www.ti.com SLLS723B - APRIL 2006-REVISED NOVEMBER 2009 ## DUAL RS-232 DRIVER/RECEIVER WITH IEC61000-4-2 PROTECTION Check for Samples: MAX232E #### **FEATURES** - Meets or Exceeds TIA/RS-232-F and ITU Recommendation V.28 - **Operates From a Single 5-V Power Supply** With 1.0-µF Charge-Pump Capacitors - Operates up to 250 kbit/s - **Two Drivers and Two Receivers** - ±30-V Input Levels - Low Supply Current . . . 8 mA Typical - **ESD Protection for RS-232 Bus Pins** - ±15-kV Human-Body Model (HBM) - ±8-kV IEC61000-4-2, Contact Discharge - ±15-kV IEC61000-4-2, Air-Gap Discharge #### **APPLICATIONS** - **TIA/RS-232-F** - **Battery-Powered Systems** - **Terminals** - **Modems** - Computers #### D. DW, N, NS, OR PW PACKAGE (TOP VIEW) C1+ **∏** 1 16 V_{CC} 🛮 GND V_{S+} [] 2 15 14 DOUT1 C1− **П** 3 C2+ [4 13 RIN1 C2- 1 5 12 ROUT1 11 DIN1 V_{S-} 6 DOUT2 7 10 DIN2 RIN2 [ROUT2 #### DESCRIPTION/ORDERING INFORMATION The MAX232E is a dual driver/receiver that includes a capacitive voltage generator to supply TIA/RS-232-F voltage levels from a single 5-V supply. Each receiver converts TIA/RS-232-F inputs to 5-V TTL/CMOS levels. This receiver has a typical threshold of 1.3 V, a typical hysteresis of 0.5 V, and can accept ±30-V inputs. Each driver converts TTL/CMOS input levels into TIA/RS-232-F levels. The driver, receiver, and voltage-generator functions are available as cells in the Texas Instruments LinASIC™ library. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. ## Table 1. ORDERING INFORMATION⁽¹⁾ | T _A | P.A | ACKAGE ⁽²⁾ | ORDERABLE PART NUMBER | TOP-SIDE MARKING | |----------------|------------|-----------------------|-----------------------|------------------| | | PDIP – N | Tube of 25 | MAX232ECN | MAX232ECN | | | SOIC - D | Tube of 40 | MAX232ECD | MAYOOFO | | | 201C – D | Reel of 2500 | MAX232ECDR | MAX232EC | | 0°C to 70°C | COIC DW | Tube of 40 | MAX232ECDW | MAYOOFO | | | SOIC – DW | Reel of 2000 | MAX232ECDWR | MAX232EC | | | TCCOD DW | Tube of 25 | MAX232ECPW | MAGGGEO | | | TSSOP – PW | Reel of 2000 | MAX232ECPWR | MA232EC | | | PDIP – N | Tube of 25 | MAX232EIN | MAX232EIN | | | COIC D | Tube of 40 | MAX232EID | MAYOOFI | | | SOIC – D | Reel of 2500 | MAX232EIDR | MAX232EI | | -40°C to 85°C | COIC DW | Tube of 40 | MAX232EIDW | MAYOOFI | | | SOIC – DW | Reel of 2000 | MAX232EIDWR | MAX232EI | | | TCCOD DW | Tube of 25 | MAX232EIPW | MDOOOEL | | | TSSOP – PW | Reel of 2000 | MAX232EIPWR | MB232EI | ⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. #### **Table 2. FUNCTION TABLES** #### Each Driver⁽¹⁾ | INPUT
DIN | OUTPUT
DOUT | |--------------|----------------| | L | Н | | Н | L | (1) H = high level, L = low level Table 3. Each Receiver⁽¹⁾ | INPUT
RIN | OUTPUT
ROUT | |--------------|----------------| | L | Н | | Н | L | (1) H = high level, L = low level ## **LOGIC DIAGRAM (POSITIVE LOGIC)** Submit Documentation Feedback ⁽²⁾ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. www.ti.com ## Absolute Maximum Ratings(1) over operating free-air temperature range (unless otherwise noted) | | | | MIN | MAX | UNIT | |------------------|--|------------|-----------------------|-----------------------|--------| | V _{CC} | Input supply voltage range (2) | | -0.3 | 6 | V | | V _{S+} | Positive output supply voltage range | | V _{CC} - 0.3 | 15 | V | | V _S _ | Negative output supply voltage range | | -0.3 | -15 | V | | V | land to talk and an area | Driver | -0.3 | V _{CC} + 0.3 | \/ | | VI | Input voltage range | Receiver | | ±30 | V | | V | Outrot valtage varie | DOUT | V _{S-} - 0.3 | V _{S+} + 0.3 | \ / | | Vo | Output voltage range | ROUT | -0.3 | V _{CC} + 0.3 | V | | | Short-circuit duration | DOUT | | Unlimited | | | | | D package | | 73 | | | 0 | Declines the world in a dame (3) (4) | DW package | | 57 | 00/11/ | | θ_{JA} | Package thermal impedance (3) (4) | N package | | 67 | °C/W | | | | PW package | | 108 | | | TJ | Operating virtual junction temperature | | | 150 | °C | | T _{stg} | Storage temperature range | | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages are with respect to network GND. The package thermal impedance is calculated in accordance with JESD 51-7. **Recommended Operating Conditions** | | - | | MIN | NOM | MAX | UNIT | |-----------------|---|----------|-----|-----|-----|------| | V _{CC} | Supply voltage | | 4.5 | 5 | 5.5 | V | | V _{IH} | High-level input voltage (DIN1, DIN2) | | 2 | | | V | | V_{IL} | Low-level input voltage (DIN1, DIN2) | | | | 0.8 | V | | | Receiver input voltage (RIN1, RIN2) | | | | ±30 | V | | _ | On a set in a face of the second set up | MAX232EC | 0 | | 70 | 90 | | I A | Operating free-air temperature | MAX232EI | -40 | | 85 | °C | ## Electrical Characteristics(1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 4) | | PARAMETER | TEST CONDITIONS | | | TYP ⁽²⁾ | MAX | UNIT | |----------|----------------|-------------------|---|--|--------------------|-----|------| | I_{CC} | Supply current | $V_{CC} = 5.5 V,$ | All outputs open, T _A = 25°C | | 8 | 10 | mA | Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 5 V and T_A = 25°C. Copyright © 2006-2009, Texas Instruments Incorporated Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. #### **DRIVER SECTION** ## Electrical Characteristics⁽¹⁾ over recommended ranges of supply voltage and operating free-air temperature range | | PARAMETER | TEST CON | MIN | TYP ⁽²⁾ | MAX | UNIT | | | |-----------------|------------------------------|----------|--|-----------------------|-----|------|------------|----| | V_{OH} | High-level output voltage | DOUT | $R_L = 3 \text{ k}\Omega \text{ to GND}$ | | 5 | 7 | | V | | V_{OL} | Low-level output voltage (3) | DOUT | $R_L = 3 \text{ k}\Omega \text{ to GND}$ | | | -7 | – 5 | V | | ro | Output resistance | DOUT | $V_{S+} = V_{S-} = 0,$ | V _O = ±2 V | 300 | | | Ω | | l _{OS} | Short-circuit output current | DOUT | V _{CC} = 5.5 V, | V _O = 0 | | ±10 | | mA | | I _{IS} | Short-circuit input current | DIN | V _I = 0 | | | | 200 | μΑ | - (1) Test conditions are C1–C4 = 1 μF at V_{CC} = 5 V ± 0.5 V. (2) All typical values are at V_{CC} = 5 V and T_A = 25°C. (3) The algebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only. - (4) Not more than one output should be shorted at a time. ## Switching Characteristics⁽¹⁾ V_{CC} = 5 V, T_A = 25°C (see Note 4) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-------|------------------------------------|------------------------------------|-----|-----|-----|--------| | SR | Driver slew rate | R_L = 3 kΩ to 7 kΩ, See Figure 2 | | | 30 | V/µs | | SR(t) | Driver transition region slew rate | See Figure 3 | | 3 | | V/µs | | | Data rate | One DOUT switching | | 250 | | kbit/s | ⁽¹⁾ Test conditions are C1-C4 = 1 μ F at V_{CC} = 5 V \pm 0.5 V. #### **ESD** protection | PARAMETER | TEST CONDITIONS | TYP | UNIT | |-----------|---------------------------------|-----|------| | | НВМ | ±15 | kV | | DOUT, RIN | IEC61000-4-2, Air-Gap Discharge | ±15 | kV | | | IEC61000-4-2, Contact Discharge | ±8 | kV | Submit Documentation Feedback www.ti.com #### RECEIVER SECTION #### Electrical Characteristics(1) over recommended ranges of supply voltage and operating free-air temperature range | | PARAMETER | | TEST CONDITIONS | | | TYP ⁽²⁾ | MAX | UNIT | |------------------|---|------|---------------------------|-----------------------|-----|--------------------|-----|------| | V _{OH} | High-level output voltage | ROUT | $I_{OH} = -1 \text{ mA}$ | | 3.5 | | | V | | V _{OL} | Low-level output voltage (3) | ROUT | $I_{OL} = 3.2 \text{ mA}$ | | | | 0.4 | V | | V _{IT+} | Receiver positive-going input threshold voltage | RIN | V _{CC} = 5 V, | T _A = 25°C | | 1.7 | 2.4 | V | | V_{IT-} | Receiver negative-going input threshold voltage | RIN | V _{CC} = 5 V, | T _A = 25°C | 0.8 | 1.2 | | V | | V_{hys} | Input hysteresis voltage | RIN | V _{CC} = 5 V | | 0.2 | 0.5 | 1 | V | | ri | Receiver input resistance | RIN | V _{CC} = 5 V, | T _A = 25°C | 3 | 5 | 7 | kΩ | ## Switching Characteristics(1) $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C} \text{ (see Figure 1)}$ | | PARAMETER | TYP | UNIT | |---------------------|--|-----|------| | t _{PLH(R)} | Receiver propagation delay time, low- to high-level output | 500 | ns | | t _{PHL(R)} | Receiver propagation delay time, high- to low-level output | 500 | ns | (1) Test conditions are C1-C4 = 1 μ F at V_{CC} = 5 V \pm 0.5 V. ⁽¹⁾ Test conditions are C1–C4 = 1 µF at V_{CC} = 5 V ± 0.5 V. (2) All typical values are at V_{CC} = 5 V and T_A = 25°C. (3) The algebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only. #### PARAMETER MEASUREMENT INFORMATION - A. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, duty cycle $\leq 50\%$. - B. C_L includes probe and jig capacitance. - C. All diodes are 1N3064 or equivalent. Figure 1. Receiver Test Circuit and Waveforms for t_{PHL} and t_{PLH} Measurements Submit Documentation Feedback #### PARAMETER MEASUREMENT INFORMATION (continued) - A. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, duty cycle $\leq 50\%$. - B. C_L includes probe and jig capacitance. Figure 2. Driver Test Circuit and Waveforms for t_{PHL} and t_{PLH} Measurements (5-μs Input) A. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, duty cycle $\leq 50\%$. Figure 3. Test Circuit and Waveforms for t_{THL} and t_{TLH} Measurements (20-µs Input) #### **APPLICATION INFORMATION** $^{^\}dagger$ C3 can be connected to V_{CC} or GND. - A. Resistor values shown are nominal. - B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown. In addition to the 1-μF capacitors shown, the MAX202E can operate with 0.1-μF capacitors. Figure 4. Typical Operating Circuit 23-Jan-2012 #### **PACKAGING INFORMATION** | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples
(Requires Login) | |------------------|------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|-----------------------------| | MAX232ECD | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232ECDG4 | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232ECDR | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232ECDRG4 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232ECDW | ACTIVE | SOIC | DW | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232ECDWG4 | ACTIVE | SOIC | DW | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232ECDWR | ACTIVE | SOIC | DW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232ECDWRE4 | ACTIVE | SOIC | DW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232ECDWRG4 | ACTIVE | SOIC | DW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232ECN | ACTIVE | PDIP | N | 16 | 25 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | MAX232ECNE4 | ACTIVE | PDIP | N | 16 | 25 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | MAX232ECPW | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232ECPWG4 | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232ECPWR | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232ECPWRG4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232EID | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232EIDG4 | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232EIDR | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | www.ti.com 23-Jan-2012 | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples
(Requires Login) | |------------------|------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|-----------------------------| | MAX232EIDRG4 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232EIDW | ACTIVE | SOIC | DW | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232EIDWG4 | ACTIVE | SOIC | DW | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232EIDWR | ACTIVE | SOIC | DW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232EIDWRG4 | ACTIVE | SOIC | DW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232EIN | ACTIVE | PDIP | N | 16 | 25 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | MAX232EINE4 | ACTIVE | PDIP | N | 16 | 25 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | MAX232EIPW | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232EIPWG4 | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232EIPWR | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | MAX232EIPWRG4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) ⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. ## **PACKAGE OPTION ADDENDUM** 23-Jan-2012 (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ## PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 ## TAPE AND REEL INFORMATION #### **REEL DIMENSIONS** #### **TAPE DIMENSIONS** | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### TAPE AND REEL INFORMATION #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | MAX232ECDR | SOIC | D | 16 | 2500 | 330.0 | 16.4 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 | | MAX232ECDWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | MAX232ECDWRG4 | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | MAX232ECPWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | MAX232EIDR | SOIC | D | 16 | 2500 | 330.0 | 16.4 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 | | MAX232EIDWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | MAX232EIPWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | www.ti.com 14-Jul-2012 *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |---------------|--------------|-----------------|------|------|-------------|------------|-------------| | MAX232ECDR | SOIC | D | 16 | 2500 | 367.0 | 367.0 | 38.0 | | MAX232ECDWR | SOIC | DW | 16 | 2000 | 366.0 | 364.0 | 50.0 | | MAX232ECDWRG4 | SOIC | DW | 16 | 2000 | 367.0 | 367.0 | 38.0 | | MAX232ECPWR | TSSOP | PW | 16 | 2000 | 367.0 | 367.0 | 35.0 | | MAX232EIDR | SOIC | D | 16 | 2500 | 367.0 | 367.0 | 38.0 | | MAX232EIDWR | SOIC | DW | 16 | 2000 | 367.0 | 367.0 | 38.0 | | MAX232EIPWR | TSSOP | PW | 16 | 2000 | 367.0 | 367.0 | 35.0 | # D (R-PDS0-G16) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AC. # D (R-PDSO-G16) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. PW (R-PDSO-G16) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 # PW (R-PDSO-G16) # PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. DW (R-PDSO-G16) ## PLASTIC SMALL OUTLINE NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-013 variation AA. DW (R-PDSO-G16) PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Refer to IPC7351 for alternate board design. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC—7525 - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. | roducts | | Applications | |---------|--------------|--------------| | | ti aaaa/adia | A | Pr Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio www.ti.com/communications **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u> www.ti-rfid.com Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.