

PHOTOCOUPLER

PS8502,PS8502L1,PS8502L2,PS8502L3

HIGH SPEED ANALOG OUTPUT TYPE 8 mm CREEPAGE 8-PIN PHOTOCOUPLER

-NEPOC Series-

DESCRIPTION

The PS8502, PS8502L1, PS8502L2 and PS8502L3 are 8-pin high speed photocouplers containing a GaAlAs LED on input side and a PN photodiode and a high speed amplifier transistor on output side on one chip. The PS8502 is in a plastic DIP (Dual In-line Package) with 8 mm creepage distance product.

The PS8502L1 is lead bending type for long creepage distance.

The PS8502L2 is lead bending type for long creepage distance (Gull-wing) for surface mount.

The PS8502L3 is lead bending type (Gull-wing) for surface mounting.

FEATURES

- Long creepage distance (8 mm MIN.: PS8502L1, PS8502L2)
- High common mode transient immunity (CMH, CML = $\pm 15 \text{ kV/}\mu\text{s}$ MIN.)
- High supply voltage (Vcc = 35 V MAX.)
- High speed response (tphL, tpLH = 0.8 μs MAX.)
- High isolation voltage (BV = 5 000 Vr.m.s.)
- · TTL, CMOS compatible with a resistor
- Ordering number of tape product: PS8502L2-E3: 1 000 pcs/reel

: PS8502L3-E3: 1 000 pcs/reel

- · Pb-Free product
- Safety standards

<R>

<R>

• UL approved: No. E72422

CSA approved: No. CA 101391 (CA5A, CAN/CSA-C22.2 60065, 60950)

BSI approved: No. 8937, 8938SEMKO approved: No. 615433

• NEMKO approved: No. P06207243

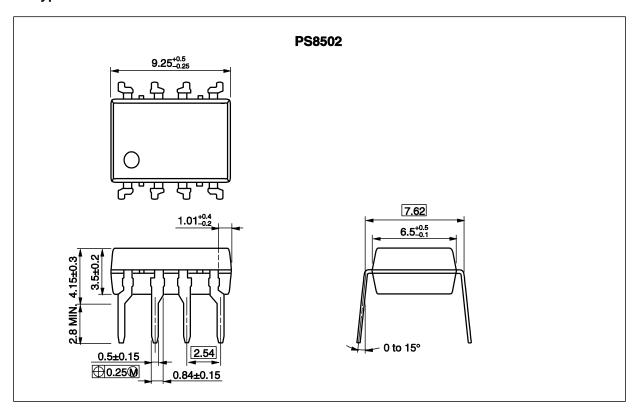
DEMKO approved: No. 314091

· FIMKO approved: No. FI 22827

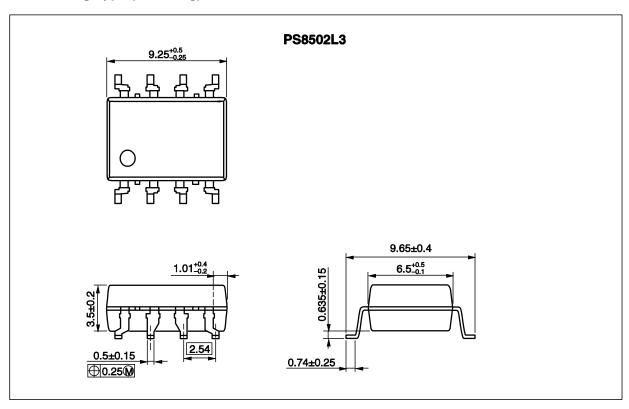
• DIN EN60747-5-2 (VDE0884 Part2) approved: No. 40019182 (Option)

APPLICATIONS

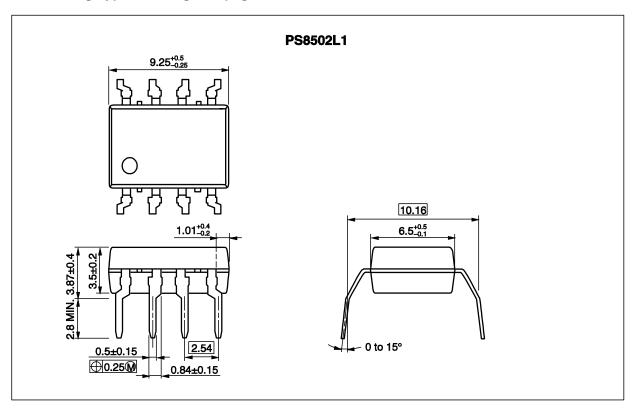
- · Interface for measurement or control equipment
- · Substitutions for relays and pulse transformers
- Modem, communications device
- General purpose inverter

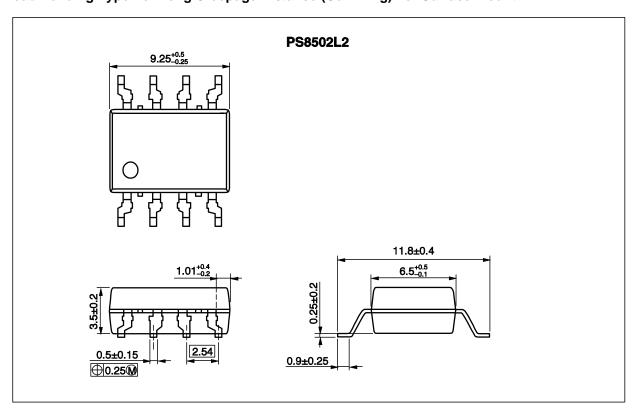

PIN CONNECTION
(Top View)

1. NC
2. Anode
3. Cathode
4. NC
5. Emitter
6. Vo
7. NC
8. Voc

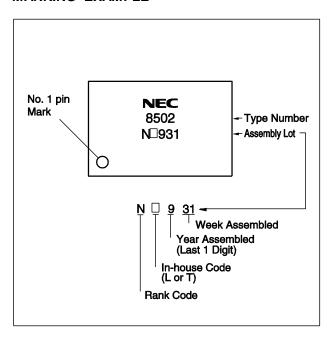

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

<R> PACKAGE DIMENSIONS (UNIT: mm)


DIP Type


Lead Bending Type (Gull-wing) For Surface Mount

Lead Bending Type For Long Creepage Distance


Lead Bending Type For Long Creepage Distance (Gull-wing) For Surface Mount

PHOTOCOUPLER CONSTRUCTION

Parameter	PS8502, PS8502L3	PS8502L1, PS8502L2
Air Distance (MIN.)	7 mm	8 mm
Outer Creepage Distance (MIN.)	7 mm	8 mm
Isolation Distance (MIN.)	0.4 mm	0.4 mm

<R> MARKING EXAMPLE

ORDERING INFORMATION

Part Number	Order Number	Solder Plating Specification	Packing Style	Safety Standard Approval	Application Part Number* ¹
PS8502	PS8502-AX	Pb-Free	Magazine case 50 pcs	Standard products	PS8502
PS8502L1	PS8502L1-AX	(Ni/Pd/Au)		(UL, CSA, BSI,	PS8502L1
PS8502L2	PS8502L2-AX			SEMKO, NEMKO,	PS8502L2
PS8502L3	PS8502L3-AX			DEMKO, FIMKO	PS8502L3
PS8502L2-E3	PS8502L2-E3-AX		Embossed Tape 1 000 pcs/reel	approved)	PS8502L2
PS8502L3-E3	PS8502L3-E3-AX				PS8502L3
PS8502-V	PS8502-V-AX		Magazine case 50 pcs	DIN EN60747-5-2	PS8502
PS8502L1-V	PS8502L1-V-AX			(VDE0884 Part2)	PS8502L1
PS8502L2-V	PS8502L2-V-AX			Approved (Option)	PS8502L2
PS8502L3-V	PS8502L3-V-AX				PS8502L3
PS8502L2-V-E3	PS8502L2-V-E3-AX		Embossed Tape 1 000 pcs/reel		PS8502L2
PS8502L3-V-E3	PS8502L3-V-E3-AX				PS8502L3

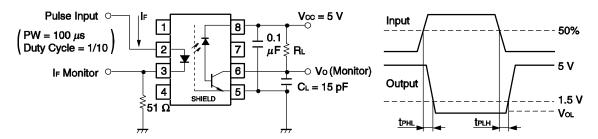
^{*1} For the application of the Safety Standard, following part number should be used.

ABSOLUTE MAXIMUM RATINGS (TA = 25°C, unless otherwise specified)

	Parameter	Symbol	Ratings	Unit
Diode	Forward Current *1	lF	25	mA
	Reverse Voltage	VR	5	V
Detecto r	Supply Voltage	Vcc	35	V
	Output Voltage	Vo	35	V
	Output Current	lo	8	mA
	Power Dissipation *2	Pc	100	mW
Isolation	Voltage *³	BV	5 000	Vr.m.s.
Operating	g Ambient Temperature	TA	−55 to +100	°C
Storage -	Temperature	Tstg	-55 to +125	°C

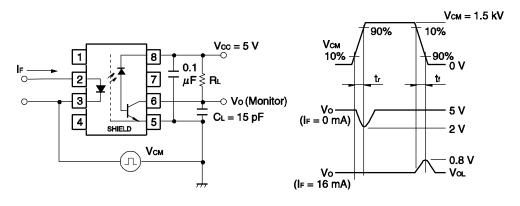
^{*1} Reduced to 0.33 mA/ $^{\circ}$ C at T_A = 70 $^{\circ}$ C or more.

^{*2} Reduced to 2.0 mW/ $^{\circ}$ C at T_A = 75 $^{\circ}$ C or more.


^{*3} AC voltage for 1 minute at T_A = 25°C, RH = 60% between input and output. Pins 1-4 shorted together, 5-8 shorted together.

ELECTRICAL CHARACTERISTICS (TA = 25°C)

	Parameter	Symbol	Conditions	MIN.	TYP.*¹	MAX.	Unit
Diode	Forward Voltage	VF	IF = 16 mA		1.7	2.2	V
	Reverse Current	IR	V _R = 3 V			10	μA
	Forward Voltage Temperature Coefficent	ΔVF/ΔTA	IF = 16 mA		-2.1		mV/°C
	Terminal Capacitance	Ct	V = 0 V, f = 1 MHz		30		pF
Detector	High Level Output Current	Іон (1)	IF = 0 mA, Vcc = Vo = 5.5 V		3	500	nA
	High Level Output Current	Іон (2)	IF = 0 mA, Vcc = Vo = 35 V			100	μA
	Low Level Output Voltage	Vol	IF = 16 mA, Vcc = 4.5 V, Io = 2.4 mA		0.15	0.4	V
Coupled	Low Level Supply Current	Iccl	IF = 16 mA, Vo = Open, Vcc = 35 V		150		μA
	High Level Supply Current	Іссн	IF = 0 mA, Vo = Open, Vcc = 35 V		0.01	1	μA
Coupled	Current Transfer Ratio	CTR	IF = 16 mA, Vcc = 4.5 V, Vo = 0.4 V	15			%
	Isolation Resistance	R⊦o	Vio = 1 kVdc	10 ¹¹			Ω
	Isolation Capacitance	Сьо	V = 0 V, f = 1 MHz		0.7		pF
	Propagation Delay Time $(H \to L)^{*2}$	t _{PHL}	IF = 16 mA, Vcc = 5 V, RL = 1.9 $k\Omega$		0.22	0.8	μs
	Propagation Delay Time $(L \rightarrow H)^{*2}$	tрцн	IF = 16 mA, Vcc = 5 V, R_L = 1.9 $k\Omega$		0.35	0.8	μs
	Common Mode Transient Immunity at High Level Output*3	СМн	IF = 0 mA, Vcc = 5 V, VcM = 1.5 kV, RL = 4.1 k Ω	15			kV/μs
	Common Mode Transient Immunity at Low Level Output*3	CM∟	IF = 16 mA, Vcc = 5 V, VcM = 1.5 kV, RL = 4.1 k Ω	-15			kV/μs

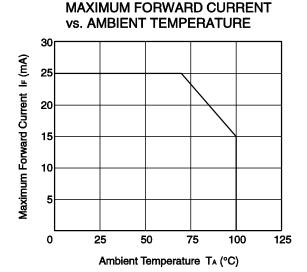

<R>

- *1 Typical values at T_A = 25°C
- *2 Test circuit for propagation delay time

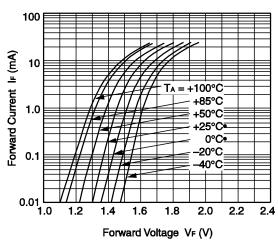
Remark CL includes probe and stray wiring capacitance.

*3 Test circuit for common mode transient immunity

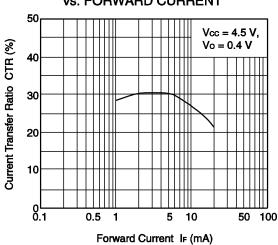
 $\textbf{Remark} \quad \textbf{CL} \text{ includes probe and stray wiring capacitance}.$

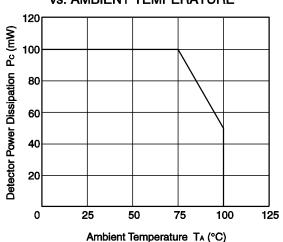

USAGE CAUTIONS

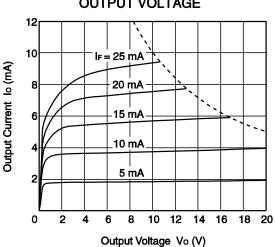
- 1. This product is weak for static electricity by designed with high-speed integrated circuit so protect against static electricity when handling.
- 2. By-pass capacitor of more than 0.1 μ F is used between Vcc and GND near device. Also, ensure that the distance between the leads of the photocoupler and capacitor is no more than 10 mm.
- 3. Pins 1, 4 (which is an NC^{*1} pin) can either be connected directly to the GND pin on the LED side or left open. Also, Pin 7 (which is an NC^{*1} pin) can either be connected directly to the GND pin on the detector side or left open.

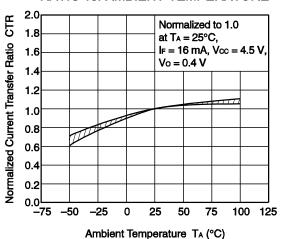

Unconnected pins should not be used as a bypass for signals or for any other similar purpose because this may degrade the internal noise environment of the device.

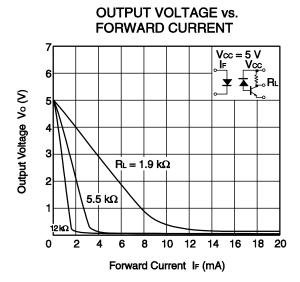
- *1 NC: Non-Connection (No Connection)
- 4. Avoid storage at a high temperature and high humidity.

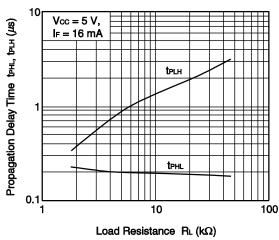

<R> TYPICAL CHARACTERISTICS (T_A = 25°C, unless otherwise specified)


FORWARD CURRENT vs. FORWARD VOLTAGE

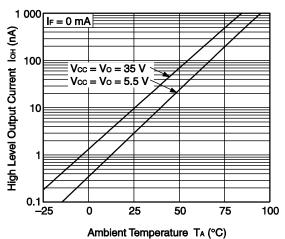

CURRENT TRANSFER RATIO vs. FORWARD CURRENT

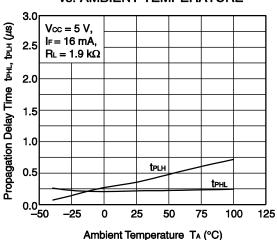

DETECTOR POWER DISSIPATION vs. AMBIENT TEMPERATURE


OUTPUT CURRENT vs. OUTPUT VOLTAGE

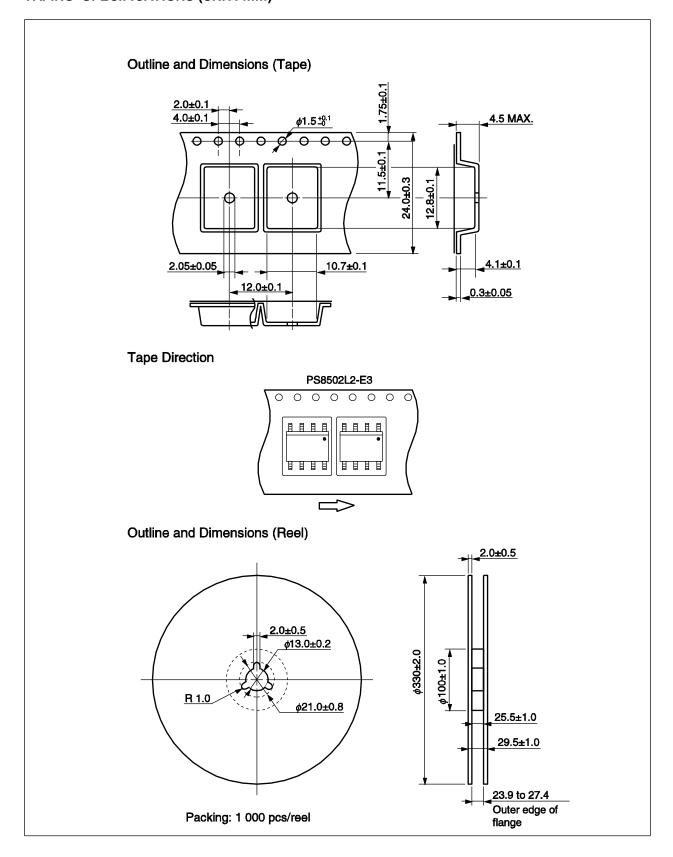

NORMALIZED CURRENT TRANSFER RATIO vs. AMBIENT TEMPERATURE

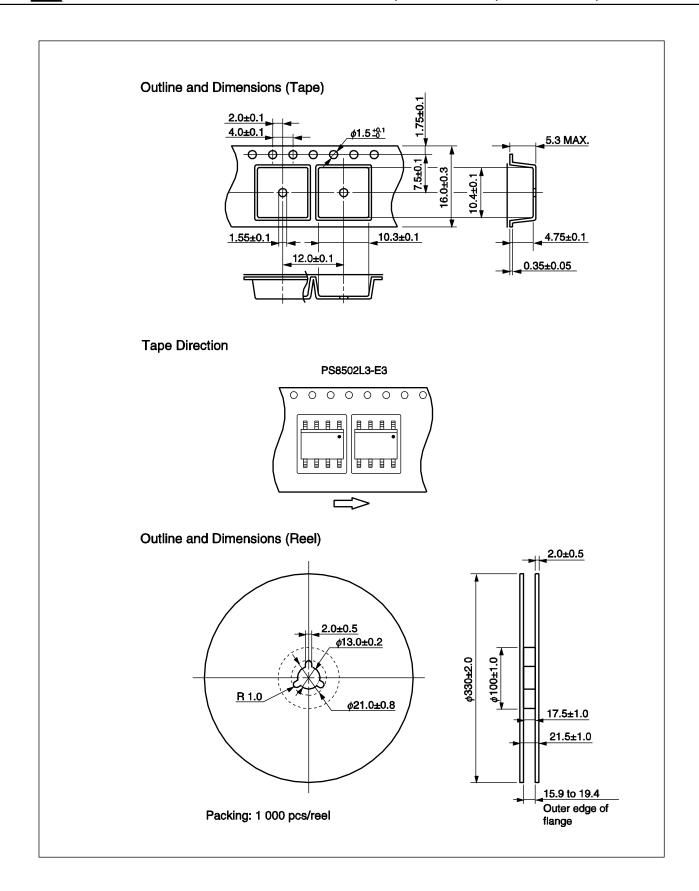
Remark The graphs indicate nominal characteristics.



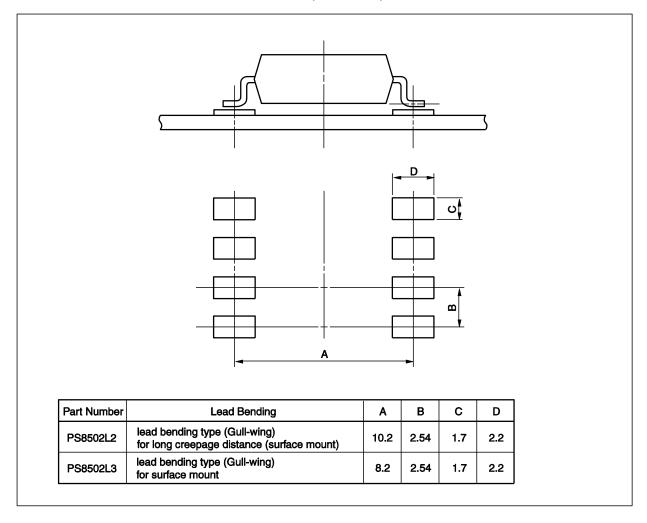


Remark The graphs indicate nominal characteristics.


HIGH LEVEL OUTPUT CURRENT vs. AMBIENT TEMPERATURE



PROPAGATION DELAY TIME, vs. AMBIENT TEMPERATURE



TAPING SPECIFICATIONS (UNIT: mm)

RECOMMENDED MOUNT PAD DIMENSIONS (UNIT: mm)

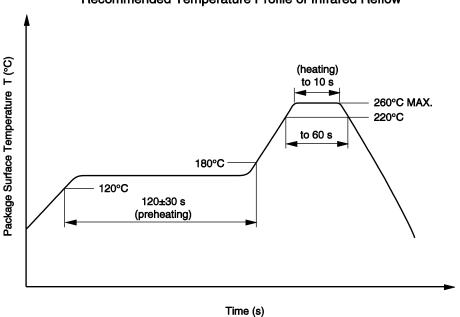
NOTES ON HANDLING

1. Recommended soldering conditions

(1) Infrared reflow soldering

Peak reflow temperature
 260°C or below (package surface temperature)

Time of peak reflow temperature
 Time of temperature higher than 220°C
 60 seconds or less


• Time to preheat temperature from 120 to 180°C 120±30 s

Number of reflows
 Three

• Flux Rosin flux containing small amount of chlorine (The flux with a

maximum chlorine content of 0.2 Wt% is recommended.)

Recommended Temperature Profile of Infrared Reflow

(2) Wave soldering

• Temperature 260°C or below (molten solder temperature)

• Time 10 seconds or less

• Preheating conditions 120°C or below (package surface temperature)

Number of times
 One (Allowed to be dipped in solder including plastic mold portion.)

• Flux Rosin flux containing small amount of chlorine (The flux with a maximum chlorine

content of 0.2 Wt% is recommended.)

(3) Soldering by soldering iron

Peak temperature (lead part temperature) 350°C or below
 Time (each pins) 3 seconds or less

Rosin flux containing small amount of chlorine (The flux with a

maximum chlorine content of 0.2 Wt% is recommended.)

(a) Soldering of leads should be made at the point 1.5 to 2.0 mm from the root of the lead.

(b) Please be sure that the temperature of the package would not be heated over $100\,^{\circ}\text{C}$.

(4) Cautions

• Fluxes

Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

2. Cautions regarding noise

Be aware that when voltage is applied suddenly between the photocoupler's input and output or between Vccemitters at startup, the output side may enter the on state, even if the voltage is within the absolute maximum ratings.

<R> SPECIFICATION OF VDE MARKS LICENSE DOCUMENT

Parameter	Symbol	Speck	Unit
Climatic test class (IEC 60068-1/DIN EN 60068-1)		55/100/21	
Dielectric strength maximum operating isolation voltage Test voltage (partial discharge test, procedure a for type test and random test) $U_{pr} = 1.5 \times U_{\text{IORM}}, P_{\text{d}} < 5 \text{pC}$	Uiorm Upr	1 130 1 695	Vpeak Vpeak
Test voltage (partial discharge test, procedure b for all devices) $U_{pr} = 1.875 \times U_{IORM}, P_d < 5 pC$	Upr	2 119	V _{peak}
Highest permissible overvoltage	Utr	8 000	V _{peak}
Degree of pollution (DIN EN 60664-1 VDE0110 Part 1)		2	
Comparative tracking index (IEC 60112/DIN EN 60112 (VDE 0303 Part 11))	CTI	175	
Material group (DIN EN 60664-1 VDE0110 Part 1)		III a	
Storage temperature range	T _{stg}	-55 to +125	°C
Operating temperature range	ТА	-55 to +100	°C
Isolation resistance, minimum value $V_{10} = 500 \text{ V dc at T}_{A} = 25^{\circ}\text{C}$ $V_{10} = 500 \text{ V dc at T}_{A} \text{ MAX. at least } 100^{\circ}\text{C}$	Ris MIN. Ris MIN.	10 ¹² 10 ¹¹	Ω Ω
Safety maximum ratings (maximum permissible in case of fault, see thermal derating curve) Package temperature Current (input current I _F , Psi = 0) Power (output or total power dissipation) Isolation resistance	Tsi Isi Psi	175 400 700	°C mA mW
$V_{10} = 500 \text{ V dc at T}_{A} = Tsi$	Ris MIN.	10 ⁹	Ω

- The information in this document is current as of September, 2009. The information is subject to
 change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
 sheets, etc., for the most up-to-date specifications of NEC Electronics products. Not all products
 and/or types are available in every country. Please check with an NEC Electronics sales
 representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
 property rights of third parties by or arising from the use of NEC Electronics products listed in this document
 or any other liability arising from the use of such products. No license, express, implied or otherwise, is
 granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. In addition, NEC Electronics products are not taken measures to prevent radioactive rays in the product design. When customers use NEC Electronics products with their products, customers shall, on their own responsibility, incorporate sufficient safety measures such as redundancy, fire-containment and anti-failure features to their products in order to avoid risks of the damages to property (including public or social property) or injury (including death) to persons, as the result of defects of NEC Electronics products.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E0904E

Caution

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
 - Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
- Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.