Monolithic Ceramic Capacitors GR_R6/R7/F5/E4 (X5R/X7R/Y5V/Z5U)

High Dielectric Constant Type 6.3/16/25/50V

Don't Number		Dir	nensions (n	nm)		
Part Number	L	W	Т	е	g min.	
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4	
GRM188*	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5	
GRM216			0.6 ±0.1		0.7	
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7		
GRM21B			1.25 ±0.1			
GRM319	2 2 10 15	1.6 ±0.15	0.85 ±0.1		1.5	
GRM31M] 3.∠ ±0.15	1.0 ±0.15	1.15 ±0.1	0.3 to 0.8		
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2			

^{*} Bulk Case : $1.6 \pm 0.07(L) \times 0.8 \pm 0.07(W) \times 0.8 \pm 0.07(T)$

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance*	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM155R61A683KA01	X5R (EIA)	10	68000pF±10%	1.0	0.5	0.50
GRM155R61A104KA01	X5R (EIA)	10	0.1μF±10%	1.0	0.5	0.50
GRM188R61A334KA61	X5R (EIA)	10	0.33 μF±10%	1.6	0.8	0.80
GRM188R61A474KA61	X5R (EIA)	10	0.47μF±10%	1.6	0.8	0.80
GRM188R61A684KA61	X5R (EIA)	10	0.68μF±10%	1.6	0.8	0.80
GRM188R61A105KA61	X5R (EIA)	10	1μF ±10%	1.6	0.8	0.80
GRM188R60J105KA01	X5R (EIA)	6.3	1μF ±10%	1.6	0.8	0.80
GRM219R61A105KC01	X5R (EIA)	10	1μF ±10%	2.0	1.25	0.90
GRM21BR61A225KA01	X5R (EIA)	10	2.2μF ±10%	2.0	1.25	1.25
GRM219R60J155KC01	X5R (EIA)	6.3	1.5μF ±10%	2.0	1.25	0.90
GRM21BR60J225KA01	X5R (EIA)	6.3	2.2μF ±10%	2.0	1.25	1.25
GRM21BR60J335KA11	X5R (EIA)	6.3	3.3μF ±10%	2.0	1.25	1.25
GRM21BR60J475KA11	X5R (EIA)	6.3	4.7μF ±10%	2.0	1.25	1.25
GRM319R61A225KC01	X5R (EIA)	10	2.2μF ±10%	3.2	1.6	0.90
GRM31XR61A335KC12	X5R (EIA)	10	3.3μF ±10%	3.2	1.6	1.30
GRM31CR61A475KA01	X5R (EIA)	10	4.7μF ±10%	3.2	1.6	1.60
GRM31MR60J475KC11	X5R (EIA)	6.3	4.7μF ±10%	3.2	1.6	1.15
GRM31CR61A106KA01	X5R (EIA)	10	10μF ±10%	3.2	1.6	1.60
GRM31CR60J106KA01	X5R (EIA)	6.3	10μF ±10%	3.2	1.6	1.60
GRM31CR60J226ME20	X5R (EIA)	6.3	22μF ±20%	3.2	1.6	1.60
GRM32ER61A106KC01	X5R (EIA)	10	10μF ±10%	3.2	2.5	2.50
GRM55DR61H106KA01	X5R (EIA)	50	10μF ±10%	5.7	5.0	2.00
GRM15XR71H221KA86	X7R (EIA)	50	220pF±10%	1.0	0.5	0.25
GRM155R71H221KA01	X7R (EIA)	50	220pF±10%	1.0	0.5	0.50
GRM15XR71H331KA86	X7R (EIA)	50	330pF±10%	1.0	0.5	0.25
GRM155R71H331KA01	X7R (EIA)	50	330pF±10%	1.0	0.5	0.50
GRM15XR71H471KA86	X7R (EIA)	50	470pF±10%	1.0	0.5	0.25
GRM155R71H471KA01	X7R (EIA)	50	470pF±10%	1.0	0.5	0.50
GRM15XR71H681KA86	X7R (EIA)	50	680pF±10%	1.0	0.5	0.25
GRM155R71H681KA01	X7R (EIA)	50	680pF±10%	1.0	0.5	0.50
GRM15XR71H102KA86	X7R (EIA)	50	1000pF±10%	1.0	0.5	0.25
GRM155R71H102KA01	X7R (EIA)	50	1000pF±10%	1.0	0.5	0.50
GRM15XR71H152KA86	X7R (EIA)	50	1500pF±10%	1.0	0.5	0.25
GRM155R71H152KA01	X7R (EIA)	50	1500pF±10%	1.0	0.5	0.50
GRM155R71H222KA01	X7R (EIA)	50	2200pF±10%	1.0	0.5	0.50

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance*	Length L (mm)	Width W (mm)	Thickness (mm)
GRM155R71H332KA01	X7R (EIA)	50	3300pF±10%	1.0	0.5	0.50
RM155R71H472KA01	X7R (EIA)	50	4700pF±10%	1.0	0.5	0.50
RM15XR71E182KA86	X7R (EIA)	25	1800pF±10%	1.0	0.5	0.25
RM15XR71E222KA86	X7R (EIA)	25	2200pF±10%	1.0	0.5	0.25
RM155R71E682KA01	X7R (EIA)	25	6800pF±10%	1.0	0.5	0.50
RM155R71E103KA01	X7R (EIA)	25	10000pF±10%	1.0	0.5	0.50
RM15XR71C332KA86	X7R (EIA)	16	3300pF±10%	1.0	0.5	0.25
RM15XR71C472KA86	X7R (EIA)	16	4700pF±10%	1.0	0.5	0.25
RM15XR71C682KA86	X7R (EIA)	16	6800pF±10%	1.0	0.5	0.25
RM155R71C153KA01	X7R (EIA)	16	15000pF±10%	1.0	0.5	0.50
RM155R71C223KA01	X7R (EIA)	16	22000pF±10%	1.0	0.5	0.50
RM155R71A333KA01	X7R (EIA)	10	33000pF±10%	1.0	0.5	0.50
RM155R71A473KA01	X7R (EIA)	10	47000pF±10%	1.0	0.5	0.50
RM188R71H221KA01	X7R (EIA)	50	220pF±10%	1.6	0.8	0.80
RM188R71H331KA01	X7R (EIA)	50	330pF±10%	1.6	0.8	0.80
RM188R71H471KA01	X7R (EIA)	50	470pF±10%	1.6	0.8	0.80
RM188R71H681KA01	X7R (EIA)	50	680pF±10%	1.6	0.8	0.80
RM188R71H102KA01	X7R (EIA)	50	1000pF±10%	1.6	0.8	0.80
RM188R71H152KA01	X7R (EIA)	50	1500pF±10%	1.6	0.8	0.80
RM188R71H222KA01	X7R (EIA)	50	2200pF±10%	1.6	0.8	0.80
RM188R71H332KA01	X7R (EIA)	50	3300pF±10%	1.6	0.8	0.80
GRM188R71H472KA01	X7R (EIA)	50	4700pF±10%	1.6	0.8	0.80
RM188R71H682KA01	X7R (EIA)	50	6800pF±10%	1.6	0.8	0.80
RM188R71H103KA01	X7R (EIA)	50	10000pF±10%	1.6	0.8	0.80
RM188R71H153KA01	X7R (EIA)	50	15000pF±10%	1.6	0.8	0.80
RM188R71H223KA01	X7R (EIA)	50	22000pF±10%	1.6	0.8	0.80
RM188R71E333KA01	X7R (EIA)	25	33000pF±10%	1.6	0.8	0.80
RM188R71E473KA01	X7R (EIA)	25	47000pF±10%	1.6	0.8	0.80
RM188R71E683KA01	X7R (EIA)	25	68000pF±10%	1.6	0.8	0.80
RM188R71E104KA01	X7R (EIA)	25	0.1μF±10%	1.6	0.8	0.80
RM188R71C104KA01	X7R (EIA)	16	0.1μF±10% 0.1μF±10%	1.6	0.8	0.80
RM188R71A154KA01	X7R (EIA)	10	0.15μF±10%	1.6	0.8	0.80
RM188R71A224KA01	X7R (EIA)	10	22000pF±10%	1.6	0.8	0.80
RM219R71H333KA01		50		2.0		0.80
	X7R (EIA)		33000pF±10%		1.25	
RM21BR71H473KA01	X7R (EIA)	50	47000pF±10%	2.0	1.25	1.25
RM21BR71H683KA01	X7R (EIA)	50	68000pF±10%	2.0	1.25	1.25
RM21BR71H104KA01	X7R (EIA)	50	0.1μF±10%	2.0	1.25	1.25
iRM21BR71H154KA01	X7R (EIA)	50	0.15μF±10%	2.0	1.25	1.25
RM21BR71H224KA01	X7R (EIA)	50	22000pF±10%	2.0	1.25	1.25
RM21BR71E104KA01	X7R (EIA)	25	0.1μF±10%	2.0	1.25	1.25
RM21BR71E154KA01	X7R (EIA)	25	0.15μF±10%	2.0	1.25	1.25
RM219R71E224KC01	X7R (EIA)	25	22000pF±10%	2.0	1.25	0.90
RM21BR71E334KC01	X7R (EIA)	25	0.33 μF±10%	2.0	1.25	1.25
RM21BR71E474KC01	X7R (EIA)	25	0.47μF±10%	2.0	1.25	1.25
RM219R71C474KC01	X7R (EIA)	16	0.47μF±10%	2.0	1.25	0.90
RM219R71C684KC01	X7R (EIA)	16	0.68μF±10%	2.0	1.25	0.90
RM21BR71C105KA01	X7R (EIA)	16	1μF ±10%	2.0	1.25	1.25
RM319R71H334KA01	X7R (EIA)	50	0.33 μF±10%	3.2	1.6	0.90
RM31MR71H474KA01	X7R (EIA)	50	0.47μF±10%	3.2	1.6	1.15
RM319R71E684KC01	X7R (EIA)	25	0.68μF±10%	3.2	1.6	0.90
RM31MR71E105KC01	X7R (EIA)	25	1μF ±10%	3.2	1.6	1.15
RM319R71C105KC11	X7R (EIA)	16	1μF ±10%	3.2	1.6	0.90
RM31MR71C155KC11	X7R (EIA)	16	1.5μF ±10%	3.2	1.6	1.15
GRM31MR71C225KA35	X7R (EIA)	16	$2.2 \mu F \pm 10\%$	3.2	1.6	1.15
RM319R71A105KC01	X7R (EIA)	10	1μF ±10%	3.2	1.6	0.90

 $\begin{tabular}{|c|c|c|c|}\hline \end{tabular}$ Continued from the preceding page.

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance*	Length L (mm)	Width W (mm)	Thickness (mm)
GRM319R71A225KA01	X7R (EIA)	10	2.2μF ±10%	3.2	1.6	0.90
GRM32NR71H684KA01	X7R (EIA)	50	0.68μF±10%	3.2	2.5	1.35
GRM32RR71H105KA01	X7R (EIA)	50	1μF ±10%	3.2	2.5	1.80
GRM32RR71E225KC01	X7R (EIA)	25	2.2μF ±10%	3.2	2.5	1.80
GRM32MR71C225KC01	X7R (EIA)	16	2.2μF ±10%	3.2	2.5	1.15
GRM32NR71C335KC01	X7R (EIA)	16	3.3μF ±10%	3.2	2.5	1.35
GRM32RR71C475KC01	X7R (EIA)	16	4.7μF ±10%	3.2	2.5	1.80
GRM43ER71H225KA01	X7R (EIA)	50	2.2μF ±10%	4.5	3.2	2.50
GRM55RR71H105KA01	X7R (EIA)	50	1μF ±10%	5.7	5.0	1.80
GRM55RR71H155KA01	X7R (EIA)	50	1.5μF ±10%	5.7	5.0	1.80
GRM155F51H222ZA01	Y5V (EIA)	50	2200pF +80%, -20%	1.0	0.5	0.50
RM155F51H472ZA01	Y5V (EIA)	50	4700pF +80%, -20%	1.0	0.5	0.50
GRM155F51H103ZA01	Y5V (EIA)	50	10000pF +80%, -20%	1.0	0.5	0.50
GRM155F51E223ZA01	Y5V (EIA)	25	22000pF +80%, -20%	1.0	0.5	0.50
GRM155F51C473ZA01	Y5V (EIA)	16	47000pF +80%, -20%	1.0	0.5	0.50
GRM155F51C104ZA01	Y5V (EIA)	16	10000pF +80%, -20%	1.0	0.5	0.50
GRM188F51H103ZA01	Y5V (EIA)	50	10000pF +80%, -20%	1.6	0.8	0.80
GRM188F51H223ZA01	Y5V (EIA)	50	22000pF +80%, -20%	1.6	0.8	0.80
GRM188F51H473ZA01	Y5V (EIA)	50	47000pF +80%, -20%	1.6	0.8	0.80
GRM188F51H104ZA01	Y5V (EIA)	50	10000pF +80%, -20%	1.6	0.8	0.80
GRM188F51E104ZA01	Y5V (EIA)	25	10000pF +80%, -20%	1.6	0.8	0.80
GRM188F51C224ZA01	Y5V (EIA)	16	22000pF +80%, -20%	1.6	0.8	0.80
GRM188F51C474ZA01	Y5V (EIA)	16	0.47μF +80%, -20%	1.6	0.8	0.80
	` '					
GRM188F51A474ZC01	Y5V (EIA)	10	0.47μF +80%, -20%	1.6	0.8	0.80
GRM188F51A105ZA01	Y5V (EIA)	10	1μF +80%, -20%	1.6	0.8	0.80
GRM219F51H104ZA01	Y5V (EIA)	50	10000pF +80%, -20%	2.0	1.25	0.90
GRM21BF51H224ZA01	Y5V (EIA)	50	22000pF +80%, -20%	2.0	1.25	1.25
GRM219F51E224ZA01	Y5V (EIA)	25	22000pF +80%, -20%	2.0	1.25	0.90
GRM21BF51E474ZA01	Y5V (EIA)	25	0.47μF +80%, -20%	2.0	1.25	1.25
GRM219F51E105ZA01	Y5V (EIA)	25	1μF +80%, -20%	2.0	1.25	0.90
GRM21BF51E225ZA01	Y5V (EIA)	25	2.2μF +80%, -20%	2.0	1.25	1.25
GRM219F51C105ZA01	Y5V (EIA)	16	1μF +80%, -20%	2.0	1.25	0.90
GRM21BF51C225ZA01	Y5V (EIA)	16	2.2μF +80%, -20%	2.0	1.25	1.25
GRM219F51A105ZA01	Y5V (EIA)	10	1μF +80%, -20%	2.0	1.25	0.90
GRM21BF51A225ZA01	Y5V (EIA)	10	2.2μF +80%, -20%	2.0	1.25	1.25
GRM21BF51A475ZA01	Y5V (EIA)	10	4.7μF +80%, -20%	2.0	1.25	1.25
GRM31MF51H474ZA01	Y5V (EIA)	50	0.47μF +80%, -20%	3.2	1.6	1.15
GRM31MF51E105ZA01	Y5V (EIA)	25	1μF +80%, -20%	3.2	1.6	1.15
GRM31MF51E475ZA01	Y5V (EIA)	25	4.7μF +80%, -20%	3.2	1.6	1.15
GRM319F51C105ZA01	Y5V (EIA)	16	1μF +80%, -20%	3.2	1.6	0.90
GRM31MF51C225ZA01	Y5V (EIA)	16	2.2μF +80%, -20%	3.2	1.6	1.15
GRM31MF51C475ZA12	Y5V (EIA)	16	4.7μF +80%, -20%	3.2	1.6	1.15
GRM319F51A225ZA01	Y5V (EIA)	10	2.2μF +80%, -20%	3.2	1.6	0.90
GRM31MF51A475ZA01	Y5V (EIA)	10	4.7μF +80%, -20%	3.2	1.6	1.15
SRM31MF51A106ZA01	Y5V (EIA)	10	10μF +80%, -20%	3.2	1.6	1.15
GRM31MF50J106ZA01	Y5V (EIA)	6.3	10μF +80%, -20%	3.2	1.6	1.15
GRM32RF51H105ZA01	Y5V (EIA)	50	1μF +80%, -20%	3.2	2.5	1.80
GRM329F51E475ZA01	Y5V (EIA)	25	4.7μF +80%, -20%	3.2	2.5	0.90
GRM32NF51E106ZA01	Y5V (EIA)	25	10μF +80%, -20%	3.2	2.5	1.35
GRM32NF51C106ZA01	Y5V (EIA)	16	10μF +80%, -20%	3.2	2.5	1.35
GRM188E41H103MA01	Z5U (EIA)	50	10000pF±20%	1.6	0.8	0.80
GRM188E41H223MA01	Z5U (EIA)	50	22000pF±20%	1.6	0.8	0.80
GRM216E41H473MA01	Z5U (EIA)	50	47000pF±20%	2.0	1.25	0.60
GRM219E41H104MA01	Z5U (EIA)	50	10000pF±20%	2.0	1.25	0.90
GRM319E41H224MA01	Z5U (EIA)	50	22000pF±20%	3.2	1.6	0.70

■ Specifications and Test Methods

		Specifi	cations					
No.	Item	Temperature Compensating Type	High Dielectric Type	Test Method				
1	Operating Temperature Range	–55 to +125℃	B1, B3, F1: -25°C to +85°C R1, R7: -55°C to +125°C E4: +10°C to +85°C F5: -30°C to +85°C	Reference Temperature : 25° C (2Δ , 3Δ , 4Δ , B1, B3, F1, R1 : 20° C)				
2	Rated Voltage	See the previous pages		The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{o,p} , whichever is larger, should be maintained within the rated voltage range.				
3	Appearance	No defects or abnormalities		Visual inspection				
4	Dimensions	Within the specified dimensions	1	Using calipers				
5	Dielectric Strength	No defects or abnormalities		No failure should be observed when 300% of the rated voltage (temperature compensating type) or 250% of the rated voltage (high dielectric constant type) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.				
6	Insulation Resistance	C≦0.047μF : More than 10,0000 C>0.047μF : 500Ω • F	MΩ C : Nominal Capacitance	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 20°C/25°C and 75%RH max. and within 2 minutes of charging, provided the charge/discharge current is less than 50mA.				
7	Capacitance	Within the specified tolerance		The capacitance/D.F. should be measured at 20℃/25℃ at the				
8	Q/ Dissipation Factor (D.F.)	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max. W.V.: 6.3V/4V : 0.05max. (C<3.3μF) : 0.1max. (C≧3.3μF) [F1, F5] W.V.: 25Vmin. : 0.05max. (C<0.1μF) : 0.09max. (C≥0.1μF) W.V.: 16V/10V: 0.125max. W.V.: 6.3V: 0.15max.					

			Specif	ications					
No.	lt∈	em	Temperature Compensating Type	High Dielectric Type			Test Me	ethod	
		No bias	Within the specified tolerance (Table A-1)	B1, B3 : Within±10% (-25°C to +85°C) R1, R7 : Within±15% (-55°C to +125°C) R6 : Within±15% (-55°C to +85°C) E4 : Within +22/-56% (+10°C to +85°C) F1 : Within +30/-80% (-25°C to +85°C) F5 : Within +22/-82% (-30°C to +85°C)	each speci (1)Temper The temper measured When cycl 5 (5C: +2 coeffs: +1: should be coefficient The capace between the	ified temperature Content of the temperature content of the temperature content of the temperature of temperature of the temperature of temperature of temperature of temperature of temperature of temperature of temperature	o. stage. mpensating T efficient is de as a reference mperature se 25°C/∆C: +20°C to e specified tole acitance chan fit is caluculat	ype termind u e. quentially c to +1 +85°c) t erance fo ge as Tal ed by div num mea	iding the differences sured values in the
					<u> </u>	ер	•	emperat	
		50% of		B1 : Within +10/-30%		1		•	nperature±2
		the Rated Voltage		R1 : Within +15/-40% F1 : Within +30/-95%		2			5±3 (for other TC)
		Voltage		11. ***********************************		3			nperature±2
					7	4			E3 (for other TC)
						5			nperature±2
9	Capacitance Temperature Characteristics				The ranges value over be within the In case of measured	s of capa the temp he specifi applying after 1 m	erature range ed ranges.*	ge compa es shown apacitano applying	
					Step	Ten	nperature (°C)	Applying Voltage (V)
		Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger.) *Not apply to 1X/25V	*Initial measurement for high	2 3	-55± -25± -30±3	### description		No bias
				dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour	4		125±3 (for R1, R7)/ 85±3 (for B1, B3, R6 F1, F5, E4)		
				and then set for 48±4 hours	5	Refere	nce Tempere	ture±2	
				at room temperature. Perform the initial measurement.	6	-55±3 (for R1)/ -25±3 (for B1, F1))/	50% of the rated
				measurement.	7	Refere	nce Tempere	ture±2	voltage
					8		125±3 (for R1)/ 85±3 (for B1, F1)		
			No removal of the terminations	or other defect should occur	Fig. 1a usi parallel wit The solder reflow met soldering is	ng an eut th the tes ring shoul hod and t s uniform	tectic solder. t jig for 10±1 d be done eit should be cor	Then app sec. her with a ducted w efects su	epoxy board) shown in ly 10N° force in an iron or using the vith care so that the ch as heat shock.
					(011	, 0.4		,	(in mm)
10	Adhesive	•	+ 2 2 2 2		Ту	pe	a	b	C
	of Termin	ation			GR□0		0.3	0.9	
			1 1 1 1 1 1 1 1		_GR□1		0.4	1.5	
				Solder resist	GRM18		1.0	3.0	
				Baked electrode or copper foil	GRM2		1.2	4.0 5.0	
			F:~ 4-		GRM32 GRM32		2.2	5.0 5.0	
			Fig. 1a		GRIVI32		3.5	7.0	
		1							
					GRM5	5	4.5	8.0	5.6

 $\begin{tabular}{|c|c|c|c|}\hline \end{tabular}$ Continued from the preceding page.

	Continued fr	om the pree		ications				
No.	lte	em	Temperature Compensating Type	High Dielectric Type	-	Test Me	thod	
		Appearance	No defects or abnormalities					
		Capacitance	Within the specified tolerance					
11	Vibration Resistance	Q/D.F.	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max. W.V.: 6.3V/4V : 0.05max. (C<3.3μF) : 0.1max. (C≥3.3μF) [F1, F5] W.V.: 25Vmin. : 0.05max. (C<0.1μF) : 0.09max. (C≥0.1μF) W.V.: 16V/10V: 0.125max. W.V.: 6.3V: 0.15max.	Solder the capacitor on the test jig (glass epoxy board) in the same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each 3 mutually perpendicula directions (total of 6 hours). Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2a using an eutectic solder. Then apply a force in the			
			No crack or marked defect shou	ıld occur				•
			No clack of marked defect shot	aid occui	1 -	in Fig. 3a for 5±1		
								ethod and should s uniform and free
					0. 00.00.0 000.	b	φ 4 .5	
						*		
			20 50	9 Pressurizing speed: 1.0mm/sec.				
			R230	Pressurize		100	-	
12	12 Deflection		1230			Fig. 2	2a	
				Flexure : ≦1			t : 1.6mm (GRI	□03/15 : t : 0.8mm)
			[M_	Туре	a	b	С
			Capacitance r	neter 45	<u>GR□03</u> GR□15	0.3	0.9 1.5	0.3
				•	GRM18	1.0	3.0	1.2
			Fig. 3a		GRM21	1.2 2.2	4.0 5.0	2.0
					GRM31 GRM32	2.2	5.0	2.9
					GRM43	3.5	7.0	3.7
					GRM55	4.5	8.0	5.6 (in mm)
13	Solderab Terminati		75% of the terminations are to be continuously The measured and observed chapecifications in the following ta	naracteristics should satisfy the	rosin (JIS-K-590 Preheat at 80 to	02) (25% rosin in v 0 120℃ for 10 to 30 g, immerse in an e	weight propo 0 seconds.	
		Appearance	No defects or abnormalities		-			
		rippourditoe	doi:00.0 of abiliorniantes	B1, B3, R1, R6, R7				
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	: Within ±7.5%		acitor at 120 to 15		nute. olution at 270±5℃
			(Willichever is larger)	F1, F5, E4 : Within ±20%	1	nds. Set at room		
14	Resistance to Soldering Heat	Q/D.F.	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	30pF and below: 0.1max. (C≥3.3μF) then set at room temperature for 48±4 hours. Perform the initial measurement.				nt type
				: 0.09max. (C≧0.1µF)	Step	Temperatur		Time 1 min
				W.V.: 16V/10V: 0.125max. W.V.: 6.3V: 0.15max.	2	100°C to 120° 170°C to 200°		1 min. 1 min.
		I.R.	More than $10,000\text{M}\Omega$ or 500Ω	I		= 30	L	
		Dielectric		· (············)				
		Strength	No defects					

		Specifi	ications							
No. Ite	m	Temperature Compensating Type	High Dielectric Type		Tes	t Method	t			
		The measured and observed chapecifications in the following ta	•							
	Appearance	No defects or abnormalities								
	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, B3, R1, R6, R7 : Within ±7.5% F1, F5, E4 : Within ±20%	Fix the capacitor manner and un Perform the five shown in the fo	der the same e cycles accor	condition	ns as (10).	atments		
			[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max.	Set for 24±2 ho hours (high die measure.	ours (temperat lectric constan	it type) a	t room tempera	iture, ther		
15 Temperature	Q/D.F. 30pF and below : Q≥400+20C C : Nominal Capacitanc	30pF and over : Q≧1000	W.V.: 6.3V/4V : 0.05max. (C<3.3µF)	Step	1	2	3	4		
Cycle			: 0.03Hax. (C≤3.3µF) : 0.1max. (C≧3.3µF)	Temp. (℃)	Min. Operating Temp.+0/-3	Room Temp.	Max. Operating Temp.+3/-0	Room Temp.		
		C : Nominal Capacitance (pF)	W.V. : 25Vmin.	Time (min.)	30±3	2 to 3	30±3	2 to 3		
1			: 0.05max. (C<0.1µF) : 0.09max. (C≧0.1µF) W.V.: 16V/10V: 0.125max. W.V.: 6.3V: 0.15max.	•Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/−10℃ for one hour and then set at room temperature for 48±4 hours. Perform the initial measurement.						
	I.R.	More than $10,000M\Omega$ or 500Ω								
	Dielectric Strength	No defects								
		The measured and observed chapecifications in the following ta								
	Appearance	No defects or abnormalities								
	Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5 : Within ±30%							
Humidity 16 (Steady State)	Q/D.F.	30pF and over : Q≥350 10pF and over 30pF and below : Q≥275+2.5C 10pF and below : Q≥200+10C	[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.05max. W.V.: 16/10V: 0.05max. W.V.: 6.3V/4V : 0.075max. (C≤3.3µF) : 0.125max. (C≧3.3µF) [F1, F5] W.V.: 25Vmin.	S00±12 hours. Remove and set for 24±2 hours (temperature compensat type) or 48±4 hours (high dielectric constant type) at roon temperature, then measure.						
		C : Nominal Capacitance (pF)	: 0.075max. (C<0.1µF) : 0.125max. (C≧0.1µF) W.V. : 16V/10V : 0.15max. W.V. : 6.3V : 0.2max.							

		Specifi	ications	
No.	Item	Temperature Compensating Type	High Dielectric Type	Test Method
		The measured and observed chapecifications in the following ta	•	
	Appearance	No defects or abnormalities		
	Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	B1, B3, R1, R6, R7 : Within ±12.5% F1, F5, E4: Within ±30% [W.V.: 10Vmax.] F1, F5: Within +30/-40%	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and set for 24±2 hours (temperature
Humidit 17 Load	Q/D.F.	30pF and over : Q≥200 30pF and below : Q≥100+10C/3 C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.05max. W.V.: 16/10V: 0.05max. W.V.: 6.3V : 0.075max. (C<3.3μF) : 0.125max. (C≥3.3μF) [F1, F5] W.V.: 25Vmin. : 0.075max. (C<0.1μF) : 0.125max. (C≥0.1μF) W.V.: 16V/10V: 0.15max. W.V.: 6.3V: 0.2max.	 compensating type) or 48±4 hours (high dielectric constant type) at room temprature, then muasure. The charge/discharge current is less than 50mA. Initial measurement for F1, F5/10V max. Apply the rated DC voltage for 1 hour at 40±2°C. Remove and set for 48±4 hours at room temperature. Perform initial measurement.
	I.R.	More than 500MΩ or 25Ω • F (V	Vhichever is smaller)	
		The measured and observed ch specifications in the following ta	-	
	Appearance	No defects or abnormalities		
	Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	B1, B3, R1, R6, R7 : Within ±12.5% F1, F5, E4: Within ±30% [Exept 10Vmax. and. C≥1.0µF] F1, F5: Within +30/-40% [10Vmax. and. C≥1.0µF]	Apply 200% of the rated voltage at the maximum operating temperature ±3°c for 1000±12 hours. Set for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room
High 18 Temperatur Load	Q/D.F.	30pF and over : Q≥350 10pF and over 30pF and below : Q≥275+2.5C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.04max. W.V.: 16/10V: 0.05max. W.V.: 6:3V : 0.075max.(C≤3.3μF) : 0.125max.(C≥3.3μF) [F1, F5] W.V.: 25Vmin. : 0.075max.(C<0.1μF) : 0.125max.(C≥0.1μF) W.V.: 16V/10V: 0.15max. W.V.: 6:3V: 0.2max.	temperature, then measure. The charge/discharge current is less than 50mA. •Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage at the maximun operating temperature ±3°C for one hour. Remove and set for 48±4 hours at room temperature. Perform initial measurement.
	I.R.	More than 1,000MΩ or 50Ω•F (Whichever is smaller)	

Continued from the preceding page.

Table A-1

(1)

		Capacitance Change from 25℃ (%)							
Char.	Nominal Values (ppm/°C)*1	_	-55		-30	-10			
		Max.	Min.	Max.	Min.	Max.	Min.		
5C	0± 30	0.58	-0.24	0.40	-0.17	0.25	-0.11		
6C	0± 60	0.87	-0.48	0.59	-0.33	0.38	-0.21		
6P	-150± 60	2.33	0.72	1.61	0.50	1.02	0.32		
6R	-220± 60	3.02	1.28	2.08	0.88	1.32	0.56		
6S	-330± 60	4.09	2.16	2.81	1.49	1.79	0.95		
6T	-470± 60	5.46	3.28	3.75	2.26	2.39	1.44		
7U	-750±120	8.78	5.04	6.04	3.47	3.84	2.21		
1X	+350 to -1000	_	_	_	_	_	_		

^{*1}Nominal values denote the temperature coefficient within a range of 25°C to 125°C (for Δ C)/85°C (for other TC).

(2)

				Capacitance Cha	ange from 20℃ (%))	
Char.	Nominal Values (ppm/°C)*2	_	-55	_	-2 5		-10
		Max.	Min.	Max.	Min.	Max.	Min.
2C	0± 60	0.82	-0.45	0.49	-0.27	0.33	-0.18
3C	0±120	1.37	-0.90	0.82	-0.54	0.55	-0.36
4C	0±250	2.56	-1.88	1.54	-1.13	1.02	-0.75
2P	-150 ± 60	_	_	1.32	0.41	0.88	0.27
3P	-150±120	_	_	1.65	0.14	1.10	0.09
4P	-150±250	_	_	2.36	-0.45	1.57	-0.30
2R	-220 ± 60	_	_	1.70	0.72	1.13	0.48
3R	-220±120	_	_	2.03	0.45	1.35	0.30
4R	-220±250	_	_	2.74	-0.14	1.83	-0.09
2S	-330± 60	_	_	2.30	1.22	1.54	0.81
3S	-330±120	_	_	2.63	0.95	1.76	0.63
4S	-330±250	_	_	3.35	0.36	2.23	0.24
2T	-470± 60	-	_	3.07	1.85	2.05	1.23
3T	-470±120	_	_	3.40	1.58	2.27	1.05
4T	-470±250	-	_	4.12	0.99	2.74	0.66
3U	-750±120	_	_	4.94	2.84	3.29	1.89
4U	-750±250	-	_	5.65	2.25	3.77	1.50

^{*2}Nominal values denote the temperature coefficient within a range of 20°C to 125°C (for Δ C)/85°C (for other TC).

Monolithic Ceramic Capacitors GR_R6/R7/F5/E4 (X5R/X7R/Y5V/Z5U)

High Dielectric Constant Type 100V

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance*	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM188R72A222KD01	X7R (EIA)	100	2200pF±10%	1.6	0.8	0.80
GRM188R72A332KD01	X7R (EIA)	100	3300pF±10%	1.6	0.8	0.80
GRM219R72A472KA01	X7R (EIA)	100	4700pF±10%	2.0	1.25	0.90
GRM219R72A682KA01	X7R (EIA)	100	6800pF±10%	2.0	1.25	0.90
GRM21BR72A103KA01	X7R (EIA)	100	10000pF±10%	2.0	1.25	1.25
GRM31MR72A333KA01	X7R (EIA)	100	33000pF±10%	3.2	1.6	1.15
GRM31MR72A473KA01	X7R (EIA)	100	47000pF±10%	3.2	1.6	1.15
GRM32NR72A683KA01	X7R (EIA)	100	68000pF±10%	3.2	2.5	1.35
GRM32NR72A104KA01	X7R (EIA)	100	0.1μF±10%	3.2	2.5	1.35
GRM43RR72A154KA01	X7R (EIA)	100	0.15μF±10%	4.5	3.2	1.80
GRM43RR72A224KA01	X7R (EIA)	100	22000pF±10%	4.5	3.2	1.80
GRM43DR72A474KA01	X7R (EIA)	100	0.47μF±10%	4.5	3.2	2.00
GRM55DR72A105KA01	X7R (EIA)	100	1μF ±10%	5.7	5.0	2.00
GRM188F52A472ZD01	Y5V (EIA)	100	4700pF +80%, -20%	1.6	0.8	0.80
GRM32NF52A104ZA01	Y5V (EIA)	100	10000pF +80%, -20%	3.2	2.5	1.35
GRM55RF52A474ZA01	Y5V (EIA)	100	0.47μF +80%, -20%	5.7	5.0	1.80

Monolithic Ceramic Capacitors GR_R6/R7/F5/E4 (X5R/X7R/Y5V/Z5U)

Thin Layer Large-Capacitance type

Part Number		Dime	nsions (mi	m)		
rait Nullibei	L	W	T	e min.	g min.	_
GRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2	S
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4	25 2 2
GRM185	1.6 ±0.1	0.8 ±0.1	0.5 +0/-0.2	0.2 to 0.5	0.5	20202
GRM188	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5	
GRM216			0.6 ±0.1			
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7	
GRM21B			1.25 ±0.1			
GRM316			0.6 ±0.1			
GRM319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.3 to 0.8	1.5	e g e
GRM31M]		1.15 ±0.1	0.3 10 0.6	1.5	4 + 4 -
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2			
GRM32D	3.2 ±0.3	2.5 ±0.2	2.0 ±0.2	0.3	1.0	
GRM32E	3.2 ±0.3	2.5 ±0.2	2.5 ±0.2	0.3	1.0	
GRM43D			2.0 ±0.2			
GRM43E	4.5 ±0.4	3.2 ±0.3	2.5 ±0.2	0.3	2.0	
GRM43S]		2.8 ±0.2			L W
GRM55F	5.7 ±0.4	5.0 ±0.4	3.2 ±0.2	0.3	2.0	

X5R (EIA)

X5R (EIA)

X5R (EIA)

X5R (EIA)

Y5V (EIA)

Part Number

GRM155R60J154KE01 GRM155R60J224KE01 GRM155R60J334KE01 GRM155R60J474KE19 GRM188R60J225KE01 GRM219R60J475KE01 GRM21BR60J106KE01 GRM21BR60J106ME01 GRM32DR60J226KA01

GRM32ER60J476ME20

GRM43SR60J107ME20

GRM55FR60J107KA01

GRM55FR60J107MA01

GRM21BF50J106ZE01

0.3 2.0	L W				
TC Code	Rated Voltage (Vdc)	Capacitance*	Length L (mm)	Width W (mm)	Thickness T (mm)
X5R (EIA)	6.3	0.15μF±10%	1.0	0.5	0.50
X5R (EIA)	6.3	22000pF±10%	1.0	0.5	0.50
X5R (EIA)	6.3	0.33 μF±10%	1.0	0.5	0.50
X5R (EIA)	6.3	0.47μF±10%	1.0	0.5	0.50
X5R (EIA)	6.3	2.2μF ±10%	1.6	0.8	0.80
X5R (EIA)	6.3	4.7μF ±10%	2.0	1.25	0.90
X5R (EIA)	6.3	10μF ±10%	2.0	1.25	1.25
X5R (EIA)	6.3	10μF ±20%	2.0	1.25	1.25
X5R (EIA)	6.3	22μF ±10%	3.2	2.5	2.00
	0.3 2.0 TC Code X5R (EIA) X5R (EIA)	TC Code (Vdc) X5R (EIA) 6.3 X5R (EIA) 6.3	TC Code Rated Voltage (Vdc) Capacitance* X5R (EIA) 6.3 0.15μF±10% X5R (EIA) 6.3 22000pF±10% X5R (EIA) 6.3 0.33 μF±10% X5R (EIA) 6.3 0.47μF±10% X5R (EIA) 6.3 2.2μF±10% X5R (EIA) 6.3 4.7μF±10% X5R (EIA) 6.3 10μF±10% X5R (EIA) 6.3 10μF±10% X5R (EIA) 6.3 10μF±20%	TC Code Rated Voltage (Vdc) Capacitance* Length L (mm) X5R (EIA) 6.3 $0.15\mu\text{F}\pm10\%$ 1.0 X5R (EIA) 6.3 $22000\text{pF}\pm10\%$ 1.0 X5R (EIA) 6.3 $0.33\mu\text{F}\pm10\%$ 1.0 X5R (EIA) 6.3 $0.47\mu\text{F}\pm10\%$ 1.0 X5R (EIA) 6.3 $2.2\mu\text{F}\pm10\%$ 1.6 X5R (EIA) 6.3 $4.7\mu\text{F}\pm10\%$ 2.0 X5R (EIA) 6.3 $10\mu\text{F}\pm10\%$ 2.0 X5R (EIA) 6.3 $10\mu\text{F}\pm10\%$ 2.0 X5R (EIA) 6.3 $10\mu\text{F}\pm20\%$ 2.0	TC Code Rated Voltage (Vdc) Capacitance* Length L (mm) Width W (mm) X5R (EIA) 6.3 $0.15\mu\text{F}\pm10\%$ 1.0 0.5 X5R (EIA) 6.3 $22000\text{pF}\pm10\%$ 1.0 0.5 X5R (EIA) 6.3 $0.33\mu\text{F}\pm10\%$ 1.0 0.5 X5R (EIA) 6.3 $0.47\mu\text{F}\pm10\%$ 1.0 0.5 X5R (EIA) 6.3 $2.2\mu\text{F}\pm10\%$ 1.6 0.8 X5R (EIA) 6.3 $4.7\mu\text{F}\pm10\%$ 2.0 1.25 X5R (EIA) 6.3 $10\mu\text{F}\pm10\%$ 2.0 1.25 X5R (EIA) 6.3 $10\mu\text{F}\pm20\%$ 2.0 1.25

 $47\mu F \pm 20\%$

 $100\mu F \pm 20\%$

 $100\mu F \pm 10\%$

100μF ±20%

10μF +80%, -20%

3.2

4.5

5.7

5.7

2.5

3.2

5.0

5.0

1.25

2.50

2.80

3.20

3.20

1.25

6.3

6.3

6.3

6.3

Reference Temperature: 25°C (B1, B3, F1: 20°C) The rated voltage is defined as the maximum voltage may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, whichever is larger, should be maintained within the voltage range. Visual inspection Using calipers No failure should be observed when 250% of the rais applied between the terminations for 1 to 5 secon provided the charge/discharge current is less than 5. The insulation resistance should be measured with a not exceeding the rated voltage at Reference Temper 75%RH max. and within 1 minutes of charging, provided.	VP-P or VO-P, e rated ated voltage nds, 50mA.
may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, whichever is larger, should be maintained within the voltage range. Visual inspection Using calipers No failure should be observed when 250% of the rais applied between the terminations for 1 to 5 secon provided the charge/discharge current is less than 5. The insulation resistance should be measured with a not exceeding the rated voltage at Reference Tempe 75%RH max. and within 1 minutes of charging, provi	VP-P or VO-P, e rated ated voltage nds, 50mA.
Using calipers No failure should be observed when 250% of the ra is applied between the terminations for 1 to 5 secon provided the charge/discharge current is less than 5. The insulation resistance should be measured with a not exceeding the rated voltage at Reference Tempe 75%RH max. and within 1 minutes of charging, provi	nds, 50mA. a DC voltage
No failure should be observed when 250% of the ra is applied between the terminations for 1 to 5 secon provided the charge/discharge current is less than 5. The insulation resistance should be measured with a not exceeding the rated voltage at Reference Tempe 75%RH max. and within 1 minutes of charging, provi	nds, 50mA. a DC voltage
is applied between the terminations for 1 to 5 secon provided the charge/discharge current is less than 5 The insulation resistance should be measured with a not exceeding the rated voltage at Reference Tempe 75%RH max. and within 1 minutes of charging, provi	nds, 50mA. a DC voltage
not exceeding the rated voltage at Reference Tempe 75%RH max. and within 1 minutes of charging, provi	•
charge/discharge current is less than 50mA.	
The capacitance should be measured at Reference Temperature at the frequency and voltage shown in Capacitance Frequency Vo $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n the table. bltage 0.2Vrms 0.1Vrms 0.1Vrms
	oltage 0.2Vrms 0.1Vrms 0.1Vrms
The capacitance change should be measured after each specified temp. stage. The ranges of capacitance change compared with t Reference Temperature value over the temperature shown in the table should be within the specified ral In case of applying voltage, the capacitance change measured after 1 more min. with applying voltage in equilibration of each temp. stage. *GRM43 B1/R6 0J/1A 336/476 only: 1.0±0.2Vrms	the e ranges inges.* e should be n
	g Voltage (V)
2 -55±3 (for R6, C7, C8)/ -25±3 (for B1, B3, F1) -30±3 (for F5)	o bias
125±2 /for C7\/	of the rated
	2

Continued on the following page.

Perform the initial measurement.

No.	Item	Specifications		Test Me	ethod			
		No removal of the terminations or other defects should occur	Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 1a using an eutectic solder. Then apply 10N* force in parallel with the test jig for 10+/−1sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. *5N: GR□15/GRM18, 2N: GR□33					
10	Adhesive Strength of Termination		Type GR□03 GR□15	0.3 0.4	b 0.9 1.5	0.3 0.5		
			GRM18 GRM21 GRM31	1.0 1.2 2.2	3.0 4.0 5.0	1.2 1.65 2.0		
		Fig. 1a	GRM32 GRM43 GRM55	2.2 3.5 4.5	5.0 7.0 8.0	2.9 3.7 5.6		
	Appearance	No defects or abnormalities	Solder the canacit	or on the test ii	a (alass enovy	hoard) in the		
11	Capacitance Vibration D.F.	Within the specified tolerance B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.2 max.	Solder the capacitor on the test jig (glass epoxy board) in the same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motio having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each 3 mutually perpendicula directions (total of 6 hours).					
		No cracking or marking defects should occur 20 50 Pressunzing speed: 1.0mm/sec. Pressunze R230 Flexure: ≤1 Capacitance meter 45 45		Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2a using an eutectic solder. Then apply a force in the direction shown in Fig. 3a for 5+/-1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.				
12	Deflection			100 t:1.6mm Fig. 2a				
		 -			(GR□03, GR	:□15 : t : 0.8mm)		
		Fig.3a	Type	0.3	0.9	0.3		
		g		0.3	1.5	0.5		
			GRM18	1.0	3.0	1.2		
			GRM21	1.2	4.0	1.65		
			GRM31	2.2	5.0	2.0		
			GRM32	2.2	5.0	2.9		
			GRM43	3.5	7.0	3.7		
			GRM55	4.5	8.0	5.6 (in mm)		
13	Solderability of Termination	75% of the terminations is to be soldered evenly and continuously	Immerse the capar rosin (JIS-K-5902) Preheat at 80 to 12 After preheating, ir 2+/-0.5 seconds	(25% rosin in 20℃ for 10 to 3 mmerse in an e	weight propotion of the weight proportion of the weight proposed to the weight proposed to the weight proportion of the w	on) .		

No.	Item Specifications			Test Method						
	Appearance Capacitance Change Q/D.F.	No defects or abnormalities B1, B3, R6, C7, C8 : Within ±7.5% F1, F5 : Within ±20% B1, B3, R6, C7, C8 : 0.1 max.	Immerse the c 270+/-5°C for 24+/-2 hours	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in an eutectic solder solution at 270+/-5°C for 10+/-0.5 seconds. Set at room temperature for 24+/-2 hours (temperature compensating tyoe) or 48+/-4 hours (high dielectric constant type), then measure. •Initial measurement for high dielectric constant type						
Resistano		F1, F5 : 0.2 max.	•Initial measur							
to Soldering Heat	I.R. Dielectric Strength	More than 50Ω • F No defects	Perform a hea	orm a heat treatment at 150+0/−10°C for one hour and set at room temperature for 48+/−4 hours.						
			*Preheating fo	or GRM32/43/5	5					
			Step	Temp	erature	Ti	Time			
			1		to 120℃	1 1	min.			
			2	170℃	to 200℃	1 1	min.			
	Appearance Capacitance Change D.F.	No defects or abnormalities B1, B3, R6, C7, C8: Within ±7.5% F1, F5: Within ±20% B1, B3, R6, C7, C8: 0.1 max. F1, F5: 0.2 max. More than 50Ω • F	under the sam Perform the fi shown in the f Set for 24+/- 48+/-4 hours	Fix the capacitor to the supporting jig in the same mann under the same conditions as (10). Perform the five cycles according to the four heat treatm shown in the following table. Set for 24+/-2 hours (temperature compensating type) 48+/-4 hours (high dielectric constant type) at room temperature, then measure.						
Temperature		Word than 3022 1	Step	1	2	3	4			
5 Sudden Change	Strength	No defects	Temp. (°C)	Min. Operating Temp. +0/-3	Room Temp.	Max. Operating Temp. +3/-0	Room Temp.			
			Time (min.)	30±3	2 to 3	30±3	2 to 3			
	Appearance Capacitance Change	No defects or abnormalities B1, B3, R6, C7, C8 : Within ±12.5% F1, F5 : Within ±30%	3, R6, C7, C8 : Within ±12.5% 500+/-12 hours. The charge/discharge				our and			
High Temperature High Humidity (Steady)	D.F.	B1, B3, R6, C7, C8 : 0.2 max. F1, F5 : 0.4 max. More than 12.5Ω • F	Perform a hea then let sit for initial measure •Measuremen	 Initial measurement Perform a heat treatment at 150+0/−10°C for one hour and then let sit for 48+/−4 hours at room temperature. Perform initial measurement. Measurement after test 						
		No defeate and house Pri	then let sit for measure.	48+/4 hours	at room	10℃ for one hotemperature, th	ien			
	Appearance	No defects or abnormalities		Apply 150% of the rated voltage for 1000+/-12 hours at t maximum operating temperature +/-3°c. Let sit for 48+/-						
	Capacitance Change	B1, B3, R6, C7, C8 : Within ±12.5% F1, F5 : Within ±30%	hours at room	hours at room temperature, then measure.						
	D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.4 max.	•Initial measu	The charge/ discharge current is less than 50mA. Initial measurement Perform a heat treatment at 150+0/-10°C for one hour and						
17 Durability	I.R.	More than 25Ω • F		48+/-4 hours		temperature. P				
				it treatment at		10℃ for one ho temperature, th				

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.