71 GHz to 76 GHz, E-Band I/Q Downconverter

Data Sheet

FEATURES

Conversion gain: $\mathbf{1 2 . 5 ~ d B}$ typical
Image rejection: $\mathbf{2 8 ~ d B c ~ t y p i c a l ~}$
Noise figure: 5 dB typical
Input power for 1 dB compression (P1dB): -9 dBm typical
Input third-order intercept (IP3): -1 dBm typical Input second-order intercept (IP2): $\mathbf{2 0 ~ d B m}$ typical $6 \times$ local oscillator (LO) leakage at RFIN: $\mathbf{- 4 0}$ dBm typical $1 \times$ LO leakage at IFOUT: -50 dBm typical Radio frequency (RF) return loss: 5 dB typical LO return loss: $\mathbf{2 0 ~ d B ~ t y p i c a l ~}$
Die size: $\mathbf{3 . 5 9 9 ~ m m ~} \times 2.199 \mathrm{~mm} \times \mathbf{0 . 0 5} \mathbf{~ m m}$

APPLICATIONS

E-band communication systems

High capacity wireless backhauls Test and measurement

GENERAL DESCRIPTION

The HMC7586 is an integrated E-band gallium arsenide (GaAs), monolithic microwave integrated circuit (MMIC) in-phase/ quadrature (I/Q) downconverter chip that operates from 71 GHz to 76 GHz . The HMC7586 provides a small signal conversion gain of 12.5 dB with 28 dBc of image rejection across the frequency band. The device uses a low noise amplifier followed by an image rejection mixer that is driven by a $6 \times \mathrm{LO}$ multiplier.
The image rejection mixer eliminates the need for a filter following the low noise amplifier. Differential I and Q mixer outputs are provided for direct conversion applications. Alternatively, the outputs can be combined using an external 90° hybrid and two external 180° hybrids for single-sideband applications. All data includes the effect of a 1 mil gold wire wedge bond on the intermediate frequency (IF) ports.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 4
Thermal Resistance 4
ESD Caution 4
Pin Configuration and Function Descriptions. 5
Interface Schematics 6
Typical Performance Characteristics 7
Lower Sideband Selected, IF $=1000 \mathrm{MHz}$ 7
Return Loss Performance 12
Lower Sideband Selected, IF $=500 \mathrm{MHz}$ 13
Lower Sideband Selected, IF = 2000 MHz 18
Noise Figure Performance, Lower Sideband Selected 23
Amplitude Balance Performance, Lower Sideband Selected 24
Phase Balance Performance, Lower Sideband Selected 25
Upper Sideband Selected, IF $=500 \mathrm{MHz}$ 26
Upper Sideband Selected, IF $=1000 \mathrm{MHz}$ 31
Upper Sideband Selected, IF $=2000 \mathrm{MHz}$ 36
Noise Figure Performance, Upper Sideband Selected 41
Amplitude Balance Performance, Upper Sideband Selected 42
Phase Balance Performance, Upper Sideband Selected 43
Spurious Performance With Lower Sideband Selected, IF = 500 MHz 44
Spurious Performance With Lower Sideband Selected, IF = 1000 MHz 45
Spurious Performance With Lower Sideband Selected, IF = 2000 MHz 46
Spurious Performance with Upper Sideband Selected, IF = 500 MHz 47
Spurious Performance with Upper Sideband Selected, IF = 1000 MHz 48
Spurious Performance with Upper Sideband Selected, IF = 2000 MHz 49
Theory of Operation 50
Applications Information 51
Biasing Sequence 51
Image Rejection Downconversion 51
Zero IF Direct Conversion 52
Assembly Diagram 53
Mounting and Bonding Techniques for Millimeterwave GaAs MMICs 54
Handling Precautions 54
Mounting 54
Wire Bonding. 54
Outline Dimensions 55
Ordering Guide 55

REVISION HISTORY

[^0]HMC7586

SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{IF}=1000 \mathrm{MHz}, \mathrm{V}_{\mathrm{Gmix}}=-1 \mathrm{~V}, \mathrm{~V}_{\mathrm{Dampx}}=4 \mathrm{~V}, \mathrm{~V}_{\text {dmult }}=1.5 \mathrm{~V}$, voltage on the $\mathrm{V}_{\text {dinax }}$ pins $\left(\mathrm{V}_{\text {dina }}\right)=3 \mathrm{~V}, \mathrm{LO}=2 \mathrm{dBm}$, lower sideband selected. Measurements performed as a downconverter with external 90° and 180° hybrids at the IF ports, unless otherwise noted.

Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
OPERATING CONDITIONS					
RF Frequency Range		71		76	GHz
LO Frequency Range		11.83		14.33	GHz
IF Frequency Range		0		10	GHz
LO Drive Range		2		8	dBm
PERFORMANCE					
Conversion Gain		8	12.5		dB
Image Rejection		20	28		dBc
Input Third-Order Intercept (IP3)			-1		dBm
Input Second-Order Intercept (IP2)			20		dBm
Input Power for 1 dB Compression (P1dB)	$\mathrm{V}_{\text {dinax }}=4 \mathrm{~V}$		-9		dBm
$6 \times$ LO Leakage at RF Input (RFIN)			-40		dBm
$1 \times$ LO Leakage at IF Output (IFOUT)			-50		dBm
Amplitude Balance ${ }^{1}$			-0.4		dB
Phase Balance ${ }^{1}$			± 4		Degrees
Noise Figure			5		dB
RF Return Loss			5		dB
LO Return Loss	$\mathrm{V}_{\text {DINAx }}=4 \mathrm{~V}$		20		dB
IF Return Loss ${ }^{1}$	$\mathrm{V}_{\text {dinax }}=4 \mathrm{~V}$		25		dB
POWER SUPPLY					
Supply Current					
IDamp^{2}			175		mA
ldmuti ${ }^{3}$	Under LO drive		80		mA
Idina ${ }^{4}$			50		mA

${ }^{1}$ Measurements performed without external hybrids at the IF ports.
${ }^{2}$ Adjust $\mathrm{V}_{\text {GAMP }}$ between -2 V and 0 V to achieve the total quiescent current, $\mathrm{I}_{\mathrm{DAMP}}=\mathrm{I}_{\text {DAMP1 }}+\mathrm{I}_{\text {DAMP2 }}=175 \mathrm{~mA}$.
${ }^{3}$ Adjust $V_{G \times 2}$ and $V_{G \times 3}$ between -2 V and 0 V to achieve the total quiescent current, I I $\mathrm{D}_{\mathrm{DULT}}=1 \mathrm{~mA}$ to 2 mA . See the Applications Information section for more information.
${ }^{4}$ Adjust $\mathrm{V}_{\text {GLnax }}$ between -2 V and 0 V to achieve the total quiescent current, $\mathrm{I}_{\mathrm{DLNA} 1}+\mathrm{I}_{\mathrm{DLNA} 2}+\mathrm{I}_{\mathrm{DLNA} 3}+\mathrm{I}_{\mathrm{DLNA} 4}=50 \mathrm{~mA}$.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Drain Bias Voltage	
$\mathrm{V}_{\text {damp1, }} \mathrm{V}_{\text {damp2 }}$	4.5 V
$V_{\text {dmult }}$	3 V
$\mathrm{V}_{\text {dina } 1,} \mathrm{~V}_{\text {dina }}, \mathrm{V}_{\text {dina }}, \mathrm{V}_{\text {dina } 4}$	4.5 V
Gate Bias Voltage	
$V_{\text {gamp }}$	-3 V to 0 V
$\mathrm{V}_{\mathrm{GX} 2}, \mathrm{~V}_{\mathrm{GX}}$	-3 V to 0 V
	-3 V to 0 V
$V_{\text {gmix }}$	-3 V to 0 V
LO Input Power	10 dBm
Maximum Junction Temperature (to Maintain 1 Million Hours Mean Time to Failure (MTTF))	$175^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ESD Sensitivity, Human Body Model (HBM)	100 V (Class 0)

THERMAL RESISTANCE

Table 3. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathbf{\prime}}{ }^{\mathbf{1}}$	Unit
40-Pad Bare Die [CHIP]	61.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Based on ABLEBOND ${ }^{\oplus}$ 84-1LMIT as die attach epoxy with a thermal conductivity of $3.6 \mathrm{~W} / \mathrm{mK}$.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pad Configuration
Table 4. Pad Function Descriptions

Pad No.	Mnemonic	Description
$\begin{aligned} & 1,7,9,11,13,15,17 \\ & 19,21,22,24,25,27 \\ & 29,31,33,35,37,39 \end{aligned}$	GND	Ground Connect. See Figure 3.
2,3	IFQP, IFQN	Positive and Negative IF Q Outputs. These pads are dc-coupled. When operation to dc is not required, block these pads externally using a series capacitor with a value chosen to pass the necessary frequency range. For operation to dc, these pads must not source or sink more than 3 mA of current or die malfunction and die failure may result (see Figure 4).
4,5	IFIN, IFIP	Negative and Positive IF I Outputs. These pads are dc-coupled. When operation to dc is not required, block these pads externally using a series capacitor with a value chosen to pass the necessary frequency range. For operation to dc, these pads must not source or sink more than 3 mA of current or die malfunction and die failure may result (see Figure 4).
6	$V_{\text {Gmix }}$	Gate Voltage for the FET Mixer. See Figure 5. Refer to the typical application circuit for required external components (see Figure 211).
8,12	$V_{\text {damp2, }} \mathrm{V}_{\text {damp1 }}$	Power Supply Voltage for the First and the Second Stage LO Amplifier. See Figure 5. Refer to the typical application circuit for required external components (see Figure 211).
10	$V_{\text {Gamp }}$	Gate Voltage for the First and the Second Stage LO Amplifier. See Figure 5. Refer to the typical application circuit for required external components (see Figure 211).
14	V ${ }_{\text {dmult }}$	Power Supply Voltage for the LO Multiplier. See Figure 5. Refer to the typical application circuit for required external components (see Figure 211).
16, 18	$\mathrm{V}_{\mathrm{GX} 3} \mathrm{~V}_{\mathrm{GX2}}$	Gate Voltage for the LO Multiplier. See Figure 5. Refer to the typical application circuit for required external components (see Figure 211).
20	LOIN	Local Oscillator Input. This pad is dc-coupled and matched to 50Ω (see Figure 6).
23	RFIN	RF Input. This pad is ac-coupled and matched to 50Ω (see Figure 7).
26,30,34,38	VGlnal $^{\prime}, V_{\text {Glnaz }}$, Vglnaz, Vglna4	Gate Voltage for the Low Noise Amplifier. See Figure 8. Refer to the typical application circuit for required external components (see Figure 211).
28,32,36, 40	$V_{\text {DINA1 }}, V_{\text {DLNA } 2,}$ $V_{\text {dina3, }}$ Vilna4	Power Supply Voltage for the Low Noise Amplifier. See Figure 8. Refer to the typical application circuit for required external components (see Figure 211).
Die Bottom	GND	Ground. Die bottom must be connected to RF/dc ground (see Figure 3).

INTERFACE SCHEMATICS

Figure 3. GND Interface

Figure 4. IFIP, IFIN, IFQN, IFQP, and $V_{G M I X}$ Interface

Figure 5. $V_{D A M P 1}, V_{D A M P 2}, V_{D M U L T}, V_{G A M P}, V_{G M I X}, V_{G \times 2}$, and $V_{G \times 3}$ Interface
 Figure 7. RFIN Interface

Figure 8. $V_{D L N A}, V_{D L N A 2}, V_{D L N A 3}, V_{D L N A 4}, V_{G L N A}, V_{G L N A 2}, V_{G L N A 3}$, and $V_{G L N A 4}$ Interface

TYPICAL PERFORMANCE CHARACTERISTICS

LOWER SIDEBAND SELECTED, IF = $\mathbf{1 0 0 0} \mathbf{~ M H z}$

Figure 9. Conversion Gain vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 10. Conversion Gain vs. RF Frequency at Various LO Powers, RFIN $=-20 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 11. Conversion Gain vs. RF Frequency at Various Idlna Values, $R F I N=-20 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 12. Conversion Gain vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, \mathrm{IF}=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 13. Conversion Gain vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{\text {DLNA }}=3 \mathrm{~V}$

Figure 14. Conversion Gain vs. RF Frequency at Various IdLnA Values, $R F I N=-20 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 15. Image Rejection vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 16. Image Rejection vs. RF Frequency at Various LO Powers,
$R F I N=-20 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 17. Image Rejection vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 18. Image Rejection vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 19. Image Rejection vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 20. Image Rejection vs. RF Frequency at Various Idina Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 21. Input IP3 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 22. Input IP3 vs. RF Frequency at Various LO Powers,
RFIN $=-20 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 23. Input IP3 vs. RF Frequency at Various I ILNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 24. Input IP3 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, \mathrm{IF}=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 25. Input IP3 vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 26. Input IP3 vs. RF Frequency at Various IDLnA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 27. Input IP2 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 28. Input IP2 vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 29. Input IP2 vs. RF Frequency at Various IdLnA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, \mathrm{IF}=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 30. Input IP2 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 31. Input IP2 vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 32. Input IP2 vs. RF Frequency at Various Idlna Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, \mathrm{IF}=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 33. Input P1dB vs. RF Frequency at Various Temperatures,
$L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 34. LO Leakage at IFOUT vs. $1 \times$ LO Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, V_{D L N A}=3 \mathrm{~V}$

Figure 35. LO Leakage at IFOUT vs. $1 \times$ LO Frequency at Various LO Powers, $V_{\text {DLINA }}=3 \mathrm{~V}$

Figure 36. Input P1dB vs. RF Frequency at Various LO Powers, $I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 37. $6 \times$ LO Leakage at RFIN vs. $6 \times$ LO Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, V_{D L N A}=3 \mathrm{~V}$

Figure 38. $6 \times$ LO Leakage at RFIN vs. $6 \times$ LO Frequency at Various LO Powers, $V_{D L N A}=3 \mathrm{~V}$

RETURN LOSS PERFORMANCE

Figure 39. RF Return Loss vs. RF Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, L O=12 \mathrm{GHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 40. LO Return Loss vs. LO Frequency at Various Temperatures, $L O=2 d B m, V_{D L N A}=4 V$

Figure 41. IF Return Loss vs. IF Frequency, $L O=2 \mathrm{dBm}, L O=12 \mathrm{GHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 42. RF Return Loss vs. RF Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, L O=12 \mathrm{GHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 43. LO Return Loss vs. LO Frequency at Various LO Powers, $V_{D L N A}=4 V$

LOWER SIDEBAND SELECTED, IF = $\mathbf{5 0 0} \mathbf{~ M H z}$

Figure 44. Conversion Gain vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 45. Conversion Gain vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 46. Conversion Gain vs. RF Frequency at Various IDLNA Values, RFIN $=-20 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 47. Conversion Gain vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 48. Conversion Gain vs. RF Frequency at Various LO Powers,
$R F I N=-20 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 49. Conversion Gain vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 50. Image Rejection vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 51. Image Rejection vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 52. Image Rejection vs. RF Frequency at Various Idina Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 53. Image Rejection vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 54. Image Rejection vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 55. Image Rejection vs. RF Frequency at Various IdLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 56. Input IP3 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 57. Input IP3 vs. RF Frequency at Various LO Powers,
RFIN $=-20 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 58. Input IP3 vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 59. Input IP3 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 60. Input IP3 vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 61. Input IP3 vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 62. Input IP2 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 63. Input IP2 vs. RF Frequency at Various LO Powers, RFIN $=-20 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 64. Input IP2 vs. RF Frequency at Various Idina Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 65. Input IP2 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 66. Input IP2 vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 67. Input IP2 vs. RF Frequency at Various IdLna Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 68. Input P1dB vs. RF Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, \mathrm{IF}=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 69. Input P1dB vs. RF Frequency at Various LO Powers, $I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

LOWER SIDEBAND SELECTED, IF = $2000 \mathbf{M H z}$

Figure 70. Conversion Gain vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, \mathrm{IF}=2000 \mathrm{MHz}, V_{\text {DLNA }}=4 \mathrm{~V}$

Figure 71. Conversion Gain vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 72. Conversion Gain vs. RF Frequency at Various Idina Values, $R F I N=-20 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 73. Conversion Gain vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 74. Conversion Gain vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 75. Conversion Gain vs. RF Frequency at Various Idlna Values, $R F I N=-20 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 76. Image Rejection vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 77. Image Rejection vs. RF Frequency at Various LO Powers, RFIN $=-20 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{\text {DLNA }}=4 \mathrm{~V}$

Figure 78. Image Rejection vs. RF Frequency at Various IDLna Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 79. Image Rejection vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 80. Image Rejection vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{\text {DLNA }}=3 \mathrm{~V}$

Figure 81. Image Rejection vs. RF Frequency at Various IdLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 82. Input IP3 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 83. Input IP3 vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 84. Input IP3 vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, \mathrm{IF}=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 85. Input IP3 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 86. Input IP3 vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 87. Input IP3 vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 88. Input IP2 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 89. Input IP2 vs. RF Frequency at Various LO Powers, RFIN $=-20 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 90. Input IP2 vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 91. Input IP2 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 92. Input IP2 vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, \mathrm{IF}=2000 \mathrm{MHz}, V_{\text {DLNA }}=3 \mathrm{~V}$

Figure 93. Input IP2 vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 94. Input P1dB vs. RF Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 95. Input P1dB vs. RF Frequency at Various LO Powers, $I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

NOISE FIGURE PERFORMANCE, LOWER SIDEBAND SELECTED

Figure 96. Noise Figure vs. RF Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, \mathrm{IF}=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 97. Noise Figure vs. RF Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 98. Noise Figure vs. RF Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 99. Noise Figure vs. RF Frequency at Various LO Powers, $I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 100. Noise Figure vs. RF Frequency at Various LO Powers, $I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 101. Noise Figure vs. RF Frequency at Various LO Powers, $I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

AMPLITUDE BALANCE PERFORMANCE, LOWER SIDEBAND SELECTED

Figure 102. Amplitude Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 103. Amplitude Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 104. Amplitude Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, \mathrm{IF}=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 105. Amplitude Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 106. Amplitude Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 107. Amplitude Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

PHASE BALANCE PERFORMANCE, LOWER SIDEBAND SELECTED

Figure 108. Phase Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 109. Phase Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 110. Phase Balance vs. RF Frequency at Various Temperatures, RFIN $=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 111. Phase Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 112. Phase Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 113. Phase Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

UPPER SIDEBAND SELECTED, IF = $\mathbf{5 0 0} \mathbf{~ M H z}$

Figure 114. Conversion Gain vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 115. Conversion Gain vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 116. Conversion Gain vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 117. Conversion Gain vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 118. Conversion Gain vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 119. Conversion Gain vs. RF Frequency at Various IdLnA Values, $R F I N=-20 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 120. Image Rejection vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 121. Image Rejection vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 122. Image Rejection vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{\text {DLNA }}=4 \mathrm{~V}$

Figure 123. Image Rejection vs. RF Frequency at Various Temperatures, RFIN $=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V$ DLNA $=3 \mathrm{~V}$

Figure 124. Image Rejection vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 125. Image Rejection vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 126. Input IP3 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 127. Input IP3 vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{\text {DLNA }}=4 \mathrm{~V}$

Figure 128. Input IP3 vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 129. Input IP3 vs. RF Frequency at Various Temperatures, RFIN $=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 130. Input IP3 vs. RF Frequency at Various LO Powers, RFIN $=-20 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 131. Input IP3 vs. RF Frequency at Various I DLNA Values,
$R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 132. Input IP2 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 133. Input IP2 vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 134. Input IP2 vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 135. Input IP2 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 136. Input IP2 vs. RF Frequency at Various LO Powers, RFIN $=-20 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 137. Input IP2 vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 138. Input P1dB vs. RF Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 139. Input P1dB vs. RF Frequency at Various LO Powers, $I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

UPPER SIDEBAND SELECTED, IF = $\mathbf{1 0 0 0} \mathbf{~ M H z}$

Figure 140. Conversion Gain vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 141. Conversion Gain vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 142. Conversion Gain vs. RF Frequency at Various IdLNA Values, RFIN $=-20 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 143. Conversion Gain vs. RF Frequency at Various Temperatures, RFIN $=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 144. Conversion Gain vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 145. Conversion Gain vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{\text {DLNA }}=3 \mathrm{~V}$

Figure 146. Image Rejection vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 147. Image Rejection vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 148. Image Rejection vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 149. Image Rejection vs. RF Frequency at Various Temperatures, RFIN $=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 150. Image Rejection vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 151. Image Rejection vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 152. Input IP3 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 153. Input IP3 vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 154. Input IP3 vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 155. Input IP3 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 156. Input IP3 vs. RF Frequency at Various LO Powers, RFIN $=-20 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 157. Input IP3 vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, \mathrm{IF}=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 158. Input IP2 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 159. Input IP2 vs. RF Frequency at Various LO Powers,
$R F I N=-20 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 160. Input IP2 vs. RF Frequency at Various IdLnA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 161. Input IP2 vs. RF Frequency at Various Temperatures, RFIN $=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 162. Input IP2 vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 163. Input IP2 vs. RF Frequency at Various Idlna Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 164. Input P1dB vs. RF Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 165. Input P1dB vs. RF Frequency at Various LO Powers, $I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

UPPER SIDEBAND SELECTED, IF = $2000 \mathbf{~ M H z}$

Figure 166. Conversion Gain vs. RF Frequency at Various Temperatures, RFIN $=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 167. Conversion Gain vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 168. Conversion Gain vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 169. Conversion Gain vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 170. Conversion Gain vs. RF Frequency at Various LO Powers, RFIN $=-20 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 171. Conversion Gain vs. RF Frequency at Various I DLNA Values, $R F I N=-20 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 172. Image Rejection vs. RF Frequency at Various Temperatures, RFIN $=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 173. Image Rejection vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 174. Image Rejection vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 175. Image Rejection vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 176. Image Rejection vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 177. Image Rejection vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 178. Input IP3 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 179. Input IP3 vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 180. Input IP3 vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, \mathrm{IF}=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 181. Input IP3 vs. RF Frequency at Various Temperatures, RFIN $=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 182. Input IP3 vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 183. Input IP3 vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, \mathrm{IF}=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 184. Input IP2 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 185. Input IP2 vs. RF Frequency at Various LO Powers,
RFIN $=-20 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 186. Input IP2 vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 187. Input IP2 vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 188. Input IP2 vs. RF Frequency at Various LO Powers, $R F I N=-20 \mathrm{dBm}, \mathrm{IF}=2000 \mathrm{MHz}, V_{\text {DLNA }}=3 \mathrm{~V}$

Figure 189. Input IP2 vs. RF Frequency at Various IDLNA Values, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 190. Input P1dB vs. RF Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 191. Input P1dB vs. RF Frequency at Various LO Powers, $I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

NOISE FIGURE PERFORMANCE, UPPER SIDEBAND SELECTED

Figure 192. Noise Figure vs. RF Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 193. Noise Figure vs. RF Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 194. Noise Figure vs. RF Frequency at Various Temperatures, $L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 195. Noise Figure vs. RF Frequency at Various LO Powers, $I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 196. Noise Figure vs. RF Frequency at Various LO Powers, $I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 197. Noise Figure vs. RF Frequency at Various LO Powers, $I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

AMPLITUDE BALANCE PERFORMANCE, UPPER SIDEBAND SELECTED

Figure 198. Amplitude Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{\text {DLNA }}=4 \mathrm{~V}$

Figure 199. Amplitude Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 200. Amplitude Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 201. Amplitude Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 202. Amplitude Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 203. Amplitude Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

PHASE BALANCE PERFORMANCE, UPPER SIDEBAND SELECTED

Figure 204. Phase Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=500 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 205. Phase Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 206. Phase Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=4 \mathrm{~V}$

Figure 207. Phase Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, F=500 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 208. Phase Balance vs. RF Frequency at Various Temperatures, $R F I N=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=1000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

Figure 209. Phase Balance vs. RF Frequency at Various Temperatures, RFIN $=-20 \mathrm{dBm}, L O=2 \mathrm{dBm}, I F=2000 \mathrm{MHz}, V_{D L N A}=3 \mathrm{~V}$

SPURIOUS PERFORMANCE WITH LOWER SIDEBAND SELECTED, IF = $\mathbf{5 0 0} \mathbf{~ M H z}$

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GMIX}}=-1 \mathrm{~V}, \mathrm{~V}_{\text {DAMPx }}=4 \mathrm{~V}, \mathrm{~V}_{\text {DMULT }}=1.5 \mathrm{~V}, \mathrm{LOIN}=$ 2 dBm . Mixer spurious products are measured in dBc from the IF output power level. Spur values are $(M \times R F)-(N \times L O)$.
N/A means not applicable.
$M \times N$ Spurious Outputs, $V_{D L N A}=4 \mathbf{V}$
$\mathrm{RF}=71 \mathrm{GHz}$ at RFIN $=-10 \mathrm{dBm}$, LO frequency $=11.91 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathbf{R F}$	0	N/A						
	1	N/A						
	2	N/A	N/A	25.5	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	34.8	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	44.7	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	48.9	N/A

$\mathrm{RF}=73 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=12.25 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathbf{R F}$	0	N/A						
	1	N/A						
	2	N/A	N/A	27	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	37.6	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	48.2	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	53.9	N/A

$\mathrm{RF}=76 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=12.75 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathbf{R F}$	0	N/A						
	1	N/A						
	2	N/A	N/A	25.3	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	37	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	43.7	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	56.5	N/A

$M \times N$ Spurious Outputs, $V_{D L N A}=3 \mathbf{V}$
$\mathrm{RF}=71 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=11.91 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ RF	0	N/A						
	1	N/A						
	2	N/A	N/A	25.7	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	34.1	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	44	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	48.4	N/A

RF $=73 \mathrm{GHz}$ at RFIN $=-10 \mathrm{dBm}$, LO frequency $=12.25 \mathrm{MHz}$ at $\operatorname{LOIN}=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathbf{R F}$	0	N/A						
	1	N/A						
	2	N/A	N/A	27	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	36.2	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	45.9	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	51.1	N/A

$\mathrm{RF}=76 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=12.75 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		$\mathrm{N} \times$ LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ RF	0	N/A						
	1	N/A						
	2	N/A	N/A	25.3	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	35.6	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	42.5	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	54.7	N/A

SPURIOUS PERFORMANCE WITH LOWER SIDEBAND SELECTED, IF = $\mathbf{1 0 0 0} \mathbf{~ M H z}$

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {GMIX }}=-1 \mathrm{~V}, \mathrm{~V}_{\text {DAMPx }}=4 \mathrm{~V}, \mathrm{~V}_{\text {DMULT }}=1.5 \mathrm{~V}$, LOIN $=$ 2 dBm . Mixer spurious products are measured in dBc from the IF output power level. Spur values are $(M \times R F)-(N \times L O)$. N/A means not applicable.
$M \times N$ Spurious Outputs, $V_{\text {DLNA }}=4 \mathbf{V}$
$\mathrm{RF}=71 \mathrm{GHz}$ at RFIN $=-10 \mathrm{dBm}$, LO frequency $=12 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathbf{R F}$	0	N/A						
	1	N/A						
	2	N/A	N/A	26.6	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	34.9	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	44.8	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	51.8	N/A

$\mathrm{RF}=73 \mathrm{GHz}$ at RFIN $=-10 \mathrm{dBm}$, LO frequency $=12.33 \mathrm{MHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ RF	0	N/A						
	1	N/A						
	2	N/A	N/A	27.8	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	38.1	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	47.7	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	55.1	N/A

$\mathrm{RF}=76 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=12.83 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathbf{R F}$	0	N/A						
	1	N/A						
	2	N/A	N/A	26.2	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	37.8	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	46	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	59.4	N/A

$M \times N$ Spurious Outputs, $V_{D L N A}=3 \mathbf{V}$
$\mathrm{RF}=71 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}, \mathrm{LO}$ frequency $=12 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ RF	0	N/A						
	1	N/A						
	2	N/A	N/A	26.9	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	33.9	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	43.6	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	50.5	N/A

$\mathrm{RF}=73 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=12.33 \mathrm{MHz}$ at LOIN $=2 \mathrm{dBm}$.

		$\mathrm{N} \times$ LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ RF	0	N/A						
	1	N/A						
	2	N/A	N/A	27.8	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	36.6	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	45.8	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	53	N/A

$\mathrm{RF}=76 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=12.83 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		$\mathrm{N} \times$ LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathbf{R F}$	0	N/A						
	1	N/A						
	2	N/A	N/A	26.1	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	36.2	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	44.8	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	56.7	N/A

SPURIOUS PERFORMANCE WITH LOWER SIDEBAND SELECTED, IF = $\mathbf{2 0 0 0} \mathbf{~ M H z}$

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GMIX}}=-1 \mathrm{~V}, \mathrm{~V}_{\text {DAMPx }}=4 \mathrm{~V}, \mathrm{~V}_{\text {DMULT }}=1.5 \mathrm{~V}, \mathrm{LOIN}=$ 2 dBm . Mixer spurious products are measured in dBc from the IF output power level. Spur values are $(M \times R F)-(N \times L O)$.
N/A means not applicable.
$M \times N$ Spurious Outputs, $V_{D L N A}=4 \mathbf{V}$
$\mathrm{RF}=71 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=12.16 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathbf{R F}$	0	N/A						
	1	N/A						
	2	N/A	N/A	28	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	39.7	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	46.7	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	56.7	N/A

RF $=73 \mathrm{GHz}$ at RFIN $=-10 \mathrm{dBm}$, LO frequency $=12.5 \mathrm{MHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathbf{R F}$	0	N/A						
	1	N/A						
	2	N/A	N/A	29.15	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	40.7	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	47.1	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	57.5	N/A

$\mathrm{RF}=76 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=13 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ RF	0	N/A						
	1	N/A						
	2	N/A	N/A	27.6	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	40.6	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	50.4	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	63.4	N/A

$M \times N$ Spurious Outputs, $V_{D L N A}=3 \mathbf{V}$
$\mathrm{RF}=71 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=12.16 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ RF	0	N/A						
	1	N/A						
	2	N/A	N/A	28	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	37.3	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	44.1	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	54.4	N/A

RF $=73 \mathrm{GHz}$ at RFIN $=-10 \mathrm{dBm}$, LO frequency $=12.5 \mathrm{MHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathbf{R F}$	0	N/A						
	1	N/A						
	2	N/A	N/A	29.5	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	38.5	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	45.3	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	55.5	N/A

RF $=76 \mathrm{GHz}$ at RFIN $=-10 \mathrm{dBm}$, LO frequency $=13 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathbf{R F}$	0	N/A						
	1	N/A						
	2	N/A	N/A	27.1	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	38.8	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	48.8	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	61	N/A

SPURIOUS PERFORMANCE WITH UPPER SIDEBAND SELECTED, IF = $\mathbf{5 0 0} \mathbf{~ M H z}$

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {GMIX }}=-1 \mathrm{~V}, \mathrm{~V}_{\text {DAMPX }}=4 \mathrm{~V}, \mathrm{~V}_{\text {DMULT }}=1.5 \mathrm{~V}$, LOIN $=$ 2 dBm . Mixer spurious products are measured in dBc from the IF output power level. Spur values are $(M \times R F)-(N \times L O)$. N/A means not applicable.
$M \times N$ Spurious Outputs, $V_{\text {DLNA }}=4 \mathbf{V}$
$\mathrm{RF}=71 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=11.75 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ RF	0	N/A						
	1	N/A						
	2	N/A	N/A	24.8	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	36	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	46.7	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	49.4	N/A

$\mathrm{RF}=73 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=12.08 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ RF	0	N/A						
	1	N/A						
	2	N/A	N/A	25.8	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	35.6	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	46.4	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	51.3	N/A

$\mathrm{RF}=76 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=12.58 \mathrm{GHz}$ at $\operatorname{LOIN}=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathbf{R F}$	0	N/A						
	1	N/A						
	2	N/A	N/A	24.2	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	36.5	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	44.5	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	55.6	N/A

$M \times N$ Spurious Outputs, $V_{D L N A}=3 \mathbf{V}$
$\mathrm{RF}=71 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=11.75 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ RF	0	N/A						
	1	N/A						
	2	N/A	N/A	24.4	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	35.2	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	45.6	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	53	N/A

$\mathrm{RF}=73 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=12.08 \mathrm{MHz}$ at LOIN $=2 \mathrm{dBm}$.

		$\mathrm{N} \times$ LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ RF	0	N/A						
	1	N/A						
	2	N/A	N/A	25.5	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	34.1	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	44.5	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	48.7	N/A

$\mathrm{RF}=76 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=12.58 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ RF	0	N/A						
	1	N/A						
	2	N/A	N/A	24	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	34.9	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	44	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	53.3	N/A

SPURIOUS PERFORMANCE WITH UPPER SIDEBAND SELECTED, IF = $\mathbf{1 0 0 0} \mathbf{~ M H z}$

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GMIX}}=-1 \mathrm{~V}, \mathrm{~V}_{\text {DAMPx }}=4 \mathrm{~V}, \mathrm{~V}_{\text {DMULT }}=1.5 \mathrm{~V}, \mathrm{LOIN}=$ 2 dBm . Mixer spurious products are measured in dBc from the IF output power level. Spur values are $(M \times R F)-(N \times L O)$. N/A means not applicable.
$M \times N$ Spurious Outputs, $V_{D L N A}=4 \mathbf{V}$
$\mathrm{RF}=71 \mathrm{GHz}$ at RFIN $=-10 \mathrm{dBm}$, LO frequency $=11.66 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathbf{R F}$	0	N/A						
	1	N/A						
	2	N/A	N/A	25.2	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	37.4	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	50.2	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	50.8	N/A

$\mathrm{RF}=73 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=12 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ RF	0	N/A						
	1	N/A						
	2	N/A	N/A	25.6	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	34.4	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	46	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	49.5	N/A

$\mathrm{RF}=76 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}, \mathrm{LO}$ frequency $=12.5 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ RF	0	N/A						
	1	N/A						
	2	N/A	N/A	24.8	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	36.5	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	46.1	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	55.2	N/A

$M \times N$ Spurious Outputs, $V_{D L N A}=3 \mathbf{V}$
$\mathrm{RF}=71 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=11.66 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ RF	0	N/A						
	1	N/A						
	2	N/A	N/A	24.6	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	37.1	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	47.6	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	57.7	N/A

RF $=73 \mathrm{GHz}$ at RFIN $=-10 \mathrm{dBm}$, LO frequency $=12 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathbf{R F}$	0	N/A						
	1	N/A						
	2	N/A	N/A	25.3	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	33.2	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	44.2	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	47.6	N/A

$\mathrm{RF}=76 \mathrm{GHz}$ at RFIN $=-10 \mathrm{dBm}$, LO frequency $=12.5 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathbf{R F}$	0	N/A						
	1	N/A						
	2	N/A	N/A	24.6	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	34.7	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	44.4	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	52.9	N/A

SPURIOUS PERFORMANCE WITH UPPER SIDEBAND SELECTED, IF = $\mathbf{2 0 0 0} \mathbf{~ M H z}$

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {GMIX }}=-1 \mathrm{~V}, \mathrm{~V}_{\text {DAMPX }}=4 \mathrm{~V}, \mathrm{~V}_{\text {DMULT }}=1.5 \mathrm{~V}$, LOIN $=$ 2 dBm . Mixer spurious products are measured in dBc from the IF output power level. Spur values are $(M \times R F)-(N \times L O)$. N/A means not applicable.
$M \times N$ Spurious Outputs, $V_{D L N A}=4 \mathbf{V}$
$\mathrm{RF}=71 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=11.5 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ RF	0	N/A						
	1	N/A						
	2	N/A	N/A	25.6	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	41.2	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	49.5	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	59.4	N/A

$\mathrm{RF}=73 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=11.83 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ RF	0	N/A						
	1	N/A						
	2	N/A	N/A	24.8	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	32	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	44.2	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	48.6	N/A

$\mathrm{RF}=76 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=12.33 \mathrm{GHz}$ at $\operatorname{LOIN}=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times \mathbf{R F}$	0	N/A						
	1	N/A						
	2	N/A	N/A	24.4	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	36.8	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	47.2	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	54.6	N/A

$M \times N$ Spurious Outputs, $V_{\text {DLNA }}=3 \mathbf{V}$
$\mathrm{RF}=71 \mathrm{GHz}$ at RFIN $=-10 \mathrm{dBm}$, LO frequency $=11.5 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		$\mathrm{N} \times$ LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ RF	0	N/A						
	1	N/A						
	2	N/A	N/A	25.3	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	40.1	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	46.3	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	66.4	N/A

$\mathrm{RF}=73 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=11.83 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		N \times LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ RF	0	N/A						
	1	N/A						
	2	N/A	N/A	24.5	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	36.1	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	42.6	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	48.1	N/A

$\mathrm{RF}=76 \mathrm{GHz}$ at $\mathrm{RFIN}=-10 \mathrm{dBm}$, LO frequency $=12.33 \mathrm{GHz}$ at LOIN $=2 \mathrm{dBm}$.

		$\mathrm{N} \times$ LO						
		0	1	2	3	4	5	6
$\mathbf{M} \times$ RF	0	N/A						
	1	N/A						
	2	N/A	N/A	23.9	N/A	N/A	N/A	N/A
	3	N/A	N/A	N/A	35.5	N/A	N/A	N/A
	4	N/A	N/A	N/A	N/A	45	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A	52.2	N/A

THEORY OF OPERATION

The HMC7586 is a GaAs low noise I/Q downconverter with an integrated LO buffer and a $6 \times$ multiplier. See Figure 210 for a functional block diagram of the downconverter circuit architecture.
The RF input is internally ac-coupled and matched to 50Ω. The input passes through four stages of low noise amplification. The preamplified RF input signal then splits and drives two singly
balanced passive mixers. Quadrature LO signals drive the two I and Q mixer cores. The LO path provides a $6 \times$ multiplier that allows the use of a lower frequency range LO input signal, typically between 11.83 GHz and 14.33 GHz . The $6 \times$ multiplier is implemented using a cascade of $3 \times$ and $2 \times$ multipliers. The LO buffer amplifiers are included on chip to allow a typical LO drive level of only 2 dBm for full performance.

APPLICATIONS INFORMATION

BIASING SEQUENCE

The HMC7586 uses several amplifier and multiplier stages. The active stages all utilize depletion mode pHEMT transistors. It is important to follow the following power-up bias sequence to ensure transistor damage does not occur.

1. Apply a - 2 V bias to $\mathrm{V}_{\mathrm{Gamp}}, \mathrm{V}_{\text {Glnal }}, \mathrm{V}_{\mathrm{glna}}$, $\mathrm{V}_{\text {gina3 }}, \mathrm{V}_{\text {glna4, }}$ $\mathrm{V}_{\mathrm{GX} 2}$, and $\mathrm{V}_{\mathrm{GX} 3}$.
2. Apply a -1 V bias to $\mathrm{V}_{\text {Gmix. }}$
3. Apply 4 V to $\mathrm{V}_{\text {dampl }}, \mathrm{V}_{\text {damp2 }}, \mathrm{V}_{\text {dinal }}, \mathrm{V}_{\text {dlnat }}, \mathrm{V}_{\text {dina3 }}$, and $V_{\text {dina4, }}$ and apply 1.5 V to $V_{\text {dmuit }}$
4. Adjust $\mathrm{V}_{\mathrm{GAmP}}$ between -2 V and 0 V to achieve a total amplifier drain current ($\mathrm{I}_{\text {DAMP1 }}+\mathrm{I}_{\text {DAMP2 } 2}$) of 175 mA .
5. Adjust $\mathrm{V}_{\mathrm{GINAI}}, \mathrm{V}_{\mathrm{GLNA} 2}, \mathrm{~V}_{\mathrm{GLNA} 3}$, and $\mathrm{V}_{\mathrm{GINA} 4}$ to achieve a total LNA drain current ($I_{\text {dLNa1 }}+I_{\text {dLNa2 }}+I_{\text {dLNa3 }}+I_{\text {dina }}$) of 50 mA .
6. Apply an LO input signal with a power level of $\sim 2 \mathrm{dBm}$ and adjust $\mathrm{V}_{\mathrm{GX} 2}$ and $\mathrm{V}_{\mathrm{GX} 3}$ between 2 V and 0 V to achieve 80 mA of drain current on $V_{\text {DMULT. }}$

Figure 211. Typical Image Rejection Downconversion Application Circuit

ZERO IF DIRECT CONVERSION

A typical zero IF direct conversion application circuit is shown in Figure 212. It is important to ac couple the IFIP, IFIN, IFQP, and IFQN pads to the ADC inputs. Most ADCs are designed to operate with a common-mode voltage that is above ground.

Figure 212. Typical Zero IF Direct Conversion Application Circuit

ASSEMBLY DIAGRAM

Figure 213. Assembly Diagram

MOUNTING AND BONDING TECHNIQUES FOR MILLIMETERWAVE GaAs MMICS

Attach the die directly to the ground plane eutectically or with conductive epoxy.
To bring RF to and from the chip, use 50Ω microstrip transmission lines on 0.127 mm (5 mil) thick alumina thin film substrates (see Figure 214).

Figure 214. Routing RF Signals
To minimize bond wire length, place microstrip substrates as close to the die as possible. Typical die to substrate spacing is 0.076 mm to 0.152 mm (3 mil to 6 mil).

HANDLING PRECAUTIONS

To avoid permanent damage, adhere to the following precautions.

Storage

All bare die ship in either waffle or gel-based ESD protective containers, sealed in an ESD protective bag. After opening the sealed ESD protective bag, store all die a dry nitrogen environment.

Cleanliness

Handle the chips in a clean environment. Never use liquid cleaning systems to clean the chip.

Static Sensitivity

Follow ESD precautions to protect against ESD strikes that are greater than 100 V .

Transients

Suppress instrument and bias supply transients while bias is applied. To minimize inductive pickup, use shielded signal and bias cables.

General Handling

Handle the chip on the edges only using a vacuum collet or with a sharp pair of bent tweezers. Because the surface of the chip has fragile air bridges, never touch the surface of the chip with a vacuum collet, tweezers, or fingers.

MOUNTING

The chip is back metallized and can be die mounted with gold/ tin (AuSn) eutectic preforms or with electrically conductive epoxy. The mounting surface must be clean and flat.

Eutectic Die Attach

It is best to use an $80 \% / 20 \%$ gold tin preform with a work surface temperature of $255^{\circ} \mathrm{C}$ and a tool temperature of $265^{\circ} \mathrm{C}$. When hot $90 \% / 10 \%$ nitrogen/hydrogen gas is applied, maintain tool tip temperature at $290^{\circ} \mathrm{C}$. Do not expose the chip to a temperature greater than $320^{\circ} \mathrm{C}$ for more than 20 sec . No more than 3 sec of scrubbing is required for attachment.

Epoxy Die Attach

ABLEBOND 84-1LMIT is recommended for die attachment.
Apply a minimum amount of epoxy to the mounting surface so that upon placing it into position, a thin epoxy fillet is observed around the perimeter of the chip. Cure epoxy per the schedule provided by the manufacturer.

WIRE BONDING

RF bonds made with $3 \mathrm{mil}(0.0762 \mathrm{~mm}) \times 0.5 \mathrm{mil}(0.0127 \mathrm{~mm})$ gold ribbon are recommended for RF port and wedge bonds with $1 \mathrm{mil}(0.0254 \mathrm{~mm})$ diameter gold wire are recommended for IF and LO ports. Thermosonically bond these bonds with a force of 40 g to 60 g . DC bonds of $1 \mathrm{mil}(0.0254 \mathrm{~mm})$ diameter, thermosonically bonded, are recommended. Create ball bonds with a force of 40 g to 50 g and wedge bonds with a force of 18 g to 22 g . Create all bonds with a nominal stage temperature of $150^{\circ} \mathrm{C}$. Apply a minimum amount of ultrasonic energy to achieve reliable bonds. Keep all bonds as short as possible, less than $12 \mathrm{mil}(0.31 \mathrm{~mm})$.

OUTLINE DIMENSIONS

04-10-2015-A
Figure 215. 40-Pad Bare Die [CHIP]

> (C-40-1)

Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option ${ }^{2}$
HMC7586	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$40-$ Pad Bare Die [CHIP]	$\mathrm{C}-40-1$
HMC7586-SX	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$40-$-ad Bare Die [CHIP]	$\mathrm{C}-40-1$

${ }^{1}$ The HMC7586-SX consists of two pairs of the die in a gel pack for sample orders.
${ }^{2}$ This is a waffle pack option; contact Analog Devices, Inc. for additional packaging options.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться
Телефон: 8 (812) 3095832 (многоканальный) Факс: 8 (812) 320-02-42
Электронная почта: org@eplast1.ru
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2 , корпус 4 , литера A.

[^0]: 3/16-Revision A: Initial Version

