High Speed, Low Power Dual Op Amp **AD827** #### **FEATURES** High Speed 50 MHz Unity Gain Stable Operation 300 V/ms Slew Rate 120 ns Settling Time Drives Unlimited Capacitive Loads Excellent Video Performance 0.04% Differential Gain @ 4.4 MHz 0.198 Differential Phase @ 4.4 MHz Good DC Performance 2 mV max Input Offset Voltage 15 mV/8C Input Offset Voltage Drift Available in Tape and Reel in Accordance with EIA-481A Standard Low Power #### PRODUCT DESCRIPTION ±5 V to ±15 V Supplies The AD827 is a dual version of Analog Devices' industry-standard AD847 op amp. Like the AD847, it provides high speed, low power performance at low cost. The AD827 achieves a 300 V/ μ s slew rate and 50 MHz unity-gain bandwidth while consuming only 100 mW when operating from ± 5 volt power supplies. Performance is specified for operation using ± 5 V to ± 15 V power supplies. Only 10 mA Total Supply Current for Both Amplifiers The AD827 offers an open-loop gain of 3,500 V/V into 500 Ω loads. It also features a low input voltage noise of 15 nV/ $\sqrt{\rm Hz}$, and a low input offset voltage of 2 mV maximum. Commonmode rejection ratio is a minimum of 80 dB. Power supply rejection ratio is maintained at better than 20 dB with input frequencies as high as 1 MHz, thus minimizing noise feedthrough from switching power supplies. The AD827 is also ideal for use in demanding video applications, driving coaxial cables with less than 0.04% differential gain and 0.19° differential phase errors for 643 mV p-p into a 75 Ω reverse terminated cable. The AD827 is also useful in multichannel, high speed data conversion systems where its fast (120 ns to 0.1%) settling time is of importance. In such applications, the AD827 serves as an input buffer for 8-bit to 10-bit A/D converters and as an output amplifier for high speed D/A converters. #### **CONNECTION DIAGRAMS** 8-Lead Plastic (N) and Cerdip (Q) Packages 20-Lead LCC (E) Package NC = NO CONNECT #### APPLICATION HIGHLIGHTS - 1. Performance is fully specified for operation using $\pm 5~V$ to $\pm 15~V$ supplies. - 2. A 0.04% differential gain and 0.19° differential phase error at the 4.4 MHz color subcarrier frequency, together with its low cost, make it ideal for many video applications. - 3. The AD827 can drive unlimited capacitive loads, while its 30 mA output current allows 50 Ω and 75 Ω reverseterminated loads to be driven. - 4. The AD827's 50 MHz unity-gain bandwidth makes it an ideal candidate for multistage active filters. - The AD827 is available in 8-lead plastic mini-DIP and cerdip, 20-lead LCC, and 16-lead SOIC packages. Chips and MIL-STD-883B processing are also available. #### REV. C # $\textbf{AD827-SPECIFICATIONS} \ (@\ T_{A} = +25^{\circ}\text{C, unless otherwise noted.})$ | Nr. 1.1 | 0 11.1 | *7 | | AD827] | | | D827A | | TT | |--|---|--|-----|----------------|-----|-----|----------------|-----|------------------------| | Model | Conditions | Vs | Min | Тур | Max | Min | Тур | Max | Unit | | DC PERFORMANCE | | | | | | | | | | | Input Offset Voltage ¹ | | ±5 V | | 0.5 | 2 | | 0.3 | 2 | mV | | | T_{MIN} to T_{MAX} | | | | 3.5 | | | 4 | mV | | | | ±15 V | | | 4 | | | 4 | mV | | | T_{MIN} to T_{MAX} | | | | 6 | | | 6 | mV | | Offset Voltage Drift | | $\pm 5 \text{ V to } \pm 15 \text{ V}$ | | 15 | | | 15 | | μV/°C | | Input Bias Current | | $\pm 5 \text{ V to } \pm 15 \text{ V}$ | | 3.3 | 7 | | 3.3 | 7 | μΑ | | | T_{MIN} to T_{MAX} | | | | 8.2 | | | 9.5 | μΑ | | Input Offset Current | | $\pm 5 \text{ V to } \pm 15 \text{ V}$ | | 50 | 300 | | 50 | 300 | nA | | 0.00 | T_{MIN} to T_{MAX} | | | o = | 400 | | | 400 | nA | | Offset Current Drift | 17 10 5 17 | ±5 V to ±15 V | | 0.5 | | 00 | 0.5 | | nA/°C | | Common-Mode Rejection Ratio | $V_{CM} = \pm 2.5 \text{ V}$ | ±5 V | 78 | 95 | | 80 | 95 | | dB | | | $V_{CM} = \pm 12 \text{ V}$ | ±15 V | 78 | 95 | | 80 | 95 | | dB | | D 0 1 D 1 1 D 1 | T_{MIN} to T_{MAX} | ±5 V to ±15 V | 75 | 0.6 | | 75 | 0.6 | | dB | | Power Supply Rejection Ratio | m m | $\pm 5 \text{ V to } \pm 15 \text{ V}$ | 75 | 86 | | 75 | 86 | | dB | | 0 1 0: | T_{MIN} to T_{MAX} | | 72 | | | 72 | | | dB | | Open-Loop Gain | X7 - + 0 = X7 | 1.5.37 | | | | | | | | | | $V_0 = \pm 2.5 \text{ V}$ | ±5 V | | a = | | | | | **/ ** | | | $R_{LOAD} = 500 \Omega$ | | 2 | 3.5 | | 2 | 3.5 | | V/mV | | | T_{MIN} to T_{MAX} | | 1 | 1.6 | | 1 | • • | | V/mV | | | $R_{LOAD} = 150 \Omega$ | 1.15.37 | | 1.6 | | | 1.6 | | V/mV | | | $V_{OUT} = \pm 10 \text{ V}$ | ±15 V | | | | | | | X7/ X7 | | | $R_{LOAD} = 1 k\Omega$ | | 3 | 5.5 | | 3 | 5.5 | | V/mV | | | T_{MIN} to T_{MAX} | | 1.5 | | | 1.5 | | | V/mV | | MATCHING CHARACTERISTICS | | | | | | | | | | | Input Offset Voltage | | ±5 V | | 0.4 | | | 0.2 | | mV | | Crosstalk | f = 5 MHz | ±5 V | | 85 | | | 85 | | dB | | DYNAMIC PERFORMANCE | | | | | | | | | | | Unity-Gain Bandwidth | | ±5 V | | 35 | | | 35 | | MHz | | Omry-Gain Bandwidth | | ±15 V | | 50 | | | 50 | | MHz | | Full Power Bandwidth ² | $V_{O} = 5 \text{ V p-p},$ | 110 V | | 30 | | | 30 | | WILL | | Full Fower Balldwidth | $R_{LOAD} = 500 \Omega$ | ±5 V | | 12.7 | | | 12.7 | | MHz | | | $V_0 = 20 \text{ V p-p},$ | ± | | 12.7 | | | 12.1 | | WILIZ | | | | ±15 V | | 4.7 | | | 4.7 | | MHz | | Slew Rate ³ | $R_{LOAD} = 1 \text{ k}\Omega$
$R_{LOAD} = 500 \Omega$ | ±15 V | | 4.7
200 | | | 4.7
200 | | V/µs | | Siew Rate | $R_{LOAD} = 300 \Omega$
$R_{LOAD} = 1 k\Omega$ | ±15 V | | 300 | | | 300 | | V/μs
V/μs | | Sattling Time to 0.19/ | $\begin{vmatrix} \mathbf{R}_{\text{LOAD}} - 1 & \mathbf{K} \mathbf{S} \mathbf{Z} \\ \mathbf{A}_{\text{V}} = -1 \end{vmatrix}$ | 110 V | | 300 | | | 300 | | V/μS | | Settling Time to 0.1% | 1 ' | ±5 ¥7 | | 65 | | | 65 | | | | | -2.5 V to +2.5 V
-5 V to +5 V | ±5 V
±15 V | | 65
120 | | | 65
120 | | ns
ns | | Dhace Manain | | | | 120 | | | 120 | | 118 | | Phase Margin | $C_{LOAD} = 10 \text{ pF}$
$R_{LOAD} = 1 \text{ k}\Omega$ | ±15 V | | 50 | | | 50 | | Degrees | | Differential Gain Error | f = 4.4 MHz | ±15 V | | 0.04 | | | 0.04 | | % | | Differential Gain Error Differential Phase Error | | ±15 V
±15 V | | | | | | | | | Input Voltage Noise | f = 4.4 MHz
f = 10 kHz | ±15 V
±15 V | | 0.19
15 | | | 0.19
15 | | Degrees nV/\sqrt{Hz} | | Input Voltage Noise Input Current Noise | f = 10 kHz
f = 10 kHz | | | 1.5 | | | 1.5 | | pA/\sqrt{Hz} | | Input Current Noise Input Common-Mode | 1 - 10 KHZ | ±15 V | | 1.5 | | | 1.5 | | prv vriž | | | | ±5 V | | +4.3 | | | +4.3 | | V | | Voltage Range | | V | | +4.3
-3.4 | | | +4.3
-3.4 | | V | | | | +15 W | | | | | | | V | | | | ±15 V | | +14.3
-13.4 | | | +14.3
-13.4 | | V | | Output Voltage Swing | P - 500 O | +5 V | 3.0 | -13.4 3.6 | | 3.0 | -13.4 3.6 | | ±V | | Output voitage Swing | $R_{LOAD} = 500 \Omega$ | ±5 V | 3.0 | | | | | | | | | $R_{LOAD} = 150 \Omega$ | ±5 V | 2.5 | 3.0 | | 2.5 | 3.0 | | ±V | | | $R_{LOAD} = 1 k\Omega$ | ±15 V | 12 | 13.3 | | 12 | 13.3 | | ±V | | Short Circuit Comment I imit | $R_{LOAD} = 500 \Omega$ | ±15 V | 10 | 12.2 | | 10 | 12.2 | | ±V | | Short-Circuit Current Limit | | ±5 V to ±15 V | | 32 | | - | 32 | | mA | | INPUT CHARACTERISTICS | | | | | | | | | | | Input Resistance | | | | 300 | | | 300 | | kΩ | | Input Capacitance | ĺ | l . | I | 1.5 | | 1 | 1.5 | | pF | -2- REV. C | | | | | AD827] | ſ | | AD827 | AIS | | |------------------------------|------------------------|----------------|------|--------|------|------|-------|-----------|------| | Model | Conditions | $\mathbf{v_s}$ | Min | Typ | Max | Min | Typ | Max | Unit | | OUTPUT RESISTANCE | Open Loop | | | 15 | | | | 15 | Ω | | POWER SUPPLY Operating Range | | | ±4.5 | | ±18 | ±4.5 | | ±18 | V | | Quiescent Current | | ±5 V | | 10 | 13 | ±4.5 | 10 | 13 | mA | | | T_{MIN} to T_{MAX} | | | | 16 | | | 16.5/17.5 | mA | | | | ±15 V | | 10.5 | 13.5 | | 10.5 | 13.5 | mA | | | T_{MIN} to T_{MAX} | | | | 16.5 | | | 17/18 | mA | | TRANSISTOR COUNT | | | | 92 | | | 92 | | | #### NOTES All min and max specifications are guaranteed. Specifications subject to change without notice. #### ABSOLUTE MAXIMUM RATINGS1 | Supply Voltage | |---| | Internal Power Dissipation ² | | Plastic (N) Package (Derate at 10 mW/°C) 1.5 W | | Cerdip (Q) Package (Derate at 8.7 mW/°C) 1.3 W | | Small Outline (R) Package (Derate at 10 mW/°C) 1.5 W | | LCC (E) Package (Derate at 6.7 mW/°C) 1.0 W | | Input Common-Mode Voltage±V _S | | Differential Input Voltage 6 V | | Output Short Circuit Duration ³ Indefinite | | Storage Temperature Range (N, R)65°C to +125°C | | Storage Temperature Range (Q)65°C to +150°C | | Operating Temperature Range | | AD827J 0°C to 70°C | | AD827A | | AD827S | | Lead Temperature Range | | (Soldering to 60 sec)300°C | | | #### NOTES Thermal Characteristics: MiniDIP: $\theta_{JA} = 100^{\circ}\text{C/W}$; $\theta_{JC} = 33^{\circ}\text{C/W}$ Cerdip: $\theta_{JA} = 110^{\circ}\text{C/W}; \ \theta_{JC} = 30^{\circ}\text{C/W}$ 16-Lead Small Outline Package: $\theta_{JA} = 100^{\circ}\text{C/W}$ 20-Lead LCC: $\theta_{IA} = 150^{\circ}\text{C/W}$; $\theta_{IC} = 35^{\circ}\text{C/W}$ #### **ORDERING GUIDE** | Model | Temperature
Range | Package
Description | Package
Option | | |-----------------|----------------------|------------------------|-------------------|--| | AD827JN | 0°C to +70°C | 8-Lead Plastic DIP | N-8 | | | AD827JR | 0°C to +70°C | 16-Lead Plastic SO | R-16 | | | AD827AQ | –40°C to +85°C | 8-Lead Cerdip | Q-8 | | | AD827SQ | −55°C to +125°C | 8-Lead Cerdip | Q-8 | | | AD827SQ/883B | −55°C to +125°C | 8-Lead Cerdip | Q-8 | | | 5962-9211701MPA | −55°C to +125°C | 8-Lead Cerdip | Q-8 | | | AD827SE/883B | −55°C to +125°C | 20-Lead LCC | E-20A | | | 5962-9211701M2A | −55°C to +125°C | 20-Lead LCC | E-20A | | | AD827JR-REEL | 0°C to +70°C | Tape & Reel | | | | AD827JChips | 0°C to +70°C | Die | | | | AD827SChips | −55°C to +125°C | Die | | | #### METALLIZATION PHOTOGRAPH Contact factory for latest dimensions. Dimensions shown in inches and (mm). Substrate is connected to V+. REV. C -3- ¹ Offset voltage for the AD827 is guaranteed after power is applied and the device is fully warmed up. All other specifications are measured using high speed test equipment, approximately 1 second after power is applied. $^{^{2}}$ Full Power Bandwidth = Slew Rate/2 π V_{PEAK}. ³ Gain = +1, rising edge. ¹ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. $^{^2}$ Maximum internal power dissipation is specified so that T_J does not exceed 175 $^{\circ} C$ at an ambient temperature of 25°C. ³ Indefinite short circuit duration is only permissible as long as the absolute maximum power rating is not exceeded. # AD827—Typical Performance Characteristics (@ +25°C & ±15 V, unless otherwise noted) Figure 1. InputCommon-Mode Range vs. Supply Voltage Figure 2. Output Voltage Swing vs. Supply Voltage Figure 3. Output Voltage Swing vs. Load Resistance Figure 4. Quiescent Current vs. Supply Voltage Figure 5. Input Bias Current vs. Temperature Figure 6. Closed-Loop Output Impedance vs. Frequency, Gain = +1 Figure 7. Quiescent Current vs. Temperature Figure 8. Short-Circuit Current Limit vs. Temperature Figure 9. Gain Bandwidth vs. Temperature -4- REV. C Figure 16. Harmonic Distortion vs. Frequency Figure 17. Input Voltage Noise Spectral Density Figure 18. Slew Rate vs. Temperature REV. C –5– Figure 19. Crosstalk vs. Frequency Figure 20. Crosstalk Test Circuit #### INPUT PROTECTION PRECAUTIONS An input resistor (resistor $R_{\rm IN}$ of Figure 21a) is recommended in circuits where the input common-mode voltage to the AD827 may exceed (on a transient basis) the positive supply voltage. This resistor provides protection for the input transistors by limiting the maximum current that can be forced into their bases. For high performance circuits, it is recommended that a second resistor (R_B in Figures 21a and 22a) be used to reduce biascurrent errors by matching the impedance at each input. This resistor reduces the error caused by offset voltages by more than an order of magnitude. Figure 21a. Follower Connection Figure 21b. Follower Large Signal Pulse Response Figure 21c. Follower Small Signal Pulse Response Figure 22a. Inverter Connection Figure 22b. Inverter Large Signal Pulse Response Figure 22c. Inverter Small Signal Pulse Response -6- REV. C #### VIDEO LINE DRIVER The AD827 functions very well as a low cost, high speed line driver for either terminated or unterminated cables. Figure 23 shows the AD827 driving a doubly terminated cable in a follower configuration. Figure 23. A Video Line Driver The termination resistor, R_T , (when equal to the cable's characteristic impedance) minimizes reflections from the far end of the cable. While operating from ± 5 V supplies, the AD827 maintains a typical slew rate of 200 V/µs, which means it can drive a ± 1 V, 30 MHz signal into a terminated cable. Table I. Video Line Driver Performance Summary | V _{IN} * | V _{SUPPLY} | C _C | -3 dB B _W | Over-
shoot | |----------------------|---------------------|----------------|----------------------|----------------| | 0 dB or ±500 mV Step | ±15 | 20 pF | 23 MHz | 4% | | 0 dB or ±500 mV Step | ±15 | 15 pF | 21 MHz | 0% | | 0 dB or ±500 mV Step | ±15 | 0 pF | 13 MHz | 0% | | 0 dB or ±500 mV Step | ±5 | 20 pF | 18 MHz | 2% | | 0 dB or ±500 mV Step | ±5 | 15 pF | 16 MHz | 0% | | 0 dB or ±500 mV Step | ±5 | 0 pF | 11 MHz | 0% | ^{*-3} dB bandwidth numbers are for the 0 dBm signal input. Overshoot numbers are the percent overshoot of the 1 V step input. A back-termination resistor (R_{BT} , also equal to the characteristic impedance of the cable) may be placed between the AD827 output and the cable input, in order to damp any reflected signals caused by a mismatch between R_T and the cable's characteristic impedance. This will result in a flatter frequency response, although this requires that the op amp supply $\pm 2\ V$ to the output in order to achieve a $\pm 1\ V$ swing at resistor R_T . # A HIGH SPEED THREE OP AMP INSTRUMENTATION AMPLIFIER CIRCUIT The instrumentation amplifier circuit shown in Figure 24 can provide a range of gains. Table II details performance. Figure 24. A High Bandwidth Three Op Amp Instrumentation Amplifier Table II. Performance Specifications for the Three Op Amp Instrumentation Amplifier | Gain | R_G | Small Signal
Bandwidth
@ 1 V p-p Output | |------|-------|---| | 1 | Open | 16.1 MHz | | 2 | 2 k | 14.7 MHz | | 10 | 226 Ω | 4.9 MHz | | 100 | 20 Ω | 660 kHz | REV. C –7– # A TWO-CHIP VOLTAGE-CONTROLLED AMPLIFIER (VCA) WITH EXPONENTIAL RESPONSE Voltage-controlled amplifiers are often used as building blocks in automatic gain control systems. Figure 25 shows a two-chip VCA built using the AD827 and the AD539, a dual, current-output multiplier. As configured, the circuit has its two Figure 25. A Wide Range Voltage-Controlled Amplifier Circuit multipliers connected in series. They could also be placed in parallel with an increase in bandwidth and a reduction in gain. The gain of the circuit is controlled by V_X , which can range from 0 to 3 V dc. Measurements show that this circuit easily supplies 2 V p-p into a $100~\Omega$ load while operating from ± 5 V supplies. The overall bandwidth of the circuit is approximately 7 MHz with 0.5 dB of peaking. Each half of the AD827 serves as an I/V converter and converts the output current of one of the two multipliers in the AD539 into an output voltage. Each of the AD539's two multipliers contains two internal 6 k Ω feedback resistors; one is connected between the CH1 output and Z1, the other between the CH1 output and W1. Likewise, in the CH2 multiplier, one of the feedback resistors is connected between CH2 and Z2 and the other is connected between CH2 and Z2. In Figure 25, Z1 and W1 are tied together, as are Z2 and W2, providing a 3 k Ω feedback resistor for the op amp. The 2 pF capacitors connected between the AD539's W1 and CH1 and W2 and CH2 pins are in parallel with the feedback resistors and thus reduce peaking in the VCA's frequency response. Increasing the values of C3 and C4 can further reduce the peaking at the expense of reduced bandwidth. The 1.25 mA full-scale output current of the AD539 and the 3 k Ω feedback resistor set the full-scale output voltage of each multiplier at 3.25 V p-p. Current limiting in the AD827 (typically 30 mA) limits the output voltage in this application to about 3 V p-p across a 100 Ω load. Driving a 50 Ω reverse-terminated load divides this value by two, limiting the maximum signal delivered to a 50 Ω load to about 1.5 V p-p, which suffices for video signal levels. The dynamic range of this circuit is approximately 55 dB and is primarily limited by feedthrough at low input levels and by the maximum output voltage at high levels. #### Guidelines for Grounding and Bypassing When designing practical high frequency circuits using the AD827, some special precautions are in order. Both short interconnection leads and a large ground plane are needed whenever possible to provide low resistance, low inductance circuit paths. One should remember to minimize the effects of capacitive coupling between circuits. Furthermore, IC sockets should be avoided. Feedback resistors should be of a low enough value that the time constant formed with stray circuit capacitances at the amplifier summing junction will not limit circuit performance. As a rule of thumb, use feedback resistor values that are less than 5 k Ω . If a larger resistor value is necessary, a small (<10 pF) feedback capacitor in parallel with the feedback resistor may be used. The use of 0.1 μ F ceramic disc capacitors is recommended for bypassing the op amp's power supply leads. REV. C -8- #### **OUTLINE DIMENSIONS** #### 8-Lead Plastic Dual-in-Line Package [PDIP] (N-8) Dimensions shown in millimeters and (inches) CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN #### 16-Lead Standard Small Outline Package [SOIC] Wide Body (R-16) Dimensions shown in millimeters and (inches) CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN **COMPLIANT TO JEDEC STANDARDS MS-013AA** # 8-Lead Ceramic DIP-Glass Hermetic Seal Package [CERDIP] (Q-8) Dimensions shown in millimeters and (inches) CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN # 20-Terminal Ceramic Leadless Chip Carrier [LCC] (E-20A) Dimensions shown in millimeters and (inches) CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN REV. C –9– # **Revision History** | Location | Page | |--|------| | 8/02—Data Sheet changed from REV. B to REV. C. | | | Updated Outline Dimensions | 9 | -10- REV. C Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.