

SCES436C-APRIL 2003-REVISED SEPTEMBER 2004

FEATURES

- Member of the Texas Instruments Widebus+™ Family
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

DESCRIPTION/ORDERING INFORMATION

This device contains eight independent noninverting buffers and a 16-bit noninverting bus transceiver and D-type latch designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74ALVCH32973 is particularly suitable for demultiplexing an address/data bus into a dedicated address bus and dedicated data bus. The device is used where there is asynchronous bidirectional communication between the A and B data bus, and the address signals are latched and buffered on the Q bus. The control-function implementation minimizes external timing requirements.

This device can be used as one 8-bit buffer, two 8-bit transceivers, and two 8-bit latches or one 8-bit buffer, one 16-bit transceiver, and one 16-bit latch. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The transceiver output-enable (TOE) input can be used to disable the transceivers so that the A and B buses effectively are isolated.

When the latch-enable (LE) input is high, the Q outputs follow the data (A) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the A inputs. The latch output-enable (LOE) input can be used to place the nine Q outputs in either a normal logic state (high or low logic level) or the high-impedance state. In the high-impedance state, the Q outputs neither drive nor load the bus lines significantly. LOE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the Q outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, $\overline{\text{LOE}}$ and $\overline{\text{TOE}}$ should be tied to V_{CC} through pullup resistors; the minimum values of the resistors are determined by the current-sinking capability of the drivers.

The eight independent noninverting buffers perform the Boolean function Y = D and are independent of the state of DIR, TOE, LE, and LOE.

The A and B I/Os and D inputs have bus-hold circuitry. Active bus-hold circuitry holds unused or undriven data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	LFBGA - GKE	Topo and roal	SN74ALVCH32973KR	ACH973
-40 C 10 85 C	LFBGA - ZKE (Pb-free)	Tape and reel	74ALVCH32973ZKER	ACH973

ORDERING INFORMATION

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus+ is a trademark of Texas Instruments.

SCES436C-APRIL 2003-REVISED SEPTEMBER 2004

Α

в

С

D

Е

F

G

н

J

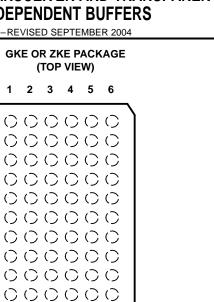
κ

L

М

Ν Ρ

R т


000000

000000

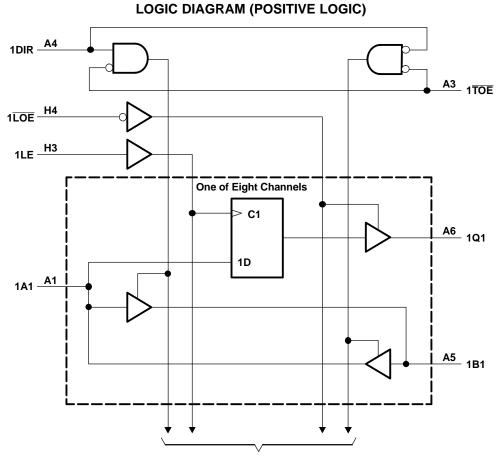
000000

000000 000000

000000

TERMINAL ASSIGNMENTS

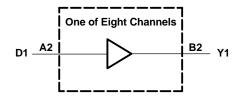
	1	2	3	4	5	6
Α	1A1	D1	1TOE	1DIR	1B1	1Q1
В	1A2	Y1	GND	GND	1B2	1Q2
С	1A3	D2	V _{CC}	V _{CC}	1B3	1Q3
D	1A4	Y2	GND	GND	1B4	1Q4
Е	1A5	D3	GND	GND	1B5	1Q5
F	1A6	Y3	V _{CC}	V _{CC}	1B6	1Q6
G	1A7	D4	GND	GND	1B7	1Q7
н	1A8	Y4	1LE	1LOE	1B8	1Q8
J	2A1	D5	2TOE	2DIR	2B1	2Q1
к	2A2	Y5	GND	GND	2B2	2Q2
L	2A3	D6	V _{CC}	V _{CC}	2B3	2Q3
М	2A4	Y6	GND	GND	2B4	2Q4
Ν	2A5	D7	GND	GND	2B5	2Q5
Р	2A6	Y7	V _{CC}	V _{CC}	2B6	2Q6
R	2A7	D8	GND	GND	2B7	2Q7
Т	2A8	Y8	2LE	2LOE	2B8	2Q8


FUNCTION TABLES

INP	UTS		
TOE	DIR	OPERATION	
L	L	B data to A bus	
L	Н	A data to B bus	
Н	Х	A bus and B bus isolation	

	INPUTS	OUTPUT			
LOE	LE	Α	Q		
L	Н	Н	Н		
L	Н	L	L		
L	L	Х	Q ₀ Z		
Н	Х	Х	Z		
	PUT D	(OUTPUT Y		
	L		L		
	н		Н		

SCES436C-APRIL 2003-REVISED SEPTEMBER 2004


To Seven Other Channels

SCES436C-APRIL 2003-REVISED SEPTEMBER 2004

LOGIC DIAGRAM (POSITIVE LOGIC)

To Seven Other Channels

SCES436C-APRIL 2003-REVISED SEPTEMBER 2004

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
V	Input voltogo rongo	Except I/O and D input ports ⁽²⁾	-0.5	4.6	V
VI	Input voltage range	I/O and D input ports ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	v
Vo	Output voltage range ⁽²⁾⁽³⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
I _O	Continuous output current			±50	mA
	Continuous current through each V_C	_C or GND		±100	mA
θ_{JA}	Package thermal impedance ⁽⁴⁾	GKE/ZKE package		40	°C/W
T _{stg}	Storage temperature range	·	-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) This value is limited to 4.6 V maximum.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		1.65	3.6	V
		V_{CC} = 1.65 V to 1.95 V	$0.65 imes V_{CC}$		
V _{IH}	/ _{IH} High-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.7		V
		V _{CC} = 3 V to 3.6 V	2		
		V_{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	
V _{IL}	Low-level input voltage	V_{CC} = 2.3 V to 2.7 V		0.7	V
	$V_{CC} = 3 V \text{ to } 3.6 V$		0.8		
VI	Input voltage		0	V _{CC}	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 1.65 V		-4	
	High lovel output ourrent	$V_{CC} = 2.3 V$		-12	mA
I _{OH}	High-level output current	$V_{CC} = 2.7 V$		-12	ША
		V _{CC} = 3 V		-24	
		V _{CC} = 1.65 V		4	
		V _{CC} = 2.3 V		12	~ ^
I _{OL}	Low-level output current	V _{CC} = 2.7 V			mA
		V _{CC} = 3 V		24	
$\Delta t/\Delta v$	Input transition rise or fall rate	· · ·		10	ns/V
T _A	Operating free-air temperature		-40	85	°C

 All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES436C-APRIL 2003-REVISED SEPTEMBER 2004

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

P/	ARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT
		I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} - 0.2			
		I _{OH} = -4 mA	1.65 V	1.2			
		$I_{OH} = -6 \text{ mA}$	2.3 V	2			
V _{ОН}			2.3 V	1.7			V
		I _{OH} = -12 mA	2.7 V	2.2			
			3 V	2.4			
		I _{OH} = -24 mA	3 V	2			
		I _{OL} = 100 μA	1.65 V to 3.6 V			0.2	
		$I_{OL} = 4 \text{ mA}$	1.65 V			0.45	
		$I_{OL} = 6 \text{ mA}$	2.3 V			0.4	
V _{OL}			2.3 V			0.7	V
		I _{OL} = 12 mA	2.7 V			0.4	
		I _{OL} = 24 mA	3 V			0.55	
I _I		$V_{I} = V_{CC} \text{ or } GND$	3.6 V			±5	μA
I _{BHL} ⁽²⁾		V ₁ = 0.57 V	1.65 V	25			
		V _I = 0.7 V	2.3 V	45			μA
		V _I = 0.8 V	3 V	75			
		V ₁ = 1.07 V	1.65 V	-25			
I _{BHH} ⁽³⁾)	V _I = 1.7 V	2.3 V	-45			μA
DIIII		$V_1 = 2 V$	3 V	-75			•
			1.95 V	200			μA
I _{BHLO} (4	(4)	$V_{I} = 0$ to V_{CC}	2.7 V	300			
BHLO			3.6 V	500			
			1.95 V	-200			
I _{BHHO} ((5)	$V_{I} = 0$ to V_{CC}	2.7 V	-300			μA
ыпо			3.6 V	-500			
I _{OZ} ⁽⁶⁾		$V_{O} = V_{CC}$ or GND	3.6 V			±10	μA
I _{CC}		$V_{\rm I} = V_{\rm CC}$ or GND, $I_{\rm O} = 0$	3.6 V			60	μA
ΔI_{CC}		One input at V_{CC} - 0.6 V, Other inputs at V_{CC} or				750	μA
	Control inputs				3		
Ci	D	$V_{I} = V_{CC}$ or GND	3.3 V		4		pF
	A ports				4.5		
C _{io}	B ports	$V_{O} = V_{CC} \text{ or } GND$	3.3 V	<u> </u>	4.5		pF
Co	Q $V_0 = V_{CC} \text{ or GND}$		3.3 V		3		pF

TEXAS STRUMENTS

www.ti.com

(1) All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. (2) The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} (3) to V_{CC} and then lowering it to V_{IH} min.

An external driver must source at least I_{BHLO} to switch this node from low to high. (4)

An external driver must sink at least I_{BHHO} to switch this node from high to low. For I/O ports, the parameter I_{OZ} includes the input leakage current. (5)

(6)

SCES436C-APRIL 2003-REVISED SEPTEMBER 2004

TIMING REQUIREMENTS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		V _{CC} =	V _{CC} = 1.8 V		$ \begin{array}{c c} V_{CC} = 2.5 \ V \\ \pm \ 0.2 \ V \\ \end{array} \begin{array}{c} V_{CC} = 3.3 \ V \\ \pm \ 0.3 \ V \\ \end{array} $		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	
t _w	Pulse duration, LE high	2		2		2		ns
t _{su}	Setup time, data before LE \downarrow	0.9		0.9		0.9		ns
t _h	Hold time, data after LE \downarrow	0.9		0.9		0.9		ns

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO	-		2.5 V V	V _{CC} = 3.3 V ± 0.3 V		UNIT
	(INFOT)	(OUTPUT)	TYP	MIN	MAX	MIN	MAX	
	D	Y	2.2	0.5	3.2	0.5	3	
	A	Q	2.2	0.5	3.2	0.5	3	
t _{pd}	LE	Q	2.8	0.5	3.3	0.5	3	ns
	A or B	B or A	2.2	0.5	3.2	0.5	3	
	LOE	Q	2.9	0.7	4.9	0.7	4.7	
t _{en}	TOE	A or B	3	0.7	4.6	0.7	4.4	ns
	DIR	AUID	3.4	0.7	4.9	0.7	4.7	
	LOE	Q	2.8	0.5	4.3	0.5	4.1	
t _{dis}	TOE	A or B	3.2	0.5	4.3	0.5	4.1	ns
	DIR	AUD	3.4	0.5	4.9	0.5	4.7	

SCES436C-APRIL 2003-REVISED SEPTEMBER 2004

OPERATING CHARACTERISTICS⁽¹⁾

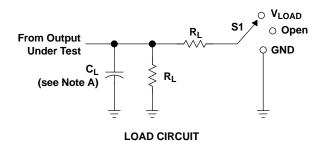
 $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT	
		A outputs enabled, Q outputs disabled, one A output switching	$\begin{array}{l} \text{One } f_A = 10 \text{ MHz},\\ \text{One } f_B = 10 \text{ MHz},\\ \hline \textbf{TOE} = GND,\\ \hline \textbf{LOE} = V_{CC},\\ \hline \textbf{DIR} = GND,\\ \hline \textbf{C}_L = 0 \text{ pF} \end{array}$	12	14	19	
C _{pd} ⁽²⁾	S _{pd} ⁽²⁾ Power dissipation each output) capacitance	B outputs enabled, Q outputs disabled, one B output switching	$\begin{array}{l} & \text{One } f_A = 10 \text{ MHz}, \\ & \text{One } f_B = 10 \text{ MHz}, \\ \hline \text{TOE} = \text{GND}, \\ & \text{LOE} = \text{V}_{\text{CC}}, \\ & \text{DIR} = \text{GND}, \\ & \text{C}_{\text{L}} = 0 \text{ pF} \end{array}$	12	14	21	pF
(each oulpul)		Q outputs enabled, A and B I/Os isolated, one Q output switching	$\begin{array}{l} \text{One } f_A = 10 \text{ MHz},\\ \text{One } f_{LE} = 20 \text{ MHz},\\ \text{One } f_Q = 10 \text{ MHz},\\ \hline \textbf{TOE} = V_{CC},\\ \hline \textbf{LOE} = \text{ GND},\\ \textbf{C}_L = 0 \text{ pF} \end{array}$	11	13	19	
		One Y output switching, A and B I/Os isolated, Q outputs disabled	$\begin{array}{l} \text{One } f_D = 10 \text{ MHz},\\ \text{One } f_Y = 10 \text{ MHz},\\ \hline \textbf{TOE} = V_{CC},\\ \hline \textbf{LOE} = V_{CC},\\ \textbf{C}_L = 0 \text{ pF} \end{array}$	7	8	12	
C _{pd} (Z)	Power dissipation capacitance	A and B I/Os isolated, Q outputs disabled, one LE and one A data input switching	$\begin{array}{l} \text{One } f_A = 10 \text{ MHz},\\ \text{One } f_{LE} = 20 \text{ MHz},\\ f_O \text{ not switching},\\ \hline \hline \text{TOE} = \text{V}_{CC},\\ \hline \hline \text{OE} = \text{V}_{CC},\\ \hline \hline \text{COE} = \text{V}_{CC},\\ \hline C_L = 0 \text{ pF} \end{array}$	4	5	11	pF
C _{pd} ⁽³⁾ (each LE)	Power dissipation capacitance	A and B I/Os isolated, Q outputs disabled, one LE input switching	$ \begin{array}{l} f_A \text{ not switching,} \\ \text{One } f_{LE} = 20 \text{ MHz,} \\ f_O \text{ not switching,} \\ \hline \textbf{TOE} = V_{CC}, \\ \hline \textbf{TOE} = V_{CC}, \\ \hline \textbf{LOE} = V_{CC}, \\ \textbf{C}_L = 0 \text{ pF} \end{array} $	6	7	9	pF

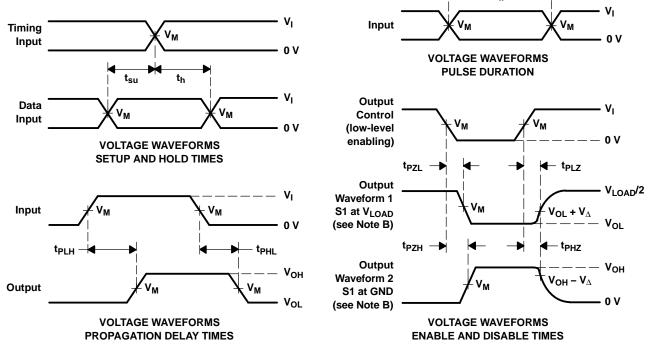
TEXAS

INSTRUMENTS www.ti.com

(1)


Total device C_{pd} for multiple (m) outputs switching and (n) LE inputs switching = [m * C_{pd} (each output)] + [n * C_{pd} (each LE)] C_{pd} (each output) is the C_{pd} for each data bit (input and output circuitry) when it operates at 10 MHz (Note: The LE is operating at 20 MHz in this test, but its I_{CC} component has been subtracted). C_{pd} (each LE) is the C_{pd} for the clock circuitry only when it operates at 20 MHz. (2)

(3)


SCES436C-APRIL 2003-REVISED SEPTEMBER 2004

PARAMETER MEASUREMENT INFORMATION

TEST	S1
t _{pd}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

N	INPUT		N	N	0	_	V
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	C∟	RL	V_{Δ}
1.8 V	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	500 Ω	0.15 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Ω = 50 Ω.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
74ALVCH32973ZKER	ACTIVE	LFBGA	ZKE	96	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-250C-168 HR
SN74ALVCH32973KR	ACTIVE	LFBGA	GKE	96	1000	TBD	SNPB	Level-3-220C-168 HR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

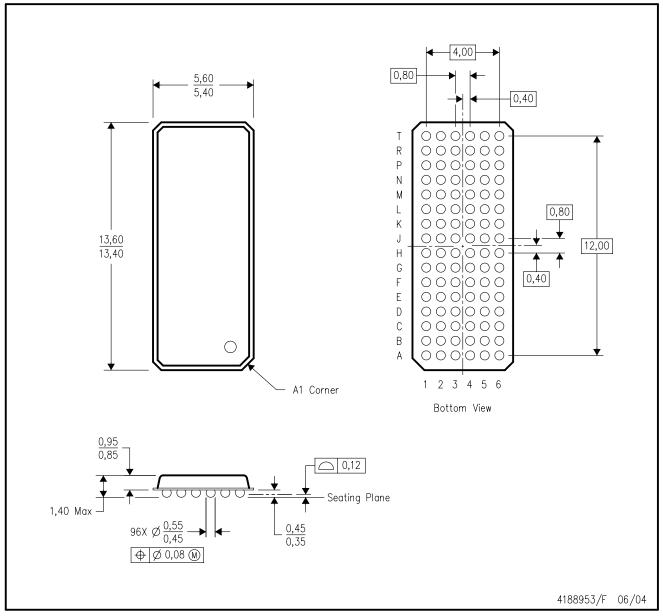
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

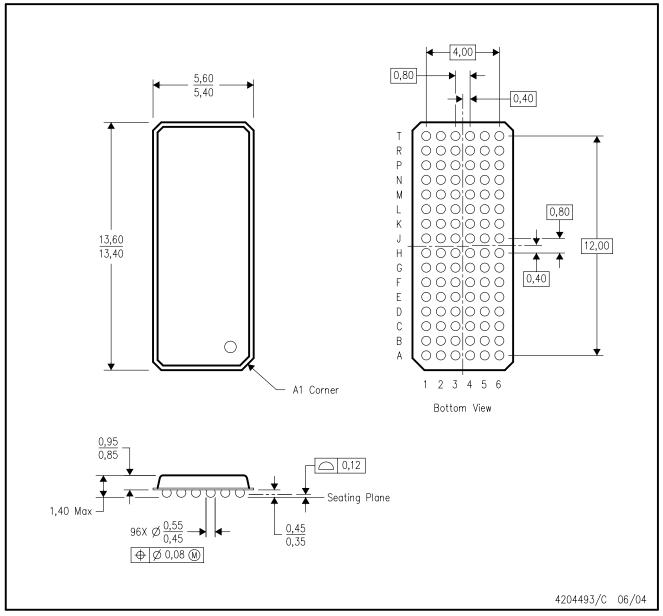

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

GKE (R-PBGA-N96)

PLASTIC BALL GRID ARRAY



- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Falls within JEDEC MO-205 variation CC.
 - D. This package is tin-lead (SnPb). Refer to the 96 ZKE package (drawing 4204493) for lead-free.

ZKE (R-PBGA-N96)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MO-205 variation CC.

D. This package is lead-free. Refer to the 96 GKE package (drawing 4188953) for tin-lead (SnPb).

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.