40014060 (1)[1], 0x400140A0 (1)[2]

Access: Read-only

• COVFS: Counter Overflow Status (cleared on read)
0 = No counter overflow has occurred since the last read of the Status Register.

1 = A counter overflow has occurred since the last read of the Status Register.

• LOVRS: Load Overrun Status (cleared on read)
0 = Load overrun has not occurred since the last read of the Status Register or TC_CMRx.WAVE = 1.

1 = RA or RB have been loaded at least twice without any read of the corresponding register since the last read of the Status
Register, if TC_CMRx.WAVE = 0.

• CPAS: RA Compare Status (cleared on read)
0 = RA Compare has not occurred since the last read of the Status Register or TC_CMRx.WAVE = 0.

1 = RA Compare has occurred since the last read of the Status Register, if TC_CMRx.WAVE = 1.

• CPBS: RB Compare Status (cleared on read)
0 = RB Compare has not occurred since the last read of the Status Register or TC_CMRx.WAVE = 0.

1 = RB Compare has occurred since the last read of the Status Register, if TC_CMRx.WAVE = 1.

• CPCS: RC Compare Status (cleared on read)
0 = RC Compare has not occurred since the last read of the Status Register.

1 = RC Compare has occurred since the last read of the Status Register.

• LDRAS: RA Loading Status (cleared on read)
0 = RA Load has not occurred since the last read of the Status Register or TC_CMRx.WAVE = 1.

1 = RA Load has occurred since the last read of the Status Register, if TC_CMRx.WAVE = 0.

• LDRBS: RB Loading Status (cleared on read)
0 = RB Load has not occurred since the last read of the Status Register or TC_CMRx.WAVE = 1.

1 = RB Load has occurred since the last read of the Status Register, if TC_CMRx.WAVE = 0.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – MTIOB MTIOA CLKSTA

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 754

• ETRGS: External Trigger Status (cleared on read)
0 = External trigger has not occurred since the last read of the Status Register.

1 = External trigger has occurred since the last read of the Status Register.

• CLKSTA: Clock Enabling Status
0 = Clock is disabled.

1 = Clock is enabled.

• MTIOA: TIOAx Mirror
0 = TIOAx is low. If TC_CMRx.WAVE = 0, TIOAx pin is low. If TC_CMRx.WAVE = 1, TIOAx is driven low.

1 = TIOAx is high. If TC_CMRx.WAVE = 0, TIOAx pin is high. If TC_CMRx.WAVE = 1, TIOAx is driven high.

• MTIOB: TIOBx Mirror
0 = TIOBx is low. If TC_CMRx.WAVE = 0, TIOBx pin is low. If TC_CMRx.WAVE = 1, TIOBx is driven low.

1 = TIOBx is high. If TC_CMRx.WAVE = 0, TIOBx pin is high. If TC_CMRx.WAVE = 1, TIOBx is driven high.

 755SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

37.7.10 TC Interrupt Enable Register

Name: TC_IERx [x=0..2]

Address: 0x40010024 (0)[0], 0x40010064 (0)[1], 0x400100A4 (0)[2],
0x40014024 (1)[0], 0x40014064 (1)[1], 0x400140A4 (1)[2]

Access: Write-only

• COVFS: Counter Overflow
0 = No effect.

1 = Enables the Counter Overflow Interrupt.

• LOVRS: Load Overrun
0 = No effect.

1 = Enables the Load Overrun Interrupt.

• CPAS: RA Compare
0 = No effect.

1 = Enables the RA Compare Interrupt.

• CPBS: RB Compare
0 = No effect.

1 = Enables the RB Compare Interrupt.

• CPCS: RC Compare
0 = No effect.

1 = Enables the RC Compare Interrupt.

• LDRAS: RA Loading
0 = No effect.

1 = Enables the RA Load Interrupt.

• LDRBS: RB Loading
0 = No effect.

1 = Enables the RB Load Interrupt.

• ETRGS: External Trigger
0 = No effect.

1 = Enables the External Trigger Interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 756

37.7.11 TC Interrupt Disable Register

Name: TC_IDRx [x=0..2]

Address: 0x40010028 (0)[0], 0x40010068 (0)[1], 0x400100A8 (0)[2],
0x40014028 (1)[0], 0x40014068 (1)[1], 0x400140A8 (1)[2]

Access: Write-only

• COVFS: Counter Overflow
0 = No effect.

1 = Disables the Counter Overflow Interrupt.

• LOVRS: Load Overrun
0 = No effect.

1 = Disables the Load Overrun Interrupt (if TC_CMRx.WAVE = 0).

• CPAS: RA Compare
0 = No effect.

1 = Disables the RA Compare Interrupt (if TC_CMRx.WAVE = 1).

• CPBS: RB Compare
0 = No effect.

1 = Disables the RB Compare Interrupt (if TC_CMRx.WAVE = 1).

• CPCS: RC Compare
0 = No effect.

1 = Disables the RC Compare Interrupt.

• LDRAS: RA Loading
0 = No effect.

1 = Disables the RA Load Interrupt (if TC_CMRx.WAVE = 0).

• LDRBS: RB Loading
0 = No effect.

1 = Disables the RB Load Interrupt (if TC_CMRx.WAVE = 0).

• ETRGS: External Trigger
0 = No effect.

1 = Disables the External Trigger Interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

 757SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

37.7.12 TC Interrupt Mask Register

Name: TC_IMRx [x=0..2]

Address: 0x4001002C (0)[0], 0x4001006C (0)[1], 0x400100AC (0)[2],
0x4001402C (1)[0], 0x4001406C (1)[1], 0x400140AC (1)[2]

Access: Read-only

• COVFS: Counter Overflow
0 = The Counter Overflow Interrupt is disabled.

1 = The Counter Overflow Interrupt is enabled.

• LOVRS: Load Overrun
0 = The Load Overrun Interrupt is disabled.

1 = The Load Overrun Interrupt is enabled.

• CPAS: RA Compare
0 = The RA Compare Interrupt is disabled.

1 = The RA Compare Interrupt is enabled.

• CPBS: RB Compare
0 = The RB Compare Interrupt is disabled.

1 = The RB Compare Interrupt is enabled.

• CPCS: RC Compare
0 = The RC Compare Interrupt is disabled.

1 = The RC Compare Interrupt is enabled.

• LDRAS: RA Loading
0 = The Load RA Interrupt is disabled.

1 = The Load RA Interrupt is enabled.

• LDRBS: RB Loading
0 = The Load RB Interrupt is disabled.

1 = The Load RB Interrupt is enabled.

• ETRGS: External Trigger
0 = The External Trigger Interrupt is disabled.

1 = The External Trigger Interrupt is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 758

37.7.13 TC Block Control Register

Name: TC_BCR

Address: 0x400100C0 (0), 0x400140C0 (1)

Access: Write-only

• SYNC: Synchro Command
0 = No effect.

1 = Asserts the SYNC signal which generates a software trigger simultaneously for each of the channels.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – SYNC

 759SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

37.7.14 TC Block Mode Register

Name: TC_BMR

Address: 0x400100C4 (0), 0x400140C4 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “TC Write Protection Mode Register” .

• TC0XC0S: External Clock Signal 0 Selection

• TC1XC1S: External Clock Signal 1 Selection

• TC2XC2S: External Clock Signal 2 Selection

• QDEN: Quadrature Decoder Enabled
0 = Disabled.

1 = Enables the QDEC (filter, edge detection and quadrature decoding).

Quadrature decoding (direction change) can be disabled using QDTRANS bit.

One of the POSEN or SPEEDEN bits must be also enabled.

31 30 29 28 27 26 25 24
– – – – – – MAXFILT

23 22 21 20 19 18 17 16
MAXFILT – – IDXPHB SWAP

15 14 13 12 11 10 9 8
INVIDX INVB INVA EDGPHA QDTRANS SPEEDEN POSEN QDEN

7 6 5 4 3 2 1 0
– – TC2XC2S TC1XC1S TC0XC0S

Value Name Description
0 TCLK0 Signal connected to XC0: TCLK0

1 – Reserved

2 TIOA1 Signal connected to XC0: TIOA1

3 TIOA2 Signal connected to XC0: TIOA2

Value Name Description
0 TCLK1 Signal connected to XC1: TCLK1

1 – Reserved

2 TIOA0 Signal connected to XC1: TIOA0

3 TIOA2 Signal connected to XC1: TIOA2

Value Name Description
0 TCLK2 Signal connected to XC2: TCLK2

1 – Reserved

2 TIOA0 Signal connected to XC2: TIOA0

3 TIOA1 Signal connected to XC2: TIOA1

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 760

• POSEN: Position Enabled
0 = Disable position.

1 = Enables the position measure on channel 0 and 1.

• SPEEDEN: Speed Enabled
0 = Disabled.

1 = Enables the speed measure on channel 0, the time base being provided by channel 2.

• QDTRANS: Quadrature Decoding Transparent
0 = Full quadrature decoding logic is active (direction change detected).

1 = Quadrature decoding logic is inactive (direction change inactive) but input filtering and edge detection are performed.

• EDGPHA: Edge on PHA Count Mode
0 = Edges are detected on PHA only.

1 = Edges are detected on both PHA and PHB.

• INVA: Inverted PHA
0 = PHA (TIOA0) is directly driving the QDEC.

1 = PHA is inverted before driving the QDEC.

• INVB: Inverted PHB
0 = PHB (TIOB0) is directly driving the QDEC.

1 = PHB is inverted before driving the QDEC.

• INVIDX: Inverted Index
0 = IDX (TIOA1) is directly driving the QDEC.

1 = IDX is inverted before driving the QDEC.

• SWAP: Swap PHA and PHB
0 = No swap between PHA and PHB.

1 = Swap PHA and PHB internally, prior to driving the QDEC.

• IDXPHB: Index Pin is PHB Pin
0 = IDX pin of the rotary sensor must drive TIOA1.

1 = IDX pin of the rotary sensor must drive TIOB0.

• MAXFILT: Maximum Filter
1 – 63 = Defines the filtering capabilities.

Pulses with a period shorter than MAXFILT+1 peripheral clock cycles are discarded.For more details on MAXFILT constraints,
see Section 37.6.14.2 ”Input Preprocessing”.

 761SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

37.7.15 TC QDEC Interrupt Enable Register

Name: TC_QIER

Address: 0x400100C8 (0), 0x400140C8 (1)

Access: Write-only

• IDX: Index
0 = No effect.

1 = Enables the interrupt when a rising edge occurs on IDX input.

• DIRCHG: Direction Change
0 = No effect.

1 = Enables the interrupt when a change on rotation direction is detected.

• QERR: Quadrature Error
0 = No effect.

1 = Enables the interrupt when a quadrature error occurs on PHA, PHB.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – QERR DIRCHG IDX

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 762

37.7.16 TC QDEC Interrupt Disable Register

Name: TC_QIDR

Address: 0x400100CC (0), 0x400140CC (1)

Access: Write-only

• IDX: Index
0 = No effect.

1 = Disables the interrupt when a rising edge occurs on IDX input.

• DIRCHG: Direction Change
0 = No effect.

1 = Disables the interrupt when a change on rotation direction is detected.

• QERR: Quadrature Error
0 = No effect.

1 = Disables the interrupt when a quadrature error occurs on PHA, PHB.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – QERR DIRCHG IDX

 763SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

37.7.17 TC QDEC Interrupt Mask Register

Name: TC_QIMR

Address: 0x400100D0 (0), 0x400140D0 (1)

Access: Read-only

• IDX: Index
0 = The interrupt on IDX input is disabled.

1 = The interrupt on IDX input is enabled.

• DIRCHG: Direction Change
0 = The interrupt on rotation direction change is disabled.

1 = The interrupt on rotation direction change is enabled.

• QERR: Quadrature Error
0 = The interrupt on quadrature error is disabled.

1 = The interrupt on quadrature error is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – QERR DIRCHG IDX

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 764

37.7.18 TC QDEC Interrupt Status Register

Name: TC_QISR

Address: 0x400100D4 (0), 0x400140D4 (1)

Access: Read-only

• IDX: Index
0 = No Index input change since the last read of TC_QISR.

1 = The IDX input has changed since the last read of TC_QISR.

• DIRCHG: Direction Change
0 = No change on rotation direction since the last read of TC_QISR.

1 = The rotation direction changed since the last read of TC_QISR.

• QERR: Quadrature Error
0 = No quadrature error since the last read of TC_QISR.

1 = A quadrature error occurred since the last read of TC_QISR.

• DIR: Direction
Returns an image of the actual rotation direction.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – DIR

7 6 5 4 3 2 1 0
– – – – – QERR DIRCHG IDX

 765SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

37.7.19 TC Write Protection Mode Register

Name: TC_WPMR

Address: 0x400100E4 (0), 0x400140E4 (1)

Access: Read/Write

• WPEN: Write Protection Enable
0 = Disables the write protection if WPKEY corresponds to 0x54494D (“TIM” in ASCII).

1 = Enables the write protection if WPKEY corresponds to 0x54494D (“TIM” in ASCII).

The Timer Counter clock of the first channel must be enabled to access this register.

See Section 37.6.16 ”Register Write Protection”. for a list of registers that can be write-protected and Timer Counter clock
conditions.

• WPKEY: Write Protection Key

31 30 29 28 27 26 25 24
WPKEY

23 22 21 20 19 18 17 16
WPKEY

15 14 13 12 11 10 9 8
WPKEY

7 6 5 4 3 2 1 0
– – – – – – – WPEN

Value Name Description

0x54494D PASSWD Writing any other value in this field aborts the write operation of the WPEN bit. Always reads as 0.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 766

38. Pulse Width Modulation Controller (PWM)

38.1 Description
The Pulse Width Modulation Controller (PWM) controls several channels independently. Each channel controls one
square output waveform. Characteristics of the output waveform such as period, duty-cycle and polarity are
configurable through the user interface. Each channel selects and uses one of the clocks provided by the clock
generator. The clock generator provides several clocks resulting from the division of the PWM macrocell master clock.

Channels can be synchronized, to generate non overlapped waveforms. All channels integrate a double buffering
system in order to prevent an unexpected output waveform while modifying the period or the duty-cycle.

38.2 Embedded Characteristics
 4 Channels
 One 16-bit Counter Per Channel
 Common Clock Generator Providing Thirteen Different Clocks

 A Modulo n Counter Providing Eleven Clocks
 Two Independent Linear Dividers Working on Modulo n Counter Outputs

 Independent Channels
 Independent Enable Disable Command for Each Channel
 Independent Clock Selection for Each Channel
 Independent Period and Duty Cycle for Each Channel
 Double Buffering of Period or Duty Cycle for Each Channel
 Programmable Selection of The Output Waveform Polarity for Each Channel
 Programmable Center or Left Aligned Output Waveform for Each Channel Block Diagram

 767SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

38.3 Block Diagram

Figure 38-1. Pulse Width Modulation Controller Block Diagram

38.4 I/O Lines Description
Each channel outputs one waveform on one external I/O line.

PWM
Controller

APB

PWMx

PWMx

PWMx

Channel

Update

Duty Cycle

Counter

PWM0
Channel

PIO

Interrupt ControllerPMC
MCK

Clock Generator APB Interface Interrupt Generator

Clock
Selector

Period

Update

Duty Cycle

Counter
Clock

Selector

Period

PWM0

PWM0
Comparator

Comparator

Table 38-1. I/O Line Description

Name Description Type

PWMx PWM Waveform Output for channel x Output

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 768

38.5 Product Dependencies

38.5.1 I/O Lines

The pins used for interfacing the PWM may be multiplexed with PIO lines. The programmer must first program the
PIO controller to assign the desired PWM pins to their peripheral function. If I/O lines of the PWM are not used by the
application, they can be used for other purposes by the PIO controller.

All of the PWM outputs may or may not be enabled. If an application requires only four channels, then only four PIO
lines will be assigned to PWM outputs.

38.5.2 Power Management

The PWM is not continuously clocked. The programmer must first enable the PWM clock in the Power Management
Controller (PMC) before using the PWM. However, if the application does not require PWM operations, the PWM
clock can be stopped when not needed and be restarted later. In this case, the PWM will resume its operations where
it left off.

All the PWM registers except PWM Channel Duty Cycle Register (PWM_CDTYx) and PWM Channel Period Register
(PWM_CPRDx) can be read without the PWM peripheral clock enabled. All the registers can be written without the
peripheral clock enabled.

38.5.3 Interrupt Sources

The PWM interrupt line is connected on one of the internal sources of the Interrupt Controller. Using the PWM
interrupt requires the Interrupt Controller to be programmed first. Note that it is not recommended to use the PWM
interrupt line in edge sensitive mode.

38.6 Functional Description
The PWM macrocell is primarily composed of a clock generator module and 4 channels.

 Clocked by the system clock, MCK, the clock generator module provides 13 clocks.
 Each channel can independently choose one of the clock generator outputs.
 Each channel generates an output waveform with attributes that can be defined independently for each

channel through the user interface registers.

Table 38-2. I/O Lines

Instance Signal I/O Line Peripheral

PWM PWM0 PC0 B

PWM PWM0 PC6 A

PWM PWM1 PC1 B

PWM PWM1 PC7 A

PWM PWM2 PC2 B

PWM PWM2 PC8 A

PWM PWM3 PC3 B

PWM PWM3 PC9 A

Table 38-3. Peripheral IDs

Instance ID

PWM 41

 769SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

38.6.1 PWM Clock Generator

Figure 38-2. Functional View of the Clock Generator Block Diagram

Caution: Before using the PWM macrocell, the programmer must first enable the PWM clock in the Power
Management Controller (PMC).

The PWM macrocell master clock, MCK, is divided in the clock generator module to provide different clocks available
for all channels. Each channel can independently select one of the divided clocks.
The clock generator is divided in three blocks:
 A modulo n counter which provides 11 clocks: fMCK, fMCK/2, fMCK/4, fMCK/8, fMCK/16, fMCK/32, fMCK/64, fMCK/128,

fMCK/256, fMCK/512, fMCK/1024.
 Two linear dividers (1, 1/2, 1/3,... 1/255) that provide two separate clocks: clkA and clkB.

Each linear divider can independently divide one of the clocks of the modulo n counter. The selection of the clock to
be divided is made according to the PREA (PREB) field of the PWM Mode Register (PWM_MR). The resulting clock
clkA (clkB) is the clock selected divided by DIVA (DIVB) field value in PWM_MR.

After a reset of the PWM controller, DIVA (DIVB) and PREA (PREB) in PWM_MR are set to 0. This implies that after
reset clkA (clkB) are turned off.

At reset, all clocks provided by the modulo n counter are turned off except clock “clk”. This situation is also true when
the PWM master clock is turned off through the Power Management Controller.

modulo n counter
MCK

MCK/2
MCK/4

MCK/16
MCK/32
MCK/64

MCK/8

Divider A clkA

DIVA

PWM_MR

MCK

MCK/128
MCK/256
MCK/512
MCK/1024

PREA

Divider B clkB

DIVB

PWM_MR

PREB

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 770

38.6.2 PWM Channel

38.6.2.1 Block Diagram

Figure 38-3. Functional View of the Channel Block Diagram

Each of the 4 channels is composed of three blocks:
 A clock selector which selects one of the clocks provided by the clock generator described in Section 38.6.1

“PWM Clock Generator” on page 769.
 An internal counter clocked by the output of the clock selector. This internal counter is incremented or

decremented according to the channel configuration and comparators events. The size of the internal counter is
16 bits.

 A comparator used to generate events according to the internal counter value. It also computes the PWMx
output waveform according to the configuration.

38.6.2.2 Waveform Properties
The different properties of output waveforms are:
 the internal clock selection. The internal channel counter is clocked by one of the clocks provided by the clock

generator described in the previous section. This channel parameter is defined in the CPRE field of the PWM
Channel Mode Register (PWM_CMRx). This field is reset at 0.

 the waveform period. This channel parameter is defined in the CPRD field of PWM_CPRDx.
If the waveform is left aligned, then the output waveform period depends on the counter source clock and can
be calculated:
By using the Master Clock (MCK) divided by an X given prescaler value (with X being 1, 2, 4, 8, 16, 32, 64, 128,
256, 512, or 1024), the resulting period formula will be:

By using a Master Clock divided by one of both DIVA or DIVB divider, the formula becomes, respectively:

 or

If the waveform is center aligned then the output waveform period depends on the counter source clock and
can be calculated:
By using the Master Clock (MCK) divided by an X given prescaler value (with X being 1, 2, 4, 8, 16, 32, 64, 128,
256, 512, or 1024). The resulting period formula will be:

By using a Master Clock divided by one of both DIVA or DIVB divider, the formula becomes, respectively:

 or

Comparator PWMx
output waveform

Internal
Counter

Clock
Selector

inputs
from clock
generator

inputs from
APB bus

Channel

X *CPRD 
MCK

X *CPRD*DIVA 
MCK

-- X *CPRD*DIVB 
MCK

--

2*X *CPRD 
MCK

2*X *CPRD*DIVA 
MCK

--- 2*X *CPRD*DIVB 
MCK

 771SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 the waveform duty cycle. This channel parameter is defined in the CDTY field of PWM_CDTYx.
If the waveform is left aligned then:

If the waveform is center aligned, then:

 the waveform polarity. At the beginning of the period, the signal can be at high or low level. This property is
defined in the CPOL field of the PWM_CMRx. By default the signal starts by a low level.

 the waveform alignment. The output waveform can be left or center aligned. Center aligned waveforms can be
used to generate non overlapped waveforms. This property is defined in the CALG field of the PWM_CMRx.
The default mode is left aligned.

Figure 38-4. Non Overlapped Center Aligned Waveforms

Note: 1. See Figure 38-5 for a detailed description of center aligned waveforms.
When center aligned, the internal channel counter increases up to CPRD and.decreases down to 0. This ends the
period.

When left aligned, the internal channel counter increases up to CPRD and is reset. This ends the period.

Thus, for the same CPRD value, the period for a center aligned channel is twice the period for a left aligned channel.

Waveforms are fixed at 0 when:
 CDTY = CPRD and CPOL = 0
 CDTY = 0 and CPOL = 1

Waveforms are fixed at 1 (once the channel is enabled) when:
 CDTY = 0 and CPOL = 0
 CDTY = CPRD and CPOL = 1

The waveform polarity must be set before enabling the channel. This immediately affects the channel output level.
Changes on channel polarity are not taken into account while the channel is enabled.

duty cycle period 1 fchannel_x_clock CDTY– 
period

---=

duty cycle period 2  1 fchannel_x_clock CDTY– 
period 2 

---=

PWM0

PWM1

Period

No overlap

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 772

Figure 38-5. Waveform Properties

PWM_MCKx

CHIDx(PWM_SR)

Center Aligned

CPRD(PWM_CPRDx)

CDTY(PWM_CDTYx)

PWM_CCNTx

Output Waveform PWMx
CPOL(PWM_CMRx) = 0

Output Waveform PWMx
CPOL(PWM_CMRx) = 1

CHIDx(PWM_ISR)

Left Aligned

CPRD(PWM_CPRDx)

CDTY(PWM_CDTYx)

PWM_CCNTx

Output Waveform PWMx
CPOL(PWM_CMRx) = 0

 Output Waveform PWMx
CPOL(PWM_CMRx) = 1

CHIDx(PWM_ISR)

CALG(PWM_CMRx) = 0

CALG(PWM_CMRx) = 1

Period

Period

CHIDx(PWM_ENA)

CHIDx(PWM_DIS)

 773SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

38.6.3 PWM Controller Operations

38.6.3.1 Initialization
Before enabling the output channel, this channel must have been configured by the software application:
 Configuration of the clock generator if DIVA and DIVB are required.
 Selection of the clock for each channel (CPRE field in PWM_CMRx).
 Configuration of the waveform alignment for each channel (CALG field in PWM_CMRx).
 Configuration of the period for each channel (CPRD in PWM_CPRDx). Writing in PWM_CPRDx is possible

while the channel is disabled. After validation of the channel, the user must use the PWM Channel Update
Register (PWM_CUPDx) to update PWM_CPRDx as explained below.

 Configuration of the duty cycle for each channel (CDTY in PWM_CDTYx). Writing in PWM_CDTYx is possible
while the channel is disabled. After validation of the channel, the user must use PWM_CUPDx to update
PWM_CDTYx as explained below.

 Configuration of the output waveform polarity for each channel (CPOL in PWM_CMRx).
 Enable Interrupts (set CHIDx in the PWM Interrupt Enable Register (PWM_IER)).
 Enable the PWM channel (set CHIDx in the PWM Enable Register (PWM_ENA)).

It is possible to synchronize different channels by enabling them at the same time by means of simultaneously setting
several CHIDx bits in PWM_ENA.
 In such a situation, all channels may have the same clock selector configuration and the same period specified.

38.6.3.2 Source Clock Selection Criteria
The large number of source clocks can make selection difficult. The relationship between the value in the Channel
Period Register (PWM_CPRDx) and the Channel Duty Cycle Register (PWM_CDTYx) can help the user in choosing.
The event number written in PWM_CPRDx gives the PWM accuracy. The Duty Cycle quantum cannot be lower than
1/PWM_CPRDx value. The higher the value of PWM_CPRDx, the greater the PWM accuracy.

For example, if the user sets 15 (in decimal) in PWM_CPRDx, the user is able to set a value between 1 up to 14 in
PWM_CDTYx. The resulting duty cycle quantum cannot be lower than 1/15 of the PWM period.

38.6.3.3 Changing the Duty Cycle or the Period
It is possible to modulate the output waveform duty cycle or period.

To prevent unexpected output waveform, the user must use PWM_CUPDx to change waveform parameters while the
channel is still enabled. The user can write a new period value or duty cycle value in PWM_CUPDx. This register
holds the new value until the end of the current cycle and updates the value for the next cycle. Depending on the CPD
field in PWM_CMRx, PWM_CUPDx either updates PWM_CPRDx or PWM_CDTYx. Note that even if the update
register is used, the period must not be smaller than the duty cycle.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 774

Figure 38-6. Synchronized Period or Duty Cycle Update

To prevent overwriting the PWM_CUPDx by software, the user can use status events in order to synchronize his
software. Two methods are possible. In both, the user must enable the dedicated interrupt in PWM_IER at PWM
Controller level.

The first method (polling method) consists of reading the relevant status bit in the PWM Interrupt Status Register
(PWM_ISR) according to the enabled channel(s). See Figure 38-7.

The second method uses an Interrupt Service Routine associated with the PWM channel.
Note: Reading the PWM_ISR automatically clears CHIDx flags.

Figure 38-7. Polling Method

Note: Polarity and alignment can be modified only when the channel is disabled.

PWM_CUPDx Value

PWM_CPRDx PWM_CDTYx

End of Cycle

PWM_CMRx. CPD

User's Writing

1 0

Writing in PWM_CUPDx
The last write has been taken into account

CHIDx = 1

Writing in CPD field
Update of the Period or Duty Cycle

PWM_ISR Read
Acknowledgement and clear previous register state

YES

 775SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

38.7 Pulse Width Modulation Controller (PWM) User Interface

Notes: 1. Some registers are indexed with “ch_num” index ranging from 0 to 3.

Table 38-4. Register Mapping(1)

Offset Register Name Access Reset

0x00 PWM Mode Register PWM_MR Read/Write 0

0x04 PWM Enable Register PWM_ENA Write-only -

0x08 PWM Disable Register PWM_DIS Write-only -

0x0C PWM Status Register PWM_SR Read-only 0

0x10 PWM Interrupt Enable Register PWM_IER Write-only -

0x14 PWM Interrupt Disable Register PWM_IDR Write-only -

0x18 PWM Interrupt Mask Register PWM_IMR Read-only 0

0x1C PWM Interrupt Status Register PWM_ISR Read-only 0

0x20 - 0xFC Reserved – – –

0x100 - 0x1FC Reserved – – –

0x200 + ch_num * 0x20 + 0x00 PWM Channel Mode Register PWM_CMR Read/Write 0x0

0x200 + ch_num * 0x20 + 0x04 PWM Channel Duty Cycle Register PWM_CDTY Read/Write 0x0

0x200 + ch_num * 0x20 + 0x08 PWM Channel Period Register PWM_CPRD Read/Write 0x0

0x200 + ch_num * 0x20 + 0x0C PWM Channel Counter Register PWM_CCNT Read-only 0x0

0x200 + ch_num * 0x20 + 0x10 PWM Channel Update Register PWM_CUPD Write-only -

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 776

38.7.1 PWM Mode Register

Name: PWM_MR

Address: 0x48008000

Access: Read/Write

• DIVA: CLKA Divide Factor

• DIVB: CLKB Divide Factor

• PREA: CLKA Source Clock Selection

31 30 29 28 27 26 25 24
– – – – PREB

23 22 21 20 19 18 17 16
DIVB

15 14 13 12 11 10 9 8
– – – – PREA

7 6 5 4 3 2 1 0
DIVA

Value Name Description
0 CLK_OFF CLKA clock is turned off

1 CLK_DIV1 CLKA clock is clock selected by PREA

2 - 255 - CLKA clock is clock selected by PREA divided by DIVA factor

Value Name Description
0 CLK_OFF CLKB clock is turned off

1 CLK_DIV1 CLKB clock is clock selected by PREB

2 - 255 - CLKB clock is clock selected by PREB divided by DIVB factor

Value Name Description
0000 MCK Master Clock

0001 MCKDIV2 Master Clock divided by 2

0010 MCKDIV4 Master Clock divided by 4

0011 MCKDIV8 Master Clock divided by 8

0100 MCKDIV16 Master Clock divided by 16

0101 MCKDIV32 Master Clock divided by 32

0110 MCKDIV64 Master Clock divided by 64

0111 MCKDIV128 Master Clock divided by 128

1000 MCKDIV256 Master Clock divided by 256

1001 MCKDIV512 Master Clock divided by 512

1010 MCKDIV1024 Master Clock divided by 1024

Other - Reserved

 777SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• PREB: CLKB Source Clock Selection

Value Name Description
0000 MCK Master Clock

0001 MCKDIV2 Master Clock divided by 2

0010 MCKDIV4 Master Clock divided by 4

0011 MCKDIV8 Master Clock divided by 8

0100 MCKDIV16 Master Clock divided by 16

0101 MCKDIV32 Master Clock divided by 32

0110 MCKDIV64 Master Clock divided by 64

0111 MCKDIV128 Master Clock divided by 128

1000 MCKDIV256 Master Clock divided by 256

1001 MCKDIV512 Master Clock divided by 512

1010 MCKDIV1024 Master Clock divided by 1024

Other - Reserved

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 778

38.7.2 PWM Enable Register

Name: PWM_ENA

Address: 0x48008004

Access: Write-only

• CHIDx: Channel ID
0 = No effect.

1 = Enable PWM output for channel x.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – CHID3 CHID2 CHID1 CHID0

 779SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

38.7.3 PWM Disable Register

Name: PWM_DIS

Address: 0x48008008

Access: Write-only

• CHIDx: Channel ID
0 = No effect.

1 = Disable PWM output for channel x.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – CHID3 CHID2 CHID1 CHID0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 780

38.7.4 PWM Status Register

Name: PWM_SR

Address: 0x4800800C

Access: Read-only

• CHIDx: Channel ID
0 = PWM output for channel x is disabled.

1 = PWM output for channel x is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – CHID3 CHID2 CHID1 CHID0

 781SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

38.7.5 PWM Interrupt Enable Register

Name: PWM_IER

Address: 0x48008010

Access: Write-only

• CHIDx: Channel ID
0 = No effect.

1 = Enable interrupt for PWM channel x.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – CHID3 CHID2 CHID1 CHID0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 782

38.7.6 PWM Interrupt Disable Register

Name: PWM_IDR

Address: 0x48008014

Access: Write-only

• CHIDx: Channel ID
0 = No effect.

1 = Disable interrupt for PWM channel x.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – CHID3 CHID2 CHID1 CHID0

 783SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

38.7.7 PWM Interrupt Mask Register

Name: PWM_IMR

Address: 0x48008018

Access: Read-only

• CHIDx: Channel ID
0 = Interrupt for PWM channel x is disabled.

1 = Interrupt for PWM channel x is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – CHID3 CHID2 CHID1 CHID0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 784

38.7.8 PWM Interrupt Status Register

Name: PWM_ISR

Address: 0x4800801C

Access: Read-only

• CHIDx: Channel ID
0 = No new channel period has been achieved since the last read of the PWM_ISR.

1 = At least one new channel period has been achieved since the last read of the PWM_ISR.

Note: Reading PWM_ISR automatically clears CHIDx flags.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – CHID3 CHID2 CHID1 CHID0

 785SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

38.7.9 PWM Channel Mode Register

Name: PWM_CMR[0..3]

Address: 0x48008200 [0], 0x48008220 [1], 0x48008240 [2], 0x48008260 [3]

Access: Read/Write

• CPRE: Channel Prescaler

• CALG: Channel Alignment
0 = The period is left aligned.

1 = The period is center aligned.

• CPOL: Channel Polarity
0 = The output waveform starts at a low level.

1 = The output waveform starts at a high level.

• CPD: Channel Update Period
0 = Writing to the PWM_CUPDx will modify the duty cycle at the next period start event.

1 = Writing to the PWM_CUPDx will modify the period at the next period start event.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – CPD CPOL CALG

7 6 5 4 3 2 1 0
– – – – CPRE

Value Name Description
0000 MCK Master Clock

0001 MCKDIV2 Master Clock divided by 2

0010 MCKDIV4 Master Clock divided by 4

0011 MCKDIV8 Master Clock divided by 8

0100 MCKDIV16 Master Clock divided by 16

0101 MCKDIV32 Master Clock divided by 32

0110 MCKDIV64 Master Clock divided by 64

0111 MCKDIV128 Master Clock divided by 128

1000 MCKDIV256 Master Clock divided by 256

1001 MCKDIV512 Master Clock divided by 512

1010 MCKDIV1024 Master Clock divided by 1024

1011 CLKA Clock A

1100 CLKB Clock B

Other - Reserved

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 786

38.7.10 PWM Channel Duty Cycle Register

Name: PWM_CDTY[0..3]

Address: 0x48008204 [0], 0x48008224 [1], 0x48008244 [2], 0x48008264 [3]

Access: Read/Write

Only the first 16 bits (internal channel counter size) are significant.

• CDTY: Channel Duty Cycle
Defines the waveform duty cycle. This value must be defined between 0 and CPRD (PWM_CPRx).

31 30 29 28 27 26 25 24
CDTY

23 22 21 20 19 18 17 16
CDTY

15 14 13 12 11 10 9 8
CDTY

7 6 5 4 3 2 1 0
CDTY

 787SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

38.7.11 PWM Channel Period Register

Name: PWM_CPRD[0..3]

Address: 0x48008208 [0], 0x48008228 [1], 0x48008248 [2], 0x48008268 [3]

Access: Read/Write

Only the first 16 bits (internal channel counter size) are significant.

• CPRD: Channel Period
If the waveform is left-aligned, then the output waveform period depends on the counter source clock and can be calculated:

– By using the Master Clock (MCK) divided by an X given prescaler value (with X being 1, 2, 4, 8, 16, 32, 64, 128, 256,
512, or 1024). The resulting period formula will be:

– By using a Master Clock divided by one of both DIVA or DIVB divider, the formula becomes, respectively:

 or

If the waveform is center-aligned, then the output waveform period depends on the counter source clock and can be
calculated:

– By using the Master Clock (MCK) divided by an X given prescaler value (with X being 1, 2, 4, 8, 16, 32, 64, 128, 256,
512, or 1024). The resulting period formula will be:

– By using a Master Clock divided by one of both DIVA or DIVB divider, the formula becomes, respectively:

 or

31 30 29 28 27 26 25 24
CPRD

23 22 21 20 19 18 17 16
CPRD

15 14 13 12 11 10 9 8
CPRD

7 6 5 4 3 2 1 0
CPRD

X CPRD 
MCK

CPRD DIVA 
MCK

-- CPRD DIVB 
MCK

--

2 X CPRD 
MCK

--

2 CPRD DIVA 
MCK

-- 2 CPRD DIVB 
MCK

--

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 788

38.7.12 PWM Channel Counter Register

Name: PWM_CCNT[0..3]

Address: 0x4800820C [0], 0x4800822C [1], 0x4800824C [2], 0x4800826C [3]

Access: Read-only

• CNT: Channel Counter Register
Internal counter value. This register is reset when:

• The channel is enabled (PWM_ENA.CHIDx = 1).
• The counter reaches CPRD value defined in PWM_CPRDx if the waveform is left aligned.

31 30 29 28 27 26 25 24
CNT

23 22 21 20 19 18 17 16
CNT

15 14 13 12 11 10 9 8
CNT

7 6 5 4 3 2 1 0
CNT

 789SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

38.7.13 PWM Channel Update Register

Name: PWM_CUPD[0..3]

Address: 0x48008210 [0], 0x48008230 [1], 0x48008250 [2], 0x48008270 [3]

Access: Write-only

• CUPD: Channel Update Register
This register acts as a double buffer for the period or the duty cycle. This prevents an unexpected waveform when modifying
the waveform period or duty-cycle.

Only the first 16 bits (internal channel counter size) are significant.

When PWM_CMRx.CPD = 0, the duty-cycle (CDTY of PWM_CDTYx) is updated with the CUPD value at the beginning of the
next period.

When PWM_CMRx.CPD = 1, the period (CPRD of PWM_CPRDx) is updated with the CUPD value at the beginning of the next
period.

31 30 29 28 27 26 25 24
CUPD

23 22 21 20 19 18 17 16
CUPD

15 14 13 12 11 10 9 8
CUPD

7 6 5 4 3 2 1 0
CUPD

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 790

39. Segment Liquid Crystal Display Controller (SLCDC)

39.1 Description
The Segment Liquid Crystal Display Controller (SLCDC) drives a monochrome passive liquid crystal display (LCD)
with up to 5 common terminals and up to 46 segment terminals.

An LCD consists of several segments (pixels or complete symbols) which can be visible or invisible. A segment has
two electrodes with liquid crystal between them. When a voltage above a threshold voltage is applied across the liquid
crystal, the segment becomes visible.

The voltage must alternate to avoid an electrophoresis effect in the liquid crystal, which degrades the display. Hence
the waveform across a segment must not have a DC component.
The SLCDC is programmable to support many different requirements such as:
 Adjusting the driving time of the LCD pads in order to save power and increase the controllability of the DC

offset.
 Driving smaller LCD (down to 1 common by 1 segment).
 Adjusting the SLCDC frequency in order to obtain the best compromise between frequency and consumption

and adapt it to the LCD driver.
 Assigning the segments in a user defined pattern to simplify the use of the digital functions multiplexed on these

pins.
Note: Please check SLCDC available signals in the main Block Diagram Figure 2-1.

39.2 Embedded Characteristics
The SLCDC provides the following capabilities:
 Display Capacity: Up to 46 Segments and 5 Common Terminals
 Support from Static to 1/6 Duty
 Supports: Static and 1/2 and 1/3 Bias.
 Two LCD Supply Sources:

 Internal (On-chip LCD Power Supply)
 External

 LCD Output Voltage Software Selectable from 2.4V to VDDIN in 16 Steps
(Control Embedded in the Supply Controller)

 Flexible Selection of Frame Frequency
 Two Interrupt Sources: End Of Frame and Disable
 Versatile Display Modes
 Equal Source and Sink Capability to Maximize LCD Lifetime
 Segment and Common Pins Not Needed to Drive the Display Can be Used as Ordinary I/O Pins
 Segments Layout Can be Fully Defined by User to Optimize Usage of Multiplexed Digital Functions
 Latching of Display Data Gives Full Freedom in Register Updates
 Power-Saving Modes for Extremely Low Power Consumption

Table 39-1. List of Terms
Term Description

LCD A passive display panel with terminals leading directly to a segment.

Segment The least viewing element (pixel) which can be on or off.

Common(s) Denotes how many segments are connected to a segment terminal.

Duty 1/(Number of common terminals on a current LCD display).

Bias 1/(Number of voltage levels used driving an LCD display -1).

Frame Rate Number of times the LCD segments are energized per second.

 791SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

39.3 Block Diagram

Figure 39-1. SLCDC Block Diagram

clkslcdc

A
P
B

B
U
S

1/3 VDDLCD

1/2 VDDLCD

2/3 VDDLCD

VDDLCD VDDLCD

Clock
Multiplexer

Prescaler

Divide by 1 to 8

SLCDC_DR

SLCDC_FRR

SL
C

K/
 8

DIV

PRESC

SLCK

SLCDC_{L,M}MEMR0
SL

C
K/

10
24

Timing Generation

/2 /16

Com./Rate Uniformizer

COMSEL

Display Frame
Buffer

User Frame Buffer

COMSEL, LPMODE, BIAS

LCDBLKFREQ, DISPMODE

ENDFRAME

IT
Generation

DISABLE

Buffer_on

ENDFRAME
BUFFTIME, LCDBLKFREQ

COM0

COM1

Analog
Buffers

SLCDC_MR

COM4

COM5

SLCDC_CR

SLCDC_IER

SLCDC_IDR

SLCDC_IMR

SLCDC_ISR on

ENABLE, DISABLE, SWRST

COMSEL, SEGSEL

Buffer_on

On-chip resistor ladder for 1/2 bias

1/2

SLCDC_SR ENA

BIAS,BUFFTIME, LPMODE

On-chip resistor ladder for 1/3 bias

2/3 1/3

Analog
Switch
Array

SEG0

SEG1

SEG2

SEG3

SEG4

SEG5

SEG45

SEG46

SEG47

SEG48

SEG49

MUX

LCD SEG
Waveform
Generator

Output
Decoder

LCD COM
Waveform
Generator

DISPMODE, SEGSEL,LCDn BIAS

GNDR RGNDR R R

SEG x
(COM->1)

SLCDC_SMR LCDn

Analog/Digital
Pad Control

to SEGn
pad buffersLCDn

 SEGSEL
ENA

Analog/Digital
Pad Control

to COMn
pad buffers COMSEL

ENA

SLCDC_{L,M}MEMR1

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 792

39.4 I/O Lines Description

39.5 Product Dependencies

39.5.1 I/O Lines

The pins used for interfacing the SLCD Controller may be multiplexed with PIO lines. Refer to the product block
diagram.

If I/O lines of the SLCD Controller are not used by the application, they can be used for other purposes by the PIO
Controller.

By default (SLCDC_SMR0/1 registers cleared), the assignment of the segment controls and commons are
automatically done depending on COMSEL and SEGSEL in SLCDC_MR. For example, if 10 segments are
programmed in the SEGSEL field, they are automatically assigned to SEG[9:0] whereas the remaining SEG pins are
automatically selected to be driven by the multiplexed digital functions.

In any case, the user can define a new layout pattern for the segment assignment by programming the
SLCDC_SMR0/1 registers in order to optimize the usage of multiplexed digital function. If at least 1 bit is set in
SLCDC_SMR0/1 registers, the corresponding I/O line is driven by an LCD segment, whereas any cleared bit of this
register selects the corresponding multiplexed digital function.

Table 39-2. I/O Lines Description

Name Description Type

SEG [3:47], SEG49 Segments control signals Output

COM [0:4] Commons control signals Output

Table 39-3. I/O Lines

Instance Signal I/O Line Peripheral

SLCDC COM0 PA0 X1

SLCDC COM1 PA1 X1

SLCDC COM2 PA2 X1

SLCDC COM3 PA3 X1

SLCDC COM4/AD1 PA4 X1

SLCDC SEG3 PA9 X1

SLCDC SEG4 PA10 X1

SLCDC SEG5 PA11 X1

SLCDC SEG6/AD0 PA12 X1

SLCDC SEG7 PA13 X1

SLCDC SEG8 PA14 X1

SLCDC SEG9 PA15 X1

SLCDC SEG10 PA16 X1

SLCDC SEG11 PA17 X1

SLCDC SEG12 PA18 X1

SLCDC SEG13 PA19 X1

SLCDC SEG14 PA20 X1

SLCDC SEG15 PA21 X1

 793SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

SLCDC SEG16 PA22 X1

SLCDC SEG17 PA23 X1

SLCDC SEG18 PA24 X1

SLCDC SEG19 PA25 X1

SLCDC SEG20 PA26 X1

SLCDC SEG21 PA27 X1

SLCDC SEG22 PA28 X1

SLCDC SEG23 PA29 X1

SLCDC SEG24 PB6 X1

SLCDC SEG25 PB7 X1

SLCDC SEG26 PB8 X1

SLCDC SEG27 PB9 X1

SLCDC SEG28 PB10 X1

SLCDC SEG29 PB11 X1

SLCDC SEG30 PB12 X1

SLCDC SEG31/AD3 PB13 X1

SLCDC SEG32 PB14 X1

SLCDC SEG33 PB15 X1

SLCDC SEG34 PB16 X1

SLCDC SEG35 PB17 X1

SLCDC SEG36 PB18 X1

SLCDC SEG37 PB19 X1

SLCDC SEG38 PB20 X1

SLCDC SEG39 PB21 X1

SLCDC SEG40 PB22 X1

SLCDC SEG41/AD4 PB23 X1

SLCDC SEG42 PB24 X1

SLCDC SEG43 PB25 X1

SLCDC SEG44 PB26 X1

SLCDC SEG45 PB27 X1

SLCDC SEG46 PB28 X1

SLCDC SEG47 PB29 X1

SLCDC SEG49/AD5 PB31 X1

Table 39-3. I/O Lines (Continued)

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 794

39.5.2 Power Management

The SLCD Controller is clocked by the slow clock (SLCK). All the timings are based upon a typical value of 32 kHz for
SLCK.

The LCD segment/common pad buffers are supplied by the VDDLCD domain.

39.5.3 Interrupt Sources

The SLCD Controller interrupt line is connected to one of the internal sources of the Interrupt Controller. Using the
SLCD Controller interrupt requires prior programming of the Interrupt Controller.

39.5.4 Number of Segments and Commons

The product, embeds 46 segments and 5 Commons.

39.6 Functional Description
The use of the SLCDC comprises three phases of functionality: initialization sequence, display phase and disable
sequence.

 Initialization Sequence:
1. Select the LCD supply source in the Shutdown Controller.

 Internal: the On-chip LCD Power Supply is selected.
 External: the external supply source must be between 2.5 to 3.6V.

2. Select the clock division (SLCDC_FRR) to use a proper frame rate.
3. Enter the number of common and segments terminals (SLCDC_MR).
4. Select the bias in compliance with the LCD manufacturer datasheet (SLCDC_MR).
5. Enter buffer driving time (SLCDC_MR).
6. Define the segments remapping pattern if required (SLCDC_SMR0/1).

 During the Display Phase:
1. Data may be written at any time in the SLCDC memory. The data is automatically latched and displayed at the

next LCD frame.
2. It is possible to:

 Adjust contrast.
 Adjust the frame frequency.
 Adjust buffer driving time.
 Reduce the SLCDC consumption by entering in low-power waveform at any time.
 Use the large set of display features such as blinking, inverted blink, etc.

 Disable Sequence: See Section 39.6.7 ”Disabling the SLCDC”.

Table 39-4. Peripheral IDs

Instance ID

SLCDC 32

 795SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

39.6.1 Clock Generation

39.6.1.1 Block Diagram

Figure 39-2. Clock Generation Block Diagram

39.6.2 Waveform Generation

39.6.2.1 Static Duty and Bias

This kind of display is driven with the waveform shown in Figure 39-3. SEG0 - COM0 is the voltage across a segment
that is on, and SEG1 - COM0 is the voltage across a segment that is off.

Figure 39-3. Driving an LCD with One Common Terminal

clkSLCDC

clkSLCDC

Prescaler Divider (1 to 8)

SLCK

/2

/16

SLCK/8

SLCK/1024

Com./Rate Uniformizer

SLCDC_FRR

SLCDC_MR
LPMODE

COMSEL

SEGSEL

BUFFTIME

DIV

PRESC

Clock
Mux

COMSEL

ENDFRAMETiming Generation

LCD COM
Waveform
Generator

LCD SEG
Waveform
Generator

Buffer_on

Blink period

COM + SEG Waveform Generator

Buffer driving time management

Blinking generator

SLCDC_DR
LCDBLKFREQ

 VDDLCD

 GND

 VDDLCD

 GND

 VDDLCD

 GND

-VDDLCD
Frame Frame

VDDLCD

 GND

VDDLCD

 GND

 GND

SEG1

COM0

SEG1 - COM0

Frame Frame

SEG0

COM0

SEG0 - COM0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 796

39.6.2.2 1/2 Duty and 1/2 Bias

For an LCD with two common terminals (1/2 duty), a more complex waveform must be used to control segments indi-
vidually. Although 1/3 bias can be selected, 1/2 bias is most common for these displays. In the waveform shown in
Figure 39-4, SEG0 - COM0 is the voltage across a segment that is on, and SEG0 - COM1 is the voltage across a seg-
ment that is off.

Figure 39-4. Driving an LCD with Two Common Terminals

39.6.2.3 1/3 Duty and 1/3 Bias

1/3 bias is recommended for an LCD with three common terminals (1/3 duty). In the waveform shown in Figure 39-5,
SEG0 - COM0 is the voltage across a segment that is on and SEG0 - COM1 is the voltage across a segment that is
off.

Figure 39-5. Driving an LCD with Three Common Terminals

VDDLCD

GND

VDDLCD
1/2VDDLCD

GND

VDDLCD
1/2VDDLCD

GND
-1/2VDDLCD

-VDDLCD

SEG0

COM0

SEG0 - COM0

VDDLCD

GND

VDDLCD
1/2VDDLCD

GND

 VDDLCD
1/2VDDLCD

GND
-1/2VDDLCD

-VDDLCD

SEG0

COM1

SEG0 - COM1

FrameFrame Frame Frame

FrameFrame FrameFrame

VDDLCD
2/3VDDLCD
1/3VDDLCD

GND

VDDLCD
2/3VDDLCD
1/3VDDLCD

GND

VDDLCD
2/3VDDLCD
1/3VDDLCD

 GND
-1/3VDDLCD
-2/3VDDLCD

-VDDLCD

SEG0

COM0

SEG0 - COM0

VDDLCD
2/3VDDLCD
1/3VDDLCD

GND

VDDLCD
2/3VDDLCD
1/3VDDLCD

GND

VDDLCD
2/3VDDLCD
1/3VDDLCD

 GND
-1/3VDDLCD
-2/3VDDLCD

-VDDLCD

SEG0

COM1

SEG0 - COM1

 797SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

39.6.2.4 1/4 Duty and 1/3 Bias

1/3 bias is optimal for LCD displays with four common terminals (1/4 duty). In the waveform shown in Figure 39-6,
SEG0 - COM0 is the voltage across a segment that is on and SEG0 - COM1 is the voltage across a segment that is
off.

Figure 39-6. Driving an LCD with Four Common Terminals

39.6.2.5 Low-Power Waveform

To reduce toggle activity and hence power consumption, a low-power waveform can be selected by writing LPMODE
to ‘1’. The default and low-power waveform is shown in Figure 39-7 for 1/3 duty and 1/3 bias. For other selections of
duty and bias, the effect is similar.

Figure 39-7. Default and Low-Power Waveform

Note: Refer to the LCD specification to verify that low-power waveforms are supported.

FrameFrame FrameFrame

VDDLCD
2/3VDDLCD
1/3VDDLCD

GND

VDDLCD
2/3VDDLCD
1/3VDDLCD

GND

VDDLCD
2/3VDDLCD
1/3VDDLCD

 GND
-1/3VDDLCD
-2/3VDDLCD

-VDDLCD

SEG0

COM0

SEG0 - COM0

VDDLCD
2/3VDDLCD
1/3VDDLCD

GND

VDDLCD
2/3VDDLCD
1/3VDDLCD

GND

VDDLCD
2/3VDDLCD
1/3VDDLCD

 GND
-1/3VDDLCD
-2/3VDDLCD

-VDDLCD

SEG0

COM1

SEG0 - COM1

FrameFrameFrameFrame

VDDLCD
2/3VDDLCD
1/3VDDLCD

GND

VDDLCD
2/3VDDLCD
1/3VDDLCD

GND

VDDLCD
2/3VDDLCD
1/3VDDLCD

 GND
-1/3VDDLCD
-2/3VDDLCD

-VDDLCD

SEG0

COM0

SEG0 - COM0

VDDLCD
2/3VDDLCD
1/3VDDLCD

GND

VDDLCD
2/3VDDLCD
1/3VDDLCD

GND

VDDLCD
2/3VDDLCD
1/3VDDLCD

 GND
-1/3VDDLCD
-2/3VDDLCD

-VDDLCD

SEG0

COM0

SEG0 - COM0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 798

39.6.2.6 Frame Rate
The Frame Rate register (SLCDC_FRR) enables the generation of the frequency used by the SLCDC. It is done by a
prescaler (division by 8, 16, 32, 64, 128, 256, 512 and 1024) followed by a finer divider (division by 1, 2, 3, 4, 5, 6, 7
or 8).

To calculate the needed frame frequency, the equation below must be used:

where:

fSLCK = slow clock frequency

fframe = frame frequency

PRESC = prescaler value (8, 16, 32, 64, 128, 256, 512 or 1024)

DIV = divider value (1, 2, 3, 4, 5, 6, 7, or 8)

NCOM = depends of number of commons and is defined in Table 39-5

NCOM is automatically provided by the SLCDC

For example, if SLCDC_MR.COMSEL is written to ‘0’ (1 common terminal on display device), the SLCDC introduces
a divider by 16 so that NCOM = 16. If COMSEL is written to ‘3’ (3 common terminals on display device), the SLCDC
introduces a divider by 5 so that the NCOM remains close to 16 (the frame rate is standardized regardless of the
number of driven commons).

39.6.2.7 Buffer Driving Time
Intermediate voltage levels are generated from buffer drivers. The buffers are active for the amount of time specified
by SLCDC_MR.BUFTIME, then they are bypassed.

Shortening the drive time reduces power consumption, but displays with high internal resistance or capacitance may
need a longer drive time to achieve sufficient contrast.

Example for bias = 1/3.

Table 39-5. NCOM

Number of Commons NCOM Uniformizer Divider

1 16 16

2 16 8

3 15 5

4 16 4

5 15 3

6 18 3

f frame
f SLCK

PRESC DIV NCOM  
--=

 799SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 39-8. Buffer Driving

39.6.3 Number of Commons, Segments and Bias

It is important to note that the selection of the number of commons, segments and the bias can be programmed when
the SLCDC is disabled.

39.6.4 SLCDC Memory

Figure 39-9. Memory Management

When a bit in the display memory (SLCDC_LMEMRx and SLCDC_MMEMRx registers) is written to ‘1’, the
corresponding segment is energized (on), and non-energized when a bit in the display memory is written to ‘0’.

At the beginning of each common, the display buffer is updated. The value of the previous common is latched in the
display memory (its value is transferred from the user buffer to the frame buffer).

SLCDC_MR
BUFFTIME

VDDLCD

R

R

R

2/3 VDDLCD

1/3 VDDLCD

Load data from the
user buff to the disp buff

Display data previously
loaded from the user buffer

to the disp buffer

Load data from the
user buffer to the disp buffer

Display data previously
loaded from the user buffer

to the disp buffer

Load data from the
user buffer to the disp buffer

Display data previously
loaded from the user buffer

to the disp buffer

COM0 time slot

COM1 time slot

COM2 time slot

COM0

COM1

COM2

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 800

The advantages of this solution are:
 Ability to access the user buffer at any time in the frame, in any display mode and even in low-power waveform.
 Ability to change only one pixel without reloading the picture.

39.6.5 Display Features

In order to improve the flexibility of SLCDC the following set of display modes are embedded:
1. Force mode Off: All pixels are turned off and the memory content is kept.
2. Force mode On: All pixels are turned on and the memory content is kept.
3. Inverted mode: All pixels are set in the inverted state as defined in SLCDC memory and the memory content is

kept.
4. Two Blinking Modes:

 Standard Blinking mode: All pixels are alternately turned off to the predefined state in SLCDC memory at
LCDBLKFREQ frequency.

 Inverted Blinking mode: All pixels are alternately turned off to the predefined opposite state in SLCDC
memory at LCDBLKFREQ frequency.

5. Buffer Swap Mode: All pixels are alternatively assigned to the state defined in the user buffer then to the state
defined in the display buffer.

39.6.6 Buffer Swap Mode

This mode is used to assign all pixels to two states alternatively without reloading the user buffer at each change.

The means to alternatively display two states is as follows:
1. Initially, the SLCDC must be in normal mode or in standard blinking mode.
2. Data corresponding to the first pixel state is written in the user buffer (through the SLCDC_MEM registers).
3. Wait two ENDFRAME events (to be sure that the user buffer is entirely transferred in the display buffer).
4. SLCDC_DR must be programmed with DISPMODE = 6 (User Buffer Only Load Mode). This mode blocks the

automatic transfer from the user buffer to the display buffer.
5. Wait ENDFRAME event. (The display mode is internally updated at the beginning of each frame).
6. Data corresponding to the second pixel state is written in the user buffer (through the SLCDC_MEM registers).

So, now the first pixel state is in the display buffer and the second pixel state is in the user buffer.
7. SLCDC_DR must be programmed with DISPMODE = 7 (buffer swap mode) and LCDBLKFREQ must be

programmed with the required blinking frequency (if not previously done).

Now, each state is alternatively displayed at LCDBLKFREQ frequency.

Except for the phase dealing with the storage of the two display states, the management of the Buffer Swap Mode is
the same as the standard blinking mode.

39.6.7 Disabling the SLCDC

There are two ways to disable the SLCDC:
1. By using SLCDC_CR.LCDDIS (recommended method). In this case, SLCDC configuration and memory con-

tent are maintained.
2. By using SLCDC_CR.SWRST that acts like a hardware reset for SLCDC only.

Both methods are described in the following sections.

 801SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

39.6.7.1 Disable Bit
SLCDC_CR.LCDDIS can be set at any time. When the LCD Disable Command is activated during a frame, the
SLCDC is not immediately stopped (see Figure 39-10).

The next frame is generated in “All Ground” mode (whereby all commons and segments are tied to ground). At the
end of this “All Ground” frame, the disable interrupt is asserted if SLCDC_IMR.DIS is set. The SLCDC is then
disabled.

Figure 39-10. Disabling Sequence

39.6.7.2 Software Reset
When the SLCDC software reset command is activated during a frame, it is immediately processed and all commons
and segments are tied to ground.

Note that in the case of a software reset, the disable interrupt is not asserted.

Figure 39-11. Software Reset

End of Frame Interrupt

Common

Disable Example for Three Commons

ENA bit

SLCDC Interrupt

VDDLCD

-VDDLCD

GND

1/3

-1/3

Disable Command

The common is tied to ground

Command processing begins

The disable command is activated

SLCDC disabled

End Of Frame Interrupt

Common

VDDLCD

-VDDLCD

GND

1/3

-1/3

SW Reset Example for Three Commons

SW Reset Command

The common is immediatly tied to ground

The SW reset command is activated

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 802

39.6.8 Flowchart

Figure 39-12. SLCDC Flow Chart

Enter/Exit from
low-power wave form?

Change the frame rate ?

No

No

No

LPMODE in SLCDC_MR PRESC + DIV in SLCDC_FRR BUFTIME in SLCDC_MR

Disable the SLCDC ?

SW reset ?

SWRST in SLCDC_CR

LCDDIS in SLCDC_CR

Disable interrupt? No
DIS in SLCDC_ISR

ENA bit = 0? No
ENA in SLCDC_SR

No

Blink?

Change/Update the display mode (DISPMODE in SLCDC_DR)

No - Normal mode
- Force off
- Force on
- Inverted mode

Change/Update the display mode (DISPMODE in SLCDC_DR)
- Blinking mode
- Inverted Blinking mode

Change/Update the blinking frequency (LCDBLKFREQ in SLCDC_DR)

Change the power
comsumption ?

No

ENA = 1?
ENA in SLCDC_SR

No

Update the displayed data? Write the new data in the SLCDC_MEM

No

No

Update/Change
the display mode?

INITIALIZATION

Supply source (internal or external)
Number of com (COMSEL in SLCDC_MR)
Number of seg (SEGSEL in SLCDC_MR)
Frame rate ((PRESC + DIV) in SLCDC_FRR)
Buff on time (BUFTIME in SLCDC_MR)
Bias (BIAS in SLCDC_MR)

ENABLES THE SLCDC
LCDEN in SLCDC_MR

END

START

 803SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

39.6.9 User Buffer Organization

The pixels to be displayed are written into SLCDC_LMEMRx and SLCDC_MMEMRx. There are up to two 32-bit
registers for each common terminal. Table 39-6 provides the address mapping of all commons/segments to be
displayed.

If the segment map registers (SLCDC_SMR0/1) are cleared and the number of segments to handle
(SLCDC_MR.SEGSEL) is lower than or equal to 32, the registers SLCDC_MMEMRx are not required to be
programmed and can be left cleared (default value).

In case segments are remapped, the SLCDC_MMEMRx registers are not required to be programmed if
SLCDC_SMR1 register is cleared (i.e., no segment remapped on SEG32 to SEG49 I/O pins). In this case
SLCDC_MMEMRx registers must be cleared.

In the same way if all segments are remapped on the upper part of the SEG terminals (SEG32 to SEG49) there is no
need to program SLCDC_LMEMRx registers (they must be cleared).

When segment remap is used (SLCDC_SMR0/1 registers differ from 0), the unmapped segments must be kept
cleared to limit internal signal switching.

39.6.10 Segments Mapping Function

By default the segments pins (SEG0:49) are automatically assigned according to the SEGSEL configuration in the
SLCDC_MR. The unused SEG I/O pins are forced to be driven by a digital peripheral or can be used as I/O through
the PIO controller.

The automatic assignment is performed if the segment mapping function is not used (SLCDC_SMR0/1 registers are
cleared). The following table provides such assignments.

Table 39-6. Commons/segments Address Mapping

Register
Common
Terminal SEG0 -- SEG31 SEG32 -- SEG49 Memory address

SLCDC_MMEMR5

SLCDC_LMEMR5

COM5

COM5 X -- X

X -- X 0x22C
0x228

SLCDC_MMEMR4

SLCDC_LMEMR4

COM4

COM4 X -- X

X -- X 0x224
0x220

SLCDC_MMEMR3

SLCDC_LMEMR3

COM3

COM3 X -- X

X -- X 0x21C
0x218

SLCDC_MMEMR2

SLCDC_LMEMR2

COM2

COM2 X -- X

X -- X 0x214
0x210

SLCDC_MMEMR1

SLCDC_LMEMR1

COM1

COM1 X -- X

X -- X 0x20C
0x208

SLCDC_MMEMR0

SLCDC_LMEMR0

COM0

COM0 X -- X

X -- X 0x204
0x200

Table 39-7. Segment Pin Assignments

SEGSEL I/O Port in Use as Segment Driver I/O Port Pin if SLCDC_SMR0/1 = 0

0 SEG0 SEG1:49

1 SEG0:1 SEG2:49

...

48 SEG0:48 SEG49

49 SEG0:49 None

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 804

Programming is straightforward in this mode but it prevents flexibility of use of the digital peripheral multiplexed on
SEG0:49 especially when the number of segments to drive is close to the maximum (50).

For example, if the SEGSEL is set to 48, only the digital peripheral associated to SEG49 can be used and none of the
other digital peripherals multiplexed on SEG0:48 I/O can be used.

To offer a flexible selection of digital peripherals multiplexed on SEG0:49 the user can manually configure the SEG
I/O pins to be driven by the SLCDC.

This is done by programming the SLCDC_SMR0/1 registers. As soon as their values differ from 0 the segment
remapping mode is used.

When configuring a logic 1 at index n (n = 0..49) in SLCDC_SMR0 or SLCDC_SMR1, the SLCDC forces the SEGn
I/O pin to be driven by a segment waveform. In this mode, the SEGSEL field configuration value in SLCDC_MR is
ignored.

In remapping mode, the software dispatches the pixels into SLCDC_LMEMRx or SLCDC_MMEMRx according to
what is programmed in SLCDC_SMR0 or SLCDC_SMR1.

Figure 39-13. Segments Remapping Example

com0

com1

seg0 seg1 seg2 seg3

LCD Display Panel

MICROCONTROLLER

COM0 COM1 COM5 SEG0 SEG1 SEG2 SEG3 SEG4 SEG28 SEG29 SEG30

Dig0 Dig1 Dig5 Dig6 Dig7 Dig8 Dig9 Dig10 Dig11 Dig12 Dig13

COMSEL=1
SEGSEL=3
SLCDC_SMR0=0
SLCDC_SMR1=0
SLCDC_LMEMR0=0x5
SLCDC_LMEMR1=0xA

com0

com1

seg0 seg1 seg2 seg3

LCD Display Panel

MICROCONTROLLER

COM0 COM1 COM5 SEG0 SEG1 SEG2 SEG3 SEG4 SEG28 SEG29 SEG30

Dig0 Dig1 Dig5 Dig6 Dig7 Dig8 Dig9 Dig10 Dig11 Dig12 Dig13

COMSEL=1
SEGSEL=3
SLCDC_SMR0=0x8000_0002
SLCDC_SMR1=0x0000_0003
SLCDC_LMEMR0=0x2,
SLCDC_MMEMR0=0x1
SLCDC_LMEMR1=0x8000_0000
SLCDC_MMEMR1=0x0000_0002

DEFAULT SEGMENT
PINS ASSIGMENTS

USER REMAPPED
SEGMENT PINS
ASSIGMENTS

User Config.

Default Config.

Unusable Digital Functions.

Dig10 Dig11 Dig12 Dig13

LCD Panel Config.

Direct Image Buffer.

Pre-processed Image Buffer.

Dig6 Dig8 Dig9 Dig10

 805SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

39.7 Waveform Specifications

39.7.1 DC Characteristics

Refer to the section “DC Characteristics”.

39.7.2 LCD Contrast

The peak value (VDDLCD) on the output waveform determines the LCD Contrast. VDDLCD is controlled by software in 16
steps from 2.4V to VDDIN.

This is a function of the Supply Controller.

39.8 Segment LCD Controller (SLCDC) User Interface

Table 39-8. Register Mapping

Offset Register Name Access Reset

0x00 SLCDC Control Register SLCDC_CR Write-only -

0x04 SLCDC Mode Register SLCDC_MR Read/Write 0x0

0x08 SLCDC Frame Rate Register SLCDC_FRR Read/Write 0x0

0x0C SLCDC Display Register SLCDC_DR Read/Write 0x0

0x10 SLCDC Status Register SLCDC_SR Read-only 0x0

0x20 SLCDC Interrupt Enable Register SLCDC_IER Write-only -

0x24 SLCDC Interrupt Disable Register SLCDC_IDR Write-only -

0x28 SLCDC Interrupt Mask Register SLCDC_IMR Read-only -

0x2C SLCDC Interrupt Status Register SLCDC_ISR Read-only 0x0

0x30 SLCDC Segment Map Register 0 SLCDC_SMR0 Read/Write 0x0

0x34 SLCDC Segment Map Register 1 SLCDC_SMR1 Read/Write 0x0

0x38 - 0xE0 Reserved - - -

0xE4 - 0xE8 Reserved - - -

0xEC - 0xF8 Reserved - - -

0xFC Reserved - - -

0x200 + com*0x8 + 0x0 SLCDC LSB Memory Register SLCDC_LMEMR Read/Write 0x0

0x200 + com*0x8 + 0x4 SLCDC MSB Memory Register SLCDC_MMEMR Read/Write 0x0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 806

39.8.1 SLCDC Control Register

Name: SLCDC_CR

Address: 0x4003C000

Access: Write-only

Reset: 0x00000000

• LCDEN: Enable the LCDC
0 = No effect.

1 = The SLCDC is enabled.

• LCDDIS: Disable LCDC
0 = No effect.

1 = The SLCDC is disabled.

Note: LCDDIS is processed at the beginning of the next frame.

• SWRST: Software Reset
0 = No effect.

1 = Equivalent to a power-up reset. When this command is performed, the SLCDC immediately ties all segments end
commons lines to values corresponding to a “ground voltage”.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – SWRST – LCDDIS LCDEN

 807SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

39.8.2 SLCDC Mode Register

Name: SLCDC_MR

Address: 0x4003C004

Access: Read/Write

Reset: 0x00000000

• COMSEL: Selection of the Number of Commons
(For safety reasons, can be configured when SLCDC is disabled).

• SEGSEL: Selection of the Number of Segments
(For safety reasons, can be configured when SLCDC is disabled).

SEGSEL must be programmed with the number of segments of the display panel minus 1.

If segment remapping function is not used (i.e., SLCDC_SMRx equal 0) the SEGn [n = 0..49] I/O pins where n is greater than
SEGSEL are forced to be driven by digital function. When segments remapping function is used, SEGn pins are driven by
SLCDC only if corresponding PIXELn configuration bit is set in SLCDC_SMR1/0 registers.

• BIAS: LCD Display Configuration
(For safety reasons, can be configured when SLCDC is disabled).

31 30 29 28 27 26 25 24
– – – – – – – LPMODE

23 22 21 20 19 18 17 16
– – BIAS BUFTIME

15 14 13 12 11 10 9 8
– – SEGSEL

7 6 5 4 3 2 1 0
– – – – – COMSEL

Value Name Description
0 COM_0 COM0 is driven by SLCDC, COM1:4 are driven by digital function

1 COM_0TO1 COM0:1 are driven by SLCDC, COM2:4 are driven by digital function

2 COM_0TO2 COM0:2 are driven by SLCDC, COM3:4 are driven by digital function

3 COM_0TO3 COM0:3 are driven by SLCDC, COM4 is driven by digital function

4 COM_0TO4 COM0:4 are driven by SLCDC, No COM pin driven by digital function

Value Name Description
0 STATIC Static

1 BIAS_1_2 Bias 1/2

2 BIAS_1_3 Bias 1/3

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 808

• LPMODE: Low-Power Mode
(Processed at beginning of next frame).

0 = Normal Mode.

1 = Low-Power Waveform is enabled.

• BUFTIME: Buffer On-Time
(Processed at beginning of next frame).

Value Name Description
0 OFF Nominal drive time is 0% of SLCK period

1 X2_SLCK_PERIOD Nominal drive time is 2 periods of SLCK clock

2 X4_SLCK_PERIOD Nominal drive time is 4 periods of SLCK clock

3 X8_SLCK_PERIOD Nominal drive time is 8 periods of SLCK clock

4 X16_SLCK_PERIOD Nominal drive time is 16 periods of SLCK clock

5 X32_SLCK_PERIOD Nominal drive time is 32 periods of SLCK clock

6 X64_SLCK_PERIOD Nominal drive time is 64 periods of SLCK clock

7 X128_SLCK_PERIOD Nominal drive time is 128 periods of SLCK clock

8 PERCENT_50 Nominal drive time is 50% of SLCK period

9 PERCENT_100 Nominal drive time is 100% of SLCK period

 809SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

39.8.3 SLCDC Frame Rate Register

Name: SLCDC_FRR

Address: 0x4003C008

Access: Read/Write

Reset: 0x00000000

• PRESC: Clock Prescaler
(Processed at beginning of next frame).

• DIV: Clock Division
(Processed at beginning of next frame).

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – DIV

7 6 5 4 3 2 1 0
– – – – – PRESC

Value Name Description

0 SLCK_DIV8 Slow clock is divided by 8

1 SLCK_DIV16 Slow clock is divided by 16

2 SLCK_DIV32 Slow clock is divided by 32

3 SLCK_DIV64 Slow clock is divided by 64

4 SLCK_DIV128 Slow clock is divided by 128

5 SLCK_DIV256 Slow clock is divided by 256

6 SLCK_DIV512 Slow clock is divided by 512

7 SLCK_DIV1024 Slow clock is divided by 1024

Value Name Description

0 PRESC_CLK_DIV1 Clock output from prescaler is divided by 1

1 PRESC_CLK_DIV2 Clock output from prescaler is divided by 2

2 PRESC_CLK_DIV3 Clock output from prescaler is divided by 3

3 PRESC_CLK_DIV4 Clock output from prescaler is divided by 4

4 PRESC_CLK_DIV5 Clock output from prescaler is divided by 5

5 PRESC_CLK_DIV6 Clock output from prescaler is divided by 6

6 PRESC_CLK_DIV7 Clock output from prescaler is divided by 7

7 PRESC_CLK_DIV8 Clock output from prescaler is divided by 8

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 810

39.8.4 SLCDC Display Register

Name: SLCDC_DR

Address: 0x4003C00C

Access: Read/Write

Reset: 0x00000000

• DISPMODE: Display Mode Register
(Processed at beginning of next frame).

• LCDBLKFREQ: LCD Blinking Frequency Selection
(Processed at beginning of next frame).

Blinking frequency = Frame Frequency/LCDBLKFREQ[7:0].
Note: 0 written in LCDBLKFREQ stops blinking.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
LCDBLKFREQ

7 6 5 4 3 2 1 0
– – – – – DISPMODE

Value Name Description

0 NORMAL Normal Mode:
Latched data are displayed.

1 FORCE_OFF Force Off Mode:
All pixels are invisible. (The SLCDC memory is unchanged).

2 FORCE_ON Force On Mode:
All pixels are visible. (The SLCDC memory is unchanged).

3 BLINKING
Blinking Mode:
All pixels are alternately turned off to the predefined state in SLCDC memory at
LCDBLKFREQ frequency. (The SLCDC memory is unchanged).

4 INVERTED
Inverted Mode:
All pixels are set in the inverted state as defined in SLCDC memory. (The
SLCDC memory is unchanged).

5 INVERTED_BLINK
Inverted Blinking Mode:
All pixels are alternately turned off to the predefined opposite state in SLCDC
memory at LCDBLKFREQ frequency. (The SLCDC memory is unchanged).

6 USER_BUFFER_LOAD User Buffer Only Load Mode:
Blocks the automatic transfer from User Buffer to Display Buffer.

7 BUFFERS_SWAP
Buffer Swap Mode:
All pixels are alternatively assigned to the state defined in the User Buffer, then
to the state defined in the Display Buffer at LCDBLKFREQ frequency.

 811SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

39.8.5 SLCDC Status Register

Name: SLCDC_SR

Address: 0x4003C010

Access: Read-only

• ENA: Enable Status (Automatically Set/Reset)
0 = The SLCDC is disabled.

1 = The SLCDC is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – ENA

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 812

39.8.6 SLCDC Interrupt Enable Register

Name: SLCDC_IER

Address: 0x4003C020

Access: Write-only

• ENDFRAME: End of Frame Interrupt Enable
0 = No effect.

1 = Enables the corresponding interrupt.

• DIS: SLCDC Disable Completion Interrupt Enable
0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – DIS – ENDFRAME

 813SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

39.8.7 SLCDC Interrupt Disable Register

Name: SLCDC_IDR

Address: 0x4003C024

Access: Write-only

• ENDFRAME: End of Frame Interrupt Disable
0 = No effect.

1 = Disables the corresponding interrupt.

• DIS: SLCDC Disable Completion Interrupt Disable
0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – DIS – ENDFRAME

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 814

39.8.8 SLCDC Interrupt Mask Register

Name: SLCDC_IMR

Address: 0x4003C028

Access: Read-only

• ENDFRAME: End of Frame Interrupt Mask
0 = The corresponding interrupt is not enabled.

1 = The corresponding interrupt is enabled.

• DIS: SLCDC Disable Completion Interrupt Mask
0 = The corresponding interrupt is not enabled.

1 = The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – DIS – ENDFRAME

 815SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

39.8.9 SLCDC Interrupt Status Register

Name: SLCDC_ISR

Address: 0x4003C02C

Access: Read-only

• ENDFRAME: End of Frame Interrupt Status
0 = No End of Frame occurred since the last read.

1 = End of Frame occurred since the last read.

• DIS: SLCDC Disable Completion Interrupt Status
0 = The SLCDC is enabled.

1 = The SLCDC is disabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – DIS – ENDFRAME

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 816

39.8.10 SLCDC Segment Map Register 0

Name: SLCDC_SMR0

Address: 0x4003C030

Access: Read/Write

• LCDx: LCD Segment Mapped on SEGx I/O Pin
(For safety reasons, can be configured when SLCDC is disabled).

0 = The corresponding I/O pin is driven either by SLCDC or digital function, depending on the SEGSEL field configuration in
the SLCDC_MR.

1 = An LCD segment is driven on the corresponding I/O pin.

31 30 29 28 27 26 25 24
LCD31 LCD30 LCD29 LCD28 LCD27 LCD26 LCD25 LCD24

23 22 21 20 19 18 17 16
LCD23 LCD22 LCD21 LCD20 LCD19 LCD18 LCD17 LCD16

15 14 13 12 11 10 9 8
LCD15 LCD14 LCD13 LCD12 LCD11 LCD10 LCD9 LCD8

7 6 5 4 3 2 1 0
LCD7 LCD6 LCD5 LCD4 LCD3 LCD2 LCD1 LCD0

 817SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

39.8.11 SLCDC Segment Map Register 1

Name: SLCDC_SMR1

Address: 0x4003C034

Access: Read/Write

• LCDx: LCD Segment Mapped on SEGx I/O Pin
(For safety reasons, can be configured when SLCDC is disabled).

0 = The corresponding I/O pin is driven either by SLCDC or digital function, depending on the SEGSEL field configuration in
the SLCDC_MR.

1 = An LCD segment is driven on the corresponding I/O pin.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – LCD49 LCD48

15 14 13 12 11 10 9 8
LCD47 LCD46 LCD45 LCD44 LCD43 LCD42 LCD41 LCD40

7 6 5 4 3 2 1 0
LCD39 LCD38 LCD37 LCD36 LCD35 LCD34 LCD33 LCD32

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 818

39.8.12 SLCDC LSB Memory Register

Name: SLCDC_LMEMRx [x = 0..5]

Address: 0x4003C200 [0], 0x4003C208 [1], 0x4003C210 [2], 0x4003C218 [3], 0x4003C220 [4], 0x4003C228 [5]

Access: Read/Write

• LPIXEL: LSB Pixels pattern associated to COMx terminal
0 = The pixel associated to COMx terminal is not visible (if Non-inverted Display mode is used).

1 = The pixel associated to COMx terminal is visible (if Non-inverted Display mode is used).
Note: LPIXEL[n] (n = 0..31) drives SEGn terminal.

31 30 29 28 27 26 25 24
LPIXEL

23 22 21 20 19 18 17 16
LPIXEL

15 14 13 12 11 10 9 8
LPIXEL

7 6 5 4 3 2 1 0
LPIXEL

 819SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

39.8.13 SLCDC MSB Memory Register

Name: SLCDC_MMEMRx [x = 0..5]

Address: 0x4003C204 [0], 0x4003C20C [1], 0x4003C214 [2], 0x4003C21C [3], 0x4003C224 [4], 0x4003C22C [5]

Access: Read/Write

• MPIXEL: MSB Pixels pattern associated to COMx terminal
0 = The pixel associated to COMx terminal is not visible (if Non-inverted Display mode is used).

1 = The pixel associated to COMx terminal is visible (if Non-inverted Display mode is used).
Note: MPIXEL[n] (n = 32..49) drives SEGn terminal.

31 30 29 28 27 26 25 24
MPIXEL

23 22 21 20 19 18 17 16
MPIXEL

15 14 13 12 11 10 9 8
MPIXEL

7 6 5 4 3 2 1 0
MPIXEL

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 820

40. Analog-to-Digital Converter (ADC)

40.1 Description
The ADC is based on a 10-bit Analog-to-Digital Converter (ADC) managed by an ADC Controller. It also integrates an
8-to-1 analog multiplexer, making possible the analog-to-digital conversions of 8 analog lines. The conversions extend
from 0V to the voltage carried on pin ADVREF or the voltage provided by the internal reference voltage which can be
programmed in the Analog Control register (ADC_ACR). Selection of the reference voltage source is defined by the
ONREF and FORCEREF bits in the Analog Control Register (ADC_ACR).
The ADC supports the 8-bit or 10-bit Resolution mode. The 8-bit resolution mode prevents using the 16-bit peripheral
DMA transfer into memory when only 8-bit resolution is required by the application. Note that using this low resolution
mode does not increase the conversion rate.
Conversion results are reported in a common register for all channels, as well as in a channel-dedicated register.
The 11-bit and 12-bit resolution modes are obtained by averaging multiple samples to decrease quantization noise.
For 11-bit mode, four samples are used, giving an effective sample rate of 1/4 of the actual sample frequency. For 12-
bit mode, 16 samples are used, giving an effective sample rate of 1/16th of the actual sample frequency.This allows
conversion speed to be traded for better accuracy.
The last channel is internally connected to a temperature sensor. The processing of this channel can be fully
configured for efficient downstream processing due to the slow frequency variation of the value carried on such a
sensor. The seventh channel is reserved for measurement of VDDBU voltage.
The software trigger, the external trigger on rising edge of the ADTRG pin or internal triggers from Timer Counter
output(s) are configurable.
The main comparison circuitry allows automatic detection of values below a threshold, higher than a threshold, in a
given range or outside the range. Thresholds and ranges are fully configurable.
The ADC also integrates a Sleep mode and a conversion sequencer, and connects with a PDC channel. These
features reduce both power consumption and processor intervention.
Finally, the user can configure ADC timings, such as startup time and tracking time.
Note: Please check ADC available signals in the main Block Diagram Figure 2-1.

40.2 Embedded Characteristics
 10-bit Resolution with Enhanced Mode up to 12 Bits
 500 kHz Conversion Rate
 Digital Averaging Function Provides Enhanced Resolution Mode up to 12 Bits
 On-chip Temperature Sensor Management
 Wide Range of Power Supply Operation
 Selectable External Voltage Reference or Programmable Internal Reference
 Integrated Multiplexer Offering Up to 8 Independent Analog Inputs
 Individual Enable and Disable of Each Channel
 Hardware or Software Trigger

 External Trigger Pin
 Timer Counter Outputs (Corresponding TIOA Trigger)

 PDC Support
 Possibility of ADC Timings Configuration
 Two Sleep Modes and Conversion Sequencer

 Automatic Wakeup on Trigger and Back to Sleep Mode after Conversions of all Enabled Channels
 Possibility of Customized Channel Sequence

 Standby Mode for Fast Wakeup Time Response
 Power Down Capability

 Automatic Window Comparison of Converted Values
 Register Write Protection

 821SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

40.3 Block Diagram

Figure 40-1. Analog-to-Digital Converter Block Diagram

40.4 Signal Description

Notes: 1. AD7 is not an actual pin; it is internally connected to a temperature sensor.
2. AD6 is not an actual pin; it is internally connected to VDDBU.
3. AD2 is not bounded to an external pin.

40.5 Product Dependencies

40.5.1 Power Management

The ADC Controller is not continuously clocked. The programmer must first enable the ADC Controller peripheral
clock in the Power Management Controller (PMC) before using the ADC Controller. However, if the application does
not require ADC operations, the ADC Controller clock can be stopped when not needed and restarted when
necessary. Configuring the ADC Controller does not require the ADC Controller clock to be enabled.

ADC InterruptADTRG

ADVREF

GND

Trigger
Selection

Control
Logic

Successive
Approximation

Register
Analog-to-Digital

Converter

Timer
Counter

Channels

User
Interface

Interrupt
Controller

Peripheral Bridge

APB

PDC

System Bus

Analog Inputs
Multiplexed

with I/O lines PIO

AD-

AD-

AD-

ADC Controller

ADC Cell

CHx

Internal
Voltage

Reference

ONREF

Temp.
Sensor

1Hz

RTC

FORCEREF

VDDIN

VDDBU 6

7

ADC Clock

Peripheral Clock
PMC

Bus Clock

Table 40-1. ADC Pin Description

Pin Name Description

ADVREF External Reference voltage

AD0 - AD7(1)(2)(3) Analog input channels

ADTRG External trigger

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 822

40.5.2 Interrupt Sources

The ADC interrupt line is connected on one of the internal sources of the Interrupt Controller. Using the ADC interrupt
requires the interrupt controller to be programmed first.

40.5.3 Analog Inputs

The analog input pins can be multiplexed with PIO lines. In this case, the assignment of the ADC input is automatically
done as soon as the corresponding channel is enabled by writing the Channel Enable register (ADC_CHER). By
default, after reset, the PIO line is configured as a digital input with its pull-up enabled, and the ADC input is
connected to the GND.

40.5.4 Temperature Sensor

The temperature sensor is internally connected to channel index 7 of the ADC.

The temperature sensor provides an output voltage VT that is proportional to the absolute temperature (PTAT). To
activate the temperature sensor, the TEMPON bit in the Temperature Sensor Mode register (ADC_TEMPMR) must
be set. After setting the bit, the startup time of the temperature sensor must be achieved prior to initiating any
measurement.

40.5.5 I/O Lines
The digital input ADTRG is multiplexed with digital functions on the I/O line and the selection of ADTRG is made using
the PIO controller by configuring the I/O Input mode.

The analog inputs ADx are multiplexed with digital functions on the I/O lines. ADx inputs are selected as inputs of the
ADCC when writing a one in the corresponding CHx bit of ADC_CHER and the digital functions are not selected.

40.5.6 Timer Triggers

Timer Counters may or may not be used as hardware triggers depending on user requirements. Thus, some or all of
the timer counters may be unconnected.

40.5.7 Conversion Performances

For performance and electrical characteristics of the ADC, see the section “Electrical Characteristics”.

Table 40-2. Peripheral IDs

Instance ID

ADC 29

Table 40-3. I/O Lines

Instance Signal I/O Line Peripheral

ADC ADTRG PB23 A

ADC COM4/AD1 PA4 X1

ADC SEG6/AD0 PA12 X1

ADC SEG31/AD3 PB13 X1

ADC SEG41/AD4 PB23 X1

ADC SEG49/AD5 PB31 X1

 823SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

40.6 Functional Description

40.6.1 Analog-to-digital Conversion

The ADC uses the ADC Clock to perform conversions. Converting a single analog value to a 10-bit digital data
requires tracking clock cycles as defined in the field TRACKTIM of the “ADC Mode Register” (ADC_MR). The ADC
clock frequency is selected in the PRESCAL field of ADC_MR.

The ADC clock frequency is between fperipheral clock/2 if PRESCAL is 0, and fperipheral clock/512 if PRESCAL is set to 255
(0xFF).

PRESCAL must be programmed in order to provide an ADC clock frequency according to the parameters given in the
section “Electrical Characteristics”.

Figure 40-2. Sequence of ADC Conversions

40.6.2 Conversion Reference

The conversion is performed on a full range between 0V and the reference voltage. The reference voltage is defined
by the external pin ADVREF, or programmed using the internal reference voltage configured in ADC_ACR. Analog
inputs between these voltages convert to values based on a linear conversion.

40.6.3 Conversion Resolution

The ADC supports 8-bit or 10-bit resolutions. The 8-bit selection is performed by setting the LOWRES bit in ADC_MR.
By default, after a reset, the resolution is the highest and the DATA field in the data registers is fully used. By setting
the LOWRES bit, the ADC switches to the lowest resolution and the conversion results can be read in the lowest
significant bits of the data registers. The two highest bits of the DATA field in the corresponding Channel Data register
(ADC_CDR) and of the LDATA field in the Last Converted Data register (ADC_LCDR) read 0.

40.6.4 Conversion Results

When a conversion is completed, the resulting 10-bit digital value is stored in ADC_CDRx of the current channel and
in ADC_LCDR. By setting the TAG bit in the Extended Mode register (ADC_EMR), ADC_LCDR presents the channel
number associated with the last converted data in the CHNB field.

The EOCx and DRDY bits in the Interrupt Status register (ADC_ISR) are set. In the case of a connected PDC
channel, DRDY rising triggers a data request. In any case, both EOC and DRDY can trigger an interrupt.

Reading one ADC_CDRx clears the corresponding EOCx bit. Reading ADC_LCDR clears the DRDY bit.

ADCClock

LCDR

ADC_ON

ADC_SEL

DRDY

ADC_Start

CH0 CH1

CH0

CH2

CH1

Start Up Time
(and tracking of CH0)

Conversion of CH0 Conversion of CH1Tracking of CH1 Tracking of CH2

ADC_eoc

Trigger event
(Hard or Soft)

A
na

lo
g

ce
ll

IO
s

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 824

Figure 40-3. EOCx and DRDY Flag Behavior

If ADC_CDR is not read before further incoming data is converted, the corresponding Overrun Error (OVREx) flag is
set in the Overrun Status register (ADC_OVER).

New data converted when DRDY is high sets the GOVRE bit in ADC_ISR.

The OVREx flag is automatically cleared when ADC_OVER is read, and GOVRE flag is automatically cleared when
ADC_ISR is read.

Figure 40-4. EOCx, GOVRE and OVREx Flag Behavior

DRDY
(ADC_ISR)

EOCx
(ADC_ISR)

CHx
(ADC_CHSR)

Write the ADC_CR
with START = 1

Read the ADC_CDRx Write the ADC_CR
with START = 1

Read the ADC_LCDR

EOC0

GOVRE

CH0
(ADC_CHSR)

Trigger event

EOC1

CH1
(ADC_CHSR)

OVRE0
(ADC_OVER)

Undefined Data Data A Data BADC_LCDR

Undefined Data Data AADC_CDR0

Undefined Data Data BADC_CDR1

Data C

Data C

Conversion C
Conversion A

DRDY
(ADC_ISR)

Read ADC_CDR1

Read ADC_CDR0

Conversion B

Read ADC_OVER

Read ADC_ISR

OVRE1

(ADC_OVER)

(ADC_ISR)

(ADC_ISR)

(ADC_ISR)

 825SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Warning: If the corresponding channel is disabled during a conversion or if it is disabled and then re-enabled during a
conversion, the associated data and the corresponding EOCx and GOVRE flags in ADC_ISR and OVREx flags in
ADC_OVER are unpredictable.

40.6.5 Conversion Triggers

Conversions of the active analog channels are started with a software or hardware trigger. The software trigger is
provided by writing the Control register (ADC_CR) with the START bit at 1.

The hardware trigger can be one of the TIOA outputs of the Timer Counter channels or the external trigger input of the
ADC (ADTRG). The hardware trigger is selected with the TRGSEL field in ADC_MR. The selected hardware trigger is
enabled with the TRGEN bit in ADC_MR.

The minimum time between two consecutive trigger events must be strictly greater than the duration time of the
longest conversion sequence as configured in ADC_MR, ADC_CHSR and ADC_SEQR1.

If a hardware trigger is selected, the start of a conversion is triggered after a delay which starts at each rising edge of
the selected signal. Due to asynchronous handling, the delay may vary in a range of two peripheral clock periods to
one ADC clock period.

Figure 40-5. Hardware Trigger Delay

If one of the TIOA outputs is selected, the corresponding Timer Counter channel must be programmed in Waveform
mode.

Only one start command is necessary to initiate a conversion sequence on all the channels. The ADC hardware logic
automatically performs the conversions on the active channels, then waits for a new request. The Channel Enable
(ADC_CHER) and Channel Disable (ADC_CHDR) registers permit the analog channels to be enabled or disabled
independently.

If the ADC is used with a PDC, only the transfers of converted data from enabled channels are performed and the
resulting data buffers should be interpreted accordingly.

40.6.6 Sleep Mode and Conversion Sequencer

The ADC Sleep mode maximizes power saving by automatically deactivating the ADC when it is not being used for
conversions. Sleep mode is selected by setting the SLEEP bit in ADC_MR.

Sleep mode is managed by a conversion sequencer, which automatically processes the conversions of all channels at
lowest power consumption.

This mode can be used when the minimum period of time between two successive trigger events is greater than the
startup period of the ADC. See the section “ADC Characteristics” in the “Electrical Characteristics”.

When a start conversion request occurs, the ADC is automatically activated. As the analog cell requires a start-up
time, the logic waits during this time and starts the conversion on the enabled channels. When all conversions are
complete, the ADC is deactivated until the next trigger. Triggers occurring during the sequence are ignored.

The conversion sequencer allows automatic processing with minimum processor intervention and optimized power
consumption. Conversion sequences can be performed periodically using a Timer/Counter output. By using the PDC,
the periodic acquisition of several samples can be processed automatically without processor intervention.

The sequence can be customized by programming ADC_SEQR1 and setting the USEQ bit of ADC_MR. The user can
choose a specific order of channels and can program up to 8 conversions by sequence. The user is free to create a
personal sequence by writing channel numbers in ADC_SEQR1. Not only can channel numbers be written in any
sequence, channel numbers can be repeated several times. When the bit USEQ in ADC_MR is set, the fields USCHx
in ADC_SEQR1 are used to define the sequence. Only enabled USCHx fields are part of the sequence. Each USCHx

trigger

start

delay

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 826

field has a corresponding enable, CHx, in ADC_CHER (USCHx field with the lowest x index is associated with bit CHx
of the lowest index).

40.6.7 Comparison Window
The ADC Controller features automatic comparison functions. It compares converted values to a low threshold, a high
threshold or both, depending on the value of the CMPMODE field in the Extended Mode register (ADC_EMR). The
comparison can be done on all channels or only on the channel specified in the CMPSEL field of ADC_EMR. To
compare all channels, the CMPALL bit of ADC_EMR should be set.

Moreover, a filtering option can be set by writing the number of consecutive comparison events needed to raise the
flag. This number can be written and read in the CMPFILTER field of ADC_EMR.

The flag can be read on the COMPE bit of ADC_ISR and can trigger an interrupt.

The high threshold and the low threshold can be read/write in the Compare Window register (ADC_CWR).

If the comparison window is to be used with the LOWRES bit set in ADC_MR, the thresholds do not need to be
adjusted, as the adjustment is done internally. Whether or not the LOWRES bit is set, thresholds must always be
configured in accordance with the maximum ADC resolution.

40.6.8 ADC Timings
Each ADC has its own minimal startup time that is programmed through the field STARTUP in ADC_MR.

A minimal tracking time is necessary for the ADC to guarantee the best converted final value between two channel
selections. This time must be programmed in the TRACKTIM field in ADC_MR.

Warning: No input buffer amplifier to isolate the source is included in the ADC. This must be taken into consideration
to program a precise value in the TRACKTIM field. See the section “ADC Characteristics” in the “Electrical
Characteristics”.

40.6.9 Temperature Sensor
The temperature sensor is internally connected to channel index 7. To enable temperature measurement, the
TEMPON bit must be set in ADC_TEMPMR.

The ADC Controller manages temperature measurement in several ways. The different methods of measurement
depend on the configuration bits TRGEN in ADC_MR and CH7 in ADC_CHSR.

Temperature measurement can be triggered like the other channels by enabling its associated conversion channel
index 7, writing 1 in CH7 of ADC_CHER.

A manual start can only be performed if the TRGEN bit in ADC_MR is cleared. When the START bit in ADC_CR is
set, the temperature sensor channel conversion is scheduled together with the other enabled channels (if any). The
result of the conversion is placed in the ADC_CDR7 register and the associated flag EOC7 is set in ADC_ISR.

If the TRGEN bit is set in ADC_MR, the channel of the temperature sensor is periodically converted together with
other enabled channels. The result is placed in the registers ADC_LCDR and ADC_CDR7. Thus the temperature
conversion result is part of the Peripheral DMA Controller buffer. The temperature channel can be enabled/disabled at
anytime, however this may not be optimal for downstream processing.

 827SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 40-6. Non-optimized Temperature Conversion

The temperature factor has a slow variation rate and is potentially different from other conversion channels. As a
result, the ADC Controller triggers the measurement differently when TEMPON is set in ADC_TEMPMR but CH7 is
not set in the ADC_CHSR.

Under these conditions, the measurement is triggered every second by means of an internal trigger generated by the
RTC, always enabled and totally independent of the internal/external triggers. The RTC event will be processed on
the next internal/external trigger event as described in Figure 40-7, "Optimized Temperature Conversion Combined
With Classical Conversions". The internal/external trigger is selected through the TRGSEL field of ADC_MR.

In this mode of operation, the temperature sensor is only powered for a period of time covering the startup time and
conversion time (refer to Figure 40-8, "Temperature Conversion Only").

Every second, a conversion is scheduled for channel 7 but the result of the conversion is only uploaded in
ADC_CDR7 and not in ADC_LCDR. Therefore there is no change in the structure of the Peripheral DMA Controller
buffer due to the conversion of the temperature channel; only the enabled channels are kept in the buffer. The end of
conversion of the temperature channel is reported by means of EOC7 flag in ADC_ISR.

Base Address (BA)

BA + 0x02ADC_CDR[TEMP]0

ADC_CDR[0]0

ADC_CDR[0]0 BA + 0x04

ADC_CDR[0]0

ADC_CDR[TEMP]0

ADC_CDR[TEMP]0

BA + 0x06

BA + 0x08

BA + 0x0A

Assuming ADC_CHSR[0] = 1 and ADC_CHSR[TEMP] = 1
where TEMP is the index of the temperature sensor channel

trig.event1

DMA Buffer
Structure

trig.event2

DMA Transfer

trig.event3

ADC_SEL C T C T T C TC

Notes: ADC_SEL: Command to the ADC cell
 C: Classic ADC Conversion Sequence
 T: Temperature Sensor Channel

C T

ADC_CHSR[TEMP]= 1 and ADC_MR.TRGEN=1

ADC_CDR[TEMP] T1 T2T0

ADC_CDR[0] C0 C1 C2 C3 C4 C5

T3 T4 T5

ADC_LCDR C0 C1 C2 C3 C4T1 T2T0 T3 T4 T5

Internal/External
Trigger event
(TRGSEL defined)

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 828

Figure 40-7. Optimized Temperature Conversion Combined With Classical Conversions

If TEMPON = 1, TRGEN is disabled and none of the channels are enabled in ADC_CHSR (ADC_CHSR = 0), then
only channel 7 is converted at a rate of one conversion per second (see Figure 40-8, "Temperature Conversion
Only").

This mode of operation, when combined with the Sleep mode operation of the ADC Controller, provides a low-power
mode for temperature measurement. This assumes there is no other ADC conversion to schedule at a high sampling
rate, or no other channel to convert.

Figure 40-8. Temperature Conversion Only

Base Address (BA)

BA + 0x02

ADC_CDR[0]0

BA + 0x04

ADC_CDR[0]0

Assuming ADC_CHSR[0] = 1

trig.event1
DMA Buffer Structure
trig.event2

DMA Transfer

trig.event3

ADC_SEL C T C C TC C

 ADC_CHSR[TEMP]= 0 and ADC_MR.TRGEN=1
TEMPON=1

ADC_CDR[0]0

Internal RTC
Trigger event

ADC_CDR[TEMP] T1 T2T0

ADC_CDR[0] &
ADC_LCDR C0 C1 C2 C3 C4 C5

1 s

Internal/External
Trigger event
(TRGSEL defined)

Notes: ADC_SEL: Command to the ADC cell
 C: Classic ADC Conversion Sequence
 T: Temperature Sensor Channel

ADC_SEL

 ADC_CHSR= 0 and ADC_MR.TRGEN=0

Internal RTC
Trigger event

1 s

Automatic “On”
Temp. sensor

T T

30 us
on

off

ADC_CDR[TEMP] T1 T2T0

TEMPON=1

Notes: ADC_SEL: Command to the ADC cell
 C: Classic ADC Conversion Sequence
 T: Temperature Sensor Channel

 829SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

It is possible to raise a flag only if there is a predefined change in the temperature. The user can define a range of
temperature or a threshold in the Temperature Compare Window register (ADC_TEMPCWR), and the mode of
comparison that can be programmed into the TEMPCMPMOD field into ADC_TEMPMR. These values define how the
TEMPCHG flag is raised in ADC_ISR.

The TEMPCHG flag can be used to generate a temperature-dependent interrupt instead of the end-of-conversion
interrupt. More specifically, the interrupt is generated only if the temperature sensor as measured by the ADC reports
a temperature value below, above, inside or outside programmable thresholds (see ADC_TEMPMR).

In any case, if TEMPON is set, the temperature can be read at anytime in ADC_CDR7 without any specific software
intervention.

40.6.10 VDDBU Measurement

The seventh ADC channel (CH6) of the ADC Controller is reserved for measurement of the VDDBU power supply pin.
For this channel, setting up, starting conversion, and other tasks must be performed the same way as for all other
channels. VDDBU is measured without any attenuation. This means that for VDDBU greater than the voltage
reference applied to the ADC, the digital output clamps to the maximum value.

40.6.11 Enhanced Resolution Mode and Digital Averaging Function

The Enhanced Resolution mode is enabled if LOWRES is cleared in ADC_MR, and the OSR field is set to 1 or 2 in
ADC_EMR. The enhancement is based on a digital averaging function.

FREERUN in ADC_MR must be cleared when digital averaging is used (OSR not equal to 0 in ADC_EMR).

There is no averaging on the last index channel if the measure is triggered by an RTC event (see Section 40.6.9
”Temperature Sensor”).

In Enhanced Resolution mode, the ADC Controller trades conversion speed for quantization noise by averaging
multiple samples, thus providing a digital low-pass filter function.

If 1-bit enhancement resolution is selected (OSR = 1 in ADC_EMR), the ADC real sample rate is the maximum ADC
sample rate divided by 4. Thus, the oversampling ratio is 4.

When the 2-bit enhancement resolution is selected (OSR = 2 in ADC_EMR), the ADC real sample rate is the
maximum ADC sample rate divided by 16 (oversampling ratio is 16).

The selected oversampling ratio applies to all enabled channels except for the temperature sensor channel when
triggered by an RTC event.

The average result is valid into the ADC_CDRx register (x corresponding to the index of the channel) only if EOCn flag
is set in ADC_ISR and OVREn flag is cleared in ADC_OVER. The average result for all channels is valid in
ADC_LCDR only if DRDY is set and GOVRE is cleared in ADC_ISR.

Note that registers ADC_CDRx are not buffered. Therefore, when an averaging sequence is ongoing, the value in
these registers changes after each averaging sample. However, overrun flags in ADC_OVER rise as soon as the first
sample of an averaging sequence is received. Thus the previous averaged value is not read even if the new averaged
value is not ready.

As a result, when an overrun flag rises in ADC_OVER, the previous unread data is lost. However, the data has not
been overwritten by the new averaged value, as the averaging sequence for this channel may still be on-going.

40.6.11.1 Averaging Function versus Trigger Events
The samples can be defined in different ways for the averaging function depending on the configuration of the ASTE
bit in ADC_EMR and the USEQ bit in ADC_MR.

When USEQ is cleared, there are two ways to generate the averaging through the trigger event. If ASTE is cleared in
ADC_EMR, every trigger event generates one sample for each enabled channel as described in Figure 40-9, "Digital
Averaging Function Waveforms over Multiple Trigger Events". Therefore, four trigger events are requested to get the
result of averaging if OSR = 1.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 830

Figure 40-9. Digital Averaging Function Waveforms over Multiple Trigger Events

If ASTE = 1 in ADC_EMR and USEQ = 0 in ADC_MR, then the sequence to be converted, defined in ADC_CHSR, is
automatically repeated n times, where n corresponds to the oversampling ratio defined in the OSR field in ADC_EMR.
As a result, only one trigger is required to obtain the result of the averaging function as described in Figure 40-10,
"Digital Averaging Function Waveforms on a Single Trigger Event".

Figure 40-10. Digital Averaging Function Waveforms on a Single Trigger Event

Internal/External
Trigger event

ADC_SEL 0 1

ADC_EMR.OSR=1 ASTE=0, ADC_CHSR[1:0]= 0x3 and ADC_MR.USEQ=0

ADC_CDR[1]

ADC_CDR[0] CH0_0

ADC_LCDR

0i1

0 1 0 1 0 1 0 1

0i2 0i3 CH0_1 0i1

CH1_0 1i1 1i2 1i3 CH1_1 1i1

EOC[0]

Read ADC_CDR[1]

CH1_1CH0_1

EOC[1]

Read ADC_LCDR

DRDY

Read ADC_CDR[0]

Read ADC_CDR[1]

OVR[0]

CH1_0

Read ADC_LCDR

Notes: ADC_SEL: Command to the ADC cell
 0i1,0i2,0i3, 1i1, 1i2, 1i3 are intermediate results and CH0/1_0/1 are final results of average function.

Internal/External
Trigger event

ADC_SEL 0

ADC_EMR.OSR=1, ASTE=1, ADC_CHSR[1:0]= 0x3 and ADC_MR.USEQ=0

ADC_CDR[1]

ADC_CDR[0] CH0_0

ADC_LCDR

0i1

0

0i2 0i3 CH0_1

EOC[0]
Read ADC_CDR[0]

Read ADC_CDR[1]

CH1_1CH0_1

EOC[1]

Read ADC_LCDR

DRDY

011 1 0 0

CH1_0 1i1 1i2 1i3 CH1_1

0 1 11

Notes: ADC_SEL: Command to the ADC cell
 0i1,0i2,0i3, 1i1, 1i2, 1i3 are intermediate results and CH0/1_0/1 are final results of average function.

 831SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

When USEQ is set, the user can define the channel sequence to be converted by configuring ADC_SEQRx and
ADC_CHER so that channels are not interleaved during the averaging period. Under these conditions, a sample is
defined for each end of conversion as shown in Figure 40-11, "Digital Averaging Function Waveforms on Single
Trigger Event, Non-interleaved".

Therefore, if the same channel is configured to be converted four times consecutively, and OSR = 1 in ADC_EMR, the
averaging result is placed in the corresponding Channel Data Register (ADC_CDRx) and Last Converted Data
Register (ADC_LCDR) for each trigger event.

In this case, the ADC real sample rate remains the maximum ADC sample rate divided by 4 or 16, depending on
OSR.

When USEQ = 1, ASTE = 1 and OSR is different from 0, it is important to note that the user sequence must follow a
specific pattern. The user sequence must be programmed so that it generates a stream of conversion, where a given
channel is successively converted with an integer multiple depending on the value of OSR. Up to four channels can
be converted in this specific mode.

When OSR = 1, each channel to convert must be repeated four times consecutively in the sequence, so the first four
single bits enabled in ADC_CHSR must have the associated channel index programmed to the same value in
ADC_SEQ1/2. Therefore, for OSR = 1, a maximum of four channels can be converted. The user sequence allows a
maximum of 16 conversions for each trigger event.

When OSR = 2, a channel to convert must be repeated 16 times consecutively in the sequence, so all fields must be
enabled in the ADC_CHSR register, and their associated channel index programmed to the same value in
ADC_SEQ1/2. Therefore, for OSR = 2, only one channel can be converted. The user sequence allows a maximum of
16 conversions for each trigger event.

OSR = 3 and OSR = 4 are prohibited when USEQ = 1 and ASTE = 1.

Figure 40-11. Digital Averaging Function Waveforms on Single Trigger Event, Non-interleaved

Internal/External
Trigger event

ADC_SEL 0

ADC_EMR.OSR=1, ASTE=1, ADC_CHSR[7:0]=0xFF and ADC_MR.USEQ=1

ADC_CDR[1]

ADC_CDR[0] CH0_0

ADC_LCDR

0i1

0 0

0i2 0i3 CH0_1

EOC[0]
Read ADC_CDR[0]

Read ADC_CDR[1]

CH1_1CH0_1

EOC[1]

Read ADC_LCDR

DRDY

0 1 1 1 1 0 0 0 0

CH1_0 1i1 1i2 1i3 CH1_1

ADC_SEQ1R = 0x1111_0000

Notes: ADC_SEL: Command to the ADC cell
 0i1,0i2,0i3, 1i1, 1i2, 1i3 are intermediate results and CH0/1_0/1 are final results of average function.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 832

40.6.11.2 Oversampling Digital Output Range
When an oversampling is performed, the maximum value that can be read on ADC_CDRx or ADC_LCDR is not the
full scale value, even if the maximum voltage is supplied on the analog input. This is due to the digital averaging
algorithm. For example, when OSR = 1, four samples are accumulated and the result is then right-shifted by 1 (divided
by 2).

The maximum output value carried on ADC_CDRx or ADC_LCDR depends on the configuration of the field OSR in
ADC_EMR.

40.6.12 Buffer Structure

The PDC read channel is triggered each time a new data is stored in ADC_LCDR. The same data structure is
repeatedly stored in ADC_LCDR each time a trigger event occurs. Depending on the user mode of operation
(ADC_MR, ADC_CHSR, ADC_SEQR1), the structure differs. Each data read to the PDC buffer, carried on a half-
word (16-bit), consists of the last converted data right-aligned. When TAG is set in ADC_EMR, the four most
significant bits carry the channel number, thus simplifying post-processing in the PDC buffer or improved checking of
the PDC buffer integrity.

Figure 40-12. Buffer Structure

Table 40-4. Oversampling Digital Output Range Values

Resolution Samples Shift Full Scale Value Maximum Value

8-bit 1 0 255 255

10-bit 1 0 1023 1023

11-bit 4 1 2047 2046

12-bit 16 2 4095 4092

Base Address (BA)

BA + 0x02ADC_CDR66

ADC_CDR55

ADC_CDR88 BA + 0x04

ADC_CDR66

ADC_CDR55

ADC_CDR88

BA + 0x06

BA + 0x08

BA + 0x0A

ADC_CDR66

ADC_CDR55

ADC_CDR88

BA + [(N-1) * 6]

BA + [(N-1) * 6]+ 0x02

BA + [(N-1) * 6]+ 0x04

Assuming ADC_CHSR = 0x000_01600
ADC_EMR(TAG) = 1

trig.event1

ADC_CDR60

ADC_CDR50

ADC_CDR80

ADC_CDR60

ADC_CDR50

ADC_CDR80

ADC_CDR60

ADC_CDR50

ADC_CDR80

Assuming ADC_CHSR = 0x000_01600
ADC_EMR(TAG) = 0

DMA Buffer
Structure

DMA Buffer
Structure

trig.event2

trig.event1

trig.event2

trig.eventNtrig.eventN

DMA Transfer

 833SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

40.6.13 Register Write Protection

To prevent any single software error from corrupting ADC behavior, certain registers in the address space can be
write-protected by setting the WPEN bit in the “ADC Write Protection Mode Register” (ADC_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the “ADC Write Protection Status Register”
(ADC_WPSR) is set and the field WPVSRC indicates the register in which the write access has been attempted.

The WPVS bit is automatically cleared after reading the ADC_WPSR.

The following registers can be write-protected:
 “ADC Mode Register”
 “ADC Channel Sequence 1 Register”
 “ADC Channel Enable Register”
 “ADC Channel Disable Register”
 “ADC Temperature Sensor Mode Register”
 “ADC Temperature Compare Window Register”
 “ADC Extended Mode Register”
 “ADC Compare Window Register”
 “ADC Analog Control Register”

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 834

40.7 Analog-to-Digital Converter (ADC) User Interface

Note: If an offset is not listed in the table it must be considered as “reserved”.

Table 40-5. Register Mapping

Offset Register Name Access Reset

0x00 Control Register ADC_CR Write-only –

0x04 Mode Register ADC_MR Read/Write 0x00000000

0x08 Channel Sequence 1 Register ADC_SEQR1 Read/Write 0x00000000

0x0C Reserved – – –

0x10 Channel Enable Register ADC_CHER Write-only –

0x14 Channel Disable Register ADC_CHDR Write-only –

0x18 Channel Status Register ADC_CHSR Read-only 0x00000000

0x1C Reserved – – –

0x20 Last Converted Data Register ADC_LCDR Read-only 0x00000000

0x24 Interrupt Enable Register ADC_IER Write-only –

0x28 Interrupt Disable Register ADC_IDR Write-only –

0x2C Interrupt Mask Register ADC_IMR Read-only 0x00000000

0x30 Interrupt Status Register ADC_ISR Read-only 0x00000000

0x34 Temperature Sensor Mode Register ADC_TEMPMR Read/Write 0x00000000

0x38 Temperature Compare Window Register ADC_TEMPCWR Read/Write 0x00000000

0x3C Overrun Status Register ADC_OVER Read-only 0x00000000

0x40 Extended Mode Register ADC_EMR Read/Write 0x00000000

0x44 Compare Window Register ADC_CWR Read/Write 0x00000000

0x50 Channel Data Register 0 ADC_CDR0 Read-only 0x00000000

0x54 Channel Data Register 1 ADC_CDR1 Read-only 0x00000000

...

0x6C Channel Data Register 7 ADC_CDR7 Read-only 0x00000000

0x70 - 0x90 Reserved – – –

0x94 Analog Control Register ADC_ACR Read/Write 0x00000000

0x98 - 0xE0 Reserved – – –

0xE4 Write Protection Mode Register ADC_WPMR Read/Write 0x00000000

0xE8 Write Protection Status Register ADC_WPSR Read-only 0x00000000

0xEC - 0xF8 Reserved – – –

 0xFC Reserved – – –

0x100 - 0x124 Reserved for PDC registers – – –

 835SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

40.7.1 ADC Control Register

Name: ADC_CR

Address: 0x40038000

Access: Write-only

• SWRST: Software Reset
0 = No effect.

1 = Resets the ADC simulating a hardware reset.

• START: Start Conversion
0 = No effect.

1 = Begins analog-to-digital conversion.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – START SWRST

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 836

40.7.2 ADC Mode Register

Name: ADC_MR

Address: 0x40038004

Access: Read/Write

This register can only be written if the WPEN bit is cleared in “ADC Write Protection Mode Register” .

• TRGEN: Trigger Enable

• TRGSEL: Trigger Selection

• LOWRES: Resolution

31 30 29 28 27 26 25 24
USEQ – – – TRACKTIM

23 22 21 20 19 18 17 16
– – – – STARTUP

15 14 13 12 11 10 9 8
PRESCAL

7 6 5 4 3 2 1 0
FREERUN – SLEEP LOWRES TRGSEL TRGEN

Value Name Description

0 DIS Hardware triggers are disabled. Starting a conversion is only possible by software

1 EN Hardware trigger selected by TRGSEL field is enabled

Value Name Description

0 ADC_TRIG0 External trigger ADTRG

1 ADC_TRIG1 Timer Counter Channel 0 Output

2 ADC_TRIG2 Timer Counter Channel 1 Output

3 ADC_TRIG3 Timer Counter Channel 2 Output

4 ADC_TRIG4 Timer Counter Channel 3 Output

5 ADC_TRIG5 Timer Counter Channel 4 Output

6 ADC_TRIG6 Timer Counter Channel 5 Output

7 – Reserved

Value Name Description

0 BITS_10 10-bit resolution. For higher resolution by averaging, refer to Section 40.7.15 ”ADC
Extended Mode Register”

1 BITS_8 8-bit resolution

 837SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• SLEEP: Sleep Mode

• FREERUN: Free Run Mode

Note: FREERUN must be set to 0 when digital averaging is used (OSR differs from 0 in ADC_EMR register).

• PRESCAL: Prescaler Rate Selection
fADC Clock = fperipheral clock/ ((PRESCAL + 1) × 2)

• STARTUP: Start Up Time

• TRACKTIM: Tracking Time
Tracking Time = (TRACKTIM + 1) × ADC Clock periods

• USEQ: User Sequence Enable

Value Name Description

0 NORMAL Normal Mode: The ADC core and reference voltage circuitry are kept ON between
conversions

1 SLEEP Sleep Mode: The ADC core and reference voltage circuitry are OFF between conversions

Value Name Description
0 OFF Normal Mode

1 ON Free Run Mode: Never wait for any trigger

Value Name Description
0 SUT0 0 periods of ADC Clock

1 SUT8 8 periods of ADC Clock

2 SUT16 16 periods of ADC Clock

3 SUT24 24 periods of ADC Clock

4 SUT64 64 periods of ADC Clock

5 SUT80 80 periods of ADC Clock

6 SUT96 96 periods of ADC Clock

7 SUT112 112 periods of ADC Clock

8 SUT512 512 periods of ADC Clock

9 SUT576 576 periods of ADC Clock

10 SUT640 640 periods of ADC Clock

11 SUT704 704 periods of ADC Clock

12 SUT768 768 periods of ADC Clock

13 SUT832 832 periods of ADC Clock

14 SUT896 896 periods of ADC Clock

15 SUT960 960 periods of ADC Clock

Value Name Description

0 NUM_ORDER Normal Mode: The controller converts channels in a simple numeric order depending only
on the channel index

1 REG_ORDER User Sequence Mode: The sequence respects what is defined in ADC_SEQR1 and can
be used to convert the same channel several times

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 838

40.7.3 ADC Channel Sequence 1 Register

Name: ADC_SEQR1

Address: 0x40038008

Access: Read/Write

This register can only be written if the WPEN bit is cleared in “ADC Write Protection Mode Register” .

• USCHx: User Sequence Number x
The sequence number x (USCHx) can be programmed by the channel number CHy where y is the value written in this field.
The allowed range is 0 up to 7. So it is only possible to use the sequencer from CH0 to CH7.

This register activates only if ADC_MR(USEQ) field is set to 1.

Any USCHx field is taken into account only if ADC_CHSR(CHx) register field reads logical 1; else any value written in USCHx
does not add the corresponding channel in the conversion sequence.

Configuring the same value in different fields leads to multiple samples of the same channel during the conversion sequence.
This can be done consecutively, or not, depending on user needs.

31 30 29 28 27 26 25 24
USCH8 USCH7

23 22 21 20 19 18 17 16
USCH6 USCH5

15 14 13 12 11 10 9 8
USCH4 USCH3

7 6 5 4 3 2 1 0
USCH2 USCH1

 839SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

40.7.4 ADC Channel Enable Register

Name: ADC_CHER

Address: 0x40038010

Access: Write-only

This register can only be written if the WPEN bit is cleared in “ADC Write Protection Mode Register” .

• CHx: Channel x Enable
0 = No effect.

1 = Enables the corresponding channel.
Note: If USEQ = 1 in ADC_MR, CHx corresponds to the xth channel of the sequence described in ADC_SEQR1.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 840

40.7.5 ADC Channel Disable Register

Name: ADC_CHDR

Address: 0x40038014

Access: Write-only

This register can only be written if the WPEN bit is cleared in “ADC Write Protection Mode Register” .

• CHx: Channel x Disable
0 = No effect.

1 = Disables the corresponding channel.

Warning: If the corresponding channel is disabled during a conversion or if it is disabled and then re-enabled during a conver-
sion, the associated data and corresponding EOCx and GOVRE flags in ADC_ISR and OVREx flags in ADC_OVER are
unpredictable.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

 841SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

40.7.6 ADC Channel Status Register

Name: ADC_CHSR

Address: 0x40038018

Access: Read-only

• CHx: Channel x Status
0 = The corresponding channel is disabled.

1 = The corresponding channel is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 842

40.7.7 ADC Last Converted Data Register

Name: ADC_LCDR

Address: 0x40038020

Access: Read-only

• LDATA: Last Data Converted
The analog-to-digital conversion data is placed into this register at the end of a conversion and remains until a new conversion
is completed.

• CHNB: Channel Number
Indicates the last converted channel when the TAG option is set to 1 in ADC_EMR. If the TAG option is not set, CHNB = 0.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
CHNB LDATA

7 6 5 4 3 2 1 0
LDATA

 843SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

40.7.8 ADC Interrupt Enable Register

Name: ADC_IER

Address: 0x40038024

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0 = No effect.

1 = Enables the corresponding interrupt.

• EOCx: End of Conversion Interrupt Enable x

• TEMPCHG: Temperature Change Interrupt Enable

• DRDY: Data Ready Interrupt Enable

• GOVRE: General Overrun Error Interrupt Enable

• COMPE: Comparison Event Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable

31 30 29 28 27 26 25 24
– – – RXBUFF ENDRX COMPE GOVRE DRDY

23 22 21 20 19 18 17 16
– – – – TEMPCHG – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 844

40.7.9 ADC Interrupt Disable Register

Name: ADC_IDR

Address: 0x40038028

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0 = No effect.

1 = Disables the corresponding interrupt.

• EOCx: End of Conversion Interrupt Disable x

• TEMPCHG: Temperature Change Interrupt Disable

• DRDY: Data Ready Interrupt Disable

• GOVRE: General Overrun Error Interrupt Disable

• COMPE: Comparison Event Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable

31 30 29 28 27 26 25 24
– – – RXBUFF ENDRX COMPE GOVRE DRDY

23 22 21 20 19 18 17 16
– – – – TEMPCHG – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0

 845SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

40.7.10 ADC Interrupt Mask Register

Name: ADC_IMR

Address: 0x4003802C

Access: Read-only

The following configuration values are valid for all listed bit names of this register:

0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

• EOCx: End of Conversion Interrupt Mask x

• TEMPCHG: Temperature Change Interrupt Mask

• DRDY: Data Ready Interrupt Mask

• GOVRE: General Overrun Error Interrupt Mask

• COMPE: Comparison Event Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

31 30 29 28 27 26 25 24
– – – RXBUFF ENDRX COMPE GOVRE DRDY

23 22 21 20 19 18 17 16
– – – – TEMPCHG – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 846

40.7.11 ADC Interrupt Status Register

Name: ADC_ISR

Address: 0x40038030

Access: Read-only

• EOCx: End of Conversion x (automatically set / cleared)
0 = The corresponding analog channel is disabled, or the conversion is not finished. This flag is cleared when reading the
corresponding ADC_CDRx registers.

1 = The corresponding analog channel is enabled and conversion is complete.

• TEMPCHG: Temperature Change (cleared on read)
0 = There is no comparison match (defined in ADC_TEMPCWR) since the last read of ADC_ISR.

1 = The temperature value reported on ADC_CDR7 has changed since the last read of ADC_ISR, according to what is defined
in ADC_TEMPMR and ADC_TEMPCWR.

• DRDY: Data Ready (automatically set / cleared)
0 = No data has been converted since the last read of ADC_LCDR.

1 = At least one data has been converted and is available in ADC_LCDR.

• GOVRE: General Overrun Error (cleared on read)
0 = No general overrun error occurred since the last read of ADC_ISR.

1 = At least one general overrun error has occurred since the last read of ADC_ISR.

• COMPE: Comparison Event (cleared on read)
0 = No comparison event since the last read of ADC_ISR.

1 = At least one comparison event (defined in ADC_EMR and ADC_CWR) has occurred since the last read of ADC_ISR.

• ENDRX: End of Receive Transfer (automatically set / cleared)
0 = The Receive Counter Register has not reached 0 since the last write in ADC_RCR(1) or ADC_RNCR(1).

1 = The Receive Counter Register has reached 0 since the last write in ADC_RCR(1) or ADC_RNCR(1).

• RXBUFF: Receive Buffer Full (automatically set / cleared)
0 = ADC_RCR(1) or ADC_RNCR(1) has a value other than 0.

1 = Both ADC_RCR(1) and ADC_RNCR(1) have a value of 0.

Notes: 1. ADC_RCR and ADC_RNCR are PDC registers.

31 30 29 28 27 26 25 24
– – – RXBUFF ENDRX COMPE GOVRE DRDY

23 22 21 20 19 18 17 16
– – – – TEMPCHG – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0

 847SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

40.7.12 ADC Temperature Sensor Mode Register

Name: ADC_TEMPMR

Address: 0x40038034

Access: Read/Write

This register can only be written if the WPEN bit is cleared in “ADC Write Protection Mode Register” .

• TEMPON: Temperature Sensor ON
0 = The temperature sensor is not enabled.

1 = The temperature sensor is enabled and the measurements are triggered.

• TEMPCMPMOD: Temperature Comparison Mode

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – TEMPCMPMOD – – – TEMPON

Value Name Description

0 LOW Generates an event when the converted data is lower than the low threshold of the window

1 HIGH Generates an event when the converted data is higher than the high threshold of the window

2 IN Generates an event when the converted data is in the comparison window

3 OUT Generates an event when the converted data is out of the comparison window

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 848

40.7.13 ADC Temperature Compare Window Register

Name: ADC_TEMPCWR

Address: 0x40038038

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “ADC Write Protection Mode Register” .

• TLOWTHRES: Temperature Low Threshold
Low threshold associated to compare settings of ADC_TEMPMR.

• THIGHTHRES: Temperature High Threshold
High threshold associated to compare settings of ADC_TEMPMR.

31 30 29 28 27 26 25 24
– – – – THIGHTHRES

23 22 21 20 19 18 17 16
THIGHTHRES

15 14 13 12 11 10 9 8
– – – – TLOWTHRES

7 6 5 4 3 2 1 0
TLOWTHRES

 849SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

40.7.14 ADC Overrun Status Register

Name: ADC_OVER

Address: 0x4003803C

Access: Read-only

• OVREx: Overrun Error x
0 = No overrun error on the corresponding channel since the last read of ADC_OVER.

1 = There has been an overrun error on the corresponding channel since the last read of ADC_OVER.
Note: An overrun error does not always mean that the unread data has been replaced by a new valid data. Refer to Section

40.6.11 ”Enhanced Resolution Mode and Digital Averaging Function” for details.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
OVRE7 OVRE6 OVRE5 OVRE4 OVRE3 OVRE2 OVRE1 OVRE0

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 850

40.7.15 ADC Extended Mode Register

Name: ADC_EMR

Address: 0x40038040

Access: Read/Write

This register can only be written if the WPEN bit is cleared in “ADC Write Protection Mode Register” .

• CMPMODE: Comparison Mode

• CMPSEL: Comparison Selected Channel
If CMPALL = 0: CMPSEL indicates which channel has to be compared.

If CMPALL = 1: No effect.

• CMPALL: Compare All Channels
0 = Only the channel indicated in CMPSEL field is compared.

1 = All channels are compared.

• CMPFILTER: Compare Event Filtering
Number of consecutive compare events necessary to raise the flag = CMPFILTER + 1.

When programmed to 0, the flag rises as soon as an event occurs.

• OSR: Over Sampling Rate

This field is active if LOWRES is cleared in ADC_MR.
Note: FREERUN (see ADC_MR) must be set to 0 when digital averaging is used.

31 30 29 28 27 26 25 24
– – – – – – – TAG

23 22 21 20 19 18 17 16
– – – ASTE – – OSR

15 14 13 12 11 10 9 8
– – CMPFILTER – – CMPALL –

7 6 5 4 3 2 1 0
CMPSEL – – CMPMODE

Value Name Description
0 LOW Generates an event when the converted data is lower than the low threshold of the window

1 HIGH Generates an event when the converted data is higher than the high threshold of the window

2 IN Generates an event when the converted data is in the comparison window

3 OUT Generates an event when the converted data is out of the comparison window

Value Name Description
0 NO_AVERAGE No averaging. ADC sample rate is maximum

1 OSR4 1-bit enhanced resolution by averaging. ADC sample rate divided by 4

2 OSR16 2-bit enhanced resolution by averaging. ADC sample rate divided by 16

 851SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• ASTE: Averaging on Single Trigger Event

• TAG: TAG of the ADC_LDCR register
0 = Sets CHNB to zero in ADC_LDCR.

1 = Appends the channel number to the conversion result in ADC_LDCR.

Value Name Description

0 MULTI_TRIG_AVERAGE The average requests several trigger events

1 SINGLE_TRIG_AVERAGE The average requests only one trigger event

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 852

40.7.16 ADC Compare Window Register

Name: ADC_CWR

Address: 0x40038044

Access: Read/Write

This register can only be written if the WPEN bit is cleared in “ADC Write Protection Mode Register” .

• LOWTHRES: Low Threshold
Low threshold associated to compare settings of ADC_EMR.

If LOWRES is set in ADC_MR, only the 10 LSB of LOWTHRES must be programmed. The 2 LSBs are automatically discarded
to match the value carried on ADC_CDR (8-bit).

• HIGHTHRES: High Threshold
High threshold associated to compare settings of ADC_EMR.

If LOWRES is set in ADC_MR, only the 10 LSB of HIGHTHRES must be programmed. The 2 LSBs are automatically dis-
carded to match the value carried on ADC_CDR (8-bit).

31 30 29 28 27 26 25 24
– – – – HIGHTHRES

23 22 21 20 19 18 17 16
HIGHTHRES

15 14 13 12 11 10 9 8
– – – – LOWTHRES

7 6 5 4 3 2 1 0
LOWTHRES

 853SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

40.7.17 ADC Channel Data Register

Name: ADC_CDRx [x=0..7]

Address: 0x40038050, 0x40038054, 0x40038058, 0x4003805C, 0x40038060, 0x40038064, 0x40038068, 0x4003806C

Access: Read-only

• DATA: Converted Data
The analog-to-digital conversion data is placed into this register at the end of a conversion and remains until a new conversion
is completed. ADC_CDRx is only loaded if the corresponding analog channel is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – DATA

7 6 5 4 3 2 1 0
DATA

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 854

40.7.18 ADC Analog Control Register

Name: ADC_ACR

Address: 0x40038094

Access: Read/Write

This register can only be written if the WPEN bit is cleared in “ADC Write Protection Mode Register” .

• IRVCE: Internal Reference Voltage Change Enable
0 (STUCK_AT_DEFAULT) = The internal reference voltage is stuck at the default value (see the Electrical Characteristics for
further details).

1 (SELECTION) = The internal reference voltage is defined by field IRVS.

• IRVS: Internal Reference Voltage Selection
See the “Programmable Voltage Reference Selection Values” table in the Electrical Characteristics for further details.

• FORCEREF: Force Internal Reference Voltage
0 = The internal ADC voltage reference input is connected to the ADVREF line.

1 = The internal ADC voltage reference input is forced to VDDIO (ONREF must be cleared).

• ONREF: Internal Voltage Reference ON
0 = The programmable voltage reference is OFF. The user can either force the internal ADC voltage reference input on the
ADVREF pin or set the FORCEREF bit to connect VDDIO to the internal ADC voltage reference input.

1 = The programmable voltage reference is ON and its output is connected both to the ADC voltage reference input and to the
external ADVREF pin for decoupling (FORCEREF must be cleared).

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – ONREF FORCEREF – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– IRVS IRVCE – –

 855SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

40.7.19 ADC Write Protection Mode Register

Name: ADC_WPMR

Address: 0x400380E4

Access: Read/Write

• WPEN: Write Protect Enable
0 = Disables the write protection if WPKEY corresponds to 0x414443 (“ADC” in ASCII).

1 = Enables the write protection if WPKEY corresponds to 0x414443 (“ADC” in ASCII).

See Section 40.6.13 ”Register Write Protection” for the list of registers that can be protected.

• WPKEY: Write Protect Key

31 30 29 28 27 26 25 24
WPKEY

23 22 21 20 19 18 17 16
WPKEY

15 14 13 12 11 10 9 8
WPKEY

7 6 5 4 3 2 1 0
– – – – – – – WPEN

Value Name Description

0x414443 PASSWD Writing any other value in this field aborts the write operation of the WPEN bit. Always reads as 0.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 856

40.7.20 ADC Write Protection Status Register

Name: ADC_WPSR

Address: 0x400380E8

Access: Read-only

• WPVS: Write Protection Violation Status
0 = No write protection violation has occurred since the last read of the ADC_WPSR register.

1 = A write protection violation has occurred since the last read of the ADC_WPSR register. If this violation is an unauthorized
attempt to write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protection Violation Source
When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
WPVSRC

15 14 13 12 11 10 9 8
WPVSRC

7 6 5 4 3 2 1 0
– – – – – – – WPVS

 857SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

41. Advanced Encryption Standard (AES)

41.1 Description
The Advanced Encryption Standard (AES) is compliant with the American FIPS (Federal Information Processing
Standard) Publication 197 specification.

The AES supports all five confidentiality modes of operation for symmetrical key block cipher algorithms (ECB, CBC,
OFB, CFB and CTR), as specified in the NIST Special Publication 800-38A Recommendation, as well as
Galois/Counter Mode (GCM) as specified in the NIST Special Publication 800-38D Recommendation. It is compatible
with all these modes via Peripheral DMA Controller channels, minimizing processor intervention for large buffer
transfers.

The 128-bit/192-bit/256-bit key is stored in four/six/eight 32-bit write-only AES Key Word Registers
(AES_KEYWR0-7).

The 128-bit input data and initialization vector (for some modes) are each stored in four 32-bit write-only AES Input
Data Registers (AES_IDATAR0-3) and AES Initialization Vector Registers (AES_IVR0-3).

As soon as the initialization vector, the input data and the key are configured, the encryption/decryption process may
be started. Then the encrypted/decrypted data are ready to be read out on the four 32-bit AES Output Data Registers
(AES_ODATAR0-3) or through the PDC channels.

41.2 Embedded Characteristics
 Compliant with FIPS Publication 197, Advanced Encryption Standard (AES).
 128-bit/192-bit/256-bit Cryptographic Key.
 10/12/14 Clock Cycles Encryption/Decryption Inherent Processing Time with a 128-bit/192-bit/256-bit

Cryptographic Key.
 Double Input Buffer Optimizes Runtime.
 Support of the Modes of Operation Specified in the NIST Special Publication 800-38A and NIST Special

Publication 800-38D:
 Electronic Codebook (ECB).
 Cipher Block Chaining (CBC) including CBC-MAC.
 Cipher Feedback (CFB).
 Output Feedback (OFB).
 Counter (CTR).
 Galois/Counter Mode (GCM).

 8, 16, 32, 64 and 128-bit Data Sizes Possible in CFB Mode.
 Last Output Data Mode Allows Optimized Message Authentication Code (MAC) Generation.
 Connection to PDC Channel Capabilities Optimizes Data Transfers for all Operating Modes.

 One Channel for the Receiver, One Channel for the Transmitter.
 Next Buffer Support.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 858

41.3 Product Dependencies

41.3.1 Power Management

The AES may be clocked through the Power Management Controller (PMC), so the programmer must first to
configure the PMC to enable the AES clock.

41.3.2 Interrupt Sources

The AES interface has an interrupt line connected to the Interrupt Controller.

Handling the AES interrupt requires programming the Interrupt Controller before configuring the AES.

41.4 Functional Description
The Advanced Encryption Standard (AES) specifies a FIPS-approved cryptographic algorithm that can be used to
protect electronic data. The AES algorithm is a symmetric block cipher that can encrypt (encipher) and decrypt
(decipher) information.

Encryption converts data to an unintelligible form called ciphertext. Decrypting the ciphertext converts the data back
into its original form, called plaintext. The CIPHER bit in the AES Mode Register (AES_MR) allows selection between
the encryption and the decryption processes.

The AES is capable of using cryptographic keys of 128/192/256 bits to encrypt and decrypt data in blocks of 128 bits.
This 128-bit/192-bit/256-bit key is defined in Key Registers (AES_KEYWRx).

The input to the encryption processes of the CBC, CFB, and OFB modes includes, in addition to the plaintext, a 128-
bit data block called the initialization vector (IV), which must be set in AES_IVRx. The initialization vector is used in an
initial step in the encryption of a message and in the corresponding decryption of the message. AES_IVRx are also
used by the CTR mode to set the counter value.

41.4.1 AES Register Endianness

In ARM processor-based products, the system bus and processors manipulate data in little-endian form. The AES
interface requires little-endian format words. However, in accordance with the protocol of the FIPS 197 specification,
data is collected, processed and stored by the AES algorithm in big-endian form.

The following example illustrates how to configure the AES:

If the first 64 bits of a message (according to FIPS 197, i.e., big-endian format) to be processed is
0xcafedeca_01234567, then AES_IDATAR0 and AES_IDATAR1 registers must be written with the following pattern:
 AES_IDATAR0 = 0xcadefeca
 AES_IDATAR1 = 0x67452301

41.4.2 Operating Modes

The AES supports the following modes of operation:
 ECB: Electronic Codebook.
 CBC: Cipher Block Chaining.
 OFB: Output Feedback.
 CFB: Cipher Feedback.

 CFB8 (CFB where the length of the data segment is 8 bits).
 CFB16 (CFB where the length of the data segment is 16 bits).

Table 41-1. Peripheral IDs

Instance ID

AES 36

 859SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 CFB32 (CFB where the length of the data segment is 32 bits).
 CFB64 (CFB where the length of the data segment is 64 bits).
 CFB128 (CFB where the length of the data segment is 128 bits).

 CTR: Counter.
 GCM: Galois/Counter Mode.

The data preprocessing, data postprocessing and data chaining for the concerned modes are performed
automatically. Refer to the NIST Special Publication 800-38A and NIST Special Publication 800-38D for more
complete information.

Mode selection is done by configuring the OPMOD field in AES_MR.

In CFB mode, five data sizes are possible (8, 16, 32, 64 or 128 bits), configurable by means of the CFBS field in
AES_MR (Section 41.5.2 ”AES Mode Register”).

In CTR mode, the size of the block counter embedded in the module is 16 bits. Therefore, there is a rollover after
processing 1 Mbyte of data. If the file to be processed is greater than 1 Mbyte, this file must be split into fragments of
1 Mbyte or less for the first fragment if the initial value of the counter is greater than 0. Prior to loading the first
fragment into AES_IDATARx, AES_IVRx must be fully programmed with the initial counter value. For any fragment,
after the transfer is completed and prior to transferring the next fragment, AES_IVRx must be programmed with the
appropriate counter value.

If the initial value of the counter is greater than 0 and the data buffer size to be processed is greater than 1 Mbyte, the
size of the first fragment to be processed must be 1 Mbyte minus 16 x (initial value) to prevent a rollover of the internal
1-bit counter.

To have a sequential increment, the counter value must be programmed with the value programmed for the previous
fragment + 216 (or less for the first fragment).

All AES_IVRx fields must be programmed to take into account the possible carry propagation.

41.4.3 Double Input Buffer

AES_IDATARx can be double-buffered to reduce the runtime of large files.

This mode allows a new message block when the previous message block is being processed. This is only possible
when DMA accesses are performed (SMOD = 2).

The DUALBUFF bit in AES_MR must be set to ‘1’ to access the double buffer.

41.4.4 Start Modes

The SMOD field in AES_MR allows selection of the encryption (or decryption) Start mode.

41.4.4.1 Manual Mode
The sequence of actions is as follows:

1. Write AES_MR with all required fields, including but not limited to SMOD and OPMOD.
2. Write the 128-bit/192-bit/256-bit key in AES_KEYWRx.
3. Write the initialization vector (or counter) in AES_IVRx.

Note: AES_IVRx concerns all modes except ECB.
4. Set the bit DATRDY (Data Ready) in the AES Interrupt Enable Register (AES_IER), depending on whether an

interrupt is required or not at the end of processing.
5. Write the data to be encrypted/decrypted in the authorized AES_IDATARx (refer to Table 41-2).
6. Set the START bit in the AES Control Register (AES_CR) to begin the encryption or the decryption process.
7. When processing completes, the DATRDY flag in the AES Interrupt Status Register (AES_ISR) is raised. If an

interrupt has been enabled by setting the DATRDY bit in AES_IER, the interrupt line of the AES is activated.
8. When software reads one of AES_ODATARx, the DATRDY bit is automatically cleared.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 860

Notes: 1. In 64-bit CFB mode, writing to AES_IDATAR2 and AES_IDATAR3 is not allowed and may lead to errors
in processing.

2. In 32-, 16- and 8-bit CFB modes, writing to AES_IDATAR1, AES_IDATAR2 and AES_IDATAR3 is not
allowed and may lead to errors in processing.

41.4.4.2 Auto Mode
The Auto Mode is similar to the manual one, except that in this mode, as soon as the correct number of
AES_IDATARx is written, processing is automatically started without any action in AES_CR.

41.4.4.3 PDC Mode
The Peripheral DMA Controller (PDC) can be used in association with the AES to perform an encryption/decryption of
a buffer without any action by software during processing.

The field SMOD in AES_MR must be configured to 2.

The sequence order is as follows:
1. Write AES_MR with all required fields, including but not limited to SMOD and OPMOD.
2. Write the key in AES_KEYWRx.
3. Write the initialization vector (or counter) in AES_IVRx.

Note: AES_IVRx concerns all modes except ECB.
4. Set the Transmit Pointer Register (AES_TPR) to the address where the data buffer to encrypt/decrypt is stored

and the Receive Pointer Register (AES_RPR) where it must be encrypted/decrypted.
Note: Transmit and receive buffers can be identical.

5. Set the Transmit and the Receive Counter Registers (AES_TCR and AES_RCR) to the same value. This value
must be a multiple of the data transfer type size (refer to Table 41-3 "Data Transfer Type for the Different
Operating Modes").

Note: The same requirements are necessary for the Next Pointer(s) and Counter(s) of the PDC (AES_TNPR,
AES_RNPR, AES_TNCR, AES_RNCR).

6. If not already done, set the bit ENDRX (or RXBUFF if the next pointers and counters are used) in AES_IER,
depending on whether an interrupt is required or not at the end of processing.

7. Enable the PDC in transmission and reception to start the processing (AES_PTCR).

When the processing completes, the ENDRX (or RXBUFF) flag in AES_ISR is raised. If an interrupt has been enabled
by setting the corresponding bit in AES_IER, the interrupt line of the AES is activated.

Table 41-2. Authorized Input Data Registers

Operating Mode Input Data Registers to Write

ECB All

CBC All

OFB All

128-bit CFB All

 64-bit CFB(1) AES_IDATAR0 and AES_IDATAR1

 32-bit CFB(2) AES_IDATAR0

 16-bit CFB(2) AES_IDATAR0

 8-bit CFB(2) AES_IDATAR0

CTR All

GCM All

 861SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

When PDC is used, the data size to transfer (byte, half-word or word) depends on the AES mode of operations. This
size is automatically configured by the AES.

41.4.5 Last Output Data Mode

This mode is used to generate cryptographic checksums on data (MAC) by means of cipher block chaining encryption
algorithm (CBC-MAC algorithm for example).

After each end of encryption/decryption, the output data are available either on the AES_ODATARx for Manual and
Auto mode, or at the address specified in the receive buffer pointer for PDC mode (refer to Table 41-4 "Last Output
Data Mode Behavior versus Start Modes").

The Last Output Data (LOD) bit in AES_MR allows retrieval of only the last data of several encryption/decryption
processes.

Therefore, there is no need to define a read buffer in PDC mode.

This data are only available in AES_ODATARx.

41.4.5.1 Manual and Auto Modes
If AES_MR.LOD = 0
The DATRDY flag is cleared when at least one AES_ODATARx is read (refer to Figure 41-1).

Figure 41-1. Manual and Auto Modes with AES_MR.LOD = 0

If the user does not want to read AES_ODATARx between each encryption/decryption, the DATRDY flag will not be
cleared. If the DATRDY flag is not cleared, the user cannot know the end of the following encryptions/decryptions.

Table 41-3. Data Transfer Type for the Different Operating Modes

Operating Mode Data Transfer Type

ECB Word

CBC Word

OFB Word

CFB 128-bit Word

CFB 64-bit Word

CFB 32-bit Word

CFB 16-bit Half-word

CFB 8-bit Byte

CTR Word

GCM Word

Encryption or Decryption Process

Read the AES_ODATARx

Write START bit in AES_CR (Manual mode)

DATRDY

Write AES_IDATARx register(s) (Auto mode)
or

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 862

If AES_MR.LOD = 1
This mode is optimized to process AES CPC-MAC operating mode.

The DATRDY flag is cleared when at least one AES_IDATAR is written (refer to Figure 41-2). No additional
AES_ODATAR reads are necessary between consecutive encryptions/decryptions.

Figure 41-2. Manual and Auto Modes with AES_MR.LOD = 1

41.4.5.2 PDC Mode
If AES_MR.LOD = 0
This mode may be used for all AES operating modes except CBC-MAC where AES_MR.LOD = 1 mode is
recommended.

The end of the encryption/decryption is indicated when the ENDRX (or RXBUFF) flag is raised (refer to Figure 41-3).

Figure 41-3. PDC Transfer with AES_MR.LOD = 0

If AES_MR.LOD = 1
This mode is optimized to process AES CBC-MAC operating mode.

The user must first wait for the ENDTX (or TXBUFE) flag to be raised, then for DATRDY to ensure that the
encryption/decryption is completed (refer to Figure 41-4).

In this case, no receive buffers are required.

The output data are only available in AES_ODATARx.

Write AES_IDATARx register(s)

Write START bit in AES_CR (Manual mode)

Write AES_IDATARx register(s) (Auto mode)
or

Encryption or Decryption Process

DATRDY

Enable PDC Channels (Receive and Transmit Channels)

Multiple Encryption or Decryption Processes

ENDRX (or RXBUFF)

ENDTX (or TXBUFEL)

Message fully processed
(cipher or decipher) last
block can be read

Write accesses into AES_IDATARx

Read accesses into AES_ODATARx

 863SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 41-4. PDC Transfer with AES_MR.LOD = 1

Table 41-4 summarizes the different cases.

Notes: 1. Depending on the mode, there are other ways of clearing the DATRDY flag. Refer to Section 41.5.6 ”AES
Interrupt Status Register”.

Warning: In PDC mode, reading the AES_ODATARx before the last data transfer may lead to unpredictable results.

41.4.6 Galois/Counter Mode (GCM)

41.4.6.1 Description
GCM comprises the AES engine in CTR mode along with a universal hash function (GHASH engine) that is defined
over a binary Galois field to produce a message authentication tag (the AES CTR engine and the GHASH engine are
depicted in Figure 41-5).

The GHASH engine processes data packets after the AES operation. GCM assures of the confidentiality of data
through the AES Counter mode of operation for encryption. Authenticity of the confidential data is assured through the
GHASH engine. GCM can also provide assurance of data that is not encrypted. Refer to the NIST Special Publication
800-38D for more complete information.

GCM can be used with or without the PDC master. Messages may be processed as a single complete packet of data
or they may be broken into multiple packets of data over time.

GCM processing is computed on 128-bit input data fields. There is no support for unaligned data. The AES key length
can be whatever length is supported by the AES module.

The recommended programming procedure when using PDC is described in Section 41.4.6.3.

Table 41-4. Last Output Data Mode Behavior versus Start Modes

Sequence
Manual and Auto Modes PDC Mode

AES_MR.LOD = 0 AES_MR.LOD = 1 AES_MR.LOD = 0 AES_MR.LOD = 1

DATRDY Flag
Clearing Condition(1)

At least one
AES_ODATAR must

be read

At least one
AES_IDATAR must

be written
Not used Managed by the PDC

End of
Encryption/Decryption

Notification
DATRDY DATRDY ENDRX (or RXBUFF) ENDTX (or TXBUFE)

then DATRDY

Encrypted/Decrypted
Data Result Location In AES_ODATARx In AES_ODATARx

At the address
specified in
AES_RPR

In AES_ODATARx

DATRDY

Enable PDC Channels (Receive and Transmit Channels)

Multiple Encryption or Decryption Processes

ENDTX (or TXBUFE)

Message fully processed
(cipher or decipher)
MAC result can be read

Write accesses into AES_IDATARx

Message fully transferred

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 864

Figure 41-5. GCM Block Diagram

41.4.6.2 Key Writing and Automatic Hash Subkey Calculation
Whenever a new key (AES_KEYWRx) is written to the hardware, two automatic actions are processed:
 GCM Hash Subkey H generation—The GCM hash subkey (H) is automatically generated. The GCM hash

subkey generation must be complete before doing any other action. The DATRDY bit of AES_ISR indicates
when the subkey generation is complete (with interrupt if configured). The GCM hash subkey calculation is
processed with the formula H = CIPHER (Key, <128 bits to zero>). The generated GCM H value is then
available in AES_GCMHRx. If the application software requires a specific hash subkey, the automatically
generated H value can be overwritten in AES_GCMHRx.
AES_GCMHRx can be written after the end of the hash subkey generation (refer to AES_ISR.DATRDY) and
prior to starting the input data feed.

 AES_GHASHRx Clear—AES_GHASHRx are automatically cleared. If a hash initial value is needed for the
GHASH, it must be written to AES_GHASHRx:
 After a write to AES_KEYWRx, if any
 Before starting the input data feed

GHASH Engine

AES CTR Engine

Counter 1Counter 0 Counter NIncr32 Incr32

Plaintext 1

Auth Tag(T)

len(AAD) || len(C)

Plaintext N

Ciphertext 1 Ciphertext N

GF128Mult(H)

GF128Mult(H) GF128Mult(H)

GF128Mult(H)

Cipher(Key)Cipher(Key) Cipher(Key)

(AES_AADLENR, AES_CLENR)

(AES_TAGRx)

(AES_GHASHRx)

(AES_IVRx) (AES_CTRR)

(AES_IDATARx) (AES_IDATARx)

(AES_CTRR)

(AES_GHASHRx)
AAD 1

GF128Mult(H)

(AES_GCMHRx)(1)

AAD N

(AES_GHASHRx)

(AES_IDATARx) (AES_IDATARx)

(AES_KEYWRx)

Notes: 1. Optional

 865SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

41.4.6.3 GCM Processing
GCM processing is made up of three phases:

1. Processing the Additional Authenticated Data (AAD), hash computation only.
2. Processing the Ciphertext (C), hash computation + ciphering/deciphering.
3. Generating the Tag using length of AAD, length of C and J0 (refer to NIST documentation for details).

The Tag generation can be done either automatically, after the end of AAD/C processing if GTAGEN bit is set in
AES_MR or done manually using the GHASH field in AES_GHASHRx (Refer to Section 41.4.6.3.1 and Section
41.4.6.3.4 for details).

41.4.6.3.1 Processing a Complete Message with Tag Generation

Use this procedure only if J0 four LSB bytes ≠ 0xFFFFFFFF.
Note: If J0 four LSB bytes = 0xFFFFFFFF or if the value is unknown, use the procedure described in “Processing a

Complete Message without Tag Generation” followed by the procedure in “Manual GCM Tag Generation” .

Figure 41-6. Full Message Alignment

To process a complete message with Tag generation, the sequence is as follows:

1. In AES_MR, set OPMOD to GCM and GTAGEN to ‘1’.
2. Set KEYW in AES_KEYWRx and wait until AES_ISR.DATRDY is set (GCM hash subkey generation complete);

use interrupt if needed. Refer to Section 41.4.6.2 ”Key Writing and Automatic Hash Subkey Calculation”.
3. Calculate the J0 value as described in NIST documentation J0 = IV || 031 || 1 when len(IV)=96 and

J0=GHASHH(IV || 0s+64 || [len(IV)]64) if len(IV) ≠ 96. Refer to Section 41.4.6.3.5 ”Processing a Message with only
AAD (GHASHH)” for J0 generation.

4. Set IV in AES_IVRx with inc32 (J0) (J0 + 1 on 32 bits).
5. Set AADLEN field in AES_AADLENR and CLEN field in AES_CLENR.
6. Fill the IDATA field of AES_IDATARx with the message to process according to the SMOD configuration used. If

Manual Mode or Auto Mode is used, the DATRDY bit indicates when the data have been processed (however,
no output data are generated when processing AAD).

7. Wait for TAGRDY to be set (use interrupt if needed), then read the TAG field of AES_TAGRx to obtain the
authentication tag of the message.

41.4.6.3.2 Processing a Complete Message without Tag Generation
Processing a message without generating the Tag can be used to customize the Tag generation, or to process a
fragmented message. To manually generate the GCM Tag, refer to Section 41.4.6.3.4.

To process a complete message without Tag generation, the sequence is as follows:

1. In AES_MR, set OPMOD to GCM and GTAGEN to ‘0’.
2. Set KEYW in AES_KEYWRx and wait until DATRDY bit of AES_ISR is set (GCM hash subkey generation com-

plete); use interrupt if needed. After the GCM hash subkey generation is complete the GCM hash subkey can
be read or overwritten with specific value in AES_GCMHRx. Refer to Section 41.4.6.2 ”Key Writing and Auto-
matic Hash Subkey Calculation”.

AAD C (Text)

16-Byte Boundaries

Padding Padding

AADLEN CLEN

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 866

3. Calculate the J0 value as described in NIST documentation J0 = IV || 031 || 1 when len(IV)=96 and
J0=GHASHH(IV || 0s+64 || [len(IV)]64) if len(IV) ≠ 96. Refer to Section 41.4.6.3.5 ”Processing a Message with only
AAD (GHASHH)” for J0 generation example when len(IV) ≠ 96.

4. Set IV in AES_IVRx with inc32 (J0) (J0 + 1 on 32 bits).
5. Set AADLEN field in AES_AADLENR and CLEN field in AES_CLENR.
6. Fill the IDATA field of AES_IDATARx with the message to process according to the SMOD configuration used. If

Manual Mode or Auto Mode is used, the DATRDY bit indicates when the data have been processed (however,
no output data are generated when processing AAD).

7. Make sure the last output data have been read if CLEN ≠ 0 (or wait for DATRDY), then read the GHASH field of
AES_GHASHRx to obtain the hash value after the last processed data.

41.4.6.3.3 Processing a Fragmented Message without Tag Generation
If needed, a message can be processed by fragments, in such case automatic GCM Tag generation is not supported.

To process a message by fragments, the sequence is as follows:

 First fragment:

1. In AES_MR, set OPMOD to GCM and GTAGEN to ‘0’.
2. Set KEYW in AES_KEYWRx and wait for DATRDY bit of AES_ISR to be set (GCM hash subkey generation

complete); use interrupt if needed. After the GCM hash subkey generation is complete the GCM hash subkey
can be read or overwritten with specific value in AES_GCMHRx. Refer to Section 41.4.6.2 ”Key Writing and
Automatic Hash Subkey Calculation”.

3. Calculate the J0 value as described in NIST documentation J0 = IV || 031 || 1 when len(IV)=96 and
J0=GHASHH(IV || 0s+64 || [len(IV)]64) if len(IV) ≠ 96. Refer to Section 41.4.6.3.5 ”Processing a Message with only
AAD (GHASHH)” for J0 generation example when len(IV) ≠ 96.

4. Set IV in AES_IVRx with inc32 (J0) (J0 + 1 on 32 bits).
5. Set AADLEN field in AES_AADLENR and CLEN field in AES_CLENR according to the length of the first frag-

ment, or set the fields with the full message length, both configurations work.
6. Fill the IDATA field of AES_IDATARx with the first fragment of the message to process (aligned on 16-byte

boundary) according to the SMOD configuration used. If Manual Mode or Auto Mode is used the DATRDY bit
indicates when the data have been processed (however, no output data are generated when processing AAD).

7. Make sure the last output data have been read if the fragment ends in C phase (or wait for DATRDY if the frag-
ment ends in AAD phase), then read the GHASH field of AES_GHASHRx to obtain the value of the hash after
the last processed data and finally read the CTR field of AES_CTR to obtain the value of the CTR encryption
counter (not needed when the fragment ends in AAD phase).

 Next fragment (or last fragment):

1. In AES_MR, set OPMOD to GCM and GTAGEN to ‘0’.
2. Set KEYW in AES_KEYWRx and wait until DATRDY bit of AES_ISR is set (GCM hash subkey generation com-

plete); use interrupt if needed. After the GCM hash subkey generation is complete the GCM hash subkey can
be read or overwritten with specific value in AES_GCMHRx. Refer to Section 41.4.6.2 ”Key Writing and Auto-
matic Hash Subkey Calculation”.

3. Set IV in AES_IVRx with:
 If the first block of the fragment is a block of Additional Authenticated data, set IV in AES_IVRx with the J0

initial value.
 If the first block of the fragment is a block of Plaintext data, set IV in AES_IVRx with a value constructed

as follows: ‘LSB96(J0) || CTR’ value, (96 bit LSB of J0 concatenated with saved CTR value from previous
fragment).

4. Set AADLEN field in AES_AADLENR and CLEN field in AES_CLENR according to the length of the current
fragment, or set the fields with the remaining message length, both configurations work.

5. Fill the GHASH field of AES_GHASHRx with the value stored after the previous fragment.

 867SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

6. Fill the IDATA field of AES_IDATARx with the current fragment of the message to process (aligned on 16 byte
boundary) according to the SMOD configuration used. If Manual Mode or Auto Mode is used, the DATRDY bit
indicates when the data have been processed (however, no output data are generated when processing AAD).

7. Make sure the last output data have been read if the fragment ends in C phase (or wait for DATRDY if the frag-
ment ends in AAD phase), then read the GHASH field of AES_GHASHRx to obtain the value of the hash after
the last processed data and finally read the CTR field of AES_CTR to obtain the value of the CTR encryption
counter (not needed when the fragment ends in AAD phase).

Note: Step 1 and 2 are required only if the value of the concerned registers has been modified.
Once the last fragment has been processed, the GHASH value will allow manual generation of the GCM tag. Refer to
Section 41.4.6.3.4.

41.4.6.3.4 Manual GCM Tag Generation

This section describes the last steps of the GCM Tag generation.

The Manual GCM Tag Generation is used to complete the GCM Tag Generation when the message has been
processed without Tag Generation.
Note: The Message Processing without Tag Generation must be finished before processing the Manual GCM Tag

Generation.
To generate a GCM Tag manually, the sequence is as follows:

Processing S = GHASHH (AAD || 0v || C || 0u || [len(AAD)]64 || [len(C)]64):

1. In AES_MR, set OPMOD to GCM and GTAGEN to ‘0’.
2. Set KEYW in AES_KEYWRx and wait for DATRDY bit of AES_ISR to be set (GCM hash subkey generation

complete); use interrupt if needed. After the GCM hash subkey generation is complete the GCM hash subkey
can be read or overwritten with specific value in AES_GCMHRx. Refer to Section 41.4.6.2 ”Key Writing and
Automatic Hash Subkey Calculation”.

3. Set AADLEN field to 0x10 (16 bytes) in AES_AADLENR and CLEN field to ‘0’ in AES_CLENR. This will allow
running a single GHASHH on a 16-byte input data (refer to Figure 41-7).

4. Fill the GHASH field of AES_GHASHRx with the state of the GHASH field stored at the end of the message
processing.

5. Fill the IDATA field of AES_IDATARx according to the SMOD configuration used with ‘len(AAD)64 || len(C)64’
value as described in the NIST documentation and wait for DATRDY to be set; use interrupt if needed.

6. Read the GHASH field of AES_GHASHRx to obtain the current value of the hash.

Processing T = GCTRK(J0, S):

7. In AES_MR, set OPMOD to CTR.
8. Set the IV field in AES_IVRx with ‘J0’ value.
9. Fill the IDATA field of AES_IDATARx with the GHASH value read at step 6 and wait for DATRDY to be set (use

interrupt if needed).
10. Read the ODATA field of AES_ODATARx to obtain the GCM Tag value.

Note: Step 4 is optional if the GHASH field is to be filled with value ‘0’ (0 length packet for instance).

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 868

41.4.6.3.5 Processing a Message with only AAD (GHASHH)

Figure 41-7. Single GHASHH Block Diagram (AADLEN  0x10 and CLEN = 0)

It is possible to process a message with only AAD setting the CLEN field to ‘0’ in AES_CLENR, this can be used for J0
generation when len(IV) ≠ 96 for instance.

Example: Processing J0 when len(IV) ≠ 96.

To process J0 = GHASHH(IV || 0s+64 || [len(IV)]64), the sequence is as follows:
1. In AES_MR, set OPMOD to GCM and GTAGEN to ‘0’.
2. Set KEYW in AES_KEYWRx and wait until DATRDY bit of AES_ISR is set (GCM hash subkey generation com-

plete); use interrupt if needed. After the GCM hash subkey generation is complete the GCM hash subkey can
be read or overwritten with specific value in AES_GCMHRx. Refer to Section 41.4.6.2 ”Key Writing and Auto-
matic Hash Subkey Calculation”.

3. Set AADLEN field with ‘len(IV || 0s+64 || [len(IV)]64)’ in AES_AADLENR and CLEN field to ‘0’ in AES_CLENR.
This will allow running a GHASHH only.

4. Fill the IDATA field of AES_IDATARx with the message to process (IV || 0s+64 || [len(IV)]64) according to the
SMOD configuration used. If Manual Mode or Auto Mode is used, the DATRDY bit indicates when a GHASHH
step is over (use interrupt if needed).

5. Read the GHASH field of AES_GHASHRx to obtain the J0 value.
Note: The GHASH value can be overwritten at any time by writing the GHASH field value of AES_GHASHRx, used

to perform a GHASHH with an initial value for GHASH (write GHASH field between step 3 and step 4 in this
case).

41.4.6.3.6 Processing a Single GF128 Multiplication
The AES can also be used to process a single multiplication in the Galois field on 128 bits (GF128) using a single
GHASHH with custom H value (refer to Figure 41-7).

To run a GF128 multiplication (A x B), the sequence is as follows:
1. In AES_MR, set OPMOD to GCM and GTAGEN to ‘0’.
2. Set AADLEN field with 0x10 (16 bytes) in AES_AADLENR and CLEN field to ‘0’ in AES_CLENR. This will allow

running a single GHASHH.
3. Fill the H field of AES_GCMHRx with B value.
4. Fill the IDATA field of AES_IDATARx with the A value according to the SMOD configuration used. If Manual

Mode or Auto Mode is used, the DATRDY bit indicates when a GHASHH computation is over (use interrupt if
needed).

5. Read the GHASH field of AES_GHASHRx to obtain the result.
Note: The GHASH field of AES_GHASHRx can be initialized with a value C between step 3 and step 4 to run a

((A XOR C) x B) GF128 multiplication.

IDATA

GHASH

GHASH

GF128Mult(H)

 869SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

41.4.7 Security Features

41.4.7.1 Unspecified Register Access Detection
When an unspecified register access occurs, the URAD flag in AES_ISR is raised. Its source is then reported in the
Unspecified Register Access Type (URAT) field. Only the last unspecified register access is available through the
URAT field.

Several kinds of unspecified register accesses can occur:
 Input Data Register written during the data processing when SMOD = IDATAR0_START.
 Output Data Register read during data processing.
 Mode Register written during data processing.
 Output Data Register read during sub-keys generation.
 Mode Register written during sub-keys generation.
 Write-only register read access.

The URAD bit and the URAT field can only be reset by the SWRST bit in AES_CR.

41.5 Advanced Encryption Standard (AES) User Interface

Table 41-5. Register Mapping

Offset Register Name Access Reset

0x00 Control Register AES_CR Write-only –
0x04 Mode Register AES_MR Read/Write 0x0

0x08 - 0x0C Reserved – – –
0x10 Interrupt Enable Register AES_IER Write-only –
0x14 Interrupt Disable Register AES_IDR Write-only –
0x18 Interrupt Mask Register AES_IMR Read-only 0x0

0x1C Interrupt Status Register AES_ISR Read-only 0x0000001E

0x20 Key Word Register 0 AES_KEYWR0 Write-only –
0x24 Key Word Register 1 AES_KEYWR1 Write-only –
0x28 Key Word Register 2 AES_KEYWR2 Write-only –
0x2C Key Word Register 3 AES_KEYWR3 Write-only –
0x30 Key Word Register 4 AES_KEYWR4 Write-only –
0x34 Key Word Register 5 AES_KEYWR5 Write-only –
0x38 Key Word Register 6 AES_KEYWR6 Write-only –
0x3C Key Word Register 7 AES_KEYWR7 Write-only –
0x40 Input Data Register 0 AES_IDATAR0 Write-only –
0x44 Input Data Register 1 AES_IDATAR1 Write-only –
0x48 Input Data Register 2 AES_IDATAR2 Write-only –
0x4C Input Data Register 3 AES_IDATAR3 Write-only –
0x50 Output Data Register 0 AES_ODATAR0 Read-only 0x0

0x54 Output Data Register 1 AES_ODATAR1 Read-only 0x0

0x58 Output Data Register 2 AES_ODATAR2 Read-only 0x0

0x5C Output Data Register 3 AES_ODATAR3 Read-only 0x0

0x60 Initialization Vector Register 0 AES_IVR0 Write-only –
0x64 Initialization Vector Register 1 AES_IVR1 Write-only –

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 870

0x68 Initialization Vector Register 2 AES_IVR2 Write-only –
0x6C Initialization Vector Register 3 AES_IVR3 Write-only –
0x70 Additional Authenticated Data Length Register AES_AADLENR Read/Write –
0x74 Plaintext/Ciphertext Length Register AES_CLENR Read/Write –
0x78 GCM Intermediate Hash Word Register 0 AES_GHASHR0 Read/Write –
0x7C GCM Intermediate Hash Word Register 1 AES_GHASHR1 Read/Write –
0x80 GCM Intermediate Hash Word Register 2 AES_GHASHR2 Read/Write –
0x84 GCM Intermediate Hash Word Register 3 AES_GHASHR3 Read/Write –
0x88 GCM Authentication Tag Word Register 0 AES_TAGR0 Read-only –
0x8C GCM Authentication Tag Word Register 1 AES_TAGR1 Read-only –
0x90 GCM Authentication Tag Word Register 2 AES_TAGR2 Read-only –
0x94 GCM Authentication Tag Word Register 3 AES_TAGR3 Read-only –
0x98 GCM Encryption Counter Value Register AES_CTRR Read-only –
0x9C GCM H Word Register 0 AES_GCMHR0 Read/Write –
0xA0 GCM H Word Register 1 AES_GCMHR1 Read/Write –
0xA4 GCM H Word Register 2 AES_GCMHR2 Read/Write –
0xA8 GCM H Word Register 3 AES_GCMHR3 Read/Write –
0xAC Reserved – – –

0xB0 - 0xFC Reserved – – –
0x100 - 0x124 Reserved for the PDC – – –

Table 41-5. Register Mapping (Continued)

Offset Register Name Access Reset

 871SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

41.5.1 AES Control Register

Name: AES_CR

Address: 0x40000000

Access: Write-only

• START: Start Processing
0: No effect.

1: Starts manual encryption/decryption process.

• SWRST: Software Reset
0: No effect.

1: Resets the AES. A software-triggered hardware reset of the AES interface is performed.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – SWRST

7 6 5 4 3 2 1 0
– – – – – – – START

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 872

41.5.2 AES Mode Register

Name: AES_MR

Address: 0x40000004

Access: Read/Write

• CIPHER: Processing Mode
0: Decrypts data.
1: Encrypts data.

• GTAGEN: GCM Automatic Tag Generation Enable
0: Automatic GCM Tag generation disabled.
1: Automatic GCM Tag generation enabled.

• DUALBUFF: Dual Input Buffer

• PROCDLY: Processing Delay

where
N = 10 when KEYSIZE = 0
N = 12 when KEYSIZE = 1
N = 14 when KEYSIZE = 2

The Processing Time represents the number of clock cycles that the AES needs in order to perform one encryption/decryption.
Note: The best performance is achieved with PROCDLY equal to 0.

• SMOD: Start Mode

If a PDC transfer is used, configure SMOD to 2. Refer to Section 41.4.4.3 ”PDC Mode” for more details.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
CKEY – CFBS

15 14 13 12 11 10 9 8
LOD OPMOD KEYSIZE SMOD

7 6 5 4 3 2 1 0
PROCDLY DUALBUFF – GTAGEN CIPHER

Value Name Description
0 INACTIVE AES_IDATARx cannot be written during processing of previous block

1 ACTIVE AES_IDATARx can be written during processing of previous block when SMOD = 2. It
speeds up the overall runtime of large files

Value Name Description
0 MANUAL_START Manual Mode
1 AUTO_START Auto Mode
2 IDATAR0_START AES_IDATAR0 access only Auto Mode (PDC)

Processing Time N PROCDLY 1+ =

 873SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• KEYSIZE: Key Size

• OPMOD: Operating Mode

For CBC-MAC operating mode, set OPMOD to CBC and LOD to 1.

• LOD: Last Output Data Mode
0: No effect.
After each end of encryption/decryption, the output data are available either on the output data registers (Manual and Auto
modes) or at the address specified in the Receive Pointer Register (AES_RPR) for PDC mode.
In Manual and Auto modes, the DATRDY flag is cleared when at least one of the Output Data registers is read.
1: The DATRDY flag is cleared when at least one of the Input Data Registers is written.
No more Output Data Register reads is necessary between consecutive encryptions/decryptions (refer to Section 41.4.5 ”Last
Output Data Mode”).
Warning: In PDC mode, reading to the Output Data registers before the last data encryption/decryption process may lead to
unpredictable results.

• CFBS: Cipher Feedback Data Size

• CKEY: Key

Value Name Description
0 AES128 AES Key Size is 128 bits
1 AES192 AES Key Size is 192 bits
2 AES256 AES Key Size is 256 bits

Value Name Description
0 ECB ECB: Electronic Codebook mode
1 CBC CBC: Cipher Block Chaining mode
2 OFB OFB: Output Feedback mode
3 CFB CFB: Cipher Feedback mode
4 CTR CTR: Counter mode (16-bit internal counter)
5 GCM GCM: Galois/Counter mode

Value Name Description
0 SIZE_128BIT 128-bit
1 SIZE_64BIT 64-bit
2 SIZE_32BIT 32-bit
3 SIZE_16BIT 16-bit
4 SIZE_8BIT 8-bit

Value Name Description

0xE PASSWD
This field must be written with 0xE the first time AES_MR is programmed. For subsequent
programming of AES_MR, any value can be written, including that of 0xE.

Always reads as 0.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 874

41.5.3 AES Interrupt Enable Register

Name: AES_IER

Address: 0x40000010

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

• DATRDY: Data Ready Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• ENDTX: End of Transmit Buffer Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable

• URAD: Unspecified Register Access Detection Interrupt Enable

• TAGRDY: GCM Tag Ready Interrupt Enable

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – TAGRDY

15 14 13 12 11 10 9 8
– – – – – – – URAD

7 6 5 4 3 2 1 0
– – – TXBUFE RXBUFF ENDTX ENDRX DATRDY

 875SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

41.5.4 AES Interrupt Disable Register

Name: AES_IDR

Address: 0x40000014

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Disables the corresponding interrupt.

• DATRDY: Data Ready Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable

• ENDTX: End of Transmit Buffer Interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable

• TXBUFE: Transmit Buffer Empty Interrupt Disable

• URAD: Unspecified Register Access Detection Interrupt Disable

• TAGRDY: GCM Tag Ready Interrupt Disable

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – TAGRDY

15 14 13 12 11 10 9 8
– – – – – – – URAD

7 6 5 4 3 2 1 0
– – – TXBUFE RXBUFF ENDTX ENDRX DATRDY

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 876

41.5.5 AES Interrupt Mask Register

Name: AES_IMR

Address: 0x40000018

Access: Read-only

The following configuration values are valid for all listed bit names of this register:

0: The corresponding interrupt is not enabled.

1: The corresponding interrupt is enabled.

• DATRDY: Data Ready Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• ENDTX: End of Transmit Buffer Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask

• URAD: Unspecified Register Access Detection Interrupt Mask

• TAGRDY: GCM Tag Ready Interrupt Mask

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – TAGRDY

15 14 13 12 11 10 9 8
– – – – – – – URAD

7 6 5 4 3 2 1 0
– – – TXBUFE RXBUFF ENDTX ENDRX DATRDY

 877SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

41.5.6 AES Interrupt Status Register

Name: AES_ISR

Address: 0x4000001C

Access: Read-only

• DATRDY: Data Ready (cleared by setting bit START or bit SWRST in AES_CR or by reading AES_ODATARx)
0: Output data not valid.

1: Encryption or decryption process is completed.
Note: If AES_MR.LOD = 1: In Manual and Auto mode, the DATRDY flag can also be cleared by writing at least one

AES_IDATARx.

• ENDRX: End of RX Buffer (cleared by writing AES_RCR or AES_RNCR)
0: The Receive Counter Register has not reached 0 since the last write in AES_RCR or AES_RNCR.

1: The Receive Counter Register has reached 0 since the last write in AES_RCR or AES_RNCR.
Note: This flag must be used only in PDC mode with AES_MR.LOD bit cleared.

• ENDTX: End of TX Buffer (cleared by writing AES_TCR or AES_TNCR)
0: The Transmit Counter Register has not reached 0 since the last write in AES_TCR or AES_TNCR.

1: The Transmit Counter Register has reached 0 since the last write in AES_TCR or AES_TNCR.
Note: This flag must be used only in PDC mode with AES_MR.LOD bit set.

• RXBUFF: RX Buffer Full (cleared by writing AES_RCR or AES_RNCR)
0: AES_RCR or AES_RNCR has a value other than 0.

1: Both AES_RCR and AES_RNCR have a value of 0.
Note: This flag must be used only in PDC mode with AES_MR.LOD bit cleared.

• TXBUFE: TX Buffer Empty (cleared by writing AES_TCR or AES_TNCR)
0: AES_TCR or AES_TNCR has a value other than 0.

1: Both AES_TCR and AES_TNCR have a value of 0.
Note: This flag must be used only in PDC mode with AES_MR.LOD bit set.

• URAD: Unspecified Register Access Detection Status (cleared by writing SWRST in AES_CR)
0: No unspecified register access has been detected since the last SWRST.

1: At least one unspecified register access has been detected since the last SWRST.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – TAGRDY

15 14 13 12 11 10 9 8
URAT – – – URAD

7 6 5 4 3 2 1 0
– – – TXBUFE RXBUFF ENDTX ENDRX DATRDY

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 878

• URAT: Unspecified Register Access (cleared by writing SWRST in AES_CR)

Only the last Unspecified Register Access Type is available through the URAT field.

• TAGRDY: GCM Tag Ready
0: GCM Tag is not valid.

1: GCM Tag generation is complete (cleared by reading GCM Tag, starting another processing or when writing a new key).

Value Name Description

0 IDR_WR_PROCESSING Input Data Register written during the data processing when SMOD = 2 mode

1 ODR_RD_PROCESSING Output Data Register read during the data processing

2 MR_WR_PROCESSING Mode Register written during the data processing

3 ODR_RD_SUBKGEN Output Data Register read during the sub-keys generation

4 MR_WR_SUBKGEN Mode Register written during the sub-keys generation

5 WOR_RD_ACCESS Write-only register read access

 879SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

41.5.7 AES Key Word Register x

Name: AES_KEYWRx [x=0..7]

Address: 0x40000020

Access: Write-only

• KEYW: Key Word
The four/six/eight 32-bit Key Word Registers set the 128-bit/192-bit/256-bit cryptographic key used for AES
encryption/decryption.

AES_KEYWR0 corresponds to the first word of the key and respectively AES_KEYWR3/AES_KEYWR5/AES_KEYWR7 to the
last one.

Whenever a new key (AES_KEYWRx) is written to the hardware, two automatic actions are processed:
 GCM hash subkey generation
 AES_GHASHRx Clear

Refer to Section 41.4.6.2 ”Key Writing and Automatic Hash Subkey Calculation” for details.

These registers are write-only to prevent the key from being read by another application.

31 30 29 28 27 26 25 24
KEYW

23 22 21 20 19 18 17 16
KEYW

15 14 13 12 11 10 9 8
KEYW

7 6 5 4 3 2 1 0
KEYW

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 880

41.5.8 AES Input Data Register x

Name: AES_IDATARx [x=0..3]

Address: 0x40000040

Access: Write-only

• IDATA: Input Data Word
The four 32-bit Input Data registers set the 128-bit data block used for encryption/decryption.

AES_IDATAR0 corresponds to the first word of the data to be encrypted/decrypted, and AES_IDATAR3 to the last one.

These registers are write-only to prevent the input data from being read by another application.

31 30 29 28 27 26 25 24
IDATA

23 22 21 20 19 18 17 16
IDATA

15 14 13 12 11 10 9 8
IDATA

7 6 5 4 3 2 1 0
IDATA

 881SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

41.5.9 AES Output Data Register x

Name: AES_ODATARx [x=0..3]

Address: 0x40000050

Access: Read-only

• ODATA: Output Data
The four 32-bit Output Data registers contain the 128-bit data block that has been encrypted/decrypted.

AES_ODATAR0 corresponds to the first word, AES_ODATAR3 to the last one.

31 30 29 28 27 26 25 24
ODATA

23 22 21 20 19 18 17 16
ODATA

15 14 13 12 11 10 9 8
ODATA

7 6 5 4 3 2 1 0
ODATA

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 882

41.5.10 AES Initialization Vector Register x

Name: AES_IVRx [x=0..3]

Address: 0x40000060

Access: Write-only

• IV: Initialization Vector
The four 32-bit Initialization Vector Registers set the 128-bit Initialization Vector data block that is used by some modes of
operation as an additional initial input.

AES_IVR0 corresponds to the first word of the Initialization Vector, AES_IVR3 to the last one.

These registers are write-only to prevent the Initialization Vector from being read by another application.

For CBC, OFB and CFB modes, the IV input value corresponds to the initialization vector.

For CTR mode, the IV input value corresponds to the initial counter value.
Note: These registers are not used in ECB mode and must not be written.

31 30 29 28 27 26 25 24
IV

23 22 21 20 19 18 17 16
IV

15 14 13 12 11 10 9 8
IV

7 6 5 4 3 2 1 0
IV

 883SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

41.5.11 AES Additional Authenticated Data Length Register

Name: AES_AADLENR

Address: 0x40000070

Access: Read/Write

• AADLEN: Additional Authenticated Data Length
Length in bytes of the Additional Authenticated Data (AAD) that is to be processed.
Note: The maximum byte length of the AAD portion of a message is limited to the 32-bit counter length.

31 30 29 28 27 26 25 24
AADLEN

23 22 21 20 19 18 17 16
AADLEN

15 14 13 12 11 10 9 8
AADLEN

7 6 5 4 3 2 1 0
AADLEN

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 884

41.5.12 AES Plaintext/Ciphertext Length Register

Name: AES_CLENR

Address: 0x40000074

Access: Read/Write

• CLEN: Plaintext/Ciphertext Length
Length in bytes of the plaintext/ciphertext (C) data that is to be processed.
Note: The maximum byte length of the C portion of a message is limited to the 32-bit counter length.

31 30 29 28 27 26 25 24
CLEN

23 22 21 20 19 18 17 16
CLEN

15 14 13 12 11 10 9 8
CLEN

7 6 5 4 3 2 1 0
CLEN

 885SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

41.5.13 AES GCM Intermediate Hash Word Register x

Name: AES_GHASHRx [x=0..3]

Address: 0x40000078

Access: Read/Write

• GHASH: Intermediate GCM Hash Word x
The four 32-bit Intermediate Hash Word registers expose the intermediate GHASH value. May be read to save the current
GHASH value so processing can later be resumed, presumably on a later message fragment. Whenever a new key
(AES_KEYWRx) is written to the hardware two automatic actions are processed:

 GCM hash subkey generation
 AES_GHASHRx Clear

Refer to Section 41.4.6.2 ”Key Writing and Automatic Hash Subkey Calculation” for details.

If an application software-specific hash initial value is needed for the GHASH, it must be written to AES_GHASHRx:

 After a write to AES_KEYWRx, if any
 before starting the input data feed

31 30 29 28 27 26 25 24
GHASH

23 22 21 20 19 18 17 16
GHASH

15 14 13 12 11 10 9 8
GHASH

7 6 5 4 3 2 1 0
GHASH

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 886

41.5.14 AES GCM Authentication Tag Word Register x

Name: AES_TAGRx [x=0..3]

Address: 0x40000088

Access: Read-only

• TAG: GCM Authentication Tag x
The four 32-bit Tag registers contain the final 128-bit GCM Authentication tag (T) when GCM processing is complete. TAG0
corresponds to the first word, TAG3 to the last word.

31 30 29 28 27 26 25 24
TAG

23 22 21 20 19 18 17 16
TAG

15 14 13 12 11 10 9 8
TAG

7 6 5 4 3 2 1 0
TAG

 887SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

41.5.15 AES GCM Encryption Counter Value Register

Name: AES_CTRR

Address: 0x40000098

Access: Read-only

• CTR: GCM Encryption Counter
Reports the current value of the 32-bit GCM counter.

31 30 29 28 27 26 25 24
CTR

23 22 21 20 19 18 17 16
CTR

15 14 13 12 11 10 9 8
CTR

7 6 5 4 3 2 1 0
CTR

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 888

41.5.16 AES GCM H Word Register x

Name: AES_GCMHRx [x=0..3]

Address: 0x4000009C

Access: Read/Write

• H: GCM H Word x
The four 32-bit H Word registers contain the 128-bit GCM hash subkey H value.

Whenever a new key (AES_KEYWRx) is written to the hardware, two automatic actions are processed:
 GCM hash subkey H generation
 AES_GHASHRx Clear

If the application software requires a specific hash subkey, the automatically-generated H value can be overwritten in the
AES_GCMHRx. Refer to Section 41.4.6.2 ”Key Writing and Automatic Hash Subkey Calculation” for details.

Generating a GCM hash subkey H by a write in AES_GCMHRx enables to:
 select the GCM hash subkey H for GHASH operations.
 select one operand to process a single GF128 multiply.

31 30 29 28 27 26 25 24
H

23 22 21 20 19 18 17 16
H

15 14 13 12 11 10 9 8
H

7 6 5 4 3 2 1 0
H

 889SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

42. Integrity Check Monitor (ICM)

42.1 Description
The Integrity Check Monitor (ICM) is a DMA controller that performs hash calculation over multiple memory regions
through the use of transfer descriptors located in memory (ICM Descriptor Area). The Hash function is based on the
Secure Hash Algorithm (SHA). The ICM controller integrates two modes of operation. The first one is used to hash a
list of memory regions and save the digests to memory (ICM Hash Area). The second mode is an active monitoring of
the memory. In that mode, the hash function is evaluated and compared to the digest located at a predefined memory
address (ICM Hash Area). If a mismatch occurs, an interrupt is raised. See Figure 42-1 for an example of four-region
monitoring. Hash and Descriptor areas are located in Memory instance i2, and the four regions are split in memory
instances i0 and i1.

Figure 42-1. Four-region Monitoring Example

The ICM SHA engine is compliant with the American FIPS (Federal Information Processing Standard) Publication
180-2 specification.

The following terms are concise definitions of the ICM concepts used throughout this document:
 Region: A partition of instruction or data memory space.
 Region Descriptor: A data structure stored in memory, defining region attributes.
 Region Attributes: Region start address, region size, region SHA engine processing mode, Write Back or

Compare function mode.
 Context Registers: A set of ICM non-memory-mapped, internal registers which are automatically loaded,

containing the attributes of the region being processed.
 Main List: A list of region descriptors. Each element associates the start address of a region with a set of

attributes.
 Secondary List: A linked list defined on a per region basis that describes the memory layout of the region (when

the region is non-contiguous).
 Hash Area: Predefined memory space where the region hash results (digest) are stored.

Memory
Region 0

Memory
Region 1

Memory
Region 2

Memory
Region 3

ICMProcessor Interrupt
Controller

ICM
Descriptor

Area

ICM
Hash
Area

Memory i0 Memory i1 Memory i2

System Interconnect

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 890

42.2 Embedded Characteristics
 DMA AHB master interface.
 Supports monitoring of up to 4 Non-Contiguous Memory Regions.
 Supports block gathering through the use of linked list.
 Supports Secure Hash Algorithm (SHA1, SHA224, SHA256).
 Compliant with FIPS Publication 180-2.
 Configurable Processing Period:

 When SHA1 algorithm is processed, the runtime period is either 85 or 209 clock cycles.
 When SHA256 or SHA224 algorithm is processed, the runtime period is either 72 or 194 clock cycles.

 Programmable Bus burden.

42.3 Block Diagram

Figure 42-2. Integrity Check Monitor Block Diagram

42.4 Product Dependencies

42.4.1 Power Management

The peripheral clock is not continuously provided to the ICM. The programmer must first enable the ICM clock in the
Power Management Controller (PMC) before using the ICM.

42.4.2 Interrupt Sources

The ICM interface has an interrupt line connected to the Interrupt Controller. Handling the ICM interrupt requires
programming the interrupt controller before configuring the ICM.

Integrity
Scheduler

SHA
hash
Engine

Host
Interface

Context
Registers

Monitoring
FSM

Configuration
Registers

Master
DMA Interface

APB

Bus Layer

 891SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

42.5 Functional Description
42.5.1 Overview

The Integrity Check Monitor (ICM) is a DMA controller that performs SHA-based memory hashing over memory
regions. As shown in Figure 42-2, it integrates a DMA interface, a Monitoring Finite State Machine (FSM), an integrity
scheduler, a set of context registers, a SHA engine, an interface for configuration and status registers.

The ICM integrates a Secure Hash Algorithm Engine (SHA). This engine requires a message padded according to
FIPS180-2 specification when used as a SHA calculation unit only. Otherwise, if the ICM is used as integrated check
for memory content, the padding is not mandatory. The SHA module produces an N-bit message digest each time a
block is read and a processing period ends. N is 160 for SHA1, 224 for SHA224, 256 for SHA256.

When the ICM module is enabled, it sequentially retrieves a circular list of region descriptors from the memory (Main
List described in Figure 42-3). Up to four regions may be monitored. Each region descriptor is composed of four words
indicating the layout of the memory region (see Figure 42-4). It also contains the hashing engine configuration on a
per region basis. As soon as the descriptor is loaded from the memory and context registers are updated with the data
structure, the hashing operation starts. A programmable number of blocks (see TRSIZE field of the ICM_RCTRL
structure member) is transferred from the memory to the SHA engine. When the desired number of blocks have been
transferred, the digest is whether moved to memory (Write Back function) or compared with a digest reference located
in the system memory (Compare function). If a digest mismatch occurs, an interrupt is triggered if unmasked. The ICM
module passes through the region descriptor list until the end of the list marked by an End of List bit set to one. To
continuously monitor the list of regions, the WRAP bit must be set to one in the last data structure.

Figure 42-3. ICM Region Descriptor and Hash Areas

Table 42-1. Peripherals IDs

Instance ID

ICM 34

 ICM Descriptor
 Area - Contiguous
Read-only Memory

Region 0
Descriptor

Region 1
Descriptor

Region N
Descriptor

WRAP=1

WRAP=0

WRAP=0

infinite loop
when wrap bit is set

End of Region 0

End of Region 1 List

End of Region N

Region 0 Hash

Region 1 Hash

Region N Hash

ICM Hash Area -
 Contiguous
Read-write once
 Memory

Main List

Secondary List

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 892

Each region descriptor supports gathering of data through the use of the Secondary List. Unlike the Main List, the
Secondary List cannot modify the configuration attributes of the region. When the end of the Secondary List has been
encountered, the ICM returns to the Main List. Memory integrity monitoring can be considered as a background
service and the mandatory bandwidth shall be very limited. In order to limit the ICM memory bandwidth, use the BBC
field of the ICM_CFG register to control ICM memory load.

Figure 42-4. Region Descriptor

Figure 42-5 shows an example of the mandatory ICM settings to monitor three memory data blocks of the system
memory (defined as two regions) with one region being not contiguous (two separate areas) and one contiguous
memory area. For each said region, the SHA algorithm may be independently selected (different for each region). The
wrap allows continuous monitoring.

Figure 42-5. Example: Monitoring of 3 Memory Data Blocks (Defined as 2 Regions)

End of Region 0
ICMDSCR Region 0 Descriptor

Region 1 Descriptor

Region ADDR

Region CFG

Region CTRL

Region NEXT

0x000

0x004

0x008

0x00C

Optional Region 0 Secondary List

Region ADDR

Unused

Region CTRL

Region NEXT

0x000

0x004

0x008

0x00C

Region 2 Descriptor

Region 3 Descriptor

Main List

Reg
ion

 0

Data
 Bloc

k 1

System Memory, data areas

Reg
ion

 0

Data
 Bloc

k 0

Reg
ion

 1

Sing
le

Data

Bloc
k

Region 0
Main
Descriptor

System Memory, region descriptor structure

Region 1
Single
Descriptor

Region 0
Second
Descriptor

@md
@md+4

@md+8
@md+12
@md+16
@md+20

@md+24
@md+28

@sd
@sd+4

@sd+8
@sd+12

@r0db0

@r0db1

@r1d

NEXT=0

NEXT=@sd

NEXT=0

don’t care
@r0db1

@r0db0
wrap=0, etc

wrap=1, etc
@r1d

Size of
region1
block (S1)

Size of
region0
block 1
(S0B1)

Size of
region0
block 0
(S0B0)

S0B0

S1

S0B1

1
23

1

23

wrap=1 effect

 893SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

42.5.2 ICM Region Descriptor Structure

The ICM Region Descriptor Area is a contiguous area of system memory that the controller and the processor can
access. When the ICM controller is activated, the controller performs a descriptor fetch operation at *(ICM_DSCR)
address. If the Main List contains more than one descriptor (i.e., more than one region is to be monitored), the fetch
address is *(ICM_DSCR) + (RID<<4) where RID is the region identifier.

Table 42-2. Region Descriptor Structure (Main List)

Offset Structure Member Name

ICM_DSCR+0x000+RID*(0x10) ICM Region Start Address ICM_RADDR

ICM_DSCR+0x004+RID*(0x10) ICM Region Configuration ICM_RCFG

ICM_DSCR+0x008+RID*(0x10) ICM Region Control ICM_RCTRL

ICM_DSCR+0x00C+RID*(0x10) ICM Region Next Address ICM_RNEXT

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 894

42.5.2.1 ICM Region Start Address Structure Member
Name: ICM_RADDR

Address: ICM_DSCR+0x000+RID*(0x10)

Access: Read/Write

• RADDR: Region Start Address
This field indicates the first byte address of the region.

31 30 29 28 27 26 25 24
RADDR

23 22 21 20 19 18 17 16
RADDR

15 14 13 12 11 10 9 8
RADDR

7 6 5 4 3 2 1 0
RADDR

 895SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

42.5.2.2 ICM Region Configuration Structure Member
Name: ICM_RCFG

Address: ICM_DSCR+0x004+RID*(0x10)

Access: Read/Write

• CDWBN: Compare Digest or Write Back Digest
0: The digest is written to the Hash area.

1: The digest value is compared to the digest stored in the Hash area.

• WRAP: Wrap Command
0: The next region descriptor address loaded is the current region identifier descriptor address incremented by 0x10.

1: The next region descriptor address loaded is ICM_DSCR.

• EOM: End Of Monitoring
0: The current descriptor does not terminate the monitoring.

1: The current descriptor terminates the Main List. WRAP bit value has no effect.

• RHIEN: Region Hash Completed Interrupt Disable (Default Enabled)
0: The ICM_ISR RHC[i] flag is set when the field NEXT = 0 in a descriptor of the main or second list.

1: The ICM_ISR RHC[i] flag remains cleared even if the setting condition is met.

• DMIEN: Digest Mismatch Interrupt Disable (Default Enabled)
0: The ICM_ISR RBE[i] flag is set when the hash value just calculated from the processed region differs from expected hash
value.

1: The ICM_ISR RBE[i] flag remains cleared even if the setting condition is met.

• BEIEN: Bus Error Interrupt Disable (Default Enabled)
0: The flag is set when an error is reported on the system bus by the bus MATRIX.

1: The flag remains cleared even if the setting condition is met.

• WCIEN: Wrap Condition Interrupt Disable (Default Enabled)
0: The ICM_ISR RWC[i] flag is set when the WRAP bit is set in a descriptor of the main list.

1: The ICM_ISR RWC[i] flag remains cleared even if the setting condition is met.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– ALGO – PROCDLY SUIEN ECIEN

7 6 5 4 3 2 1 0
WCIEN BEIEN DMIEN RHIEN – EOM WRAP CDWBN

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 896

• ECIEN: End Bit Condition Interrupt (Default Enabled)
0: The ICM_ISR REC[i] flag is set when the descriptor having the EOM bit set is processed.

1: The ICM_ISR REC[i] flag remains cleared even if the setting condition is met.

• SUIEN: Monitoring Status Updated Condition Interrupt (Default Enabled)
0: The ICM_ISR RSU[i] flag is set when the corresponding descriptor is loaded from memory to ICM.

1: The ICM_ISR RSU[i] flag remains cleared even if the setting condition is met.

• PROCDLY: Processing Delay

When SHA1 algorithm is processed, the runtime period is either 85 or 209 clock cycles.

When SHA256 or SHA224 algorithm is processed, the runtime period is either 72 or 194 clock cycles.

• ALGO: SHA Algorithm

Values which are not listed in the table must be considered as “reserved”.

Value Name Description

0 SHORTEST SHA processing runtime is the shortest one

1 LONGEST SHA processing runtime is the longest one

Value Name Description

0 SHA1 SHA1 algorithm processed

1 SHA256 SHA256 algorithm processed

4 SHA224 SHA224 algorithm processed

 897SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

42.5.2.3 ICM Region Control Structure Member
Name: ICM_RCTRL

Address: ICM_DSCR+0x008+RID*(0x10)

Access: Read/Write

• TRSIZE: Transfer Size for the Current Chunk of Data
ICM performs a transfer of (TRSIZE + 1) blocks of 512 bits.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TRSIZE

7 6 5 4 3 2 1 0
TRSIZE

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 898

42.5.2.4 ICM Region Next Address Structure Member
Name: ICM_RNEXT

Address: ICM_DSCR+0x00C+RID*(0x10)

Access: Read/Write

• NEXT: Region Transfer Descriptor Next Address
When configured to 0, this field indicates that the current descriptor is the last descriptor of the Secondary List, otherwise it
points at a new descriptor of the Secondary List.

31 30 29 28 27 26 25 24
NEXT

23 22 21 20 19 18 17 16
NEXT

15 14 13 12 11 10 9 8
NEXT

7 6 5 4 3 2 1 0
NEXT – –

 899SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

42.5.3 ICM Hash Area

The ICM Hash Area is a contiguous area of system memory that the controller and the processor can access. The
physical location is configured in the ICM hash area start address register. This address is a multiple of 128 bytes. If
the CDWBN bit of the context register is cleared (i.e., Write Back activated), the ICM controller performs a digest write
operation at the following starting location: *(ICM_HASH) + (RID<<5), where RID is the current region context
identifier. If the CDWBN bit of the context register is set (i.e., Digest Comparison activated), the ICM controller
performs a digest read operation at the same address.

42.5.3.1 Message Digest Example
Considering the following 512 bits message (example given in FIPS 180-2):

“6162638000
000000000000000000000000000000000018”

The message is written to memory in a Little Endian (LE) system architecture.

The digest is stored at the memory location pointed at by the ICM_HASH pointer with a Region Offset.

Table 42-3. 512 bits Message Memory Mapping

Memory
Address

Address Offset / Byte Lane

0x3 / 31:24 0x2 / 23:16 0x1 / 15:8 0x0 / 7:0

0x000 80 63 62 61

0x004 - 0x038 00 00 00 00

0x03C 18 00 00 00

Table 42-4. LE Resulting SHA-160 Message Digest Memory Mapping

Memory
Address

Address Offset / Byte Lane

0x3 / 31:24 0x2 / 23:16 0x1 / 15:8 0x0 / 7:0

0x000 36 3e 99 a9

0x004 6a 81 06 47

0x008 71 25 3e ba

0x00C 6c c2 50 78

0x010 9d d8 d0 9c

Table 42-5. Resulting SHA-224 Message Digest Memory Mapping

Memory
Address

Address Offset / Byte Lane

0x3 / 31:24 0x2 / 23:16 0x1 / 15:8 0x0 / 7:0

0x000 22 7d 09 23

0x004 22 d8 05 34

0x008 77 a4 42 86

0x00C b3 55 a2 bd

0x010 e4 bc ad 2a

0x014 f7 b3 a0 bd

0x018 a7 9d 6c e3

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 900

Considering the following 1024 bits message (example given in FIPS 180-2):

"6162638000
000
00018"

The message is written to memory in a Little Endian (LE) system architecture.

42.5.4 Using ICM as SHA Engine

The ICM can be configured to only calculate a SHA1, SHA224, SHA256 digest value.

42.5.4.1 Settings for Simple SHA Calculation
The start address of the system memory containing the data to hash must be configured in the transfer descriptor of
the DMA embedded in the ICM.

The transfer descriptor is a system memory area integer multiple of 4 x 32-bit word and the start address of the
descriptor must be configured in ICM_DSCR (the start address must be aligned on 64-bytes; six LSB must be
cleared). If the data to hash is already padded according to SHA standards, only a single descriptor is required, and
the EOM bit of ICM_RCFG must be written to 1. If the data to hash does not contain a padding area, it is possible to
define the padding area in another system memory location, the ICM can be configured to automatically jump from a
memory area to another one by configuring the descriptor register ICM_RNEXT with a value that differs from 0.
Configuring the field NEXT of the ICM_RNEXT with the start address of the padding area forces the ICM to
concatenate both areas, thus providing the SHA result from the start address of the hash area configured in
ICM_HASH.

Whether the system memory is configured as a single or multiple data block area, the bits CDWBN and WRAP must
be cleared in the region descriptor structure member ICM_RCFG. The bits WBDIS, EOMDIS, SLBDIS must be
cleared in ICM_CFG.

The bits RHIEN or ECIEN must be written to 1 in the region descriptor structure member ICM_RCTRL. The flag
RHC[i], i being the region index, is set (if RHIEN is set) when the hash result is available at address defined in

Table 42-6. Resulting SHA-256 Message Digest Memory Mapping

Memory
Address

Address Offset / Byte Lane

0x3 / 31:24 0x2 / 23:16 0x1 / 15:8 0x0 / 7:0

0x000 bf 16 78 ba

0x004 ea cf 01 8f

0x008 de 40 41 41

0x00C 23 22 ae 5d

0x010 a3 61 03 b0

0x014 9c 7a 17 96

0x018 61 ff 10 b4

0x01C ad 15 00 f2

Table 42-7. 1024 bits Message Memory Mapping

Memory
Address

Address Offset / Byte Lane

0x3 / 31:24 0x2 / 23:16 0x1 / 15:8 0x0 / 7:0

0x000 80 63 62 61

0x004 - 0x078 00 00 00 00

0x07C 18 00 00 00

 901SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

ICM_HASH. The flag REC[i], i being the region index, is set (if ECIEN is set) when the hash result is available at the
address defined in ICM_HASH.

An interrupt is generated if the bit RHC[i] is written to 1 in the ICM_IER (if RHC[i] is set in ICM_RCTRL of region i) or if
the bit REC[i] is written to 1 in the ICM_IER (if REC[i] is set in ICM_RCTRL of region i).

42.5.4.2 Processing Period
The SHA engine processing period can be configured.

The short processing period allows to allocate bandwidth to the SHA module whereas the long processing period
allocates more bandwidth on the system bus to other applications.

In SHA mode, the shortest processing period is 85 clock cycles + 2 clock cycles for start command synchronization.
The longest period is 209 clock cycles + 2 clock cycles.

In SHA256 and SHA224 modes, the shortest processing period is 72 clock cycles + 2 clock cycles for start command
synchronization. The longest period is 194 clock cycles + 2 clock cycles.

42.5.5 ICM Automatic Monitoring Mode

The ASCD bit of the ICM_CFG register is used to activate the ICM Automatic mode. When ICM_CFG.ASCD is set,
the ICM performs the following actions:
 The ICM controller passes through the Main List once with CDWBN bit in the context register at 0 (i.e., Write

Back activated) and EOM bit in context register at 0.
 When WRAP = 1 in ICM_RCFG, the ICM controller enters active monitoring with CDWBN bit in context register

now set and EOM bit in context register cleared. Bits CDWBN and EOM in ICM_RCFG have no effect.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 902

42.5.6 Programming the ICM for Multiple Regions

42.5.7 Security Features

When an undefined register access occurs, the URAD bit in the Interrupt Status Register (ICM_ISR) is set if
unmasked. Its source is then reported in the Undefined Access Status Register (ICM_UASR). Only the first undefined
register access is available through the ICM_UASR.URAT field.

Several kinds of unspecified register accesses can occur:
 Unspecified structure member set to one detected when the descriptor is loaded.
 Configuration register (ICM_CFG) modified during active monitoring.
 Descriptor register (ICM_DSCR) modified during active monitoring.
 Hash register (ICM_HASH) modified during active monitoring.
 Write-only register read access.

The URAD bit and the URAT field can only be reset by writing a 1 to the ICM_CTRL.SWRST bit.

Table 42-8. Region Attributes

Transfer Type Main List
 ICM_RCFG ICM_RNEXT

CommentsCDWBN WRAP EOM NEXT

S
in

gl
e

R
eg

io
n

Contiguous list of blocks
Digest written to memory
Monitoring disabled

1 item 0 0 1 0

The Main List contains
only one descriptor. The
Secondary List is empty
for that descriptor. The
digest is computed and
saved to memory.

Non contiguous list of blocks
Digest written to memory
Monitoring disabled

1 item 0 0 1

Secondary
List address
of the current
region
identifier

The Main List contains
only one descriptor. The
Secondary List describes
the layout of the non
contiguous region.

Contiguous list of blocks
Digest comparison enabled
Monitoring enabled

1 item 1 1 0 0

When the hash compu-
tation is terminated, the
digest is compared with
the one saved in memory.

M
ul

tip
le

 R
eg

io
ns

Contiguous list of blocks
Digest written to memory
Monitoring disabled

More than
one item 0 0

1 for the
last, 0

otherwise
0 ICM passes through the

list once.

Contiguous list of blocks
Digest comparison is enabled
Monitoring is enabled

More than
one item 1

1 for the
last, 0

otherwise
0 0

ICM performs active
monitoring of the regions.
If a mismatch occurs, an
interrupt is raised.

Non contiguous list of blocks
Digest is written to memory
Monitoring is disabled

More than
one item 0 0 1 Secondary

List address

ICM performs hashing and
saves digests to the Hash
area.

Non contiguous list of blocks
Digest comparison is enabled
Monitoring is enabled

More than
one item 1 1 0 Secondary

List address

ICM performs data
gathering on a per region
basis.

 903SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

42.6 Integrity Check Monitor (ICM) User Interface

Table 42-9. Register Mapping

Offset Register Name Access Reset

0x00 Configuration Register ICM_CFG Read/Write 0x0

0x04 Control Register ICM_CTRL Write-only –

0x08 Status Register ICM_SR Read-only –

0x0C Reserved – – –

0x10 Interrupt Enable Register ICM_IER Write-only –

0x14 Interrupt Disable Register ICM_IDR Write-only –

0x18 Interrupt Mask Register ICM_IMR Read-only 0x0

0x1C Interrupt Status Register ICM_ISR Read-only 0x0

0x20 Undefined Access Status Register ICM_UASR Read-only 0x0

0x24 - 0x2C Reserved – – –

0x30 Region Descriptor Area Start Address Register ICM_DSCR Read/Write 0x0

0x34 Region Hash Area Start Address Register ICM_HASH Read/Write 0x0

0x38 User Initial Hash Value 0 Register ICM_UIHVAL0 Write-only –

...

0x54 User Initial Hash Value 7 Register ICM_UIHVAL7 Write-only –

0x58 - 0xFC Reserved – – –

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 904

42.6.1 ICM Configuration Register

Name: ICM_CFG

Address: 0x40044000

Access: Read/Write

• WBDIS: Write Back Disable
0: Write Back Operations are permitted.

1: Write Back Operations are forbidden. Context register CDWBN bit is internally set to one and cannot be modified by a linked
list element. The CDWBN bit of the ICM_RCFG structure member has no effect.

When ASCD bit of the ICM_CFG register is set, WBDIS bit value has no effect.

• EOMDIS: End of Monitoring Disable
0: End of Monitoring is permitted.

1: End of Monitoring is forbidden. The EOM bit of the ICM_RCFG structure member has no effect.

• SLBDIS: Secondary List Branching Disable
0: Branching to the Secondary List is permitted.

1: Branching to the Secondary List is forbidden. The NEXT field of the ICM_RNEXT structure member has no effect and is
always considered as zero.

• BBC: Bus Burden Control
This field is used to control the burden of the ICM system bus. The number of system clock cycles between the end of the
current processing and the next block transfer is set to 2BBC. Up to 32,768 cycles can be inserted.

• ASCD: Automatic Switch To Compare Digest
0: Automatic mode is disabled.

1: When this mode is enabled, the ICM controller automatically switches to active monitoring after the first Main List pass. Both
CDWBN and WBDIS bits have no effect. A one must be written to the EOM bit in ICM_RCFG to terminate the monitoring.

• DUALBUFF: Dual Input Buffer
0: Dual Input Buffer mode is disabled.

1: Dual Input Buffer mode is enabled (better performances, higher bandwidth required on system bus).

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
UALGO UIHASH – – DUALBUFF ASCD

7 6 5 4 3 2 1 0
BBC – SLBDIS EOMDIS WBDIS

 905SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

• UIHASH: User Initial Hash Value
0: The secure hash standard provides the initial hash value.

1: The initial hash value is programmable. Field UALGO provides the SHA algorithm. The ALGO field of the ICM_RCFG struc-
ture member has no effect.

• UALGO: User SHA Algorithm

Value Name Description

0 SHA1 SHA1 algorithm processed

1 SHA256 SHA256 algorithm processed

4 SHA224 SHA224 algorithm processed

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 906

42.6.2 ICM Control Register

Name: ICM_CTRL

Address: 0x40044004

Access: Write-only

• ENABLE: ICM Enable
0: No effect.

1: When set to one, the ICM controller is activated.

• DISABLE: ICM Disable Register
0: No effect.

1: The ICM controller is disabled. If a region is active, this region is terminated.

• SWRST: Software Reset
0: No effect.

1: Resets the ICM controller.

• REHASH: Recompute Internal Hash
0: No effect.

1: When REHASH[i] is set to one, Region i digest is re-computed. This bit is only available when region monitoring is disabled.

• RMDIS: Region Monitoring Disable
0: No effect.

1: When bit RMDIS[i] is set to one, the monitoring of region with identifier i is disabled.

• RMEN: Region Monitoring Enable
0: No effect.

1: When bit RMEN[i] is set to one, the monitoring of region with identifier i is activated.

Monitoring is activated by default.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
RMEN RMDIS

7 6 5 4 3 2 1 0
REHASH – SWRST DISABLE ENABLE

 907SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

42.6.3 ICM Status Register

Name: ICM_SR

Address: 0x40044008

Access: Read-only

• ENABLE: ICM Controller Enable Register
0: ICM controller is disabled.

1: ICM controller is activated.

• RAWRMDIS: Region Monitoring Disabled Raw Status
0: Region i monitoring has been activated by writing a 1 in RMEN[i] of ICM_CTRL.

1: Region i monitoring has been deactivated by writing a 1 in RMDIS[i] of ICM_CTRL.

• RMDIS: Region Monitoring Disabled Status
0: Region i monitoring is being monitored (occurs after integrity check value has been calculated and written to Hash area).

1: Region i monitoring is not being monitored.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
RMDIS RAWRMDIS

7 6 5 4 3 2 1 0
– – – – – – – ENABLE

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 908

42.6.4 ICM Interrupt Enable Register

Name: ICM_IER

Address: 0x40044010

Access: Write-only

• RHC: Region Hash Completed Interrupt Enable
0: No effect.

1: When RHC[i] is set to one, the Region i Hash Completed interrupt is enabled.

• RDM: Region Digest Mismatch Interrupt Enable
0: No effect.

1: When RDM[i] is set to one, the Region i Digest Mismatch interrupt is enabled.

• RBE: Region Bus Error Interrupt Enable
0: No effect.

1: When RBE[i] is set to one, the Region i Bus Error interrupt is enabled.

• RWC: Region Wrap Condition detected Interrupt Enable
0: No effect.

1: When RWC[i] is set to one, the Region i Wrap Condition interrupt is enabled.

• REC: Region End bit Condition Detected Interrupt Enable
0: No effect.

1: When REC[i] is set to one, the region i End bit Condition interrupt is enabled.

• RSU: Region Status Updated Interrupt Enable
0: No effect.

1: When RSU[i] is set to one, the region i Status Updated interrupt is enabled.

• URAD: Undefined Register Access Detection Interrupt Enable
0: No effect.

1: The Undefined Register Access interrupt is enabled.

31 30 29 28 27 26 25 24
– – – – – – – URAD

23 22 21 20 19 18 17 16
RSU REC

15 14 13 12 11 10 9 8
RWC RBE

7 6 5 4 3 2 1 0
RDM RHC

 909SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

42.6.5 ICM Interrupt Disable Register

Name: ICM_IDR

Address: 0x40044014

Access: Write-only

• RHC: Region Hash Completed Interrupt Disable
0: No effect.

1: When RHC[i] is set to one, the Region i Hash Completed interrupt is disabled.

• RDM: Region Digest Mismatch Interrupt Disable
0: No effect.

1: When RDM[i] is set to one, the Region i Digest Mismatch interrupt is disabled.

• RBE: Region Bus Error Interrupt Disable
0: No effect.

1: When RBE[i] is set to one, the Region i Bus Error interrupt is disabled.

• RWC: Region Wrap Condition Detected Interrupt Disable
0: No effect.

1: When RWC[i] is set to one, the Region i Wrap Condition interrupt is disabled.

• REC: Region End bit Condition detected Interrupt Disable
0: No effect.

1: When REC[i] is set to one, the region i End bit Condition interrupt is disabled.

• RSU: Region Status Updated Interrupt Disable
0: No effect.

1: When RSU[i] is set to one, the region i Status Updated interrupt is disabled.

• URAD: Undefined Register Access Detection Interrupt Disable
0: No effect.

1: Undefined Register Access Detection interrupt is disabled.

31 30 29 28 27 26 25 24
– – – – – – – URAD

23 22 21 20 19 18 17 16
RSU REC

15 14 13 12 11 10 9 8
RWC RBE

7 6 5 4 3 2 1 0
RDM RHC

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 910

42.6.6 ICM Interrupt Mask Register

Name: ICM_IMR

Address: 0x40044018

Access: Read-only

• RHC: Region Hash Completed Interrupt Mask
0: When RHC[i] is set to zero, the interrupt is disabled for region i.

1: When RHC[i] is set to one, the interrupt is enabled for region i.

• RDM: Region Digest Mismatch Interrupt Mask
0: When RDM[i] is set to zero, the interrupt is disabled for region i.

1: When RDM[i] is set to one, the interrupt is enabled for region i.

• RBE: Region Bus Error Interrupt Mask
0: When RBE[i] is set to zero, the interrupt is disabled for region i.

1: When RBE[i] is set to one, the interrupt is enabled for region i.

• RWC: Region Wrap Condition Detected Interrupt Mask
0: When RWC[i] is set to zero, the interrupt is disabled for region i.

1: When RWC[i] is set to one, the interrupt is enabled for region i.

• REC: Region End bit Condition Detected Interrupt Mask
0: When REC[i] is set to zero, the interrupt is disabled for region i.

1: When REC[i] is set to one, the interrupt is enabled for region i.

• RSU: Region Status Updated Interrupt Mask
0: When RSU[i] is set to zero, the interrupt is disabled for region i.

1: When RSU[i] is set to one, the interrupt is enabled for region i.

• URAD: Undefined Register Access Detection Interrupt Mask
0: Interrupt is disabled.

1: Interrupt is enabled.

31 30 29 28 27 26 25 24
– – – – – – – URAD

23 22 21 20 19 18 17 16
RSU REC

15 14 13 12 11 10 9 8
RWC RBE

7 6 5 4 3 2 1 0
RDM RHC

 911SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

42.6.7 ICM Interrupt Status Register

Name: ICM_ISR

Address: 0x4004401C

Access: Read-only

• RHC: Region Hash Completed
When RHC[i] is set, it indicates that the ICM has completed the region with identifier i.

• RDM: Region Digest Mismatch
When RDM[i] is set, it indicates that there is a digest comparison mismatch between the hash value of the region with identifier
i and the reference value located in the Hash Area.

• RBE: Region Bus Error
When RBE[i] is set, it indicates that a bus error has been detected while hashing memory region i.

• RWC: Region Wrap Condition Detected
When RWC[i] is set, it indicates that a wrap condition has been detected.

• REC: Region End bit Condition Detected
When REC[i] is set, it indicates that an end bit condition has been detected.

• RSU: Region Status Updated Detected
When RSU[i] is set, it indicates that a region status updated condition has been detected.

• URAD: Undefined Register Access Detection Status
0: No undefined register access has been detected since the last SWRST.

1: At least one undefined register access has been detected since the last SWRST.

The URAD bit is only reset by the SWRST bit in the ICM_CTRL register.

The URAT field in the ICM_UASR indicates the unspecified access type.

31 30 29 28 27 26 25 24
– – – – – – – URAD

23 22 21 20 19 18 17 16
RSU REC

15 14 13 12 11 10 9 8
RWC RBE

7 6 5 4 3 2 1 0
RDM RHC

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 912

42.6.8 ICM Undefined Access Status Register

Name: ICM_UASR

Address: 0x40044020

Access: Read-only

• URAT: Undefined Register Access Trace

Only the first Undefined Register Access Trace is available through the URAT field.

The URAT field is only reset by the SWRST bit in the ICM_CTRL register.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – URAT

Value Name Description

0 UNSPEC_STRUCT_MEMBER Unspecified structure member set to one detected when the descriptor is loaded

1 ICM_CFG_MODIFIED ICM_CFG modified during active monitoring

2 ICM_DSCR_MODIFIED ICM_DSCR modified during active monitoring

3 ICM_HASH_MODIFIED ICM_HASH modified during active monitoring

4 READ_ACCESS Write-only register read access

 913SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

42.6.9 ICM Descriptor Area Start Address Register

Name: ICM_DSCR

Address: 0x40044030

Access: Read/Write

• DASA: Descriptor Area Start Address
The start address is a multiple of the total size of the data structure (64 bytes).

31 30 29 28 27 26 25 24
DASA

23 22 21 20 19 18 17 16
DASA

15 14 13 12 11 10 9 8
DASA

7 6 5 4 3 2 1 0
DASA – – – – – –

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 914

42.6.10 ICM Hash Area Start Address Register

Name: ICM_HASH

Address: 0x40044034

Access: Read/Write

• HASA: Hash Area Start Address
This field points at the Hash memory location. The address must be a multiple of 128 bytes.

31 30 29 28 27 26 25 24
HASA

23 22 21 20 19 18 17 16
HASA

15 14 13 12 11 10 9 8
HASA

7 6 5 4 3 2 1 0
HASA – – – – – – –

 915SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

42.6.11 ICM User Initial Hash Value Register

Name: ICM_UIHVALx [x=0..7]

Address: 0x40044038

Access: Write-only

• VAL: Initial Hash Value
When UIHASH bit of IMC_CFG register is set, the Initial Hash Value is user-programmable.

To meet the desired standard, use the following example values.

For ICM_UIHVAL0 field:

For ICM_UIHVAL1 field:

For ICM_UIHVAL2 field:

For ICM_UIHVAL3 field:

31 30 29 28 27 26 25 24
VAL

23 22 21 20 19 18 17 16
VAL

15 14 13 12 11 10 9 8
VAL

7 6 5 4 3 2 1 0
VAL

Example Comment

0x67452301 SHA1 algorithm

0xC1059ED8 SHA224 algorithm

0x6A09E667 SHA256 algorithm

Example Comment

0xEFCDAB89 SHA1 algorithm

0x367CD507 SHA224 algorithm

0xBB67AE85 SHA256 algorithm

Example Comment

0x98BADCFE SHA1 algorithm

0x3070DD17 SHA224 algorithm

0x3C6EF372 SHA256 algorithm

Example Comment

0x10325476 SHA1 algorithm

0xF70E5939 SHA224 algorithm

0xA54FF53A SHA256 algorithm

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 916

For ICM_UIHVAL4 field:

For ICM_UIHVAL5 field:

For ICM_UIHVAL6 field:

For ICM_UIHVAL7 field:

Example of Initial Value for SHA-1 Algorithm

Example Comment

0xC3D2E1F0 SHA1 algorithm

0xFFC00B31 SHA224 algorithm

0x510E527F SHA256 algorithm

Example Comment

0x68581511 SHA224 algorithm

0x9B05688C SHA256 algorithm

Example Comment

0x64F98FA7 SHA224 algorithm

0x1F83D9AB SHA256 algorithm

Example Comment

0xBEFA4FA4 SHA224 algorithm

0x5BE0CD19 SHA256 algorithm

Register Address
Address Offset / Byte Lane

0x3 / 31:24 0x2 / 23:16 0x1 / 15:8 0x0 / 7:0

0x000 ICM_UIHVAL0 01 23 45 67

0x004 ICM_UIHVAL1 89 ab cd ef

0x008 ICM_UIHVAL2 fe dc ba 98

0x00C ICM_UIHVAL3 76 54 32 10

0x010 ICM_UIHVAL4 f0 e1 d2 c3

 917SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

43. Classical Public Key Cryptography Controller (CPKCC)

43.1 Description
The Classical Public Key Cryptography Controller (CPKCC) is an Atmel macrocell that processes public key
cryptography algorithm calculus in both GF(p) and GF(2^n) fields. The ROMed CPKCL, the Classical Public Key
Cryptography Library, is the library built on the top of the CPKCC.

The Classical Public Key Cryptography Library includes complete implementation of the following public key
cryptography algorithms:
 RSA, DSA:

 Modular Exponentiation with CRT up to 6144 bits.
 Modular Exponentiation without CRT up to 5408 bits.
 Prime generation.
 Utilities: GCD/modular Inverse, Divide, Modular reduction, Multiply…

 Elliptic Curves:
 ECDSA up to 1504 bits.
 Point Multiply.
 Point Add/Doubling.
 Elliptic Curves in GF(p) or GF(2^n).
 Choice of the curves parameters so compatibility with NIST Curves or others.

 Deterministic Random Number Generation (DRNG ANSI X9.31) for DSA.

43.2 Product Dependencies

43.2.1 Power Management

The CPKCC is not continuously clocked. The CPCKCC interface is clocked through the Power Management
Controller (PMC).

43.2.2 Interrupt Sources

The CPKCC has an interrupt line connected to the Nested Vector Interrupt Controller (NVIC). Handling interrupts
requires programming the NVIC before configuring the CPKCC.

43.3 Functional Description
The CPKCC macrocell is managed by the CPKCL Library available in the ROM memory of the microcontroller. The
user interface of the CPKCC is not described in this chapter.

The usage description of the CPKCC and its associated Library is provided in a separate document. Contact an Atmel
Sales Representative for further details.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 918

44. True Random Number Generator (TRNG)

44.1 Description
The True Random Number Generator (TRNG) passes the American NIST Special Publication 800-22 (A Statistical
Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications) and the Diehard Suite
of Tests.

The TRNG may be used as an entropy source for seeding an NIST approved DRNG (Deterministic RNG) as required
by FIPS PUB 140-2 and 140-3.

44.2 Embedded Characteristics
 Passes NIST Special Publication 800-22 Test Suite.
 Passes Diehard Suite of Tests.
 May be Used as Entropy Source for Seeding a NIST-approved DRNG (Deterministic RNG) as required by FIPS

PUB 140-2 and 140-3.
 Provides a 32-bit Random Number Every 84 Clock Cycles.

44.3 Block Diagram

Figure 44-1. TRNG Block Diagram

44.4 Product Dependencies

44.4.1 Power Management

The TRNG interface may be clocked through the Power Management Controller (PMC), thus the programmer must
first configure the PMC to enable the TRNG user interface clock. The user interface clock is independent from any
clock that may be used in the entropy source logic circuitry. The source of entropy can be enabled before enabling the
user interface clock.

44.4.2 Interrupt Sources

The TRNG interface has an interrupt line connected to the Interrupt Controller. In order to handle interrupts, the
Interrupt Controller must be programmed before configuring the TRNG.

User Interface

APB

Interrupt
Controller

PMC Entropy Source
MCK

TRNG

Control Logic

Table 44-1. Peripheral IDs

Instance ID

TRNG 33

 919SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

44.5 Functional Description
As soon as the TRNG is enabled in the Control register (TRNG_CR), the generator provides one 32-bit value every 84
clock cycles.

The TRNG interrupt line can be enabled in the Interrupt Enable register (TRNG_IER), and disabled in the Interrupt
Disable register (TRNG_IDR). This interrupt is set when a new random value is available and is cleared when the
Status register (TRNG_ISR) is read. The flag TRNG_ISR.DATRDY is set when the random data is ready to be read
out on the 32-bit Output Data register (TRNG_ODATA).

The normal mode of operation checks that the flag in TRNG_ISR equals ‘1’ before reading TRNG_ODATA when a
32-bit random value is required by the software application.

Figure 44-2. TRNG Data Generation Sequence

44.6 True Random Number Generator (TRNG) User Interface

84 clock cycles 84 clock cycles84 clock cycles

Read TRNG_ISR
Read TRNG_ODATA

Read TRNG_ISR
Read TRNG_ODATA

Clock

TRNG Interrupt Line

TRNG_CR.ENABLE = 1

Table 44-2. Register Mapping

Offset Register Name Access Reset

0x00 Control Register TRNG_CR Write-only –

0x04 - 0x0C Reserved – – –

0x10 Interrupt Enable Register TRNG_IER Write-only –

0x14 Interrupt Disable Register TRNG_IDR Write-only –

0x18 Interrupt Mask Register TRNG_IMR Read-only 0x0000_0000

0x1C Interrupt Status Register TRNG_ISR Read-only 0x0000_0000

0x20 - 0x4C Reserved – – –

0x50 Output Data Register TRNG_ODATA Read-only 0x0000_0000

 0x54 - 0xFC Reserved – – –

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 920

44.6.1 TRNG Control Register

Name: TRNG_CR

Address: 0x40048000

Access: Write-only

• ENABLE: Enables the TRNG to Provide Random Values
0: Disables the TRNG.

1: Enables the TRNG if 0x524E47 (“RNG” in ASCII) is written in KEY field at the same time.

• KEY: Security Key

31 30 29 28 27 26 25 24
KEY

23 22 21 20 19 18 17 16
KEY

15 14 13 12 11 10 9 8
KEY

7 6 5 4 3 2 1 0
– – – – – – – ENABLE

Value Name Description

0x524E47 PASSWD Writing any other value in this field aborts the write operation.

 921SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

44.6.2 TRNG Interrupt Enable Register

Name: TRNG_IER

Address: 0x40048010

Access: Write-only

• DATRDY: Data Ready Interrupt Enable
0: No effect.

1: Enables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – DATRDY

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 922

44.6.3 TRNG Interrupt Disable Register

Name: TRNG_IDR

Address: 0x40048014

Access: Write-only

• DATRDY: Data Ready Interrupt Disable
0: No effect.

1: Disables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – DATRDY

 923SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

44.6.4 TRNG Interrupt Mask Register

Name: TRNG_IMR

Address: 0x40048018

Access: Read-only

• DATRDY: Data Ready Interrupt Mask
0: The corresponding interrupt is not enabled.

1: The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – DATRDY

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 924

44.6.5 TRNG Interrupt Status Register

Name: TRNG_ISR

Address: 0x4004801C

Access: Read-only

• DATRDY: Data Ready (Cleared on Read)
0: Output data is not valid or TRNG is disabled.

1: New random value is completed since the last read of TRNG_ODATA.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – –

7 6 5 4 3 2 1 0
– – – – – – – DATRDY

 925SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

44.6.6 TRNG Output Data Register

Name: TRNG_ODATA

Address: 0x40048050

Access: Read-only

• ODATA: Output Data
The 32-bit Output Data register contains the 32-bit random data.

31 30 29 28 27 26 25 24
ODATA

23 22 21 20 19 18 17 16
ODATA

15 14 13 12 11 10 9 8
ODATA

7 6 5 4 3 2 1 0
ODATA

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 926

45. Electrical Characteristics

45.1 Absolute Maximum Ratings

Table 45-1. Absolute Maximum Ratings*
*NOTICE: Stresses beyond those listed under “Absolute Maxi-

mum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional
operation of the device at these or other conditions
beyond those indicated in the operational sections of
this specification is not implied. Exposure to abso-
lute maximum rating conditions for extended
periods may affect device reliability.

Storage Temperature-55°C to + 125°C

Power Supply inputs with respect to ground pins:

VDDCORE, VDDPLL, VDDOUT PLC,

VDDPLL PLC, VDDOUT AN ...1.4V

VDDBU, VDDIO, VDDIN, VDDLCD,

VDDIN PLC, VDDIN AN ..4.0V

Voltage on VDDIO Digital Input Pins with

Respect to ground -0.3V to VDDIO +0.3V

Voltage on VDDBU Digital Input Pins with

Respect to ground -0.3V to VDDBU +0.3V

45.2 Recommended Operating Conditions

Table 45-2. Recommended Operating Conditions on Power supply Inputs

Symbol Parameter Conditions Min Typ Max Unit

VDDCORE Core logic power supply 1.08 1.20 1.32 V

VDDBU Backup region power supply 1.62 3.3 3.6 V

VDDIO I/Os power supply 3.0 3.3 3.6 V

VDDIN
Analog cells (Voltage Regulators,
10-bit ADC, temperature sensor)
power supply

2.5 3.3 3.6 V

VDDLCD LCD output buffers power supply 2.4 — 3.6 V

VDDPLL PLLs and Main crystal oscillator power
supply 1.08 1.20 1.32 V

VDDIN PLC PLC Digital Regulator input 3.0 3.3 3.6 V

VDDIN AN PLC Analog Regulator input 3.0 3.3 3.6 V

VDDPLL PLC PLC PLL Power Supply 1.08 1.20 1.32 V

fMCK Master clock frequency
VDDCORE @ 1.20V, TA = 85°C
VDDCORE @ 1.08V, TA = 85°C

— —
120
100

MHz

 927SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

45.3 Electrical Parameters Usage
The tables that follow further on in Section 45.4 “I/O Characteristics”, Section 45.5 “Embedded Analog Peripherals
Characteristics”, Section 45.6 “Embedded Flash Characteristics” and Section 45.7 “Power Supply Current Consump-
tion” define the limiting values for several electrical parameters. Unless otherwise noted, these values are valid over
the ambient temperature range TA= [-40°C + 85°C]. Note that these limits may be affected by the board on which the
MCU is mounted. Particularly, noisy supply and ground conditions must be avoided and care must be taken to
provide:

 a PCB with a low impedance ground plane (unbroken ground planes are strongly recommended).
 low impedance decoupling of the MCU power supply inputs. A 100 nF Ceramic X7R (or X5R) capacitor placed

very close to each power supply input is a minimum requirement. See special recommendations regarding
integrated analog functions like voltage reference or voltage regulators in corresponding sections.

 low impedance power supply decoupling of external components. This recommendation aims at avoiding
current spikes travelling into the PCB ground plane.

45.4 I/O Characteristics

45.4.1 I/O DC Characteristics

Table 45-3. Recommended Operating Conditions on Input Pins

Symbol Parameter Conditions Min Typ Max Unit

AD [x]IN
Input voltage range on 10-bit ADC
analog inputs

On AD[0..x] 0 —
min

(VDDIN,
VDDIO)

V

VGPIO_IN Input voltage range on GPIOs On any pin configured as a
digital input 0 — VDDIO V

VVDDBU_IN
Input voltage range on inputs
referenced to VDDBU

On FWUP, TMP0 and XIN32
inputs 0 — VDDBU V

Table 45-4. Recommended Thermal Operating Conditions

Symbol Parameter Conditions Min Typ Max Unit

TA Ambient temperature range -40 — 85
°C

TJ Junction temperature range -40 — 100

RJA Junction-to-ambient thermal resistance LQFP 176 package — 38 — °C / W

PD Power dissipation
TA = 70 ºC
TA = 85 ºC

— —
789
394

mW

Table 45-5. I/O DC Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VIL
(1) Low-level input voltage 3.0V < VDDIO < 3.6V — — 0.3 x VDDIO V

VIH
(1) High-level input voltage 3.0V < VDDIO < 3.6V 0.7 x VDDIO — — V

VOH
(2) High-level output voltage

3.0V < VDDIO < 3.6V
IOH = 0
IOH > 0 (See IOH details below)

VDDIO
VDDIO - 0.4

— — V

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 928

VOL
(2) Low-level output voltage

3.0V < VDDIO < 3.6V
IOL = 0
IOL > 0 (See IOL details below)

— — 0
0.4

V

IOH High-Level output current

PA0,PA29,PB13,PC0,PC5 pins(3)

mA

VDDIO = 3.0V; VOH = VVDDIO - 0.4
VDDIO = 3.3V; VOH = VVDDIO - 0.4
VDDIO = 3.6V; VOH = VVDDIO - 0.4

— —
-7
-7
-11

Other GPIO pins, Low Drive(2)(4)

VDDIO = 3.0V; VOH = VVDDIO - 0.4
VDDIO = 3.3V; VOH = VVDDIO - 0.4
VDDIO = 3.6V; VOH = VVDDIO - 0.4

— —
-3
-5
-6

Other GPIO pins, High Drive(4)

VDDIO = 3.0V; VOH = VVDDIO - 0.4
VDDIO = 3.3V; VOH = VVDDIO - 0.4
VDDIO = 3.6V; VOH = VVDDIO - 0.4

— —
-6
-8
-8

Relaxed Mode(5)
PA0,PA29,PB13,PC0,PC5 pins(3)

VDDIO = 3.0V; VOH = VVDDIO - 0.6
VDDIO = 3.3V; VOH = 2.2V
VDDIO = 3.6V; VOH = 2.4V

— —
-12
-22
-26

Relaxed Mode(5)

Other GPIO pins, Low Drive(2)(4)

VDDIO = 3.0V; VOH = VVDDIO - 0.6
VDDIO = 3.3V; VOH = 2.2V
VDDIO = 3.6V; VOH = 2.4V

— —
-5
-12
-13

Relaxed Mode(5)

Other GPIO pins, High Drive(4)

VDDIO = 3.0V; VOH = VVDDIO - 0.6
VDDIO = 3.3V; VOH = 2.2V
VDDIO = 3.6V; VOH = 2.4V

— —
-10
-20
-24

IOL Low-Level output current

3.0V < VDDIO < 3.6V; VOL = 0.4V

mA

PA0,PA29,PB13,PC0,PC5 pins(3)

Other GPIO pins, Low Drive(2)(4)

Other GPIO pins, High Drive(4)
— —

9
8
10

Relaxed Mode(5)

3.0V < VDDIO < 3.6V; VOL = 0.6V

PA0,PA29,PB13,PC0,PC5 pins(3)

Other GPIO pins, Low Drive(2)(4)

Other GPIO pins, High Drive(4)
— —

13
10
13

VHYST Hysteresis Voltage Hysteresis mode enabled 150 — — mV

Table 45-5. I/O DC Characteristics (Continued)

Symbol Parameter Conditions Min Typ Max Unit

 929SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Notes: 1. Read VDDBU instead of VDDIO for VDDBU-referenced inputs (XIN32, FWUP, TMP0/WKUP0).
2. Read VDDBU instead of VDDIO for SHDN output referenced to VDDBU.
3. These I/O lines have permanent non-programmable maximum drive (MaxDRV).
4. Refer to “Peripheral Signal Multiplexing on I/O Lines” tables in Section “Peripherals”.
5. The Relaxed mode applies for cases of higher output current on the I/O lines that override standard VOL and VOH

definitions.

45.4.2 I/O AC Characteristics
Criteria used to define the maximum frequency of the I/Os:

 Output duty cycle (40% - 60%).
 Minimum output swing: 100 mV to VDDIO - 100 mV.
 Minimum output swing: 100 mV to VDDIO - 100 mV.
 Addition of rising and falling time inferior to 75% of the period.

Notes: 1. Pin Group 1 = PA0, PA29, PB13, PC0, PC5 pins.
2. Other pins, low drive settings.
3. Other pins, high drive settings.

IIL
Input Low
Leakage Current

No pull-up or pull-down; VIN = GND;
VVDDIO Max.
(Typ: TA = 25°C, Max: TA = 85°C)

- PA0,PA29,PB13,PC0,PC5 pins(3)

- PB16,PB17,PB18,PB19,PB20,PB21 pins
- Other pins

—
12
5
4

57
41
7

nA

IIH
Input High
Leakage Current

No pull-up or pull-down; VIN = VDD;
VVDDIO Max.
(Typ: TA = 25°C, Max: TA = 85°C)

- PA0,PA29,PB13,PC0,PC5 pins(3)

- PB16,PB17,PB18,PB19,PB20,PB21 pins
- Other pins

—
15
1.7
5

150
9
14

nA

RPULLUP Pull-up Resistor
Digital Input Mode

70 100 130 kΩ

RPULLDOWN Pull-down Resistor 70 100 130 kΩ

RODT
On-die Series Termination
Resistor — 36 — Ω

CPAD Input Capacitance I/O configured as digital input — — 5 pF

Table 45-5. I/O DC Characteristics (Continued)

Symbol Parameter Conditions Min Typ Max Unit

Table 45-6. Output AC Characteristics
Symbol Parameter Conditions Min Max Unit

FreqMax1 Pin Group 1 (1) Maximum output frequency
10 pF

VVDDIO = 3.3V
— 70

MHz

30 pF — 45

FreqMax2 Pin Group 2 (2)Maximum output frequency
10 pF

VVDDIO = 3.3V
— 35

25 pF — 15

FreqMax3 Pin Group3 (3)Maximum output frequency
10 pF

VVDDIO = 3.3V
— 70

25 pF — 35

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 930

Table 45-7 provides the input characteristics of the I/O lines with voltage references to VDDIO. In particular, these
values apply when the XIN input is used as a clock input of the device (oscillator set in bypass mode). They do not
apply for the XIN32 input which is made for slow signals with frequencies up to 50 kHz. VIL and VIH parameters
defined in Table 45-5 apply.

45.4.3 SPI Characteristics

Figure 45-1. SPI Master Mode with (CPOL= NCPHA = 0) or (CPOL= NCPHA= 1)

Figure 45-2. SPI Master Mode with (CPOL = 0 and NCPHA=1) or (CPOL=1 and NCPHA= 0)

Table 45-7. Input AC Characteristics

Symbol Parameter Conditions Min Typ Max Unit

fIN Input frequency — — 50 MHz

tIN Input period 20 — —

ns

tHIGH Time at high level 8 — —

tLOW Time at low level 8 — —

tR Rise Time — — 2.2

tF Fall Time — — 2.2

tIN

tLOW

tHIGH tHIGH

tR tF

VIL

VIH

SPCK

MISO

MOSI

SPI2

SPI0 SPI1

SPCK

MISO

MOSI

SPI5

SPI3 SPI4

 931SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Figure 45-3. SPI Slave Mode with (CPOL=0 and NCPHA=1) or (CPOL=1 and NCPHA=0)

Figure 45-4. SPI Slave Mode with (CPOL = NCPHA = 0) or (CPOL= NCPHA= 1)

45.4.3.1 Maximum SPI Frequency

The formulas that follow give the maximum SPI frequency in Master Write and Read modes, and in Slave Read and
Write modes.

Master Write Mode

The SPI is only sending data to a slave device such as an LCD, for example. The limit is given by SPI2 (or SPI5)
timing. Since it gives a maximum frequency above the maximum pad speed (see Section 45.4.2 “I/O AC Characteris-
tics”), the max SPI frequency is the one from the pad.

Master Read Mode

tval id is the slave time response to output data after detecting an SPCK edge. For Atmel SPI DataFlash
(AT45DB642D), tvalid (or tv) is 12 ns Max.

In the formula above, fSPCKMax = 40 MHz @ VDDIO = 3.3V.

SPCK

MISO

MOSI

SPI6

SPI7 SPI8

NPCSS

SPI12
SPI13

SPCK

MISO

MOSI

SPI9

SPI10 SPI11

NPCS0

SPI14

SPI15

f SPCKMax 1
SPI0 orSPI3  tvalid+
--=

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 932

Slave Read Mode

In Slave mode, SPCK is the input clock for the SPI. The max SPCK frequency is given by setup and hold timings
SPI7/SPI8(or SPI10/SPI11). Since this gives a frequency well above the pad limit, the limit in Slave Read mode is given
by the SPCK pad.

Slave Write Mode

tsetup is the setup time from the master before sampling data.

45.4.3.2 SPI Timings

Note: VVDDIO from 3.0V to 3.6V, maximum external capacitor = 10 pF.

Note that in SPI Master mode, the device does not sample the data (MISO) on the opposite edge where data clocks
out (MOSI) but the same edge is used as shown in Figure 45-1 and Figure 45-2.

f SPCKMax 1
2x S PI6max orSPI9max  tsetup +
--=

Table 45-8. SPI Timings

Symbol Parameter Min Max Unit

SPI0 MISO setup time before SPCK rises (master) 15.3 —

ns

SPI1 MISO hold time after SPCK rises (master) -3.9 —

SPI2 SPCK rising to MOSI delay (master) -5.5 1.5

SPI3 MISO setup time before SPCK falls (master) 21.7 —

SPI4 MISO hold time after SPCK falls (master) -8.1 —

SPI5 SPCK falling to MOSI delay (master) -9.9 -4.2

SPI6 SPCK falling to MISO delay (slave) 3.9 13.8

SPI7 MOSI setup time before SPCK rises (slave) 0.4 —

SPI8 MOSI hold time after SPCK rises (slave) 3.9 —

SPI9 SPCK rising to MISO delay (slave) 4.0 14.4

SPI10 MOSI setup time before SPCK falls (slave) 1.1 —

SPI11 MOSI hold time after SPCK falls (slave) 2.8 —

SPI12 NPCS setup to SPCK rising (slave) 3.8 —

SPI13 NPCS hold after SPCK falling (slave) -29.9 —

SPI14 NPCS setup to SPCK falling (slave) 4.5 —

SPI15 NPCS hold after SPCK falling (slave) -28.7 —

 933SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

45.4.4 USART in SPI Mode Timings
Timings are given in the following domain:

 VVDDIO from 3.0V to 3.6V, maximum external capacitor = 10 pF.

Figure 45-5. USART SPI Master Mode

Figure 45-6. USART SPI Slave Mode: (Mode 1 or 2)

Figure 45-7. USART SPI Slave Mode: (Mode 0 or 3)

NSS

SPI0

MSB LSB

SPI1

CPOL=1

CPOL=0

MISO

MOSI

SCK

SPI5

SPI2

SPI3

SPI4
SPI4

• the MOSI line is driven by the output pin TXD
• the MISO line drives the input pin RXD
• the SCK line is driven by the output pin SCK
• the NSS line is driven by the output pin RTS

SCK

MISO

MOSI

SPI6

SPI7 SPI8

NSS

SPI12
SPI13

• the MOSI line drives the input pin RXD
• the MISO line is driven by the output pin TXD
• the SCK line drives the input pin SCK
• the NSS line drives the input pin CTS

SCK

MISO

MOSI

SPI9

SPI10 SPI11

NSS

SPI14
SPI15

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 934

45.4.4.1 USART SPI Timings

Table 45-9. USART SPI Timings

Symbol Parameter Min Max Unit

Master Mode

SPI0 SCK period 6 / MCK —

ns

SPI1 Input data setup time 0.5 * MCK + 1.1 —

SPI2 Input data hold time 1.5 * MCK + 4.8 —

SPI3 Chip select active to serial clock 1.5 * SPCK + 0.9 —

SPI4 Output data setup time - 6.7 7.1

SPI5 Serial clock to chip select inactive 1 * SPCK - 6.0 —

Slave Mode

SPI6 SCK falling to MISO 6.8 20.7

ns

SPI7 MOSI setup time before SCK rises 2 * MCK + 0.2 —

SPI8 MOSI hold time after SCK rises 4.2 —

SPI9 SCK rising to MISO 8.1 19.8

SPI10 MOSI setup time before SCK falls 2 * MCK + 1 —

SPI11 MOSI hold time after SCK falls 5.2 —

SPI12 NPCS0 setup to SCK rising 2.5 * MCK - 0.4 —

SPI13 NPCS0 hold after SCK falling 1.5 * MCK + 5.5 —

SPI14 NPCS0 setup to SCK falling 2.5 * MCK + 0.2 —

SPI15 NPCS0 hold after SCK rising 1.5 * MCK + 4.5 —

 935SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

45.5 Embedded Analog Peripherals Characteristics

45.5.1 Core Voltage Regulator

Notes: 1. Current needed to charge the external bypass/decoupling capacitor network.
2. A ceramic capacitor must be connected between VDDIN and the closest GND pin of the device.

This decoupling capacitor is mandatory to reduce inrush current and to improve transient response and
noise rejection.

3. To ensure stability, an external output capacitor, COUT must be connected between the VDDOUT and the
closest GND pin of the device. The ESR (Equivalent Series Resistance) of the capacitor must be in the
range of 0.01 to 10 Ω.
Solid tantalum, and multilayer ceramic capacitors are all suitable as output capacitors. An additional
100 nF bypass capacitor between VDDOUT and the closest GND pin of the device helps decrease out-
put noise and improves the load transient response.

Table 45-10. Core Voltage Regulator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VVDDIN
Supply Voltage Range
(VDDIN) 2.5 3.3 3.6 V

VVDDOUT DC Output Voltage
Normal Mode
Standby Mode

—
1.2
0

— V

ILOAD Maximum DC Output Current VVDDIN > 2.5V TJ= 100ºC — — 120 mA

ACC Output Voltage Total Accuracy
ILOAD = 0.8 mA to 120 mA
VVDDIN = 2.5V to 3.6V

TJ= [-40ºC to 100ºC]
-5 — 5 %

IINRUSH Inrush current ILOAD = 0. See note(1). — — 400 mA

IVDDIN
Current Consumption
(VDDIN)

Normal Mode; ILoad = 0 mA
Normal Mode; ILoad = 120 mA
Standby Mode;

—
5

500
0.02 1

μA

CIN Input Decoupling Capacitor(2) 1 — — μF

COUT Output Capacitor(3)
Capacitance

ESR

0.7

0.01

2.2 10

10

μF

Ω

tON Turn on time
COUT= 2.2 μF, VVDDOUT reaches 1.2V
(+/- 3%)

— 500 — μs

tOFF Turn off time COUT= 2.2 μF — — 40 ms

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 936

45.5.2 PLC DC Characteristics

Table 45-11. PLC DC Characteristics

Parameter Condition Symbol
Rating

Unit
Min Typ Max

Supply Voltage VDDIO 3.00 3.30 3.60

V

H-level Input Voltage (3.3V CMOS) VIH 2.0 - VDDIO+0.3

L-level Input Voltage (3.3V CMOS) VIL -0.3 - 0.8

H-level Output Voltage
3.3V I/O

IOH = -100 μA
VOH VDDIO-0.2 - VDDIO

L-level Output Voltage
3.3V I/O

IOL = 100 μA
VOL 0 - 0.2

H-level Output V - I Characteristics
3.3V I/O

VDDIO=3.3±0.3
IOH See “V-I curves” section

mA

L-level Output V - I Characteristics
3.3V I/O

VDDIO=3.3±0.3
IOL See “V-I curves” section

Internal Pull-up Resistor 3.3V I/O Rpu 15 33 70
kΩ

Internal Pull-down Resistor 3.3V I/O Rpd 15 33 70

 937SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

45.5.2.1 V-I curves
V-I Characteristics 3.3V standard CMOS IO L, M type

Apply to pins INTEST4, AGC0, AGC3

Condition: MIN Process = Slow TJ = 125°C VDDIO = 3.0V

TYP Process = Typical TJ = 25°C VDDIO = 3.3V

MAX Process = Fast TJ = -40°C VDDIO = 3.6V

Figure 45-8. V-I curves for pins INTEST4, AGC0, AGC3

Apply to pins INTEST3, AGC1, AGC4

Condition: MIN Process = Slow TJ = 125°C VDDIO = 3.0V

TYP Process = Typical TJ = 25°C VDDIO = 3.3V

MAX Process = Fast TJ = -40°C VDDIO = 3.6V

Figure 45-9. V-I curves for pins INTEST3, AGC1, AGC4

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 938

Apply to pins CLKOUT, TXRX0, TXRX1

Condition: MIN Process = Slow TJ = 125°C VDDIO = 3.0V

TYP Process = Typical TJ = 25°C VDDIO = 3.3V

MAX Process = Fast TJ = -40°C VDDIO = 3.6V

Figure 45-10. V-I curves for pins CLKOUT, TXRX0, TXRX1

Apply to pins EMIT [0:11], AGC2, AGC5

Condition: MIN Process = Slow TJ = 125°C VDDIO = 3.0V

TYP Process = Typical TJ = 25°C VDDIO = 3.3V

MAX Process = Fast TJ = -40°C VDDIO = 3.6V

Figure 45-11. V-I curves for pins EMIT [0:11], AGC2, AGC5

 939SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

45.5.3 Automatic Power Switch

45.5.4 LCD Voltage Regulator and LCD Output Buffers
The LCD Voltage Regulator is a complete solution to drive an LCD display. It integrates a low-power LDO regulator
with programmable output voltage and buffers to drive the LCD lines. A 1 μF capacitor is required at the LDO regula-
tor output (VDDLCD). This regulator can be set in Active (Normal) mode, in Bypass mode (HiZ mode), or in OFF
mode.

 In Normal mode, the VDDLCD LDO regulator output can be selected from 2.4V to 3.5V using LCDVROUT bits
in the Supply Controller Mode Register (SUPC_MR), with the conditions:

 VDDLCD  VDDIO and,
 VDDLCD  VDDIN - 150 mV.

 In Bypass mode (HiZ mode), the VDDLCD is set in high impedance (through the LCDMODE bits in SUPC_MR
register), and can be forced externally. This mode can be used to save the LDO operating current (4 μA).

 In OFF mode, the VDDLCD output is pulled down.
IMPORTANT: When using an external or the internal voltage regulator, VDDIO and VDDIN must be still supplied with
the conditions: 2.4V  VDDLCD  VDDIO/VDDIN and VDDIO/VDDIN ≥ 2.5V.

Table 45-12. Automatic Power Switch Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VIT+ Positive-going input threshold voltage (VDDIO) 1.9 — 2.2 V

VIT- Negative-going input threshold voltage (VDDIO) 1.8 — 2.1 V

VIT_HYST Threshold Hysteresis — 100 — mV

Table 45-13. LCD Voltage Regulator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VVDDIN Supply Voltage Range (VDDIN) 2.5 — 3.6 V

VVDDLCD

Programmable Output Range
See Table 45-14.

2.4 — 3.6 V

Output voltage Accuracy -10 — +10 %

IVDDIN Current Consumption (VDDIN) LDO Enabled — — 4 μA

dVOUT / dVDDIN VDDLCD variation with VDDIN — -50 -70 mV/V

ILOAD Output Current
DC or transient load averaged by
the external decoupling capacitor

— — 2 mA

COUT Output Capacitor on VDDLCD 1 — 10 μF

tON Start-up Time COUT = 1 μF — — 1 ms

Table 45-14. VDDLCD Voltage Selection at VDDIN = 3.6V

LCDVROUT
VDDLCD

(V) LCDVROUT
VDDLCD

(V) LCDVROUT
VDDLCD

(V) LCDVROUT
VDDLCD

(V)

0 2.86 4 2.57 8 3.45 12 3.16

1 2.79 5 2.50 9 3.38 13 3.09

2 2.72 6 2.43 10 3.31 14 3.02

3 2.64 7 2.36 11 3.23 15 2.95

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 940

45.5.5 VDDCORE Brownout Detector

Notes: 1. The product is guaranteed to be functional at VIT-

Figure 45-12. Core Brownout Output Waveform

Figure 45-13. Core Brownout Transfer Characteristics

Table 45-15. LCD Buffers Characteristics

Symbol Parameter Conditions Min Typ Max Unit

IVDDIN Current Consumption (VDDIN) LDO enabled — 25 35 μA

ZOUT Buffer Output Impedance GPIO in LCD mode (SEG or COM) 200 500 1500 Ω

CLOAD Capacitive Output Load 10p — 50n F

tR / tF
Rising or falling time
95% convergence

CLOAD = 10 pF
CLOAD = 50 nF

— —
3

225
μs

Table 45-16. Core Power Supply Brownout Detector Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VIT-
Negative-going input threshold
voltage (VDDCORE) (1) 0.98 1.0 1.04 V

VIT+
Positive-going input threshold
voltage (VDDCORE) 0.80 1.0 1.08 V

VHYST Hysteresis Voltage VIT+ - VIT- — 25 50 mV

td- VIT- detection propagation time VDDCORE = VIT+ to (VIT- - 100mV) — 200 300 ns

tON Start-up Time From disabled state to enabled state — — 300 μs

IVDDCORE Current Consumption (VDDCORE) Brownout detector enabled — — 15 μA

IVDDIO Current Consumption (VDDIO) Brownout detector enabled — — 18 μA

t

VDDCORE

VIT-

VIT+

BODCORE_out

t

td+td-

VDDCORE

Increasing Supply

Vhyst

Decreasing Supply

Vth- Vth+

BODCORE_out

 941SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

45.5.6 VDDCORE Power-On-Reset

45.5.7 VDDIO Supply Monitor

Notes: 1. The average current consumption can be reduced by using the supply monitor in Sampling mode. See
the Supply Controller section.

2. VHYST = VTH+ - VTH-. VTH+ is the positive-going input threshold voltage (VDDIO).

Table 45-17. Core Power Supply Power-On-Reset Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VIT-
Negative-going input threshold
voltage (VDDCORE) 0.71 0.9 1.02 V

VIT+
Positive-going input threshold
voltage (VDDCORE) 0.80 1.0 1.08 V

VHYST Hysteresis Voltage VIT+ - VIT- — 60 110 mV

td- VIT- detection propagation time VDDCORE = VIT+ to (VIT- - 100mV) — — 15 μs

tON Start-up Time VDDCORE rising from 0 to final
value. Time to release reset signal. — — 300 μs

IVDDCORE Current Consumption (VDDCORE) — — 6 μA

IVDDIO Current Consumption (VDDIO) — — 9 μA

Table 45-18. VDDIO Supply Monitor

Symbol Parameter Conditions Min Typ Max Unit

VTH-
Programmable range of negative-
going input threshold voltage (VDDIO) 4 selectable steps 3.0 — 3.4 V

ACC VTH- Accuracy With respect to programmed value -2.5 — +2.5 %

VHYST Hysteresis(2) — 30 40 mV

IDDON Current Consumption (VDDIO)(1) On with a 100% duty cycle — 20 40 μA

tON Start-up Time From OFF to ON — — 300 μs

Table 45-19. VDDIO Supply Monitor VTH- Threshold Selection

Digital Code Threshold typ (V)

1100 3.04

1101 3.16

1110 3.28

1111 3.40

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 942

45.5.8 VDDBU Power-On-Reset

Figure 45-14. Zero-Power-On Reset Characteristics

45.5.9 VDDIO Power-On-Reset

Table 45-20. Zero-Power-On POR (Backup POR) Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VTH+ Positive-going input threshold voltage (VDDBU) At Startup 1.45 1.53 1.59 V

VTH- Negative-going input threshold voltage (VDDBU) 1.35 1.45 1.55 V

IVDDBU Current Consumption Enabled — 300 700 nA

tRES Reset Time-out Period 100 240 500 μs

VIT-

VIT+

VDDBU

PORBUSW_out

Table 45-21. Zero-Power-On POR (VDDIO POR) Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VTH+ Positive-going input threshold voltage (VDDIO) At Startup 1.45 1.53 1.59 V

VTH- Negative-going input threshold voltage (VDDIO) 1.35 1.45 1.55 V

IVDDIO Current Consumption — 300 700 nA

tRES Reset Time-out Period 100 240 500 μs

 943SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

45.5.10 Oscillator Characteristics

45.5.10.1 32 kHz RC Oscillator

45.5.10.2 4/8/12 MHz RC Oscillators

Notes: 1. The frequency range can be configured in the PMC Clock Generator.

Table 45-22. 32 kHz RC Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VVDDBU Supply voltage range (VDDBU) 1.62 3.3 3.6 V

f0 Frequency initial accuracy
VDDBU = 3.3V,
TA = 27°C

26 32 39 kHz

dF/dV Frequency drift with VDDBU VDDBU from 1.6V to 3.6V 0.5 1.5 2.5 % / V

dF/dT Frequency drift with temperature
TA = [-40°C to +27°C] — +8 +17

%
TA = [27°C to 85°C] — +6 +13

Duty Duty cycle 48 50 52 %

tON Start-up time — — 100 μs

IDDON Current consumption (VDDBU) — 150 300 nA

Table 45-23. 4/8/12 MHz RC Oscillators Characteristics
Symbol Parameter Conditions Min Typ Max Unit
VVDDCORE Supply voltage range (VDDCORE) 1.08 1.2 1.32 V

fRange Output frequency range(1) 4 — 12 MHz

ACC4
4 MHz range;
total accuracy

-40°C < TA < +85°C — — ± 30 %

ACC8 8 MHz range;
total accuracy

VDDCORE from 1.08V to 1.32V
TA = 25°C
0°C < TA < +70°C

-40°C < TA < +85°C

— —
± 1.0
± 3.0

± 5.0

%

ACC12
12 MHz range;
total accuracy

VDDCORE from 1.08V to 1.32V
TA = 25°C
0°C < TA < +70°C

-40°C < TA < +85°C

— —
± 1.0
± 3.0

± 5.0

%

fSTEP Frequency trimming step size 8 MHz
12 MHz —

47

64
— kHz

Duty Duty cycle 45 50 55 %

tON Start-up time, MOSCRCEN from 0 to 1 — — 10 μs

tSTAB
Stabilization time on RC Frequency
change (MOSCRCF) — — 5 μs

IDDON
Active Current Consumption
(VDDCORE)

4 MHz
8 MHz
12 MHz

—
50
65
82

68
86
102

μA

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 944

45.5.10.3 32.768 kHz Crystal Oscillator

Notes: 1. RS is the series resistor.

Figure 45-15. 32.768 kHz Crystal Oscillator Schematic

 CLEXT32K = 2 x (CCRYSTAL – CPARA32K – CPCB / 2)

where CPCB is the ground referenced parasitic capacitance of the printed circuit board (PCB) on XIN32 and XOUT32
tracks. As an example, if the crystal is specified for a 12.5 pF load, with CPCB = 1 pF (on XIN32 and on XOUT32),
CLEXT32K = 2 x (12.5 - 0.7 - 0.5) = 22.6 pF

Table 45-24. 32.768 kHz Crystal Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VVDDBU Supply voltage range (VDDBU) 1.62 3.3 3.6 V

fREQ Operating frequency Normal mode with crystal — — 32.768 kHz

Duty Duty cycle 40 50 60 %

tON Start-up time

Rs(1) < 50 kΩ

Rs(1) < 100 kΩ

CCRYSTAL = 12.5pF
CCRYSTAL = 6pF

CCRYSTAL = 12.5pF
CCRYSTAL = 6pF

— —

900
300

1200
500

ms

IDDON Current consumption (VDDBU)

Rs(1) < 65 kΩ

Rs(1) < 100 kΩ

Rs(1) < 20 kΩ

CCRYSTAL = 12.5pF
CCRYSTAL = 6pF

CCRYSTAL = 6pF

CCRYSTAL = 6pF

—

450
280

350

220

950
850

1050

—

nA

PON Drive level — — 0.1 μW

RF Internal resistor Between XIN32 and XOUT32 — 10 — MΩ

CCRYSTAL Allowed crystal capacitive load From crystal specification 6 — 12.5 pF

CLEXT32K
External capacitor
on XIN32 and XOUT32 — — 24 pF

CPARA32K Internal parasitic capacitance Between XIN32 and XOUT32 0.6 0.7 0.8 pF

XIN32 XOUT32

CLEXT32KC LEXT32K

SAM4CP
CPARA32K

C PCB C PCB

 945SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Table 45-25 summarizes recommendations for 32.768 kHz crystal selection.

45.5.10.4 3 to 20 MHz Crystal Oscillator

Notes: 1. See “Crystal Oscillator Design Considerations” .
2. RS = 100 - 200 Ω; CS = 2.0 - 2.5 pF; CM = 2 - 1.5 fF(typ, worst case) using 1 kΩ serial resistor on XOUT.
3. RS = 50 - 100 Ω; CS = 2.0 - 2.5 pF; CM = 4 - 3 fF(typ, worst case).
4. RS = 25 - 50 Ω; CS = 2.5 - 3.0 pF; CM = 7 - 5 fF (typ, worst case).
5. RS = 20 - 50 Ω; CS = 3.2 - 4.0 pF; CM = 10 - 8 fF(typ, worst case).

Table 45-25. Recommended Crystal Characteristics

Symbol Parameter Conditions Min Typ Max Unit

ESR Equivalent Series Resistor (RS) Crystal @ 32.768 kHz — 50 100 kΩ

CM Motional capacitance Crystal @ 32.768 kHz 0.6 — 3 fF

CSHUNT Shunt capacitance Crystal @ 32.768 kHz 0.6 — 2 pF

Table 45-26. 3 to 20 MHz Crystal Oscillator Characteristics(1)

Symbol Parameter Conditions Min Typ Max Unit

VVDDIO Supply Voltage Range (VDDIO) 3.0 3.3 3.6 V

VVDDPLL Supply Voltage Range (VDDPLL) 1.08 1.2 1.32 V

fOSC Operating Frequency range Normal mode with crystal 3 16 20 MHz

Duty Duty Cycle 40 50 60 %

tON Start-up time

3 MHz, CSHUNT = 3 pF
8 MHz, CSHUNT = 7 pF
16 MHz, CSHUNT = 7 pF with CM = 8 fF
16 MHz, CSHUNT = 7 pF with CM = 1.6 fF
20 MHz, CSHUNT = 7 pF

— —

14.5
4

1.4
2.5
1

ms

IDDON

Current consumption
On VDDIO

On VDDPLL

3 MHz(2)

8 MHz(3)

16 MHz(4)

20 MHz(5)

3 MHz(2)

8 MHz(3)

16 MHz(4)

20 MHz(5)

—

230
300
390
450

6
12
20
24

350
400
470
560

7
14
23
30

μA

PON Drive level
3 MHz
8 MHz
16 MHz, 20 MHz

— —
15
30
50

μW

RF Internal resistor Between XIN and XOUT — 0.5 — MΩ

CCRYSTAL Allowed crystal capacitive load From crystal specification 12 — 18 pF

CLEXT External capacitor on XIN and XOUT — — 18 pF

CLINT Integrated load capacitance Between XIN and XOUT 7.5 9.5 10.5 pF

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 946

Figure 45-16. 3 to 20 MHz Crystal Oscillator Schematic

 CLEXT = 2 x (CCRYSTAL – CLINT – CPCB / 2)

where CPCB is the ground referenced parasitic capacitance of the printed circuit board (PCB) on XIN and XOUT tracks.
As an example, if the crystal is specified for an 18 pF load, with CPCB = 1 pF (on XIN and on XOUT), CLEXT = 2 x (18 -
9.5 - 0.5) = 16 pF

Table 45-27 summarizes recommendations to be followed when choosing a crystal.

Table 45-27. Recommend Crystal Characteristics

Symbol Parameter Conditions Min Typ Max Unit

ESR Equivalent Series Resistor (Rs)

Fundamental @ 3 MHz
Fundamental @ 8 MHz
Fundamental @ 12 MHz
Fundamental @ 16 MHz
Fundamental @ 20 MHz

— —

200
100
80
80
50

Ω

CM Motional capacitance — — 8 fF

CSHUNT Shunt capacitance — — 7 pF

XIN XOUT

C LEXT

C LINT

C LEXT

SAM4CP

R = 1K if Crystal Frequency
is lower than 8 MHz

C PCB C PCB

 947SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

45.5.10.5 24 MHz CLKEA (PLC) Crystal Oscillator Characteristics

Notes: 1. The crystal should be located as close as possible to CLKEB and CLKEA pins.
2. Recommended value for Cx is 17pF and Rs 220Ω. These values may depend on the specific crystal

characteristics and PCB layout. See example below. For further information please refer to Atmel
doc43084 “Crystal Selection Guidelines” application note.

3. As a requirement of G3 specification, the System Clock tolerance from which transmit frequency and
symbol timing are derived shall be ± 25 ppm maximum. Crystal Stability/Tolerance/Ageing values must
be selected according to standard G3 requirements.

Figure 45-17. 24 MHz Crystal Oscillator Schematic

 CX = 2 x (CXTAL – CPARA24M – CPCB / 2)

where CPCB is the ground referenced parasitic capacitance of the printed circuit board (PCB) on CLKEA and CLKEB
tracks.

Table 45-28. PLC 24 MHz Crystal Oscillator Characteristics

Parameter Test Condition Symbol
Rating

Unit
Min Typ Max

Crystal Oscillator frequency Fundamental Xtal 24 MHz

External Oscillator Capacitance(2)(3) CXTAL - 10 -

pFExternal capacitor on CLKEA and CLKEB(2)(3) CX - 17 -

Internal parasitic capacitance Between CLKEA and CLKEB CPARA24M - 1 -

H-level Input Voltage XVIH 2 - VDDIO +0.3
V

L-level Input Voltage XVIL -0.3 - 0.8

External Oscillator Parallel Resistance Rp not needed
Ω

External Oscillator Series Resistance(2) Rs - 220 -

CLKEA CLKEB

CXC X

SAM4CP
CPARA24M

C PCB C PCB

RS

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 948

As a practical example, taking the following crystal part number:

Manufacturer: TXC CORPORATION

Part Number: 7B-24.000MEEQ-T

Frequency: 24.000 MHz

Tolerance: 10 ppm (as low as possible to fullfil G3 specification requirements)

CXTAL = 10 pF
Working in a typical layout / substrate with CPCB = 1 pF

The value of the external capacitors on CLKEA and CLKEB should be CX = 2 x (10 - 1 - 0.5) = 17 pF

It is strongly recommended to use capacitors with the lowest temperature stability possible. In this practical example,
a suitable part number could be:

Manufacturer: MURATA

Part Number: GRM1885C1H150FA01D

Capacitance: 15 pF (commercial value close to 17 pF)

Tolerance: 1 %

Dielectric: C0G / NP0 (0 drift)

45.5.10.6 Crystal Oscillator Design Considerations
When choosing a crystal for the 32768 Hz Slow Clock Oscillator or for the 3 - 20 MHz Oscillator, several parameters
must be taken into account. Important parameters are as follows:

 Main Oscillator Input
CLKOUT signal is intended to be used as XIN (system main oscillator) input. When using an external
crystal/oscillator as XIN input instead CLKOUT signal, CLKOUT should be switched off by software to minimize
noise due to coupling in close pins.

 Crystal Load Capacitance
The total capacitance loading the crystal, including the oscillator’s internal parasitics and the PCB parasitics,
must match the load capacitance for which the crystal’s frequency is specified. Any mismatch in the load
capacitance with respect to the crystal’s specification will lead to inaccurate oscillation frequency.

 Crystal Drive Level
Use only crystals with the specified drive levels greater than the specified MCU oscillator drive level. Applica-
tions that do not respect this criterion may damage the crystal.

 Crystal Equivalent Series Resistor (ESR)
Use only crystals with the specified ESR lower than the specified MCU oscillator ESR. In applications where
this criterion is not respected, the crystal oscillator may not start.

 Crystal Shunt Capacitance
Use only crystal with the specified shunt capacitance lower than the specified MCU oscillator shunt capaci-
tance. In applications where this criterion is not respected, the crystal oscillator may not start.

 PCB Layout Considerations
To minimize inductive and capacitive parasitics associated with XIN, XOUT, XIN32, XOUT32, CLKEA, CLKEB
nets, it is recommended to route them as short as possible. It is also of prime importance to keep those nets
away from noisy switching signals (clock, data, PWM, etc...). A good practice is to shield them with a quiet
ground net to avoid coupling to neighboring signals.

 949SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

45.5.11 PLLA, PLLB Characteristics

Table 45-29. PLLA Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VVDDPLL Supply Voltage Range (VDDPLL) 1.08 1.2 1.32 V

fIN Input Frequency Range 30 32.768 34 kHz

fOUT Output Frequency Range 7.5 8.192 8.5 MHz

NRATIO Frequency Multiplying Ratio (MULA +1) — 250 — —

JP Period Jitter Peak value — 4 — ns

tON Start-up time
From OFF to output oscillations
(Output frequency within 10%
of target frequency)

— — 250 μs

tLOCK Lock Time From OFF to PLL locked — — 2.5 ms

IPLLON
Active mode Current Consumption
(VDDPLL) fOUT = 8.192 MHz — 50 — μA

IPLLOFF
OFF mode Current Consumption
(VDDPLL)

@25C

Over the temperature range
—

0.05

0.05

0.30

5
μA

Table 45-30. PLLB Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VVDDPLL Supply Voltage Range (VDDPLL) 1.08 1.2 1.32 V

fIN Input Frequency Range 3 — 32 MHz

fOUT Output Frequency Range 80 — 240 MHz

NRATIO
Frequency Multiplying Ratio
(MULB +1) 3 — 62 —

QRATIO
Frequency Dividing Ratio
(DIVB)

2 — 24 —

tON Start-up time — 60 150 μs

IVDDPLL Current Consumption on VDDPLL

Active mode @ 80 MHz @1.2V
Active mode @ 96 MHz @1.2V
Active mode @ 160 MHz @1.2V
Active mode @ 240 MHz @1.2V

—

0.94
1.2
2.1
3.34

1.2
1.5
2.5
4

mA

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 950

45.5.12 Temperature Sensor Characteristics
The temperature sensor provides an output voltage (VT) that is proportional to absolute temperature (PTAT). This
voltage can be measured through the channel number 7 of the 10-bit ADC. Improvement of the raw performance of
the temperature sensor acquisition can be achieved by performing a single temperature point calibration to remove
the initial inaccuracies (VT and ADC offsets).

Note: 1. Does not include errors due to A/D conversion process.

45.5.13 Optical UART RX Transceiver Characteristics
Table 45-32 gives the description of the optical link transceiver for electrically isolated serial communication with
hand-held equipment, such as calibrators compliant with standards ANSI-C12.18 or IEC62056-21 (only available on
UART1).

Table 45-31. Temperature Sensor Characteristics
Symbol Parameter Conditions Min Typ Max Unit
VVDDIN Supply Voltage Range (VDDIN) 2.5 — 3.6 V
VT Output voltage TJ = 27°C 1.34 1.44 1.54 V

dVT / dT Output Voltage sensitivity to
Temperature 4.2 4.7 5.2 mV/°C

dVT / dV VT variation with VDDIN VDDIN from 2.5V to 3.6V — — 1 mV/V

tS VT Settling time
When VT is sampled by the 10-bit
ADC, the required track time to
ensure 1ºC accurate settling

— — 1 μs

TACC Temperature accuracy(1)

After offset calibration
Over TJ range [-40°C to +85°C] — ±5 ±7 °C

After offset calibration
Over TJ range [0°C to +80°C] — ±4 ±6 °C

tON Start-up time — 5 10 μs
IVDDIN Current Consumption 50 70 80 μA

Table 45-32. Transceiver Characteristics
Symbol Parameter Conditions Min Typ Max Unit
VVDDIO Supply voltage range (VDDIO) 3 3.3 3.6 V

IDD Current consumption
ON
OFF

—
25
—

35
0.1

μA

VTH Comparator threshold
According to the programmed
threshold. See the OPT_CMPTH bit
in the UART Mode Register (UART1)

-20 — +20 mV

VHYST Hysteresis 10 20 40 mV

tPROP Propagation time With 100 mVpp square wave input
around threshold — — 5 μs

tON Start-up time — — 100 μs

 951SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

45.5.14 10-bit ADC Characteristics

Note: 1. Average current consumption performing conversion in free run mode @ 16 MHz ADC Clock. FS = 510 kS/s.

Note: 1. ADVREF input range limited to VDDIO if VDDIO < VDDIN.

Notes: 1. tCONV = (TRACKTIM + 24) / fCK_ADC.
2. FS = 1 / tCONV.

3. Refer to Section 45.5.14.1 “Track and Hold Time versus Source Output Impedance, Effective Sampling Rate”.

Table 45-33. ADC Power Supply Characteristics
Symbol Parameter Conditions Min Typ Max Unit

VVDDIN Supply voltage range (VDDIN) 2.5 3.3 3.6 V

IVDDIN

Current consumption on
VDDIN

ADC ON(1), internal voltage reference
ON generating ADVREF = 3.0V

— 450 700
μA

ADC ON(1), internal voltage reference
OFF, ADVREF externally supplied — 220 350

Table 45-34. ADC Voltage Reference Input Characteristics (ADVREF pin)

Symbol Parameter Conditions Min Typ Max Unit

VADVREF ADVREF input voltage range (1) Internal voltage reference OFF 2.4 — VVDDIN V

RADVREF ADVREF input resistance ADC ON, internal voltage reference OFF 9 14 19 kΩ

IADVREF Current consumption on ADVREF

ADVREF = 2.4V

-35%

170

+35% μAADVREF = 3.3V 235

ADVREF = 3.6V 260

CADVREF Decoupling capacitor on ADVREF 100 — — nF

Table 45-35. ADC Timing Characteristics

Symbol Parameter Conditions Min Typ Max Unit

fCK_ADC ADC clock frequency
3.0V  VDDIN  3.6V

2.5V  VDDIN  3.0V
— —

16

14
MHz

tCONV ADC conversion time(1) fCK_ADC = 16 MHz, tTRACK = 500 ns 1.95 — — μs

FS Sampling rate(2)
VVDDIN > 3.0V, fCK_ADC = 16 MHz

VVDDIN > 2.5V, fCK_ADC = 14 MHz
— —

510

380
kS/s

tON Start-up time ADC only — — 40 μs

tTRACK Track and hold time(3) 2.5V  VDDIN  3.0V
3.0V < VDDIN < 3.6V

1000
500

— — ns

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 952

Notes: 1. If VVDDIO < VADVREF , full scale range is limited to VDDIO.
2. See Figure 45-18 “Simplified Acquisition Path” .

Notes: 1. In this table, values expressed in LSB refer to the Native ADC resolution (i.e., a 10-bit LSB).

Table 45-36. ADC Analog Input Characteristics

Symbol Parameter Conditions Min Typ Max Unit

FSR Analog Input Full Scale Range(1) 0 — VADVREF V

CIN Input capacitance(2) Accounts for I/O input capacitance +
ADC Sampling capacitor — — 10 pF

Table 45-37. Static Performance Characteristics(1)

Symbol Parameter Conditions Min Typ Max Unit

RADC Native ADC Resolution — 10 — Bits

RADC_AV Resolution with Digital Averaging See ”ADC Controller” section 10 — 12 Bits

INL Integral Non Linearity fCK_ADC = 16 MHz

Errors with respect to the best fit line
method

-2 — +2 LSB

DNL Differential Non Linearity -1 — +1 LSB

OE Offset Error -5 — 5 LSB

GE Gain Error -3 — +3 LSB

Table 45-38. Dynamic Performance Characteristics

Symbol Parameter Conditions Min Typ Max Unit

SNR Signal to Noise Ratio
fCK_ADC = 16 MHz
VADVREF = VVDDIN

 fIN = 50 kHz
VINPP = 0.95 x VADVREF

57 60 — dB

THD Total Harmonic Distortion — -68 -55 dB

SINAD Signal to Noise and Distortion 52 59 — dB

ENOB Effective Number of Bits 8.3 9.6 — Bits

 953SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

45.5.14.1 Track and Hold Time versus Source Output Impedance, Effective Sampling Rate
The following figure gives a simplified view of the acquisition path.

Figure 45-18. Simplified Acquisition Path

During its tracking phase, the 10-bit ADC charges its sampling capacitor through various serial resistors: source out-
put resistor, multiplexer series resistor and the sampling switch series resistor. In case of high output source
resistance (low power resistive divider, for example), the track time must be increased to ensure full settling of the
sampling capacitor voltage. The following formulas give the minimum track time that guarantees a 10-bit accurate
settling:

 VVDDIN > 3.0V: tTRACK (ns) = 0.12 x RSOURCE (Ω)+ 500.
 VVDDIN  3.0V: tTRACK (ns) = 0.12 x RSOURCE (Ω)+ 1000.

According to the calculated track time (tTRACK), the actual track time of the ADC must be adjusted through the
TRACKTIM field in the ADC_MR register. TRACKTIM is obtained by the following formula:

TRACKTIM = floor (tTRACK / tCK_ADC)

with tCK_ADC = 1 / fCK_ADC and floor (x) the mathematical function that rounds x to the greatest previous integer.

The actual conversion time of the converter is obtained by the following formula:

tCONV = (TRACKTIM + 24) x tCK_ADC

When converting in free run mode, the actual sampling rate of the converter is (1/ tCONV) or as defined by the following
formula:

FS = fCK_ADC / (TRACKTIM + 24)

Track & HoldMux.

Zsource Ron

Csample

ADC
Input

Cpad

10-bit
ADC
Core

VDDIO

SAM4CP

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 954

The maximum source resistance with the actual TRACKTIM setting is:

 RSOURCE_MAX (Ω) = ((TRACKTIM + 1) x tCK_ADC (ns) - 500) / 0.12 for VVDDIN > 3.0V; or
 RSOURCE_MAX (Ω) = ((TRACKTIM + 1) x tCK_ADC (ns) - 1000) / 0.12 for VVDDIN  3.0V.

Example: Calculated track time is lower than actual ADC clock period

 Assuming: fCK_ADC = 1 MHz (tCK_ADC = 1 μs), RSOURCE = 100Ω and VVDDIN = 3.3V.
 The minimum required track time is: tTRACK = 0.12 X 100 + 500 = 512 ns.
 tTRACK begin less than tCK_ADC , TRACKTIM is set to 0. Actual track time is tCK_ADC = 1 μs.
 The calculated sampling rate is: FS = 1 MHz / 24 = 41.7 kHz.
 The maximum allowable source resistance is: RSOURCE_MAX = (1000 - 500) / 0.12 = 4.1 kΩ.

Example: Calculated track time is greater than actual ADC clock period

 Assuming: fCK_ADC = 16 MHz (tCK_ADC = 62.5 ns), RSOURCE = 600Ω and VVDDIN = 2.8V.
 The minimum required track time is: tTRACK = 0.12 X 600 + 1000 = 1072 ns.
 TRACKTIM = floor (1072/62.5) = 17. Actual track time is: (17 + 1) x tCK_ADC = 1.125 μs.
 The calculated sampling rate is: FS = 16 MHz / (24 + 17) = 390.2 kHz.
 The maximum allowable source resistance is: RSOURCE_MAX = (1125 - 1000) / 0.12 = 1.04 kΩ.

 955SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

45.5.15 Programmable Voltage Reference Characteristics
SAM4CP embeds a programmable voltage reference designed to drive the 10-bit ADC ADVREF input. Table 45-39
shows the electrical characteristics of this internal voltage reference. If necessary, this voltage reference can be
bypassed with some level of configurability: the user can either choose to feed the ADVREF input with an external
voltage source or with the VDDIO internal power rail. See programming details in the ADC Analog Control Register
(ADC_ACR) in Section Analog-to-Digital Converter (ADC) in this datasheet.

Notes: 1. TC = (max (VADVREF) - min (VADVREF)) / ((TMAX - TMIN) * VADVREF(25ºC)).
2. Does not include the current consumed by the ADC ADVREF input if ADC is ON.

Notes: 1. Voltage reference values are configurable in ADC_ACR.IRVS.

Table 45-39. Programmable Voltage Reference Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VVDDIN
Voltage Reference Supply
Range 2.5 — 3.6 V

VADVREF Programmable Output Range
See Table 45-40
VVDDIN > VADVREF + 100mV

1.6 — 3.4 V

ACC Reference Voltage Accuracy
With respect to the programmed value
VVDDIN = 3.3V; TJ = 25ºC

-3 — 3 %

TC Temperature coefficient Box method(1) — — 250 ppm/ºC

tON Start-up time
VVDDIN = 2.5V
VVDDIN = 3.0V
VVDDIN = 3.6V

— —
100
70

40
μs

ZLOAD Load Impedance
Resistive 4 — — kΩ

Capacitive 0.1 — 1 μF

IVDDIN
Current Consumption on
VDDIN(2) ADC is OFF — 20 30 μA

Table 45-40. Programmable Voltage Reference Selection Values

Sel. Value(1) ADVREF Notes

0 2.40 Default value

1 2.28 —

2 2.16 —

3 2.04 —

4 1.92 —

5 1.80 —

6 1.68 —

7 1.55 Min value

8 3.38 Max value

9 3.25 —

A 3.13 —

B 3.01 —

C 2.89 —

D 2.77 —

E 2.65 —

F 2.53 —

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 956

45.6 Embedded Flash Characteristics

45.6.1 Embedded Flash DC Characteristics

45.6.2 Embedded Flash AC Characteristics

45.6.2.1 Flash Wait States and Operating Frequency

The maximum operating frequency given in Table 45-43 below is limited by the Embedded Flash access time when
the processor is fetching code out of it. The table gives the device maximum operating frequency depending on the
FWS field of the EFC_FMR register. This field defines the number of wait states required to access the Embedded
Flash Memory.

Table 45-41. DC Flash Characteristics
Symbol Parameter Conditions Typ Max Unit

ICC Active current

Random 128-bit Read:
Maximum Read Frequency onto VDDCORE = 1.2V @ 25°C
Maximum Read Frequency onto VDDIO = 3.3V @ 25°C

16
3

25
5

mA
Random 64-bit Read:
Maximum Read Frequency onto VDDCORE = 1.2V @ 25°C
Maximum Read Frequency onto VDDIO = 3.3V @ 25°C

10
3

18
5

Program:
- Onto VDDCORE = 1.2V @ 25°C
- Onto VDDIO = 3.3V @ 25°C

3
10

5
15

mA

Erase:
- Onto VDDCORE = 1.2V @ 25°C
- Onto VDDIO = 3.3V @ 25°C

3
10

5
15

mA

Table 45-42.AC Flash Characteristics
Parameter Conditions Min Typ Max Unit

Program/ Erase Operation
Cycle Time

Write page (512 bytes) — 1.5 3 ms
Erase page — 10 50 ms
Erase block (4 Kbytes) — 50 200 ms
Erase sector — 400 950 ms
Full chip erase (1 MByte) — 9 18 s
Lock/Unlock time per region — 1.5 3 ms

Data Retention Not powered or powered — 20 — years

Endurance Write/Erase cycles per page, block or sector
@ 85°C 10K — — cycles

Table 45-43. Flash Wait State Versus Operating Frequency
FWS

(Flash Wait State)
Maximum Operating Frequency (MHz) @ T° = 85C

VDDCORE = 1.08V VDDIO = 3.0V to 3.6V VDDCORE = 1.2V VDDIO = 3.0V to 3.6V
0 16 17
1 33 35
2 51 52
3 67 70
4 85 87
5 100 105
6 — 121

 957SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

45.7 Power Supply Current Consumption
This section provides information about the current consumption on different power supply rails of the device. It gives
current consumption in low-power modes (Backup mode, Wait mode, Sleep mode) and in Active mode (the applica-
tion running from memory, by peripheral). All the consumption values in sections 45.7.1 to 45.7.4 are measured with
PLC transceiver disabled (see Table 45-54 in Section 45.7.5 for PLC consumption values).

45.7.1 Backup Mode Current Consumption
Backup mode configurations and measurements are defined as follows:

 Configuration A is used to achieve the lowest possible current consumption.
 Configurations B, C and D are typical use cases with crystal oscillator, LCD and anti-tamper pins enabled.

Reminder: In Backup mode, the core voltage regulator is off and thus all the digital functions powered by VDDCORE
are off.

45.7.1.1 Backup Mode Configuration A: Embedded Slow Clock RC Oscillator Enabled
 POR backup on VDDBU is disabled.
 RTC running.
 RTT enabled on 1 Hz mode.
 Force wake-up (FWUP) enabled.
 PLC in shutdown.
 Current measurement as per Figure 45-19.

45.7.1.2 Backup Mode Configuration B: 32.768 kHz Crystal Oscillator Enabled
 POR backup on VDDBU is disabled.
 RTC running.
 RTT enabled on 1 Hz mode.
 Force wake-up (FWUP) enabled.
 Anti-tamper input TMP0 enabled.
 PLC in shutdown.
 Current measurement as per Figure 45-19.

Figure 45-19. Measurement Setup for Configurations A and B

AMP1

VDDIN

VDDOUT

VDDCORE

1.6V to 3.6V VDDBU
SAM4CP

VDDPLL

VDDLCD

VDDIO

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 958

Figure 45-20. Typical Current Consumption in Backup Mode for Configurations A and B

45.7.1.3 Backup Mode Configuration C: 32.768 kHz Crystal Oscillator Enabled
 POR backup on VDDBU is disabled.
 RTC running.
 RTT enabled on 1 Hz mode.
 Force wake-up (FWUP) enabled.
 Anti-tamper input TMP0, TMP1, TMP2, TMP3 and RTCOUT0 enabled.
 Main crystal oscillator disabled.
 System IO lines PA30, PA31, PB[0...3] in GPIO Input Pull-up mode.
 PLC in shutdown.
 All other GPIO lines in default state (see PIO Multiplexing table).
 Current measurement as per Figure 45-21.

Table 45-44. Typical Current Consumption Values for Backup Mode Configurations A and B

 Conditions Configuration A Configuration B Unit

VDDBU = 3.6V @25°C
VDDBU = 3.3V @25°C
VDDBU = 3.0V @25°C
VDDBU = 2.5V @25°C
VDDBU = 1.6V @25°C

580
520
480
440
400

760
700
680
640
600

nA

VDDBU = 3.6V @85°C
VDDBU = 3.3V @85°C
VDDBU = 3.0V @85°C
VDDBU = 2.5V @85°C
VDDBU = 1.6V @85°C

1.57
1.50
1.44
1.30
1.16

1.80
1.70
1.65
1.56
1.43

μA

SAM4CP16C

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

ID
D

B
U

 (u
A

)

VDDBU (V)

Config. A (25°C) Config. A (85°C) Config. B (25°C) Config. B (85°C)

85°C

25°C

A

A

B

B

 959SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

45.7.1.4 Backup Mode Configuration D: 32.768 kHz Crystal Oscillator and LCD Enabled
 POR backup on VDDBU is disabled.
 RTC running.
 RTT enabled on 1 Hz mode.
 LCD controller in Low power mode, static bias and x64 slow clock buffer on-time drive time.
 LCD voltage regulator used.
 Force wake-up (FWUP) enabled.
 Anti-tamper input TMP0, TMP1, TMP2, TMP3 and RTCOUT0 enabled.
 Main crystal oscillator disabled.
 System IO lines PA30, PA31, PB[0...3] in GPIO Input Pull-up mode.
 PLC in shutdown.
 All other GPIO lines in default state (see PIO Multiplexing table).
 Current measurement as per Figure 45-21.

Figure 45-21. Measurement Setup for Configurations C and D

Note: No current is drawn on VDDIN power input in Backup mode. The pin VDDIN can be left unpowered in Backup
mode. For Configuration C, if LCD is not used, VDDIN is not required.

Table 45-45. Typical Current Consumption Values for Backup Mode Configurations C and D

Conditions

Configuration C Configuration D

Unit IDD_BU - AMP1 IDD_IN/IO - AMP2 IDD_BU - AMP1 IDD_IN/IO - AMP2

VDDIO = 3.6V @25°C
VDDIO = 3.3V @25°C
VDDIO = 3.0V @25°C

0.05
2.6
2.4
2.1

0.05
9.5
9.0
8.5

μA
VDDIO = 3.6V @85°C
VDDIO = 3.3V @85°C
VDDIO = 3.0V @85°C

0.09
6.7
6.2
5.8

0.10
14.8
14.0
13.5

AMP1

VDDIN

VDDOUT

VDDCORE

3V

AMP2

2.5V to 3.6V

VDDBU
SAM4CP

VDDPLL

RTCOUT0

TMP[0...3]

VDDLCD

VDDIO

COMx SEGx

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 960

Figure 45-22. Typical Current Consumption in Backup Mode for Configurations C and D

45.7.2 Wait Mode Current Consumption
Wait mode configuration and measurements are defined in Section 45.7.2.1 “Wait Mode Configuration”.

Reminder: In Wait mode, the core voltage regulator is on, but the device is not clocked. Flash power mode can be
either in Standby mode or Deep power-down mode. Wait mode provides a much faster wake-up compared to Backup
mode.

45.7.2.1 Wait Mode Configuration
 32.768 kHz crystal oscillator running.
 4 MHz RC oscillator running.
 Main crystal and PLLs stopped.
 RTT enabled on 1 Hz mode.
 One wake-up pin (WKUPx) used in Fast Wake-up mode.
 Anti-tamper inputs TMP0, TMP1, TMP2, TMP3 and RTCOUT0 enabled.
 System IO lines PA30, PA31, PB[0...3] in GPIO Input Pull-up mode.
 PLC in shutdown.
 All other GPIO lines in default state.
 Current measurement as per Figure 45-23.

Figure 45-23. Measurement Setup for Wait Mode Configuration

SAM4CP16C

0

2

4

6

8

10

12

14

16

18

20

2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

ID
D

IO
/IN

 (u
A)

VDDIO/IN (V)

Config. C (25°C) Config. C (85°C) Config. D (25°C) Config. D (85°C)

D

C

85°C

85°C

25°C

25°C

AMP1

VDDIN

VDDOUT

VDDCORE

3V

AMP2

AMP3

3.3V

VDDBU
SAM4CP

VDDPLL

VDDLCD

VDDIO

 961SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

45.7.3 Sleep Mode Current Consumption
Sleep mode configuration and measurements are defined in this section.

Reminder: The purpose of Sleep mode is to optimize power consumption of the device versus response time. In this
mode, only the core clocks of CM4P0 and/or CM4P1 are stopped.

Figure 45-24. Measurement Setup for Sleep Mode

 VDDIO = VDDIN = 3.3V.
 VDDCORE = 1.2V (internal voltage regulator used).
 TA = 25C.
 Core 0 clock (HCLK) and Core 1 (CPHCLK) clock stopped.
 Sub-system 0 Master Clock (MCK), Sub-system 1 Master Clock (CPBMCK) running at various frequencies

(PLLB used for frequencies above 12 MHz, fast RC oscillator at 12 MHz for the 12 MHz point, and fast RC
oscillator at 8 MHz divided by 1/2/4/8/16/32 for lower frequencies).

 All peripheral clocks deactivated.
 No activity on I/O lines.
 PLC in shutdown.
 VDDPLL not taken into account. See PLL characteristics for further details.
 Current measurement as per Figure 45-24.

Table 45-46. Typical Current Consumption in Wait Mode

Conditions

IDD_BU - AMP1 IDD_IN/IO - AMP2 IDD_CORE - AMP3

Unit@25°C @85°C @25°C @85°C @25°C @85°C

Flash in Read-Idle mode 0.003 0.09 68 500 45 470

μAFlash in Standby mode 0.003 0.09 66 500 45 470

Flash in Deep Power Down mode 0.003 0.09 62 500 45 470

AMP1

VDDIN

VDDOUT

VDDCORE

3.3V

AMP2

VDDBU
SAM4CP

VDDPLL

VDDLCD

VDDIO

AMP3

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 962

Figure 45-25. Typical Current Consumption in Sleep Mode

Table 45-47. Typical Sleep Mode Current Consumption Versus Frequency
Master Clock (MHz) IDD_IN - AMP1 IDD_IO - AMP2 IDD_CORE - AMP3 Unit

120 14.26 0.22 10.83

mA

100 11.96 0.22 9.09

84 10.1 0.22 7.68

64 7.78 0.22 5.92

48 5.93 0.22 4.48

32 5.02 0.22 3.16

24 3.85 0.22 2.4

12 1.26 0.03 1.21

8 0.88 0.03 0.83

4 0.50 0.03 0.45

2 0.32 0.03 0.27

1 0.26 0.03 0.22

0.5 0.22 0.03 0.20

0.25 0.19 0.03 0.18

SAM4CP16C

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100 110 120

ID
D

 (m
A)

Master Clock Frequency (MHz)

IDDIO (AMP2) IDDIN (AMP1) IDDCORE (AMP3)

 963SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

45.7.4 Active Mode Power Consumption
The current consumption configuration for Active mode, i.e., Core executing codes, is as follows:

 VDDIO = VDDIN = 3.3V.
 VDDCORE = 1.2V (internal voltage regulator used).
 TA = 25C.
 Sub-system 0 Master Clock (MCK) and Core Clock (HCLK), Sub-system 1 Master Clock (CPBMCK) and Core

Clock (CPHCLK) running at various frequencies (PLLB used for frequencies above 8 MHz and fast RC
oscillator at 8 MHz divided by 1/2/4/8/16/32 for lower frequencies).

 All peripheral clocks deactivated.
 No activity on I/O lines.
 PLC in shutdown.
 Flash Wait State (FWS) in EEFC_FMR adjusted versus core frequency.
 Current measurement as per Figure 45-26.

Figure 45-26. Measurement Setup for Active Mode

AMP1

VDDIN

VDDOUT

VDDCORE

3.3V

AMP2

VDDBU
SAM4CP

VDDPLL

VDDLCD

VDDIO

AMP3

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 964

45.7.4.1 Test Setup 1: CoreMark™

 CoreMark on Core 0 (CM4P0) running out of flash in 128-bit or 64-bit Access mode with and without Cache
Enabled. Cache is enabled above 0 WS.

 Sub-system 1 Master Clock (CPBMCK) and Core Clock (CPHCLK) stopped and in reset state.

Figure 45-27. Typical Current Consumption in Active Mode (Test Setup 1)

Table 45-48. Test Setup 1 Current Consumption
128-bit Flash Access 64-bit Flash Access

Clock
(MHz)

Cache Enabled Cache Disabled Cache Enabled Cache Disabled
IDD_IN
(AMP1)

IDD_I0
(AMP2)

IDD_CORE
(AMP3)

IDD_IN
(AMP1)

IDD_I0
(AMP2)

IDD_CORE
(AMP3)

IDD_IN
(AMP1)

IDD_I0
(AMP2)

IDD_CORE
(AMP3)

IDD_IN
(AMP1)

IDD_I0
(AMP2)

IDD_CORE
(AMP3) Unit

120 21.8 0.27 18.5 24.4 2.0 21.1 21.5 0.27 18.3 21.2 1.9 17.9

mA

100 18.1 0.27 15.4 21.6 1.8 18.9 18.1 0.27 15.4 19.0 1.8 16.3

84 15.3 0.27 13.0 18.8 1.7 16.6 15.3 0.27 13.0 16.8 1.7 14.5

64 11.8 0.27 10.1 15.2 1.5 13.5 11.8 0.27 10.1 14.1 1.4 12.5

48 9.2 0.27 7.9 11.7 1.4 10.5 9.2 0.27 7.9 11.3 1.3 10.0

32 7.2 0.27 5.6 9.5 1.2 7.9 7.2 0.27 5.6 9.3 1.2 7.7

24 5.6 0.27 4.3 7.5 1.1 6.2 5.6 0.27 4.3 7.2 1.2 5.9

12 2.4 0.09 2.4 3.1 0.9 3.1 2.4 0.09 2.4 3.1 1.0 3.1

8 1.6 0.09 1.6 2.1 0.7 2.1 1.6 0.09 1.6 2.1 0.9 2.1

4 1.0 0.09 1.0 1.4 0.5 1.4 1.0 0.09 1.0 1.4 0.8 1.4

2 0.70 0.09 0.69 0.90 0.40 0.90 0.70 0.09 0.69 0.70 0.70 0.70

1 0.54 0.09 0.53 0.65 0.30 0.65 0.55 0.09 0.54 0.65 0.40 0.65

0.5 0.47 0.09 0.46 0.50 0.20 0.50 0.47 0.09 0.46 0.60 0.20 0.60

0.25 0.25 0.09 0.24 0.26 0.10 0.25 0.25 0.09 0.24 0.36 0.10 0.25

SAM4CP16C

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100 110 120

ID
D

IO
 +

 ID
D

IN
 (m

A)

Master Clock Frequency (MHz)

128-bit (Cache Enabled)
128-bit (Cache Disabled)
64-bit (Cache Enabled)
64-bit (Cache Disabled)

 965SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

45.7.4.2 Test Setup 2: CoreMark
 CoreMark on Core 1 (CM4P1) running out of SRAM1 (Code) / SRAM2 (Data).
 Core 0 (CM4P0) in Sleep mode.

Figure 45-28. Typical Current Consumption in Active Mode (Test Setup 2)

Table 45-49. Test Setup 2 Current Consumption

Clock (MHz)
SRAM1, SRAM2

UnitIDD_IN (AMP1) IDD_I0 (AMP2) IDD_CORE (AMP3)
120 22.3 0.22 19.0

mA

100 18.7 0.22 16.0

84 15.8 0.22 13.6

64 12.1 0.22 10.5

48 9.2 0.22 7.9

32 7.1 0.22 5.5

24 5.4 0.22 4.2

12 2.1 0.01 2.1

8 1.4 0.01 1.4

4 0.78 0.01 0.77

2 0.46 0.01 0.45

1 0.29 0.01 0.28

0.5 0.21 0.01 0.20

0.25 0.13 0.01 0.12

SAM4CP16C

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100 110 120

ID
D

 (m
A)

Master Clock Frequency (MHz)

IDDIN (AMP1)

IDDIO (AMP2)

IDDCORE (AMP3)

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 966

45.7.4.3 Test Setup 3: CoreMark
 CoreMark on Core 0 (CM4P0) running out of Flash in 128-bit or 64-bit Access mode with and without Cache

Enabled. Cache is enabled above 0 WS.
 CoreMark on Core 1 (CM4P1) running out of SRAM1 (Code) / SRAM2 (Data).

Figure 45-29. Typical Current Consumption in Active Mode (Test Setup 3)

Table 45-50. Test Setup 3 Current Consumption

128-bit Flash Access 64-bit Flash Access

Clock
(MHz)

Cache Enabled Cache Disabled Cache Enabled Cache Disabled
IDD_IN
(AMP1)

IDD_I0
(AMP2)

IDD_CORE
(AMP3)

IDD_IN
(AMP1)

IDD_I0
(AMP2)

IDD_CORE
(AMP3)

IDD_IN
(AMP1)

IDD_I0
(AMP2)

IDD_CORE
(AMP3)

IDD_IN
(AMP1)

IDD_I0
(AMP2)

IDD_CORE
(AMP3) Unit

120 31.3 0.28 28.0 34.2 1.9 30.9 31.3 0.28 28.0 30.7 1.8 27.4

mA

100 26.4 0.28 23.6 29.8 1.8 27.1 26.4 0.28 23.6 27.0 1.8 24.3
84 22.4 0.28 20.1 26.3 1.7 24.0 22.4 0.28 20.1 24.1 1.7 21.8
64 17.2 0.28 15.6 21.0 1.5 19.3 17.2 0.28 15.6 19.6 1.6 18.0
48 13.1 0.28 11.8 16.6 1.4 15.3 13.1 0.28 11.8 16.0 1.6 14.7
32 9.8 0.28 8.1 12.6 1.2 10.9 9.8 0.28 8.1 12.3 1.4 10.6
24 7.4 0.28 6.2 9.5 1.1 8.3 7.4 0.28 6.2 9.4 1.3 8.1
12 3.1 0.11 3.1 4.2 0.88 4.2 3.1 0.11 3.1 4.2 1.2 4.2
8 2.1 0.11 2.1 2.8 0.78 2.8 2.1 0.11 2.1 2.8 1.0 2.8
4 1.1 0.11 1.1 1.5 0.58 1.5 1.1 0.11 1.1 1.5 0.9 1.5
2 0.63 0.11 0.61 0.82 0.40 0.81 0.63 0.11 0.61 0.82 0.66 0.81
1 0.38 0.11 0.37 0.47 0.26 0.46 0.38 0.11 0.37 0.47 0.38 0.46

0.5 0.25 0.11 0.24 0.30 0.18 0.29 0.25 0.11 0.24 0.30 0.23 0.29
0.25 0.14 0.11 0.13 0.16 0.12 0.15 0.14 0.11 0.13 0.16 0.14 0.15

SAM4CP16C

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100 110 120

ID
D

IO
 +

 ID
D

IN
 (m

A)

Master Clock Frequency (MHz)

128-bit (Cache Enabled)
128-bit (Cache Disabled)
64-bit (Cache Enabled)
64-bit (Cache Disabled)

 967SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

45.7.4.4 Test Setup 4: DSP Application (Five Cascaded 4th Order Biquad Filters) from ARM CMSIS DSP Library
 Application running on Core 1 (CM4P1) out of SRAM1 (Code) / SRAM2 (Data).
 Core 0 (CM4P0) in Sleep mode.

Figure 45-30. Typical Current Consumption in Active Mode (Test Setup 4)

Table 45-51. Test Setup 4 Current Consumption

Clock (MHz)

DSP Application

UnitIDD_IN (AMP1) IDD_I0 (AMP2) IDD_CORE (AMP3)
120 21.6 0.22 18.3

mA

100 18.1 0.22 15.4
84 15.3 0.22 13.1
64 11.7 0.22 10.1
48 8.9 0.22 7.6
32 7.9 0.22 6.3
24 6.0 0.22 4.8
12 2.2 0.08 2.1
8 1.5 0.08 1.5
4 0.80 0.08 0.76
2 0.47 0.08 0.46
1 0.30 0.08 0.29

0.5 0.22 0.08 0.20

SAM4CP16C

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100 110 120

ID
D

 (m
A)

Master Clock Frequency (MHz)

IDDIN (AMP1)

IDDIO (AMP2)

IDDCORE (AMP3)

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 968

45.7.4.5 Test Setup 5: DSP Application (Five Cascaded 4th Order Biquad Filters) from ARM CMSIS DSP Library
 Application running on Core 0 (CM4P0) out of Flash in 128-bit or 64-bit Access mode with and without cache

enabled. Cache is enabled above 0 WS.
 Sub-system 1 Master Clock (CPBMCK) and Core Clock (CPHCLK) stopped and in reset.
 VDDIO = VDDIN = 3.0V

Figure 45-31. Typical Current Consumption in Active Mode (Test Setup 5)

Table 45-52. Test Setup 5 Current Consumption

128-bit Flash Access 64-bit Flash Access

Clock
(MHz)

Cache Enabled Cache Disabled Cache Enabled Cache Disabled
IDD_IN
(AMP1)

IDD_I0
(AMP2)

IDD_CORE
(AMP3)

IDD_IN
(AMP1)

IDD_I0
(AMP2)

IDD_CORE
(AMP3)

IDD_IN
(AMP1)

IDD_I0
(AMP2)

IDD_CORE
(AMP3)

IDD_IN
(AMP1)

IDD_I0
(AMP2)

IDD_CORE
(AMP3) Unit

120 23.2 0.31 19.9 26.3 2.1 23.1 23.2 0.31 19.9 21.2 1.7 18.0

mA

100 19.3 0.31 16.6 23.7 2.0 21.0 19.3 0.31 16.6 18.9 1.7 16.2

84 16.3 0.31 14.1 21.2 1.9 19.0 16.3 0.31 14.1 17.5 1.7 15.3

64 12.9 0.31 11.2 17.2 1.8 15.5 12.9 0.31 11.2 14.8 1.6 13.1

48 9.9 0.31 8.6 13.9 1.6 12.7 9.9 0.31 8.6 12.3 1.6 11.1

32 7.5 0.31 5.8 10.6 1.4 9.0 7.5 0.31 5.8 9.9 1.4 8.2

24 5.7 0.31 4.4 8.7 1.2 7.5 5.7 0.31 4.4 8.1 1.3 6.9

12 2.6 0.08 2.6 4.0 0.82 3.9 2.6 0.08 2.6 3.5 0.8 3.4

8 1.7 0.08 1.7 2.7 0.70 2.7 1.7 0.08 1.7 2.4 0.8 2.4

4 0.89 0.08 0.88 1.6 0.51 1.6 0.89 0.08 0.88 1.3 0.7 1.3

2 0.56 0.08 0.55 0.96 0.39 0.95 0.56 0.08 0.55 0.78 0.54 0.76

1 0.55 0.08 0.54 0.67 0.20 0.66 0.55 0.08 0.54 0.68 0.37 0.67

SAM4CP16C

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100 110 120

ID
D

IO
 +

 ID
D

IN
 (m

A)

Master Clock Frequency (MHz)

128-bit (Cache Enabled)
128-bit (Cache Disabled)
64-bit (Cache Enabled)
64-bit (Cache Disabled)

 969SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

45.7.5 Peripheral Power Consumption in Active Mode

Notes: 1. VVDDIO = 3.3V, VVDDCORE = 1.2V, TA = 25C.

Table 45-53. Power Consumption on VVDDCORE
(1)

Peripheral
Consumption

(Typical) Unit

PIO Controller 4.0

μA / MHz

UART0 5.4

UART1 5.4

USART[0 - 4] 7.7

PWM 3.9

TWI 5.3

SPI 5.0

Timer Counter (TCx) 2.7

ADC 3.9

SLCD 0.16

AES: Performing AES256 Encryption 164

TRNG 6.2

ICM 5.2

Table 45-54. PLC Power Consumption

Parameter Condition Symbol
Rating

Unit
Min Typ Max

Power Consumption

TJ = 25ºC

VDDIO = 3.3V

VDDIN = 3.3V

VDDIN AN = 3.3V

 P25 - 245 -

mW

Power Consumption (worst case)

TJ = 125ºC

VDDIO = 3.6V

VDDIN = 3.6V

VDDIN AN = 3.6V

 P125 - - 330

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 970

45.8 Power On Considerations
During power-on, PLL INIT pin should be tied to ground during 4 μs at least, in order to ensure proper system start up.
After releasing PLL INIT, the system will start no later than 612 μs.

After power-up system can be restarted by means of low active pulse (min 1.65 μs) in ARST or SRST. System full
operation starts after 410 μs (ARST pulse) or after 0.9 μs (SRST pulse).

In case of simultaneous tie down of more than one initialization pin the longest time for operation must be respected.

Figure 45-32. Power On timing diagram

FULL OPERATION

PLL INIT

ARST

SRST

> 4us

> 612us

> 410us

> 0.9us

> 1.65us*

> 1.65us*

SYSTEM

(*) 1.65us = 33*tclk

 971SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

46. Mechanical Characteristics

46.1 176-lead LQFP Package

Figure 46-1. 176-lead LQFP Package Drawing

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 972

This package respects the recommendations of the NEMI User Group.

46.2 Soldering Profile
Table 46-3 gives the recommended soldering profile from J-STD-020C.

Note: The package is certified to be backward compatible with Pb/Sn soldering profile.

A maximum of three reflow passes is allowed per component.

46.3 Packaging Resources
This section provides land pattern definition.

Refer to the following IPC standards:

 IPC-7351A and IPC-782 (Generic Requirements for Surface Mount Design and Land Pattern Standards)
http://landpatterns.ipc.org/default.asp

 Atmel Green and RoHS Policy and Package Material Declaration Data Sheet
http://www.atmel.com/about/quality/package.aspx

Table 46-1. LQFP Package Reference

JEDEC Drawing Reference MS-026

Table 46-2. LQFP Package Characteristics

Moisture Sensitivity Level 3

Table 46-3. Soldering Profile

Profile Feature Green Package

Average Ramp-up Rate (217°C to Peak) 3C/sec. max.

Preheat Temperature 175°C ± 25°C 180 sec. max.

Temperature Maintained Above 217°C 60 sec. to 150 sec.

Time within 5C of Actual Peak Temperature 20 sec. to 40 sec.

Peak Temperature Range 260C

Ramp-down Rate 6C/sec. max.

Time 25C to Peak Temperature 8 min. max.

http://landpatterns.ipc.org/default.asp
http://www.atmel.com/green/

 973SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

47. Marking
All devices are marked with the Atmel logo and the ordering code.

Additional marking is as follows:

where

 “YY”: Manufactory year
 “WW”: Manufactory week
 “V”: Revision
 “XXXXXXXXX”: Lot number

YYWW V
XXXXXXXXX

ARM

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 974

48. Ordering Information
Table 48-1. Ordering Codes for SAM4CP Devices

Ordering Code MRL
Flash

(Kbytes) Package Package Type
Temperature

Operating Range

ATSAM4CP16C-AHU-Y A 1*1024 LQFP176 Green Industrial
(-40°C to +85°C)

 975SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

49. Errata

49.1 Supply Controller (SUPC)

49.1.1 SUPC: Supply Monitor (SM) on VDDIO

The Supply Monitor (SM) Sampling mode reducing the average current consumption on VDDIO is not functional.

Problem Fix/Workaround
Use the Supply Monitor in Continuous mode only.

49.1.2 SUPC: Core Voltage Regulator Standby Mode Control

The Core Voltage Regulator Standby mode controlled by the ONREG bit in SUPC_MR is not functional. This does not
prevent to power VDDCORE and VDDPLL by using an external voltage regulator.

Problem Fix/Workaround
None. Do not use the ONREG Bit.

49.1.3 SUPC: Core Brownout Detector. Unpredictable Behavior if BOD is Disabled, VDDCORE is Lost and
VDDIO is Powered

In Active mode or in Wait mode, if the Brownout Detector (BOD) is disabled (SUPC_MR: BODDIS=1) and power is
lost on VDDCORE while VDDIO is powered, the device can be reset incorrectly and its behavior becomes then
unpredictable.

Problem Fix/Workaround
When the Brownout Detector is disabled in Active or in Wait mode, VDDCORE must be always powered.

49.2 Parallel Input Output (PIO) Controller

49.2.1 PIO: Schmitt Trigger

 Schmitt triggers on all PIO controllers are not enabled by default (after reset) as stated in the product datasheet.
 Enable and disable values in the PIO Schmitt Trigger Register (for all PIO controllers) are inverted. The

definition of PIO_SCHMITT fields must be as follows:
• 0: Schmitt Trigger is disabled.
• 1: Schmitt Trigger is enabled.

Problem Fix/Workaround
None. It is up to the application to enable Schmitt Trigger mode and to take into account the inverted values of the
PIO_SCHMITT fields.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 976

49.3 Watchdog (WDT) / Reinforced Safety Watchdog (RSWDT)

49.3.1 WDT / RSWDT not stopped in WAIT mode

When the Watchdog (WDT) or the Reinforced Safety Watchdog (RSWDT) is enabled and the WAITMODE bit set to 1
is used to enter Low-power Wait mode, the WDT/RSWDT is not halted. If the time spent in Wait mode is longer than
the Watchdog (Reinforced Safety Watchdog) time-out, the device is reset provided that the WDT/RSWDT reset is
enabled.

Problem Fix/Workaround
When entering Wait mode, the WaitForEvent (WFE) instruction of the Cortex-M4 processor must be used while the
SLEEPDEEP bit of the Cortex-M System Control Register (SCB_SCR) is set to 0.

49.3.2 RSWDT Windowing Mode
When the RSWDT is configured in Windowing mode (WDD set lower than WDV in RSWDT_MR), an unexpected
watchdog reset order may be sent to the Reset Controller (RSTC).

Problem Fix/Workaround
Do not use the Windowing mode of the RSWDT and set WDD to 4095 in RSWDT_MR.

49.4 Enhanced Embedded Flash Controller (EEFC)

49.4.1 EEFC: Erase Sector (ES) Command Cannot be Performed if a Subsector is Locked (Only in Flash sector
0)

If one of the subsectors

 small sector 0
 small sector 1
 larger sector

is locked within the Flash sector 0, the erase sector (ES) command cannot be processed on non-locked subsectors.
Refer to “Flash Overview” in Section “Memories”.

Problem Fix/Workaround
All the lock bits of the sector 0 must be cleared prior to issuing the ES command. After the ES command has been
issued, the lock bits must be reverted to the state before clearing them.

49.5 Wait For Interrupt (WFI)

49.5.1 Unpredictable Software Behavior When Entering Sleep Mode

When entering Sleep mode, if an interrupt occurs during WFI or WFE instruction (with PMC_FSMR.LPM=0), the ARM
core may read a wrong data, thus leading to unpredictable behavior of the software. This issue is not present in Wait
mode.

Problem Fix/Workaround
The slave interface for the Flash must be set to no default master in the Bus Matrix Controller.
This is done by setting the field DEFMSTR_TYPE in the register MATRIX_SCFG to NO_DEFAULT.

MATRIX_SCFG[2] = MATRIX_SCFG.SLOT_CYCLE(0x1FF) | MATRIX_SCFG.DEFMSTR_TYPE(0x0);

This operation must be done once in the software or the instruction before WFI or WFE.

 977SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

49.6 Power Supply and Power Control / Clock System

49.6.1 CORE 1 SysTick Counter Erratic Behavior

If the CORE 0 processor clock (HCLK) frequency is higher than four times the frequency of the CORE 1 processor
clock (CPHCLK), the SysTick counter behavior is erratic.

Problem Fix/Workaround
Always ensure that fHCLK < 4 x fCPHCLK

49.7 Power Management Controller (PMC)

49.7.1 SRCB Bit in CKGR_PLLB Register

The SRCB bit is programmed in bit 29 of the CKGR_PLLB register but must be read in bit 27 of this register.

Problem Fix/Workaround
For SRCB, read bit 27 of the CKGR_PLLB register.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 978

50. Revision History
In the table that follow, the most recent version of the document appears first.

Doc. Rev.
43080

Comments Change
Request

Ref.

I

G3 Power Line Communications (GPLC)
Figure 27-5 and Figure 27-7: updated.

Clock Generator
Section 29.4 ”Slow Clock”: deleted “This allows the slow clock to be valid in a short time (about 100
μs).”

Section 29.4.2 ”32.768 kHz Crystal Oscillator”: deleted Figure 29-2. Typical 32.768 kHz Crystal
Oscillator Connection.

Power Management Controller (PMC)
Instances of “32768 Hz” changed to “32.768 kHz”.

Section 30.10 ”Main Processor Fast Startup”: minor editorial changes.

Figure 30-4: corrected “CDFEV” to “CFDEV” and “CDFS” to “CFDS”.

Section 30.18.10 ”PMC Clock Generator PLLB Register”: changed DIVB description.

Timer Counter (TC)
Section 37.6.14.2 ”Input Preprocessing”: added limitation on maximum pulse duration.
Section 37.6.14.4 ”Position and Rotation Measurement”: in 3rd paragraph, added “The process must
be started by configuring TC_CCR.CLKEN and TC_CCR.SWTRG.”
Section 37.6.14.6 ”Detecting a Missing Index Pulse”: corrected value of TC_RC0.RC in example in
2nd paragraph.
Added Section 37.6.14.7 ”Detecting Contamination/Dust at Rotary Encoder Low Speed”.
Section 37.7.14 ”TC Block Mode Register”: updated MAXFILT field description.

Advanced Encryption Standard (AES)
Section 41.1 ”Description”: corrected index of AES_KEYWRx registers from 3 to 7.

Section 41.2 ”Embedded Characteristics”: replaced “12/14/16 Clock Cycles Encryption/Decryption
Processing Time” with “10/12/14 Clock Cycles Encryption/Decryption Inherent Processing Time”.

Removed sentence “Values which are not listed in the table must be considered as “reserved”.” in
Section 41.5.2 ”AES Mode Register”.

 979SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

H

Power Supply and Power Control
Section 5.5.1.1 ”Entering and Exiting Backup Mode”: added note in step(7).

Peripherals
Table 11-1: replaced "Watchdog Timer/Reinforced Watchdog Timer" with "Watchdog Timer".

Reset Controller (RSTC)
Reworked Section 15.1 ”Description” and Section 15.2 ”Embedded Characteristics”.

Figure 15-1, Figure 15-2, Figure 15-3, Figure 15-4, Figure 15-5 and Figure 15-6: updated.

Updated Section 15.4.1 ”Overview”, Section 15.4.2.1 ”NRST Signal or Interrupt”, Section 15.4.3.3
”Watchdog Reset” and Section 15.4.3.5 ”User Reset”.

Replaced “is set” with “is written to 1” and “is reset” with “is written to 0”.

Added Section 15.4.5 ”Managing Reset at Application Level”.

Real-time Clock (RTC)
Reworked Section 17.5.6 ”Updating Time/Calendar”.

Reinforced Safety Watchdog Timer (RSWDT)
Removed all references to interrupt by modifying:

Figure 19-1, Section 19.2 ”Embedded Characteristics” and Section 19.4 ”Functional Description”.

Section 19.5.2 ”Reinforced Safety Watchdog Timer Mode Register” (bit WDFIEN is reserved now).

Supply Controller (SUPC)
Section 20.2 ”Embedded Characteristics”: bullet “A Supply Monitor Detection on VDDBU_SW
Triggers a System Reset” changed to “A Zero-power Power-on-reset on VDDBU_SW Triggers a
System Reset”.

Figure 20-2: added SMOS waveform.

Section 20.4.8.1 ”Supply Monitor Reset”: updated second paragraph.

Section 20.5 ”Register Write Protection”: removed “Supply Controller Wake-up Inputs Register” from
list of protectable registers.
Section 20.6.3 ”Supply Controller Control Register”, Section 20.6.4 ”Supply Controller Supply Monitor
Mode Register”, Section 20.6.5 ”Supply Controller Mode Register” and Section 20.6.6 ”Supply
Controller Wake-up Mode Register”: added sentence about write-protection.
Section 20.6.5 ”Supply Controller Mode Register”: added value “1” to LCDMODE field description.

Section 20.6.9 ”System Controller Write Protection Mode Register”: updated WPEN bit description.

Enhanced Embedded Flash Controller (EEFC)
Section 22.4.3.6 ”Calibration Bit”: changed information on oscillators that are calibrated in production.

Table 22-5: updated.

Fast Flash Programming Interface (FFPI)
Figure 23-1: changed input source for XIN.

Table 23-1: updated XIN information.

Section 23.3.3 ”Entering Parallel Programming Mode”: deleted note on device clocking and reworded
steps 2 and 3.

Section 23.3.5.6 ”Flash Security Bit Command”: reworded step 3.

Doc. Rev.
43080

Comments Change
Request

Ref.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 980

H

G3 Power Line Communications (GPLC)
Section 27.5.3 ”Zero-crossing detector”: updated.

Added Section 27.5.3.2 ”Zero Crossing Config register”.

Clock Generator
Updated Figure 29-1.

Power Management Controller (PMC)
Updated Figure 30-1.

Section 30.10 ”Main Processor Fast Startup”: inserted warning “The duration of the WKUPx pins
active level must be greater than four main clock cycles.”
Section 30.17 ”Register Write Protection”: added “PMC Clock Generator Main Clock Frequency
Register” to list of protectable registers.

Serial Peripheral Interface (SPI)
Section 33.8.1 ”SPI Control Register”: Removed TXFCLR, RXFCLR, FIFOEN and FIFODIS bits.
Section 33.7.3 ”Master Mode Operations”: Modified transmission condition description.

Universal Synchronous Asynchronous Receiver Transmitter (USART)
At end of Section 36.6.1.2 ”Fractional Baud Rate in Asynchronous Mode” added warning “When the
value of field FP is greater than 0...”. Removed sentence “This feature is only available when using
USART normal mode”.

Section 36.6.3.11 ”Receiver Time-out”: deleted redundant paragraphs on STTTO and RETTO.

Section 36.6.4 ”ISO7816 Mode”: corrected USART_MODE value for protocol T = 1.

Section 36.6.7.5 ”Character Transmission”: corrected bit names: “RTSEN” to “RCS” and “RTSDIS” to
“FCS”.

Section 36.7.3 ”USART Mode Register”: updated description for row 0xE, SPI_MASTER.

Section 36.7.15 ”USART Baud Rate Generator Register”: added warning “When the value of field FP
is greater than 0...” to FP field description.

Timer Counter (TC)
Section 37.6.3 ”Clock Selection”: updated notes (1) and (2).

Replaced TIOA, TIOB, TCLK with TIOAx, TIOBx, TCLKx.
Section 37.6.14.4 ”Position and Rotation Measurement”: updated.
Added Section 37.6.14.6 ”Detecting a Missing Index Pulse”.

Pulse Width Modulation Controller (PWM)
Section 38.1 ”Description”: deleted sentence “All PWM macrocell accesses are made through APB
mapped registers.”

Section 38.6.3 ”PWM Controller Operations”: removed section “Interrupts” (content redundant with
information provided in descriptions of registers PWM_IER, PWM_IDR, PWM_IMR, and PWM_ISR).

Section 38.7.1 ”PWM Mode Register”: updated bit descriptions.

Segment Liquid Crystal Display Controller (SLCDC)
Removed all information related to Register Write Protection:

 - “Register Write Protection” in Section 39.2 ”Embedded Characteristics”.

 - Section 39.6.11 “Register Write Protection”.

 - SLCDC Write Protection Mode Register (SLCDC_WPMR) bit.

 - SLCDC Write Protection Status Register (SLCDC_WPSR) bit.

Doc. Rev.
43080

Comments Change
Request

Ref.

 981SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

H

Analog-to-Digital Converter (ADC)
Figure 40-1: updated.
Reworked Section 40.5.5 ”I/O Lines”.
Section 40.7.8 ”ADC Interrupt Enable Register”: updated FORCEREF and ONREF bit descriptions.

Integrity check monitor (ICM)
Section 42.5.2.2 ”ICM Region Configuration Structure Member”: removed MRPROT field.

Section 42.6.1 ”ICM Configuration Register”: removed fields DAPROT and HAPROT; updated
description DUALBUFF field.

Electrical Characteristics
Updated: Table 45-31.

G

Block Diagram
Updated Figure 2-1.

Package and Pinout
Table 4-1: added WKUP0 in pin number 71.

Power Supply and Power Control
Updated Figure 5-1.

Updated Section 5.1.5.2 ”Single Supply Operation with Backup Battery”.

Input/Output Lines
Updated Section 6.9 ”ERASE Pin”.

Real-time Event Management
Updated Table 9-1.

System Controller
Deleted Figure 10-1 “System Controller Block Diagram”.

SAM4CP Boot Program
Section 14.3 ”Flow Diagram” and Section 14.4 ”Device Initialization”: updated.

Reset Controller (RSTC)
Table 15-1: added note (1) to reset value of register RSTC_SR.

Real-time Clock (RTC)
Figure 17-5: corrected two instances of “3,906 ms” to “3.906 ms”.

Section 17.2 ”Embedded Characteristics”: merged bullet on asynchronous design with bullet on ultra
low-power.

Table 17-2: added offset 0xCC as reserved.

Section 17.6.1 ”RTC Control Register”: updated descriptions for bits UPDTIM and UPDCAL.

Deleted “All non-significant bits read zero” from the following registers: Section 17.6.3 ”RTC Time
Register”, Section 17.6.4 ”RTC Calendar Register”, Section 17.6.13 ”RTC TimeStamp Time Register
0”, Section 17.6.14 ”RTC TimeStamp Time Register 1”, Section 17.6.15 ”RTC TimeStamp Date
Register” and Section 17.6.16 ”RTC TimeStamp Source Register”.

Added sentence on register report of timestamp to Section 17.6.13 ”RTC TimeStamp Time Register
0”, Section 17.6.14 ”RTC TimeStamp Time Register 1” and Section 17.6.15 ”RTC TimeStamp Date
Register”.

Doc. Rev.
43080

Comments Change
Request

Ref.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 982

G

Watchdog Timer (WDT)
Section 18.5.1 ”Watchdog Timer Control Register”: added note on modification of WDT_CR values.

Section 18.5.2 ”Watchdog Timer Mode Register”: updated note on modification of WDT_MR values.

Inter-processor Communication (IPC)
Updated Section 25.1 ”Description”, Section 25.3.2 ”Interrupt Line” and Section 25.4.1.2 ”Interrupt
Source Control”.

Updated Figure 25-1 and Figure 25-3.

Serial Peripheral Interface (SPI)
Section 33.8.1 ”SPI Control Register”: added bits FIFODIS; FIFOEN, RXFCLR, TXFCLR and
REQCLR.

Two-wire Interface (TWI)
Replaced “Figure 34-13 below shows a byte write to an Atmel AT24LC512 EEPROM” with “Figure 34-
13 below shows a byte write to a memory device”.
Section 34.7.3.4 ”Master Transmitter Mode” and Section 34.7.5.4 ”Receiving Data” added note on
clearing TXRDY flag.
Section 34.8.5 ”TWI Clock Waveform Generator Register” in CKDIV field description, changed “The
TWCK is used to increase both SCL high and low periods” to “The CKDIV field is used to increase
both TWCK high and low periods”.

Universal Synchronous Asynchronous Receiver Transmitter (USART)

Section 36.6.7.5 ”Character Transmission” after first paragraph, inserted new paragraph “The chip
select line is de-asserted for a period equivalent to three bits between the transmission of two data”.
Section 36.7.6 ”USART Interrupt Enable Register (SPI_MODE)”, Section 36.7.8 ”USART Interrupt
Disable Register (SPI_MODE)”, Section 36.7.10 ”USART Interrupt Mask Register (SPI_MODE)” :
added bit NSSE (register bit 19).
Section 36.7.12 ”USART Channel Status Register (SPI_MODE)” : added bit NSSE (register bit 19)
and bit NSS (register bit 23).
Figure 36-2 and Figure 36-3: added label “Selected Clock” to USCLKS mux output.
Section 36.6.1.1 ”Baud Rate in Asynchronous Mode” in baud rate calculation formula, replaced
“fperipheral clock” with “Selected Clock”.
Section 36.6.1.3 ”Baud Rate in Synchronous Mode or SPI Mode” in second paragraph, replaced
“fperipheral clock” with “Selected Clock”.

Electrical Characteristics
Updated Table 45-1 and Table 45-3.

Updated Figure 45-22.

Added (1) and (2) in Table 45-5.

Doc. Rev.
43080

Comments Change
Request

Ref.

 983SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

F

Features
Updated “Shared System Controller” and “Shared Peripherals”

Power Supply and Power Control
Table 5-1: updated VDDIO and VDDIN comments.

Figure 5-2, Figure 5-3 and Figure 5-4: modified.

Input/Output Lines
Section 6.2 ”System I/O Lines” replaced note 2 “Refer to the section “3 to 20 MHz Crystal Oscillator”
with Refer to “3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator” in the section “Clock
Generator”.

Updated Section 6.4 ”NRST Pin”.

Product Mapping and Peripheral Access
Added Figure 7-1.

Memories
Deleted “Flash Organization” in Figure 8-1 and Figure 8-2.

Peripherals
Section 11.4.2 ”Reset State” PIO or signal name: “the PIO line is in I/O mode” changed to “the PIO
line is in general-purpose I/O (GPIO)”.

Real-time Clock (RTC)
Updated Section 17.5.7 ”RTC Accurate Clock Calibration”

Enhanced Embedded Flash Controller (EEFC)
Updated Section 22.2 ”Embedded Characteristics”.

Updated Section 22.4.1 ”Embedded Flash Organization” and added Figure 22-1.

Updated Section 22.4.3.7 ”Security Bit Protection”, Section 22.4.3.8 ”Unique Identifier Area” and
Section 22.4.3.9 ”User Signature Area”.

Bus Matrix (MATRIX)
Updated Section 26.8 ”Register Write Protection”.

In Section 26.9.5 ”Core Debug Configuration Register” bit descriptions, replaced “CROSS_TRIGx”
with “CROSS_TRGx”.

Section 26.9.7 ”Write Protection Status Register”: modified WPVS bit description.

Clock Generator
Aligned naming of clock source oscillators in Section 29.2 ”Embedded Characteristics” and Figure 29-
1.

Section 29.4 ”Slow Clock” and Section 29.5 ”Main Clock”: updated all the subsections of these
sections.

Section 29.6.1 ”Divider and Phase Lock Loop Programming”: updated.

Doc. Rev.
43080

Comments Change
Request

Ref.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 984

F

Power Management Controller (PMC)
Section 30.1 ”Description”, Section 30.2 ”Embedded Characteristics”, Section 30.10 ”Main Processor
Fast Startup”, Section 30.11 ”Main Processor Startup from Embedded Flash”, Section 30.13 ”Main
Clock Failure Detector”, Section 30.14 ”32.768 kHz Crystal Oscillator Frequency Monitor” and Section
30.15 ”Programming Sequence”: updated.

Section 30.18.7 ”PMC Clock Generator Main Oscillator Register”, Section 30.18.8 ”PMC Clock
Generator Main Clock Frequency Register”, Section 30.18.13 ”PMC Interrupt Enable Register”,
Section 30.18.14 ”PMC Interrupt Disable Register”, Section 30.18.15 ”PMC Status Register” and
Section 30.18.16 ”PMC Interrupt Mask Register”: updated.

True Random Number Generator (TRNG)
Section 44.1 ”Description” and Section 44.2 ”Embedded Characteristics”: updated names of
referenced test suites.

Section 44.5 ”Functional Description”: updated terminology in text and in Figure 44-2.

Table 44-2: “Register Mapping”: defined offset ranges 0x04 - 0x0C, 0x20 - 0x4C and 0x54 - 0xFC as
reserved.

E

Real-time Clock (RTC)
Updated Section 17.1 ”Description” and Section 17.5 ”Functional Description” (removed references to
the 20th century).

Updated Section 17.5.7 ”RTC Accurate Clock Calibration” (added figures and descriptions).

Universal Synchronous Asynchronous Receiver Transmitter (USART)
Section 36.5.1 ”I/O Lines”: deleted paragraph “To prevent the TXD line...”.

Pulse Width Modulation Controller (PWM)
Corrected formula in Section 38.6.2.2 ”Waveform Properties”: “DIVAB” changed to “DIVB”.

D

ARM Cortex-M4 Processor
Table 12-32: changed NVIC_IPR10 offset value to 0xE000E428 (was 0xE000E426).

Supply Controller (SUPC)
Section 20.4.9.2 ”Wake-up Inputs”: added one paragraph and Figure 20-5.

Section 20.6.7 ”Supply Controller Wake-up Inputs Register”: updated descriptions of fields WKUPENx
and WKUPTx.

Power Management Controller (PMC)
Section 30.13 ”Main Clock Failure Detector”: modified.

Serial Peripheral Interface (SPI)
Section 33.7.3.5 ”Peripheral Selection”: in last paragraph, replaced “If LASTXFER is used, the
command must be issued before writing the last character” with “If LASTXFER is used, the command
must be issued after writing the last character”.

Section 33.7.3.8 ”Peripheral Deselection without PDC”: in last paragraph, replaced “the Last Transfer
(LASTXFER) bit in the SPI_MR must be set to 1 before writing the last data to transmit into the
SPI_TDR” with “the Last Transfer (LASTXFER) bit in SPI_CR must be set after writing the last data to
transmit into SPI_TDR”.

Section 33.8.9 ”SPI Chip Select Register”: updated SCBR, DLYBS, and DLYBCT field descriptions.

Doc. Rev.
43080

Comments Change
Request

Ref.

 985SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

D

Universal Synchronous Asynchronous Receiver Transmitter (USART)
Replaced instances of “Kb/s” and “kbps” with “kbit/s”; replaced instance of “taken into account” with
“processed”.

Section 36.5.3 ”Interrupt Sources”: changed title (was “Interrupt”).

Section 36.6.3.15 ”Hardware Handshaking”: replaced “if the receiver is disabled and if the status
RXBUFF” with “if the receiver is disabled or if the status RXBUFF”.

Section 36.7.1 ”USART Control Register”: in STTTO bit description, replaced “before clocking the
time-out counter” with “before enabling the time-out counter”.

Section 36.7.12 ”USART Channel Status Register (SPI_MODE)”: added descriptions for bits ENDRX,
ENDTX, TXBUFE, and RXBUFF.

Section 36.7.15 ”USART Baud Rate Generator Register”: restructured equations in CD field
description.

Section 36.7.16 ”USART Receiver Time-out Register”: restructured equation in TO field description.

Section 36.7.17 ”USART Transmitter Timeguard Register”: restructured equation in TG bit
description.

Timer Counter (TC)
Replaced all occurrences of “quadrature decoder logic” with “quadrature decoder” or “QDEC”
throughout the document.

Moved Table 37-1 from Section 37.1 ”Description” to Section 37.3 ”Block Diagram”.

Section 37.6.16 ”Register Write Protection”: added “The Timer Counter clock of the first channel must
be enabled to access TC_WPMR”.

Section 37.7.5 ”TC Counter Value Register”: in CV field description, added notation “IMPORTANT:
For 16-bit channels, CV field size is limited to register bits 15:0”.

Section 37.7.6 ”TC Register A”: in RA field description, added notation “IMPORTANT: For 16-bit
channels, RA field size is limited to register bits 15:0”.

Section 37.7.7 ”TC Register B”: in RB field description, added notation “IMPORTANT: For 16-bit
channels, RB field size is limited to register bits 15:0”.

Section 37.7.8 ”TC Register C”: in RC field description, added notation “IMPORTANT: For 16-bit
channels, RC field size is limited to register bits 15:0”.

Section 37.7.19 ”TC Write Protection Mode Register”: updated WPEN bit description.

Advanced Encryption Standard (AES)
Section 41.4.4.1 ”Manual Mode” and Section 41.4.4.3 ”PDC Mode”: reformatting of bullets to
numbered steps.

Integrity check monitor (ICM)
Section 42.4.2 ”Interrupt Sources”: modified title (was “Interrupt”).

Section 42.5.1 ”Overview”: reorganized and updated content under this new heading.

Section 42.5.2.2 ”ICM Region Configuration Structure Member”: updated descriptions of fields
RHIEN, DMIEN, BEIEN, WCIEN, ECIEN and SUIEN.

Updated Section 42.5.4 ”Using ICM as SHA Engine”.

Added Section 42.5.4.1 ”Settings for Simple SHA Calculation”.

Section 42.5.5 ”ICM Automatic Monitoring Mode”: minor editorial changes.

Moved Section 42.5.7 ”Security Features” to end of Section 42.5 ”Functional Description”.

Section 42.6.3 ”ICM Status Register”: updated descriptions of fields RAWRMDIS and RMDIS.

Doc. Rev.
43080

Comments Change
Request

Ref.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 986

C

Reset Controller (RSTC)
Section 15.5 ”Reset Controller (RSTC) User Interface”: changed RSTC_SR reset value to
0x0000_0000 (was 0x0001_0000).

Real-time Clock (RTC)
Section 17.6.11 ”RTC Interrupt Mask Register”: added TDERR field.
Figure 17-1: replaced “APB” with “System Bus”.

Watchdog Timer (WDT)
Section 18.5.3 ”Watchdog Timer Status Register”: appended names of bits WDUNF and WDERR
with “(cleared on read)”.

Enhanced Embedded Flash Controller (EEFC)
Section 22.5.1 ”EEFC Flash Mode Register”: FWS field: Inversed equation.

Clock Generator
Section 29.4.2 ”32.768 kHz Crystal Oscillator”: deleted redundant content from end of section;
appended “OSCBYPASS bit of the Supply Controller Mode Register (SUPC_MR) needs to be set at
1” to read “OSCBYPASS bit of the Supply Controller Mode Register (SUPC_MR) needs to be set at 1
prior to writing a 1 in bit XTALSEL”.
Section 29.6 ”Divider and PLL Blocks”: modified the first paragraph.

Parallel Input/Output Controller (PIO)
Section 32.6.32 ”PIO Pad Pull-Down Status Register”: deleted sentence “This register can only be
written if the WPEN bit is cleared in the PIO Write Protection Mode Register”.

Universal Asynchronous Receiver Transmitter (UART)
Section 35.5.1 ”Baud Rate Generator”: deleted equation for Baud Rate calculation.
Section 35.6.9 ”UART Baud Rate Generator Register”: added equation to CD bit description.

Timer Counter (TC)
Section 37.1 ”Description”: modified first paragraph to read “A Timer Counter (TC) module includes
three identical TC channels. The number of implemented TC modules is device-specific”.
Section 37.6.14 ”Quadrature Decoder”: removed subsection “Missing Pulse Detection and Auto-
correction”.
Section 37.6.14.4 ”Position and Rotation Measurement”: modified the second paragraph.
Section 37.7.2 ”TC Channel Mode Register: Capture Mode”: in ‘Name’ line, replaced “(WAVE = 0)”
with “(CAPTURE_MODE)”.
Section 37.7.3 ”TC Channel Mode Register: Waveform Mode”: in ‘Name’ line, replaced “(WAVE = 1)”
with “(WAVEFORM_MODE)”.
Section 37.7.14 ”TC Block Mode Register”:removed AUTOC bit and MAXCMP field.
Section 37.7.18 ”TC QDEC Interrupt Status Register”: removed MPE bit.

Advanced Encryption Standard (AES)
Section 41.4.1 ”AES Register Endianness”: added.
Section 41.5.6 ”AES Interrupt Status Register”: Reworded DATRDY and TAGRDY bit descriptions.
Added “(cleared by...)” to ENDRX, ENDTX, RXBUFF, TXBUFE, URAD, URAT and TAGRDY bit
descriptions.

Electrical Characteristics
Section 45.5.10.5 updated: modified Figure 45-17, added equation and information after the figure.
Table 45-28 updated: added the values of CXTAL and CPARA24M. Modified the notes below the table.

Doc. Rev.
43080

Comments Change
Request

Ref.

 987SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

B

Block Diagram

Added pins WKUP[0:15]. Moved Dual Watchdog block out of backup zone. Added power supply for
Segment LCD Controller.

Signal Description
Table 3-1, “Signal Description List” :Added section Supply Controller with WKUP0 and WKUP[1:15].

Input/Output Lines
Changed Section 6.3 title from “Test Pin” to “TST Pin” .

Reset Controller (RSTC)
Section 15.5.2 ”RSTC Status Register”: modified bit descriptions.

Real-time Timer (RTT)
Section 16.4 ”Functional Description”: replaced “... the CRTV field must be read twice at the same
value to improve accuracy of the returned value.” with “...the CRTV field must be read twice at the
same value to read a correct value”.
Section 16.5.4 ”Real-time Timer Status Register” added “(cleared on read)” to each bit description.

Enhanced Embedded Flash Controller (EEFC)
Replaced “modulo” with “a multiple of” in Section 22.4.3.3 ”Erase Commands”.
Section 22.5.1 ”EEFC Flash Mode Register”: replaced “No Flash read should be done during change
of this register” with “No Flash read should be done during change of this field”.
Corrected FARG description for EPA command in Section 22.5.2 ”EEFC Flash Command Register”.
Section 22.5.3 ”EEFC Flash Status Register”: added “(cleared...)” to each bit description.

G3 Power Line Communications (GPLC)
Sections order redefined.
Modified Section 27.5 ”Analog Front-End” (was “PLC coupling circuitry description”).

Clock Generator
Section 29.6.1 ”Divider and Phase Lock Loop Programming”: Added “Note that there is a delay of two
SLCK clock cycles between the disable command and the real disable of the PLL” in the second
paragraph.

Power Management Controller (PMC)
Updated Section 30.10 ”Main Processor Fast Startup”.

Section 30.18.9 ”PMC Clock Generator PLLA Register”: added “Unlisted values are forbidden.” to
MULA bit description.
Section 30.18.10 ”PMC Clock Generator PLLB Register”: added “Unlisted values are forbidden.” to
MULB bit description.

Parallel Input/Output Controller (PIO)
Section 32.5.11 ”Programmable I/O Drive”: Corrected list of configurable pads.
Section 32.5.14 ”Register Write Protection”: in list of registers, replaced “PIO Pad Pull-Down Status
Register” with “PIO Pad Pull-Down Enable Register”.
Modified Section 32.6.48 ”PIO I/O Drive Register” (was PIO I/O Drive Register 1).
Removed Section “PIO I/O Drive Register 2”.

Doc. Rev.
43080

Comments Change
Request

Ref.

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 988

B

Serial Peripheral Interface (SPI)

Section 33.7.3 ”Master Mode Operations”: for a better description of the behavior of the TDRE and
TXEMPTY flags:
- Modified text regarding those flags.
- Added note “When the SPI is enabled, the TDRE and TXEMPTY flags are set.”
- Added Figure 33-5.
Section 33.8.1 ”SPI Control Register”: modified description of bit SPIDIS.

Section 33.8.5 ”SPI Status Register”: modified description of the following bits (“cleared by...”): RDRF,
TDRE, ENDRX, ENDTX, RXBUFF, TXBUFE, TXEMPTY.

Two-wire Interface (TWI)
Replaced all instances of “(Optional) Wait for the TXCOMP flag in TWI_SR before disabling the
peripheral clock if required.” with “(Only if peripheral clock must be disabled) Wait for the TXCOMP
flag to be raised in TWI_SR”.

Section 34.1 ”Description”: removed sentence: “Arbitration of the bus is performed internally and puts
the TWIHS in Slave mode automatically if the bus arbitration is lost”.
Section 34.7.3.4 ”Master Transmitter Mode”: Modified 2nd paragraph related to NACK.
Section 34.8.6 ”TWI Status Register”: rephrased flag clearing descriptions.
Corrected Figure 34-25 and Figure 34-26 (replaced EOSVACC with EOSACC).
Corrected Figure 34-27 (replaced GCACC with GACC).
Corrected Figure 34-32 (replaced “RXRDY= 0?” with “RXRDY= 1?”).

Universal Synchronous Asynchronous Receiver Transmitter (USART)
Section 36.6.3.4 ”Manchester Decoder”: deleted paragraph referencing RXIDLEV bit in US_MAN
register.
Table 36-14, “Register Mapping” : added reset value “0x0” for US_MR, US_CSR and US_NER.
Section 36.7.3 ”USART Mode Register”: updated USART_MODE and USCLKS bit descriptions.
Section 36.7.7 ”USART Interrupt Disable Register”: updated OVRE bit description.
Section 36.7.8 ”USART Interrupt Disable Register (SPI_MODE)” and Section 36.7.10 ”USART
Interrupt Mask Register (SPI_MODE)”: updated ENDRX, ENDTX, TXBUFE and RXBUFF bit
descriptions.
Rephrased clearing of flags in Section 36.7.11 ”USART Channel Status Register” and Section
36.7.12 ”USART Channel Status Register (SPI_MODE)”.

Timer Counter (TC)
Section 37.5.3 ”Interrupt Sources”: rephrased slightly the section.
Section 37.7.9 ”TC Status Register”: added “(cleared on read)” to bit descriptions.

Segment Liquid Crystal Display Controller (SLCDC)
Updated “DIS” bit descriptions.

Analog-to-Digital Converter (ADC)
Section 40.7.11 ”ADC Interrupt Status Register”: Corrected COMPE bit name and description;
changed “error” to “event”.

Integrity Check Monitor
Section 42.6.4 ”ICM Interrupt Enable Register”: updated RSU bit description.

Electrical Characteristics
Table 45-54, “PLC Power Consumption” : updated the values of Power Consumption.

A First Issue.

Doc. Rev.
43080

Comments Change
Request

Ref.

 989SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

Table of Contents

Description . 1

1. Features . 2
1.1 Configuration Summary . 4
1.2 SAM4CP application block diagram. 5

2. Block Diagram . 6

3. Signal Description . 7

4. Package and Pinout . 12
4.1 SAM4CP16C Package and Pinout. 12

5. Power Supply and Power Control . 14
5.1 Power Supplies . 14
5.2 Clock System . 20
5.3 System State at Power-up . 21
5.4 Active Mode . 21
5.5 Low-power Modes . 22
5.6 Wake-up Sources. 26
5.7 Fast Start-up . 26

6. Input/Output Lines . 27
6.1 General-Purpose I/O Lines . 27
6.2 System I/O Lines . 27
6.3 TST Pin . 28
6.4 NRST Pin . 28
6.5 TMPx Pins: Anti-tamper Pins . 28
6.6 RTCOUT0 Pin . 28
6.7 Shutdown (SHDN) Pin . 29
6.8 Force Wake-up (FWUP) Pin . 29
6.9 ERASE Pin. 29

7. Product Mapping and Peripheral Access . 30

8. Memories . 33
8.1 Embedded Memories . 33

9. Real-time Event Management . 40
9.1 Embedded Characteristics . 40
9.2 Real-time Event Mapping List . 40

10. System Controller . 41
10.1 System Controller and Peripheral Mapping . 41
10.2 Power Supply Monitoring . 41
10.3 Reset Controller . 42
10.4 Supply Controller (SUPC) . 42

11. Peripherals . 43

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 990

11.1 Peripheral Identifiers . 43
11.2 Peripheral DMA Controller (PDC) . 44
11.3 APB/AHB Bridge . 45
11.4 Peripheral Signal Multiplexing on I/O Lines . 45

12. ARM Cortex-M4 Processor . 50
12.1 Description . 50
12.2 Embedded Characteristics . 51
12.3 Block Diagram . 51
12.4 Cortex-M4 Models . 52
12.5 Power Management . 79
12.6 Cortex-M4 Instruction Set . 81
12.7 Cortex-M4 Core Peripherals . 180
12.8 Nested Vectored Interrupt Controller (NVIC) . 181
12.9 System Control Block (SCB) . 191
12.10 System Timer (SysTick) . 216
12.11 Memory Protection Unit (MPU) . 221
12.12 Floating Point Unit (FPU) . 243
12.13 Glossary . 251

13. Debug and Test Features . 255
13.1 Description . 255
13.2 Associated Documentation . 255
13.3 Embedded Characteristics . 255
13.4 Cross Triggering Debug Events . 257
13.5 Application Examples. 257
13.6 Debug and Test Pin Description . 258
13.7 Functional Description . 259

14. SAM4CP Boot Program . 264
14.1 Description . 264
14.2 Hardware and Software Constraints . 264
14.3 Flow Diagram. 264
14.4 Device Initialization . 264
14.5 SAM-BA Monitor . 265

15. Reset Controller (RSTC) . 268
15.1 Description . 268
15.2 Embedded Characteristics . 268
15.3 Block Diagram . 268
15.4 Functional Description . 269
15.5 Reset Controller (RSTC) User Interface . 274

16. Real-time Timer (RTT) . 279
16.1 Description . 279
16.2 Embedded Characteristics . 279
16.3 Block Diagram . 279
16.4 Functional Description . 280
16.5 Real-time Timer (RTT) User Interface . 281

 991SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

17. Real-time Clock (RTC) . 286
17.1 Description . 286
17.2 Embedded Characteristics . 286
17.3 Block Diagram . 286
17.4 Product Dependencies. 287
17.5 Functional Description . 287
17.6 Real-time Clock (RTC) User Interface . 295

18. Watchdog Timer (WDT) . 315
18.1 Description . 315
18.2 Embedded Characteristics . 315
18.3 Block Diagram . 315
18.4 Functional Description . 316
18.5 Watchdog Timer (WDT) User Interface . 317

19. Reinforced Safety Watchdog Timer (RSWDT) . 322
19.1 Description . 322
19.2 Embedded Characteristics . 322
19.3 Block Diagram . 322
19.4 Functional Description . 323
19.5 Reinforced Safety Watchdog Timer (RSWDT) User Interface . 324

20. Supply Controller (SUPC) . 328
20.1 Description . 328
20.2 Embedded Characteristics . 328
20.3 Block Diagram . 329
20.4 Supply Controller Functional Description . 330
20.5 Register Write Protection . 339
20.6 Supply Controller (SUPC) User Interface. 340

21. General Purpose Backup Registers (GPBR) . 352
21.1 Description . 352
21.2 Embedded Characteristics . 352
21.3 General Purpose Backup Registers (GPBR) User Interface . 352

22. Enhanced Embedded Flash Controller (EEFC) . 354
22.1 Description . 354
22.2 Embedded Characteristics . 354
22.3 Product Dependencies. 354
22.4 Functional Description . 355
22.5 Enhanced Embedded Flash Controller (EEFC) User Interface . 368

23. Fast Flash Programming Interface (FFPI) . 375
23.1 Description . 375
23.2 Embedded Characteristics . 375
23.3 Parallel Fast Flash Programming. 375

24. Cortex-M Cache Controller (CMCC) . 383
24.1 Description . 383
24.2 Embedded Characteristics . 383

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 992

24.3 Block Diagram . 383
24.4 Functional Description . 384
24.5 Cortex-M Cache Controller (CMCC) User Interface. 385

25. Interprocessor Communication (IPC) . 396
25.1 Description . 396
25.2 Block Diagram . 396
25.3 Product Dependencies. 397
25.4 Functional Description . 397
25.5 Interprocessor Communication (IPC) User Interface . 398

26. Bus Matrix (MATRIX) . 406
26.1 Description . 406
26.2 Embedded Characteristics . 406
26.3 Special Bus Granting Mechanism . 410
26.4 No Default Master . 410
26.5 Last Access Master . 410
26.6 Fixed Default Master . 410
26.7 Arbitration. 411
26.8 Register Write Protection . 413
26.9 AHB Bus Matrix (MATRIX) User Interface . 414

27. G3 Power Line Communications (GPLC) . 423
27.1 Description . 423
27.2 Embedded Characteristics . 423
27.3 Block Diagram . 424
27.4 Signal Description . 425
27.5 Analog Front-End. 426

28. Peripheral DMA Controller (PDC) . 432
28.1 Description . 432
28.2 Embedded Characteristics . 432
28.3 Block Diagram . 433
28.4 Functional Description . 433
28.5 Peripheral DMA Controller (PDC) User Interface. 435

29. Clock Generator . 446
29.1 Description . 446
29.2 Embedded Characteristics . 446
29.3 Block Diagram . 447
29.4 Slow Clock . 447
29.5 Main Clock . 449
29.6 Divider and PLL Blocks . 453

30. Power Management Controller (PMC) . 455
30.1 Description . 455
30.2 Embedded Characteristics . 455
30.3 Block Diagram . 456
30.4 Master Clock Controller . 457

 993SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

30.5 Processor Clock Controller . 457
30.6 SysTick Clock. 457
30.7 Peripheral Clock Controller . 457
30.8 Free Running Processor Clock . 458
30.9 Programmable Clock Output Controller . 458
30.10 Main Processor Fast Startup . 458
30.11 Main Processor Startup from Embedded Flash . 459
30.12 Coprocessor Sleep Mode. 460
30.13 Main Clock Failure Detector. 460
30.14 32.768 kHz Crystal Oscillator Frequency Monitor . 461
30.15 Programming Sequence . 461
30.16 Clock Switching Details . 463
30.17 Register Write Protection . 466
30.18 Power Management Controller (PMC) User Interface . 467

31. Chip Identifier (CHIPID) . 497
31.1 Description . 497
31.2 Embedded Characteristics . 497
31.3 Chip Identifier (CHIPID) User Interface . 497

32. Parallel Input/Output Controller (PIO) . 502
32.1 Description . 502
32.2 Embedded Characteristics . 502
32.3 Block Diagram . 503
32.4 Product Dependencies. 504
32.5 Functional Description . 505
32.6 Parallel Input/Output Controller (PIO) User Interface. 513

33. Serial Peripheral Interface (SPI) . 564
33.1 Description . 564
33.2 Embedded Characteristics . 564
33.3 Block Diagram . 565
33.4 Application Block Diagram . 565
33.5 Signal Description . 566
33.6 Product Dependencies. 566
33.7 Functional Description . 567
33.8 Serial Peripheral Interface (SPI) User Interface. 578

34. Two-wire Interface (TWI) . 594
34.1 Description . 594
34.2 Embedded Characteristics . 594
34.3 List of Abbreviations. 595
34.4 Block Diagram . 595
34.5 I/O Lines Description . 595
34.6 Product Dependencies. 595
34.7 Functional Description . 596
34.8 Two-wire Interface (TWI) User Interface . 620

35. Universal Asynchronous Receiver Transmitter (UART) . 637

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 994

35.1 Description . 637
35.2 Embedded Characteristics . 637
35.3 Block Diagram . 637
35.4 Product Dependencies. 638
35.5 Functional Description . 638
35.6 Universal Asynchronous Receiver Transmitter (UART) User Interface 645

36. Universal Synchronous Asynchronous Receiver Transmitter (USART) 657
36.1 Description . 657
36.2 Embedded Characteristics . 657
36.3 Block Diagram . 658
36.4 I/O Lines Description . 658
36.5 Product Dependencies. 659
36.6 Functional Description . 660
36.7 Universal Synchronous Asynchronous Receiver Transmitter (USART) User Interface. 687

37. Timer Counter (TC) . 719
37.1 Description . 719
37.2 Embedded Characteristics . 719
37.3 Block Diagram . 720
37.4 Pin List . 721
37.5 Product Dependencies. 721
37.6 Functional Description . 722
37.7 Timer Counter (TC) User Interface . 740

38. Pulse Width Modulation Controller (PWM) . 766
38.1 Description . 766
38.2 Embedded Characteristics . 766
38.3 Block Diagram . 767
38.4 I/O Lines Description . 767
38.5 Product Dependencies. 768
38.6 Functional Description . 768
38.7 Pulse Width Modulation Controller (PWM) User Interface . 775

39. Segment Liquid Crystal Display Controller (SLCDC) . 790
39.1 Description . 790
39.2 Embedded Characteristics . 790
39.3 Block Diagram . 791
39.4 I/O Lines Description . 792
39.5 Product Dependencies. 792
39.6 Functional Description . 794
39.7 Waveform Specifications . 805
39.8 Segment LCD Controller (SLCDC) User Interface. 805

40. Analog-to-Digital Converter (ADC) . 820
40.1 Description . 820
40.2 Embedded Characteristics . 820
40.3 Block Diagram . 821
40.4 Signal Description . 821

 995SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

40.5 Product Dependencies. 821
40.6 Functional Description . 823
40.7 Analog-to-Digital Converter (ADC) User Interface . 834

41. Advanced Encryption Standard (AES) . 857
41.1 Description . 857
41.2 Embedded Characteristics . 857
41.3 Product Dependencies. 858
41.4 Functional Description . 858
41.5 Advanced Encryption Standard (AES) User Interface . 869

42. Integrity Check Monitor (ICM) . 889
42.1 Description . 889
42.2 Embedded Characteristics . 890
42.3 Block Diagram . 890
42.4 Product Dependencies. 890
42.5 Functional Description . 891
42.6 Integrity Check Monitor (ICM) User Interface. 903

43. Classical Public Key Cryptography Controller (CPKCC) . 917
43.1 Description . 917
43.2 Product Dependencies. 917
43.3 Functional Description . 917

44. True Random Number Generator (TRNG) . 918
44.1 Description . 918
44.2 Embedded Characteristics . 918
44.3 Block Diagram . 918
44.4 Product Dependencies. 918
44.5 Functional Description . 919
44.6 True Random Number Generator (TRNG) User Interface . 919

45. Electrical Characteristics . 926
45.1 Absolute Maximum Ratings . 926
45.2 Recommended Operating Conditions . 926
45.3 Electrical Parameters Usage . 927
45.4 I/O Characteristics . 927
45.5 Embedded Analog Peripherals Characteristics . 935
45.6 Embedded Flash Characteristics . 956
45.7 Power Supply Current Consumption . 957
45.8 Power On Considerations . 970

46. Mechanical Characteristics . 971
46.1 176-lead LQFP Package . 971
46.2 Soldering Profile. 972
46.3 Packaging Resources . 972

47. Marking . 973

48. Ordering Information . 974

SAM4CP16C [DATASHEET]
Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16

 996

49. Errata . 975
49.1 Supply Controller (SUPC) . 975
49.2 Parallel Input Output (PIO) Controller . 975
49.3 Watchdog (WDT) / Reinforced Safety Watchdog (RSWDT) . 976
49.4 Enhanced Embedded Flash Controller (EEFC) . 976
49.5 Wait For Interrupt (WFI) . 976
49.6 Power Supply and Power Control / Clock System . 977
49.7 Power Management Controller (PMC) . 977

50. Revision History . 978

Table of Contents . 989

XX X XX X
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-43080I-ATPL-SAM4CP16C-Datasheet_22-Sep-16.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be
trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

www.atmel.com
https://plus.google.com/106109247591403112418/posts
https://twitter.com/Atmel
www.atmel.com
http://www.linkedin.com/company/atmel-corporation
http://www.youtube.com/user/AtmelCorporation
https://www.facebook.com/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при
поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

 Оперативные поставки широкого спектра электронных компонентов отечественного и
импортного производства напрямую от производителей и с крупнейших мировых
складов;

 Поставка более 17-ти миллионов наименований электронных компонентов;

 Поставка сложных, дефицитных, либо снятых с производства позиций;

 Оперативные сроки поставки под заказ (от 5 рабочих дней);

 Экспресс доставка в любую точку России;

 Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;

 Система менеджмента качества сертифицирована по Международному стандарту ISO
9001;

 Лицензия ФСБ на осуществление работ с использованием сведений, составляющих
государственную тайну;

 Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil,
Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq,
Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление
«Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

 Подбор оптимального решения, техническое обоснование при выборе компонента;

 Подбор аналогов;

 Консультации по применению компонента;

 Поставка образцов и прототипов;

 Техническая поддержка проекта;

 Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)
Факс: 8 (812) 320-02-42
Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.

mailto:org@eplast1.ru

