Quad Analog Switch/ Multiplexer/Demultiplexer

High-Performance Silicon-Gate CMOS

The MC74HC4066A utilizes silicon-gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF-channel leakage current. This bilateral switch/multiplexer/demultiplexer controls analog and digital voltages that may vary across the full power-supply range (from $V_{\rm CC}$ to GND).

The HC4066A is identical in pinout to the metal–gate CMOS MC14016 and MC14066. Each device has four independent switches. The device has been designed so the ON resistances (R_{ON}) are more linear over input voltage than R_{ON} of metal–gate CMOS analog switches.

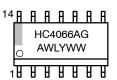
The ON/OFF control inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. For analog switches with voltage-level translators, see the HC4316A.

Features

- Fast Switching and Propagation Speeds
- High ON/OFF Output Voltage Ratio
- Low Crosstalk Between Switches
- Diode Protection on All Inputs/Outputs
- Wide Power–Supply Voltage Range $(V_{CC} GND) = 2.0$ to 12.0 V
- Analog Input Voltage Range (V_{CC} GND) = 2.0 to 12.0 V
- Improved Linearity and Lower ON Resistance over Input Voltage than the MC14016 or MC14066
- Low Noise
- Chip Complexity: 44 FETs or 11 Equivalent Gates
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

1

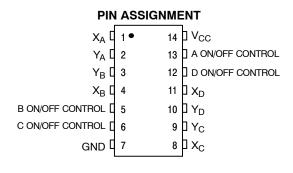
 NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable


ON Semiconductor®

http://onsemi.com

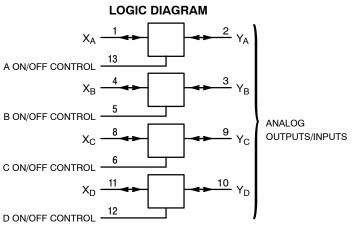
SOIC-14 D SUFFIX CASE 751A

TSSOP-14 DT SUFFIX CASE 948G


A = Assembly Location

WL, L = Wafer Lot Y = Year WW, W = Work Week G or • = Pb-Free Package

(Note: Microdot may be in either location)


ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

FUNCTION TABLE

On/Off Control Input	State of Analog Switch
L	Off
Н	On

ANALOG INPUTS/OUTPUTS = X_A , X_B , X_C , X_D PIN 14 = V_{CC} PIN 7 = GND

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HC4066ADG	SOIC-14 (Pb-Free)	55 Units / Rail
MC74HC4066ADR2G	SOIC-14	0500 / Tara 2 Dayl
NLV74HC4066ADR2G*	(Pb-Free)	2500 / Tape & Reel
MC74HC4066ADTR2G	TSSOP-14	2500 / Tape & Reel
NLVHC4066ADTR2G*	(Pb-Free)	2300 / Tape & neer

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Positive DC Supply Voltage (Referenced to GND)	- 0.5 to + 14.0	V
V _{IS}	Analog Input Voltage (Referenced to GND)	- 0.5 to V _{CC} + 0.5	V
V _{in}	Digital Input Voltage (Referenced to GND)	- 0.5 to V _{CC} + 0.5	V
ı	DC Current Into or Out of Any Pin	± 25	mA
P _D	Power Dissipation in Still Air, SOIC Package† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP, SOIC or TSSOP Package)	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating – SOIC Package: – 7 mW/°C from 65° to 125°C TSSOP Package: – 6.1 mW/°C from 65° to 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or $V_{\rm CC}$). Unused outputs must be left open. I/O pins must be connected to a properly terminated line or bus.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage (Referenced to GND)	2.0	12.0	V
V _{IS}	Analog Input Voltage (Referenced to GND)	GND	V _{CC}	V
V _{in}	Digital Input Voltage (Referenced to GND)	GND	V _{CC}	V
V _{IO} *	Static or Dynamic Voltage Across Switch	-	1.2	V
T _A	Operating Temperature, All Package Types	– 55	+ 125	°C
t _r , t _f	Input Rise and Fall Time, ON/OFF Control Inputs (Figure 10) $V_{CC} = 2.0 \text{ V} \\ V_{CC} = 3.0 \text{ V} \\ V_{CC} = 4.5 \text{ V} \\ V_{CC} = 9.0 \text{ V} \\ V_{CC} = 12.0 \text{ V}$	0 0 0 0	1000 600 500 400 250	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTIC Digital Section (Voltages Referenced to GND)

	Gua			Guaranteed Limit		mit	
Symbol	Parameter	Test Conditions	v _{cc} v	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
V _{IH}	Minimum High-Level Voltage ON/OFF Control Inputs	R _{on} = Per Spec	2.0 3.0 4.5 9.0 12.0	1.5 2.1 3.15 6.3 8.4	1.5 2.1 3.15 6.3 8.4	1.5 2.1 3.15 6.3 8.4	V
V _{IL}	Maximum Low-Level Voltage ON/OFF Control Inputs	R _{on} = Per Spec	2.0 3.0 4.5 9.0 12.0	0.5 0.9 1.35 2.7 3.6	0.5 0.9 1.35 2.7 3.6	0.5 0.9 1.35 2.7 3.6	V
l _{in}	Maximum Input Leakage Current ON/OFF Control Inputs	V _{in} = V _{CC} or GND	12.0	± 0.1	± 1.0	± 1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current (per Package)	V _{in} = V _{CC} or GND V _{IO} = 0 V	6.0 12.0	2 4	20 40	40 160	μΑ

^{*}For voltage drops across the switch greater than 1.2 V (switch on), excessive V_{CC} current may be drawn; i.e., the current out of the switch may contain both V_{CC} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

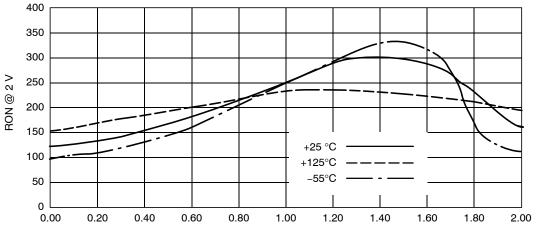
DC ELECTRICAL CHARACTERISTICS Analog Section (Voltages Referenced to GND)

				Gu	aranteed Li	mit	
Symbol	Parameter	Test Conditions	V _{CC} V	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
R _{on}	Maximum "ON" Resistance	$\begin{aligned} &V_{in} = V_{IH} \\ &V_{IS} = V_{CC} \text{ to GND} \\ &I_{S} \leq 2.0 \text{ mA (Figures 1, 2)} \end{aligned}$	2.0† 3.0† 4.5 9.0 12.0	- 120 70 70	- 160 85 85	- 200 100 100	Ω
		$\begin{aligned} &V_{in} = V_{iH} \\ &V_{iS} = V_{CC} \text{ or GND} \\ &(\text{Endpoints}) \\ &I_{S} \leq 2.0 \text{ mA (Figures 1, 2)} \end{aligned}$	2.0 3.0 4.5 9.0 12.0	- - 70 50 50	- - 85 60	- - 120 80 80	
ΔR _{on}	Maximum Difference in "ON" Resistance Between Any Two Channels in the Same Package	$\begin{aligned} &V_{in} = V_{IH} \\ &V_{IS} = 1/2 \; (V_{CC} - GND) \\ &I_{S} \leq 2.0 \; mA \end{aligned}$	2.0 4.5 9.0 12.0	- 20 15 15	- 25 20 20	- 30 25 25	Ω
l _{off}	Maximum Off-Channel Leakage Current, Any One Channel	$V_{in} = V_{IL}$ $V_{IO} = V_{CC}$ or GND Switch Off (Figure 3)	12.0	0.1	0.5	1.0	μΑ
I _{on}	Maximum On-Channel Leakage Current, Any One Channel	$V_{in} = V_{IH}$ $V_{IS} = V_{CC}$ or GND (Figure 4)	12.0	0.1	0.5	1.0	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. †At supply voltage (V_{CC}) approaching 3 V the analog switch–on resistance becomes extremely non–linear. Therefore, for low–voltage operation, it is recommended that these devices only be used to control digital signals.

AC ELECTRICAL CHARACTERISTICS (C_L = 50 pF, ON/OFF Control Inputs: t_r = t_f = 6 ns)

				Gua	aranteed Li	mit	
Symbol	Parameter		v _{cc} v	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Analog Input to (Figures 8 and 9)	o Analog Output	2.0 3.0 4.5 9.0 12.0	40 30 10 10	50 40 13 13	60 50 15 15	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, ON/OFF Contr (Figures 10 and 11)	ol to Analog Output	2.0 3.0 4.5 9.0 12.0	80 60 30 25 25	90 70 38 28 28	110 80 45 30 30	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, ON/OFF Contr (Figures 10 and 1 1)	ol to Analog Output	2.0 3.0 4.5 9.0 12.0	80 45 25 25 25	90 50 32 32 32	100 60 37 37 37	ns
С	Maximum Capacitance	ON/OFF Control Input Control Input = GND Analog I/O Feedthrough	-	10 35 1.0	10 35 1.0	10 35 1.0	pF


		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Per Switch) (Figure 13)*	15	pF

^{*}Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Symbol	Parameter	Test Conditions	v _{cc} v	Limit* 25°C 54/74HC	Unit
BW	Maximum On–Channel Bandwidth or Minimum Frequency Response (Figure 5)	$\begin{split} f_{in} &= 1 \text{ MHz Sine Wave} \\ &\text{Adjust } f_{in} \text{ Voltage to Obtain 0 dBm at V}_{OS} \\ &\text{Increase } f_{in} \text{ Frequency Until dB Meter Reads} - 3 \text{ dB} \\ &R_L = 50 \ \Omega, \ C_L = 10 \text{ pF} \end{split}$	4.5 9.0 12.0	150 160 160	MHz
-	Off-Channel Feedthrough Isolation (Figure 6)	$\begin{split} f_{in} &\equiv \text{Sine Wave} \\ \text{Adjust } f_{in} &\text{ Voltage to Obtain 0 dBm at V}_{IS} \\ f_{in} &= 10 \text{ kHz}, \text{ R}_{L} = 600 \ \Omega, \text{ C}_{L} = 50 \text{ pF} \end{split}$	4.5 9.0 12.0	- 50 - 50 - 50	dB
		f_{in} = 1.0 MHz, R_L = 50 Ω , C_L = 10 pF	4.5 9.0 12.0	- 40 - 40 - 40	
-	Feedthrough Noise, Control to Switch (Figure 7)	$\begin{aligned} V_{in} &\leq \text{1 MHz Square Wave } (t_r = t_f = 6 \text{ ns}) \\ \text{Adjust R}_L \text{ at Setup so that } I_S &= 0 \text{ A} \\ R_L &= 600 \ \Omega, \ C_L = 50 \text{ pF} \end{aligned}$	4.5 9.0 12.0	60 130 200	mV _{PP}
		R_L = 10 k Ω , C_L = 10 pF	4.5 9.0 12.0	30 65 100	
-	Crosstalk Between Any Two Switches (Figure 12)	$ \begin{aligned} f_{in} &\equiv \text{Sine Wave} \\ \text{Adjust } f_{in} &\text{ Voltage to Obtain 0 dBm at V}_{IS} \\ f_{in} &= 10 \text{ kHz}, R_L = 600 \Omega, C_L = 50 \text{ pF} \end{aligned} $	4.5 9.0 12.0	- 70 - 70 - 70	dB
		f_{in} = 1.0 MHz, R_L = 50 Ω , C_L = 10 pF	4.5 9.0 12.0	- 80 - 80 - 80	
THD	Total Harmonic Distortion (Figure 14)	$\begin{aligned} f_{in} &= 1 \text{ kHz, } R_L = 10 \text{ k}\Omega, C_L = 50 \text{ pF} \\ \text{THD} &= \text{THD}_{Measured} - \text{THD}_{Source} \\ &V_{IS} = 4.0 \text{ V}_{PP} \text{ sine wave} \\ &V_{IS} = 8.0 \text{ V}_{PP} \text{ sine wave} \\ &V_{IS} = 11.0 \text{ V}_{PP} \text{ sine wave} \end{aligned}$	4.5 9.0 12.0	0.10 0.06 0.04	%

^{*}Guaranteed limits not tested. Determined by design and verified by qualification.

 V_{is} , INPUT VOLTAGE (VOLTS), REFERENCED TO GROUND

Figure 1a. Typical On Resistance, V_{CC} = 2.0 V

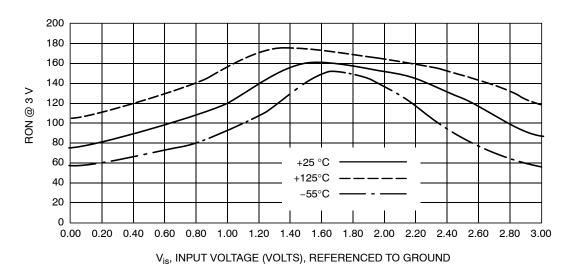


Figure 1b. Typical On Resistance, $V_{CC} = 3.0 \text{ V}$

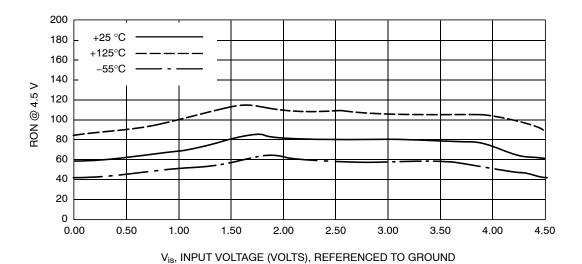
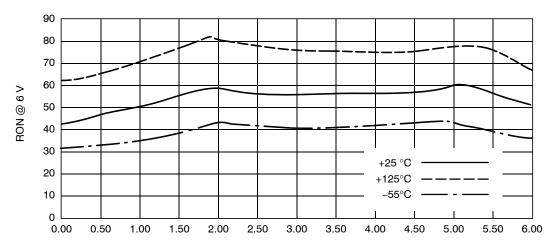



Figure 1c. Typical On Resistance, V_{CC} = 4.5 V

 V_{is} , INPUT VOLTAGE (VOLTS), REFERENCED TO GROUND

Figure 1d. Typical On Resistance, V_{CC} = 6.0 V

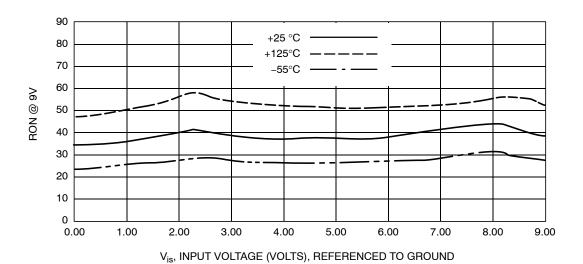


Figure 1e. Typical On Resistance, V_{CC} = 9.0 V

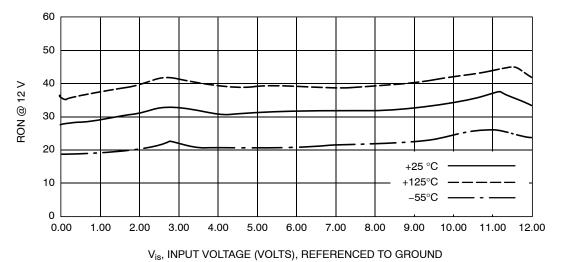


Figure 1f. Typical On Resistance, V_{CC} = 12.0 V

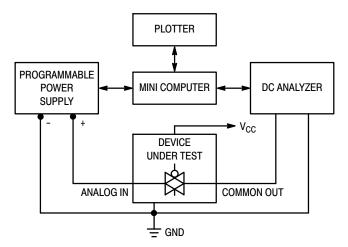
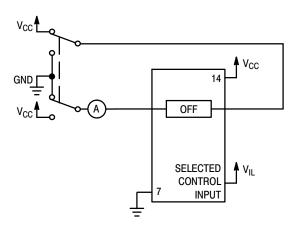
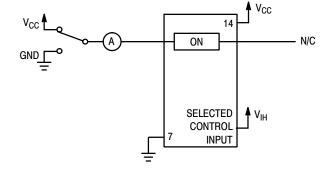
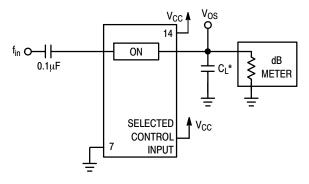



Figure 2. On Resistance Test Set-Up

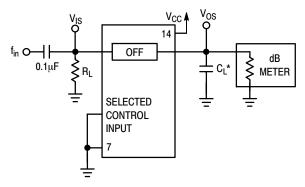

Figure 3. Maximum Off Channel Leakage Current, Any One Channel, Test Set-Up

Figure 4. Maximum On Channel Leakage Current, Test Set-Up

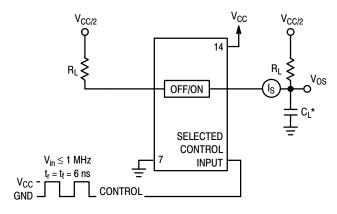

*Includes all probe and jig capacitance.

Figure 5. Maximum On-Channel Bandwidth
Test Set-Up

*Includes all probe and jig capacitance.

Figure 6. Off-Channel Feedthrough Isolation, Test Set-Up

*Includes all probe and jig capacitance.

Figure 7. Feedthrough Noise, ON/OFF Control to Analog Out, Test Set-Up

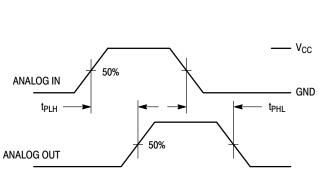
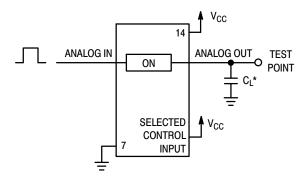
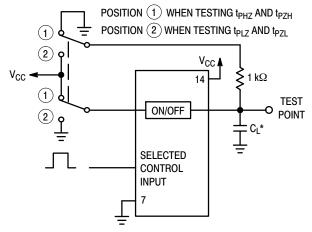




Figure 8. Propagation Delays, Analog In to Analog Out

*Includes all probe and jig capacitance.

Figure 9. Propagation Delay Test Set-Up

*Includes all probe and jig capacitance.

Figure 11. Propagation Delay Test Set-Up

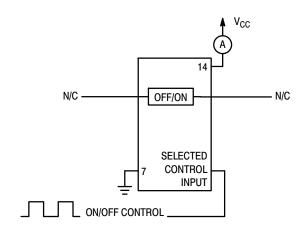


Figure 13. Power Dissipation Capacitance
Test Set-Up

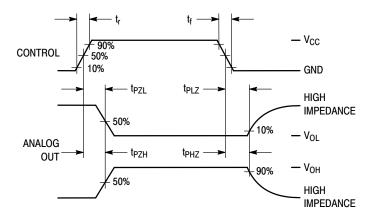
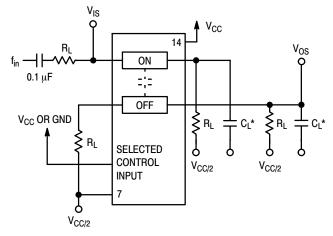
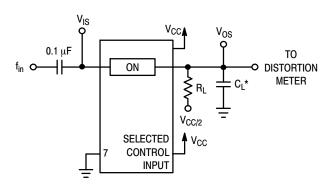




Figure 10. Propagation Delay, ON/OFF Control to Analog Out

*Includes all probe and jig capacitance.

Figure 12. Crosstalk Between Any Two Switches, Test Set-Up

*Includes all probe and jig capacitance.

Figure 14. Total Harmonic Distortion, Test Set-Up

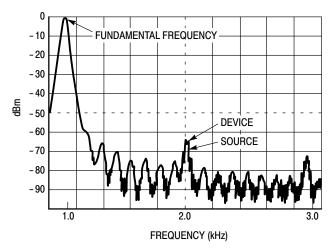


Figure 15. Plot, Harmonic Distortion

APPLICATION INFORMATION

The ON/OFF Control pins should be at V_{CC} or GND logic levels, V_{CC} being recognized as logic high and GND being recognized as a logic low. Unused analog inputs/outputs may be left floating (not connected). However, it is advisable to tie unused analog inputs and outputs to V_{CC} or GND through a low value resistor. This minimizes crosstalk and feedthrough noise that may be picked–up by the unused I/O pins.

The maximum analog voltage swings are determined by the supply voltages V_{CC} and GND. The positive peak analog voltage should not exceed V_{CC} . Similarly, the negative peak analog voltage should not go below GND. In the example

below, the difference between $V_{\rm CC}$ and GND is twelve volts. Therefore, using the configuration in Figure 16, a maximum analog signal of twelve volts peak-to-peak can be controlled.

When voltage transients above V_{CC} and/or below GND are anticipated on the analog channels, external diodes (Dx) are recommended as shown in Figure 17. These diodes should be small signal, fast turn-on types able to absorb the maximum anticipated current surges during clipping. An alternate method would be to replace the Dx diodes with Mosorbs (MosorbTM is an acronym for high current surge protectors). Mosorbs are fast turn-on devices ideally suited for precise DC protection with no inherent wear out mechanism.

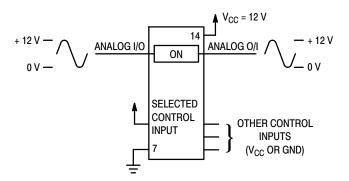


Figure 16. 12 V Application

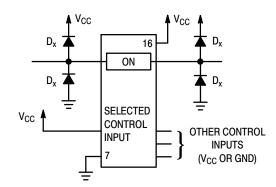


Figure 17. Transient Suppressor Application

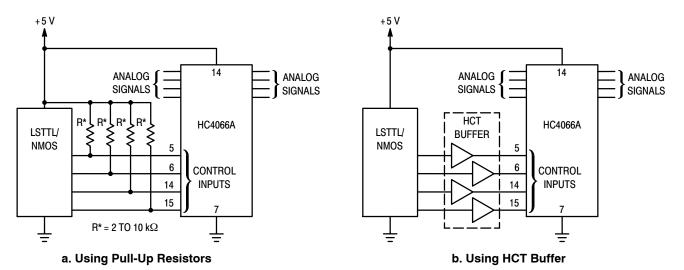


Figure 18. LSTTL/NMOS to HCMOS Interface

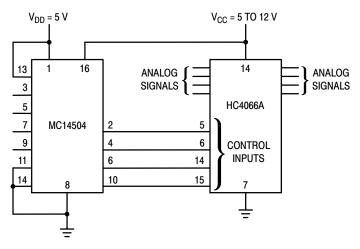
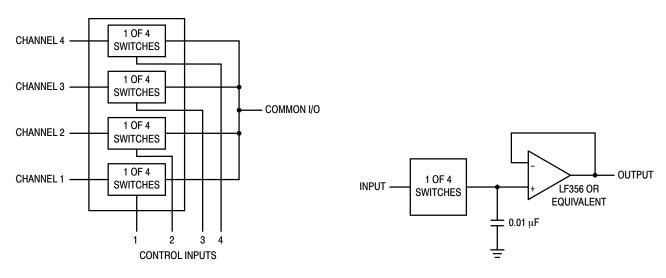
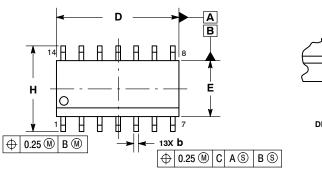


Figure 19. TTL/NMOS-to-CMOS Level Converter Analog Signal Peak-to-Peak Greater than 5 V (Also see HC4316A)

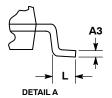
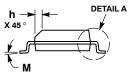

Figure 20. 4-Input Multiplexer

Figure 21. Sample/Hold Amplifier

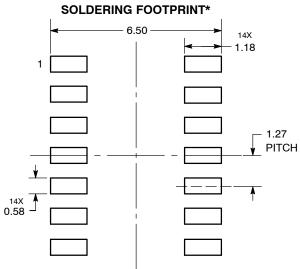

PACKAGE DIMENSIONS

SOIC-14 NB CASE 751A-03 ISSUE K

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

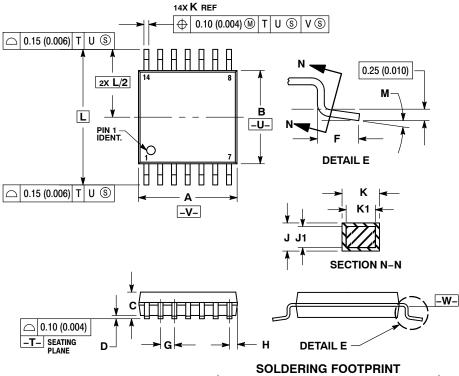

 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.

 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.

 5. MAXIMUM MOLD PROTRUSION 0.15 PER

 - MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
АЗ	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
Е	3.80	4.00	0.150	0.157
е	1.27 BSC		0.050	BSC
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
М	0 °	7°	0 °	7 °

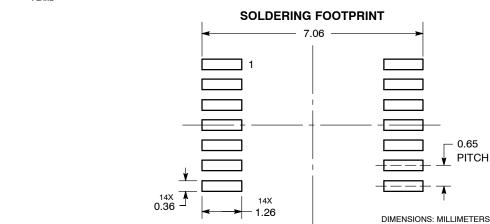


DIMENSIONS: MILLIMETERS

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-14 **DT SUFFIX** CASE 948G **ISSUE B**


NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- B. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
- EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE
- DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

 5. TERMINAL NUMBERS ARE SHOWN FOR
- 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W-.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026	BSC	
Н	0.50	0.60	0.020	0.024	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
Κ	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
Г	6.40		0.252 BSC		
М	0 °	8°	0 °	8 °	

ON Semiconductor and iii) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without particular purpose, for does Scribe as scribe any attaining arising out of the application of use of any product of circuit, and specifications can all an inability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all Claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: <u>org@eplast1.ru</u>

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.