HIGH-SPEED 3.3V 8/4K x 18 DUAL-PORT 8/4K x 16 DUAL-PORT STATIC RAM ## IDT70V35/34S/L IDT70V25/24S/L ### LEAD FINISH (SnPb) ARE IN EOL PROCESS - LAST TIME BUY EXPIRES JUNE 15, 2018 ### **Features** - True Dual-Ported memory cells which allow simultaneous reads of the same memory location - High-speed access **IDT70V35** - Commercial: 15/20/25ns (max.) - Industrial: 20ns #### **IDT70V34** - Commercial: 15/20/25ns (max.) #### **IDT70V25** - Commercial: 15/20/25/35/55ns (max.) - Industrial: 20/25ns #### **IDT70V24** - Commercial: 15/20/25/35/55ns (max.) - Industrial: 15/20ns - Low-power operation - IDT70V35/34S Active: 430mW (typ.) Standby: 3.3mW (typ.) - IDT70V35/34L Active: 415mW (typ.) Standby: 660µW (typ.) - IDT70V25/24S Active: 400mW (typ.) Standby: 3.3mW (typ.) - IDT70V25/24L Active: 380mW (typ.) Standby: 660µW (typ.) - Separate upper-byte and lower-byte control for multiplexed bus compatibility - IDT70V35/34 (IDT70V25/24) easily expands data bus width to 36 bits (32 bits) or more using the Master/Slave select when cascading more than one device - $M/\overline{S} = VIH$ for \overline{BUSY} output flag on Master $M/\overline{S} = VIL$ for \overline{BUSY} input on Slave - **BUSY** and Interrupt Flag - On-chip port arbitration logic - Full on-chip hardware support of semaphore signaling between ports - Fully asynchronous operation from either port - LVTTL-compatible, single 3.3V (±0.3V) power supply - Available in a 100-pin TQFP (IDT70V35/34) & (IDT70V25/24). and 84-pin PLCC (IDT70V25/24) - Industrial temperature range (-40°C to +85°C) is available for selected speeds - Green parts available, see ordering information - 1. A12 is a NC for IDT70V34 and for IDT70V24. - (MASTER): BUSY is output; (SLAVE): BUSY is input. - BUSY outputs and INT outputs are non-tri-stated push-pull. - I/Oox I/O7x for IDT70V25/24. - I/O8x I/O15x for IDT70V25/24 **NOVEMBER 2017** ### Description The IDT70V35/34 (IDT70V25/24) is a high-speed 8/4K x 18 (8/4K x16) Dual-Port Static RAM. The IDT70V35/34 (IDT70V25/24) is designed to be used as a stand-alone Dual-Port RAM or as a combination MASTER/SLAVE Dual-Port RAM for 36-bit (32-bit) or wider memory system applications results in full-speed, error-free operation without the need for additional discrete logic. This device provides two independent ports with separate control, address, and I/O pins that permit independent, asynchronous access for reads or writes to any location in memory. An automatic power down feature controlled by $\overline{\text{CE}}$ permits the on-chip circuitry of each port to enter a very low standby power mode. Fabricated using CMOS high-performance technology, these devices typically operate on only 430mW (IDT70V35/34) and 400mW (IDT70V25/24) of power. The IDT70V35/34 (IDT70V25/24) is packaged in a plastic 100-pin Thin Quad Flatpack. The IDT70V25/24 is packaged in a 84-Pin PLCC. ## Pin Configurations (1,2,3,4) - 1. A12 is a NC for IDT70V34. - 2. All VDD pins must be connected to power supply. - 3. All Vss pins must be connected to ground. - 4. PN100-1 package body is approximately 14mm x 14mm x 1.4mm. - 5. This package code is used to reference the package diagram. - 6. This text does not indicate orientation of the actual part marking. ## Pin Configurations (1,2,3,4) (con't) - 1. A12 is a NC for IDT70V24. - 2. All $\ensuremath{\mathsf{V}}_\ensuremath{\mathsf{DD}}$ pins must be connected to power supply. - 3. All Vss pins must be connected to ground. - 4. PN100-1 package body is approximately 14mm x 14mm x 1.4mm. - 5. This package code is used to reference the package diagram. - 6. This text does not indicate orientation of the actual part marking. ## Pin Configurations (1,2,3,4) (con't) - 1. A₁₂ is a NC for IDT70V24. - 2. All VDD pins must be connected to power supply. - 3. All Vss pins must be connected to ground. - 4. J84-1 package body is approximately 1.15 in x 1.15 in x .17 in. - 5. This package code is used to reference the package diagram. - 6. This text does not indicate orientation of the actual part marking. ### Pin Names | Left Port | Right Port | Names | | | | | |-------------------------------|-------------------------------|----------------------------------|--|--|--|--| | CEL | CER | Chip Enable | | | | | | R/WL | R/W̄R | Read/Write Enable | | | | | | ŌĒL | OE R | Output Enable | | | | | | Aol - A12L ⁽¹⁾ | A0R - A12R ⁽¹⁾ | Address | | | | | | I/O0L - I/O17L ⁽²⁾ | I/Oor - I/O17R ⁽²⁾ | Data Input/Output | | | | | | SEML | <u>SEM</u> _R | Semaphore Enable | | | | | | UB ∟ | UB R | Upper Byte Select ⁽³⁾ | | | | | | <u>LB</u> ∟ | ∐B R | Lower Byte Select ⁽⁴⁾ | | | | | | ĪNTL | ĪNTR | Interrupt Flag | | | | | | BUSYL | BUSYR | Busy Flag | | | | | | M | /S | Master or Slave Select | | | | | | V | DD | Power (3.3V) | | | | | | V | SS | Ground (0V) | | | | | #### NOTES: - 1. A12 is a NC for IDT70V34 and for IDT70V24. - 2. I/Oox I/O15x for IDT70V25/24. - Upper Byte Select controls pins 9-17 for IDT70V35/34 and controls pins 8-15 for IDT70V25/24. - 4. Lower Byte Select controls pins 0-8 for IDT70V35/34 and controls pins 0-7 for IDT70V25/24. 5624 tbl 01 ## Truth Table I: Non-Contention Read/Write Control | | | Inpu | uts ⁽¹⁾ | | | Out | puts | | |----|-----|------|--------------------|----|-----|-----------------------------------|----------------------------------|--------------------------| | CE | R/W | ŌĒ | ŪB | LΒ | SEM | I/O _{9-17⁽³⁾} | I/O _{0-8⁽²⁾} | Mode | | Н | Х | Х | Х | Х | Н | High-Z | High-Z | Deselected: Power Down | | Х | Х | Х | Н | Н | Н | High-Z | High-Z | Both Bytes Deselected | | L | L | Х | L | Н | Н | DATAIN | High-Z | Write to Upper Byte Only | | L | L | Х | Н | L | Н | High-Z | DATAIN | Write to Lower Byte Only | | L | L | Х | L | L | Н | DATAIN | DATAIN | Write to Both Bytes | | L | Н | L | L | Н | Н | DATAout | High-Z | Read Upper Byte Only | | L | Н | L | Н | L | Н | High-Z | DATAоит | Read Lower Byte Only | | L | Н | L | L | L | Н | DATAout | DATAout | Read Both Bytes | | Х | Х | Н | Х | Х | Х | High-Z | High-Z | Outputs Disabled | #### NOTES: 5624 tbl 02 - 1. AoL-A12L \neq AoR-A12R for IDT70V35/34 and AoL-A11L \neq AoR-A11R for IDT70V25/24. - 2. Outputs listed in the table are for IDT70V35/34. Outputs for IDT70V25/24 are I/Oox-I/O7x. - 3. Outputs listed in the table are for IDT70V35/34. Outputs for IDT70V25/24 are I/O8x-I/O15x. ### Truth Table II: Semaphore Read/Write Control⁽¹⁾ | | | Inp | uts | | | Out | puts | | |----|----------|-----|-----|----|-----|-----------------------------------|-----------------------------------|--------------------------------| | CE | R/W | ŌĒ | ŪB | LВ | SEM | I/O _{9-17⁽¹⁾} | I/O ₀₋₈ ⁽¹⁾ | Mode | | Н | Н | L | Х | Х | L | DATAout | DATAout | Read Data in Semaphore Flag | | Х | Н | L | Н | Н | L | DATAout | DATAout | Read Data in Semaphore Flag | | Н | 1 | Х | Х | Х | L | DATAIN | DATAIN | Write I/Oo into Semaphore Flag | | Х | ↑ | Х | Н | Н | L | DATAIN | DATAIN | Write I/Oo into Semaphore Flag | | L | Х | Х | L | Х | L | _ | _ | Not Allowed | | L | Х | Х | Х | L | L | _ | _ | Not Allowed | NOTE: ^{1.} There are eight semaphore flags written to via I/Oo and read from all of the I/O's (I/Oo-I/O17 for IDT70V35/34) and (I/Oo-I/O15 for IDT70V25/24). These eight semaphores are addressed by Ao-A2. ### Absolute Maximum Ratings(1) | Symbol | Rating | Commercial
& Industrial | Unit | |----------------------|--------------------------------------|----------------------------|------| | VTERM ⁽²⁾ | Terminal Voltage with Respect to GND | -0.5 to +4.6 | ٧ | | TBIAS | Temperature
Under Bias | -55 to +125 | °C | | Tstg | Storage
Temperature | -65 to +150 | °C | | TJN | Junction Temperature | +150 | °C | | Іоит | DC Output
Current | 50 | mA | #### 5624 tbl 04 ## NOTES: - Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. - 2. VTERM must not exceed VDD + 0.3V for more than 25% of the cycle time or 10ns maximum, and is limited to \leq 20mA for the period of VTERM \geq VDD + 0.3V. ## Capacitance⁽¹⁾ (TA = +25°C, f = 1.0MHz) | Symbol | Parameter | Conditions | Max. | Unit | | |---------------------|--------------------|------------|------|------|--| | CIN | Input Capacitance | VIN = 0V | 9 | pF | | | Cout ⁽²⁾ | Output Capacitance | Vout = 0V | 10 | pF | | #### NOTES - This parameter is determined by device characterization but is not production tested. - 2. Cour also references C/o. ## Maximum Operating Temperature and Supply Voltage⁽¹⁾ | 113 | | | | | | |------------|------------------------|-----|--------------------|--|--| | Grade | Ambient
Temperature | GND | V _{DD} | | | | Commercial | 0°C to +70°C | 0V | 3.3V <u>+</u> 0.3V | | | | Industrial | -40°C to +85°C | 0V | 3.3V <u>+</u> 0.3V | | | #### NOTF: 1. This is the parameter Ta. This is the "instant on" case temperature. ## Recommended DC Operating Conditions | Symbo | l Parameter | Min. | Тур. | Max. | Unit | |-------|--------------------|---------------------|------|------------------------|------| | VDD | Supply Voltage | 3.0 | 3.3 | 3.6 | V | | Vss | Ground | 0 | 0 | 0 | V | | VIH | Input High Voltage | 2.0 | _ | VDD+0.3 ⁽²⁾ | V | | VIL | Input Low Voltage | -0.3 ⁽¹⁾ | _ | 0.8 | V | #### 5624 tbl 06 5624 tbl 05 NOTES: - 1. $VIL \ge -1.5V$ for pulse width less than 10ns. - 2. VTERM must not exceed VDD + 0.3V. # DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range ($VDD = 3.3V \pm 0.3V$) | | | | 70V35/34/25/24S | | 70V35/3 | | | |--------|--|---|-----------------|------|---------|------|------| | Symbol | Parameter | Test Conditions |
Min. | Max. | Min. | Max. | Unit | | Iu | Input Leakage Current ⁽¹⁾ | $V_{DD} = 3.6V$, $V_{IN} = 0V$ to V_{DD} | _ | 10 | _ | 5 | μΑ | | ILO | Output Leakage Currentt ⁽¹⁾ | \overline{CE} = ViH, Vout = 0V to VdD | _ | 10 | | 5 | μΑ | | Vol | Output Low Voltage | IOL = +4mA | _ | 0.4 | | 0.4 | V | | Vон | Output High Voltage | IOH = -4mA | 2.4 | _ | 2.4 | _ | ٧ | #### NOTE: 1. At VDD < 2.0V leakages are undefined. ## DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range for $70V35/34^{(1)}$ (VDD = $3.3V \pm 0.3V$) | | | | | | | | | | | 70V35/34X15
Com'l Only | | 34X20
m'l
nd | 70V35/34X25
Com'l Only | | | |--------------------|---|---|--------------|--------|---------------------|------------|---------------------|------------|---------------------|---------------------------|------|--------------------|---------------------------|--|--| | Symbol | Parameter | Test Condition | Versio | n | Typ. ⁽²⁾ | Max. | Typ. ⁽²⁾ | Max. | Typ. ⁽²⁾ | Max. | Unit | | | | | | ldd | Dynamic Operating
Current
(Both Ports Active) | $\overline{\overline{CE}}$ = Vil., Outputs Disabled
$\overline{\overline{SEM}}$ = ViH
f = $f_{MAX}^{(3)}$ | COM'L | S
L | 150
140 | 215
185 | 140
130 | 200
175 | 130
125 | 190
165 | mA | | | | | | | (Buil Puls Active) | I = IMAX** | IND | S
L | | | 140
130 | 225
195 | _ | | | | | | | | ISB1 | Standby Current
(Both Ports - TTL | \overline{CER} and $\overline{CEL} = VIH$
$\overline{SEMR} = \overline{SEML} = VIH$
$f = \overline{IMAX}^{(3)}$ | COM'L | S
L | 25
20 | 35
30 | 20
15 | 30
25 | 16
13 | 30
25 | mA | | | | | | | Level Inputs) | T = IMAX ^(a) | MIL &
IND | S
L | | | 20
15 | 45
40 | | | | | | | | | ISB2 | Standby Current
(One Port - TTL | $\overline{CE}^*A^* = V_{IL}$ and $\overline{CE}^*B^* = V_{IH}^{(5)}$
Active Port Outputs Disabled, | COM'L | S
L | 85
80 | 120
110 | 80
75 | 110
100 | 75
72 | 110
95 | mA | | | | | | | Level Inputs) | $\frac{f = f_{MAX}^{(S)}}{\overline{SEM}_{R}} = \overline{SEM}_{L} = V_{IH}$ | MIL &
IND | S
L | | | 80
75 | 130
115 | | | | | | | | | ISB3 | Full Standby Current (Both Ports - | Both Ports \overline{CE}_L and $\overline{CE}_R \ge V DD - 0.2V$, | COM'L | S
L | 1.0
0.2 | 5
2.5 | 1.0
0.2 | 5
2.5 | 1.0
0.2 | 5
2.5 | mA | | | | | | ČMOS Level Inputs) | CiviOs Levei Iripuis) | $\begin{array}{l} \text{Vin} \geq \text{Vdd} - 0.2 \text{V or} \\ \text{Vin} \leq 0.2 \text{V, } f = 0^{(4)} \\ \text{SEMr} = \text{SEML} \geq \text{Vdd} - 0.2 \text{V} \end{array}$ | MIL &
IND | S
L | | | 1.0
0.2 | 15
5 | | | | | | | | | ISB4 | Full Standby Current
(One Port - | <u>CE</u> *A* ≤ 0.2V and
<u>CE*B*</u> ≥ <u>VDD</u> - 0.2V ⁽⁵⁾ | COM'L | S
L | 85
80 | 125
105 | 80
75 | 115
100 | 75
70 | 105
90 | mA | | | | | | | | | MIL &
IND | S
L | | | 80
75 | 130
115 | _ | _ | | | | | | #### NOTES: - 1. 'X' in part number indicates power rating (S or L) - 2. VDD = 3.3V, $TA = +25^{\circ}C$, and are not production tested. IDD DC = 115mA (typ.) - 3. At f = fmax, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/trc, and using "AC Test Conditions" of input levels of GND to 3V. - 4. f = 0 means no address or control lines change. - 5. Port "A" may be either left or right port. Port "B" is the opposite from port "A". ### AC Test Conditions | 710 1031 00110110113 | | |-------------------------------|-----------------| | Input Pulse Levels | GND to 3.0V | | Input Rise/Fall Times | 3ns Max. | | Input Timing Reference Levels | 1.5V | | Output Reference Levels | 1.5V | | Output Load | Figures 1 and 2 | 3.3V \$590Ω DATAOUT BUSY INT 435Ω 30pF Figure 1. AC Output Test Load Figure 2. Output Test Load (For tLz, tHz, twz, tow) *Including scope and jig. 5624 tbl 09 ## Timing of Power-Up Power-Down # DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range for $70V25/24^{(1)}$ (VDD = $3.3V \pm 0.3V$) | | | | | | 70V24L15
Ind Only | | 70V24L15 70V25/24X15
Ind Only Com'l Only | | 70V25/24X20
Com'l
& Ind | | 70V25X25
Com'l
& Ind | | 70V24X25
Com'l Only | | | |--------|---|--|--------------|--------|----------------------|----------|---|------------|-------------------------------|------------|----------------------------|------------|------------------------|------------|------| | Symbol | Parameter | Test Condition | Versio | n | Typ. ⁽²⁾ | Max. | Unit | | ldd | Dynamic Operating Current (Both Ports Active) | SEM = VIH | COM'L | S
L | _ | _ | 150
140 | 215
185 | 140
130 | 200
175 | 130
125 | 190
165 | 130
125 | 190
165 | mA | | | | | IND | S
L | —
140 | —
205 | | | 140
130 | 225
195 | —
125 | —
180 | | | | | ISB1 | (Both Ports - TTL SEM) | CER and CEL = VIH
SEMR = SEML = VIH | COM'L | S
L | | | 25
20 | 35
30 | 20
15 | 30
25 | 16
13 | 30
25 | 16
13 | 30
25 | mA | | | Level Inputs) | f = fmax ⁽³⁾ | MIL &
IND | S
L | | —
45 | | | 20
15 | 45
40 | —
13 | —
40 | | | | | ISB2 | Standby Current
(One Port - TTL | | COM'L | S
L | | | 85
80 | 120
110 | 80
75 | 110
100 | 75
72 | 110
95 | 75
72 | 110
95 | mA | | | Level inputs) | | MIL &
IND | S
L | —
80 | —
125 | | | 80
75 | 130
115 | —
72 | —
110 | | | | | ISB3 | Full Standby Current
(Both Ports -
CMOS Level Inputs) | Both Ports CEL and CER > VDD - 0.2V, | COM'L | S
L | _ | _ | 1.0
0.2 | 5
2.5 | 1.0
0.2 | 5
2.5 | 1.0
0.2 | 5
2.5 | 1.0
0.2 | 5
2.5 | mA | | | CMOS Level IIIpuis) | $V_{IN} < 0.2V, f = 0^{(4)}$ | MIL &
IND | S
L | 0.2 | 5 | | | 1.0
0.2 | 15
5 | 0.2 | | | | | | ISB4 | Full Standby Current
(One Port -
CMOS Level Inputs) | Port - CE"B" > VDD - 0.2V ⁽⁵⁾ | COM'L | S
L | _ | _ | 85
80 | 125
105 | 80
75 | 115
100 | 75
70 | 105
90 | 75
70 | 105
90 | mA | | | Civios Level Ilipuis) | | MIL &
IND | S
L | —
80 | —
120 | _ | _ | 80
75 | 130
115 | | —
105 | _ | _ | | 5624 tbl 09c | | | | Varaian | | 70V25/
Com'l | | 70V25/
Com'l | | | |---------------|---|--|--------------|--------|---------------------|------------|---------------------|------------|------| | Symbol | Parameter | Test Condition | Versio | on | Typ. ⁽²⁾ | Max. | Typ. ⁽²⁾ | Max. | Unit | | IDD | Dynamic Operating
Current
(Both Ports Active) | CE = VIL, Outputs Open | COM'L | S
L | 120
115 | 180
155 | 120
115 | 180
155 | mA | | | , , | $f = f_{MA} x^{(3)}$ | IND | S
L | | | | | | | ISB1 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | SEMR = SEML = VIH | COM'L | S
L | 13
11 | 25
20 | 13
11 | 25
20 | mA | | Level inputs) | Level lipus) | I = IMAX** | MIL &
IND | S
L | _ | | | | | | ISB2 | Standby Current
(One Port - TTL
Level Inputs) | $\overline{CE}^*A^* = VIL$ and $\overline{CE}^*B^* = VIH^{(S)}$
Active Port Outputs Open,
$f = MMX^{(S)}$ | COM'L | S
L | 70
65 | 100
90 | 70
65 | 100
90 | mA | | | Level lipus) | SEMR = SEML = VIH | | S
L | _ | | | | | | ISB3 | Full Standby Current
(Both Ports -
CMOS Level Inputs) | Both Ports CEL and CER > VDD - 0.2V, | COM'L | S
L | 1.0
0.2 | 5
2.5 | 1.0
0.2 | 5
2.5 | mA | | | Civios Level Iripuis) | $\begin{array}{l} \text{VN} \geq \text{VDD} - 0.2 \text{V or} \\ \text{VN} \leq 0.2 \text{V, f} = 0^{(4)} \\ \overline{\text{SEMR}} = \overline{\text{SEML}} \geq \text{VDD} - 0.2 \text{V} \end{array}$ | MIL &
IND | S
L | | | | | | | ISB4 | (One Port - $\overline{CE}^*B^* > VDD$ - $0.2V^{(5)}$ | | COM'L | S
L | 65
60 | 100
85 | 65
60 | 100
85 | mA | | | ČMOS Level Inputs) | | MIL &
IND | S
L | _ | | | | | #### NOTES: 5624 tbl 09b - 1. 'X' in part number indicates power rating (S or L) - 2. VDD = 3.3V, TA = +25°C, and are not production tested. IDD DC = 115mA (typ.) - 3. At f = fmax, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/trc, and using "AC Test Conditions" of input levels of GND to 3V. - 4. f = 0 means no address or control lines change. - 5. Port "A" may be either left or right port. Port "B" is the opposite from port "A". ## AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range for 70V35/34⁽⁴⁾ | | | 70V35/34X15
Com'l Only | | Co | /34X20
m'l
Ind | 70V35/34X25
Com'l Only | | | |------------|--|---------------------------|------|------|----------------------|---------------------------|------|------| | Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | READ CYCLE | | | | | | | | | | trc | Read Cycle Time | 15 | _ | 20 | _ | 25 | | ns | | taa | Address Access Time | | 15 | _ | 20 | _ | 25 | ns | | tace | Chip Enable Access Time ⁽³⁾ | | 15 | | 20 | | 25 | ns | | tabe | Byte Enable Access Time ⁽³⁾ | | 15 | | 20 | 1 | 25 | ns | | taoe | Output Enable Access Time ⁽³⁾ | _ | 10 | _ | 12 | _ | 13 | ns | | tон | Output Hold from Address Change | 3 | _ | 3 | _ | 3 | _ | ns | | tLZ | Output Low-Z Time ^(1,2) | 3 | _ | 3 | | 3 | _ | ns | | tHZ | Output High-Z Time ^(1,2) | | 10 |
_ | 12 | _ | 15 | ns | | tpu | Chip Enable to Power Up Time (1.2) | 0 | _ | 0 | _ | 0 | _ | ns | | tPD | Chip Disable to Power Down Time ^(1,2) | _ | 15 | _ | 20 | _ | 25 | ns | | tsop | Semaphore Flag Update Pulse (OE or SEM) | 10 | _ | 10 | _ | 10 | _ | ns | | tsaa | Semaphore Address Access ⁽³⁾ | | 15 | _ | 20 | _ | 25 | ns | 5624 tbl 11 #### NOTES: - 1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2). - 2. This parameter is guaranteed by device characterization, but is not production tested. - 3. To access RAM, $\overline{CE} = VIL$, \overline{UB} or $\overline{LB} = VIL$, and $\overline{SEM} = VIH$. To access semaphore, $\overline{CE} = VIH$ or $\overline{UB} \& \overline{LB} = VIH$, and $\overline{SEM} = VIL$. - 4. 'X' in part number indicates power rating (S or L). ## Waveform of Read Cycles⁽⁵⁾ - 1. Timing depends on which signal is asserted last, \overline{OE} , \overline{CE} , \overline{LB} , or \overline{UB} . - 2. Timing depends on which signal is de-asserted first, $\overline{\text{CE}}$, $\overline{\text{OE}}$, $\overline{\text{LB}}$, or $\overline{\text{UB}}$. - ted delay is required only in case where opposite port is completing a write operation to the same address location for simultaneous read operations BUSY has no relation to valid output data. - 4. Start of valid data depends on which timing becomes effective last tabe, tace, tace, taa or tbdd. - 5. $\overline{SEM} = VIH.$ ### AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range for 70V25/24⁽⁴⁾ | • | | 70V25
Co | /24X15
m'l
Ind | 70V25/24X20
Com'l
& Ind | | 70V2
Co | | 70V24X25
Com'l Only | | | |------------|--|-------------|----------------------|-------------------------------|------|------------|------|------------------------|------|------| | Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | READ CYCLE | | | | | | | | | | | | trc | Read Cycle Time | 15 | | 20 | | 25 | | 25 | | ns | | taa | Address Access Time | | 15 | | 20 | | 25 | | 25 | ns | | tace | Chip Enable Access Time ⁽³⁾ | | 15 | | 20 | | 25 | | 25 | ns | | tabe | Byte Enable Access Time ⁽³⁾ | _ | 15 | _ | 20 | _ | 25 | _ | 25 | ns | | taoe | Output Enable Access Time ⁽³⁾ | _ | 10 | _ | 12 | _ | 13 | _ | 13 | ns | | toн | Output Hold from Address Change | 3 | _ | 3 | _ | 3 | _ | 3 | _ | ns | | tLZ | Output Low-Z Time ^(1,2) | 3 | _ | 3 | | 3 | _ | 3 | | ns | | tHZ | Output High-Z Time ^(1,2) | _ | 10 | _ | 12 | _ | 15 | _ | 15 | ns | | tpu | Chip Enable to Power Up Time ^(1,2) | 0 | _ | 0 | _ | 0 | _ | 0 | _ | ns | | tpD | Chip Disable to Power Down Time ^(1,2) | _ | 15 | _ | 20 | _ | 25 | _ | 25 | ns | | tsop | Semaphore Flag Update Pulse (OE or SEM) | 10 | _ | 10 | | 10 | _ | 10 | | ns | | tsaa | Semaphore Address Access ⁽³⁾ | _ | 15 | _ | 20 | _ | 25 | _ | 25 | ns | 5624 tbl 11d | | | 70V25/24
Com'l O | | | /24X55
I Only | | |------------|--|---------------------|------|------|------------------|------| | Symbol | Parameter | Min. | Max. | Min. | Max. | Unit | | READ CYCLE | | | | | | | | trc | Read Cycle Time | 35 | _ | 55 | _ | ns | | taa | Address Access Time | _ | 35 | _ | 55 | ns | | tace | Chip Enable Access Time ⁽³⁾ | | 35 | | 55 | ns | | tabe | Byte Enable Access Time ⁽³⁾ | _ | 35 | _ | 55 | ns | | taoe | Output Enable Access Time ⁽³⁾ | | 20 | | 30 | ns | | tон | Output Hold from Address Change | 3 | _ | 3 | _ | ns | | tLZ | Output Low-Z Time ^(1,2) | 3 | _ | 3 | _ | ns | | tHZ | Output High-Z Time ^(1,2) | | 15 | _ | 25 | ns | | tpu | Chip Enable to Power Up Time ^(1,2) | 0 | _ | 0 | _ | ns | | tpD | Chip Disable to Power Down Time ^(1,2) | | 35 | | 50 | ns | | tsop | Semaphore Flag Update Pulse (OE or SEM) | 15 | _ | 15 | _ | ns | | tsaa | Semaphore Address Access ⁽³⁾ | | 35 | | 55 | ns | 5624 tbl 11c - 1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2). - This parameter is guaranteed by device characterization, but is not production tested. To access RAM, \(\overline{CE} = V_{IL}, \overline{UB} \text{ or } \overline{LB} = V_{IL}, \(\text{ and } \overline{SEM} = V_{IH}. \) To access semaphore, \(\overline{CE} = V_{IH} \) or \(\overline{UB} \times \overline{LB} = V_{IH}, \) and \(\overline{SEM} = V_{IL}. \) "X' in part number indicates power rating (S or L). # AC Electrical Characteristics Over the Operating Temperature and Supply Voltage for 70V35/34 (5) | | | 70V35/34X15
Com'l Only | | Co | /34X20
m'l
Ind | | /34X25
I Only | | |-------------|--|---------------------------|------|------|----------------------|------|------------------|------| | Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | WRITE CYCLI | <u> </u> | | | | | | | | | twc | Write Cycle Time | 15 | | 20 | | 25 | _ | ns | | tew | Chip Enable to End-of-Write ⁽³⁾ | 12 | | 15 | | 20 | _ | ns | | taw | Address Valid to End-of-Write | 12 | | 15 | _ | 20 | _ | ns | | tas | Address Set-up Time ⁽³⁾ | 0 | | 0 | _ | 0 | _ | ns | | twp | Write Pulse Width | 12 | _ | 15 | _ | 20 | _ | ns | | twr | Write Recovery Time | 0 | _ | 0 | _ | 0 | _ | ns | | tow | Data Valid to End-of-Write | 10 | _ | 15 | _ | 15 | _ | ns | | thz | Output High-Z Time ^(1,2) | _ | 10 | _ | 12 | _ | 15 | ns | | tон | Data Hold Time ⁽⁴⁾ | 0 | | 0 | _ | 0 | _ | ns | | twz | Write Enable to Output in High-Z ^(1,2) | _ | 10 | _ | 12 | _ | 15 | ns | | tow | Output Active from End-of-Write ^(1,2,4) | 0 | | 0 | | 0 | _ | ns | | tswrd | SEM Flag Write to Read Time | 5 | _ | 5 | _ | 5 | _ | ns | | tsps | SEM Flag Contention Window | 5 | | 5 | | 5 | | ns | - 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). - This parameter is guaranteed by device characterization, but is not production tested. To access SRAM, CE = VIL, UB or LB = VIL, SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL. Either condition must be valid for - 4. The specification for tDH must be met by the device supplying write data to the SRAM under all operating conditions. Although tDH and tow values will vary over voltage and temperature, the actual toH will always be smaller than the actual tow. - 5. 'X' in part number indicates power rating (S or L). # AC Electrical Characteristics Over the Operating Temperature and Supply Voltage for 70V25/24 (5) | · | oratal carra capping vertage is | 70V25
Co | /24X15
m'l
Ind | Co | /24X20
m'l
Ind | Co | 5X25
m'l
Ind | | 4X25
I Only | | |-------------|--|-------------|----------------------|------|----------------------|------|--------------------|------|----------------|------| | Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | WRITE CYCLE | | | | | | | | | | | | twc | Write Cycle Time | 15 | _ | 20 | | 25 | | 25 | | ns | | tew | Chip Enable to End-of-Write ⁽³⁾ | 12 | | 15 | | 20 | | 20 | | ns | | taw | Address Valid to End-of-Write | 12 | | 15 | | 20 | | 20 | | ns | | tas | Address Set-up Time ⁽³⁾ | 0 | _ | 0 | | 0 | | 0 | | ns | | twp | Write Pulse Width | 12 | _ | 15 | | 20 | _ | 20 | | ns | | twr | Write Recovery Time | 0 | | 0 | | 0 | | 0 | | ns | | tow | Data Valid to End-of-Write | 10 | | 15 | | 15 | | 15 | | ns | | tHZ | Output High-Z Time ^(1,2) | _ | 10 | - | 12 | 1 | 15 | _ | 15 | ns | | tон | Data Hold Time ⁽⁴⁾ | 0 | _ | 0 | | 0 | | 0 | | ns | | twz | Write Enable to Output in High-Z ^(1,2) | _ | 10 | _ | 12 | _ | 15 | _ | 15 | ns | | tow | Output Active from End-of-Write ^(1,2,4) | 0 | _ | 0 | | 0 | _ | 0 | _ | ns | | tswrd | SEM Flag Write to Read Time | 5 | _ | 5 | | 5 | | 5 | | ns | | tsps | SEM Flag Contention Window | 5 | _ | 5 | | 5 | | 5 | | ns | 5624 tbl 12c | | | 70V25/24X35
Com'l Only | | | /24X55
I Only | | |-------------|--|---------------------------|------|------|------------------|------| | Symbol | Parameter | Min. | Max. | Min. | Max. | Unit | | WRITE CYCLE | | | | | | | | twc | Write Cycle Time | 35 | _ | 55 | _ | ns | | tew | Chip Enable to End-of-Write (3) | 30 | _ | 45 | _ | ns | | taw | Address Valid to End-of-Write | 30 | _ | 45 | _ | ns | | tas | Address Set-up Time ⁽³⁾ | 0 | _ | 0 | _ | ns | | twp | Write Pulse Width | 25 | _ | 40 | _ | ns | | twr | Write Recovery Time | 0 | _ | 0 | _ | ns | | tow | Data Valid to End-of-Write | 15 | _ | 30 | _ | ns | | tHZ | Output High-Z Time ^(1,2) | _ | 15 | _ | 25 | ns | | tон | Data Hold Time ⁽⁴⁾ | 0 | _ | 0 | _ | ns | | twz | Write Enable to Output in High-Z ^(1,2) | _ | 15 | _ | 25 | ns | | tow | Output Active from End-of-Write ^(1,2,4) | 0 | — | 0 | _ | ns | | tswrd | SEM Flag Write to Read Time | 5 | _ | 5 | _ | ns | | tsps | SEM Flag Contention Window | 5 | | 5 | _ | ns | 5624 tbl 12b - 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). - 2. This parameter is guaranteed by device characterization, but is not production tested. - 3. To access SRAM, $\overline{CE} = VIL$, \overline{UB} or $\overline{LB} = VIL$, $\overline{SEM} = VIH$. To access semaphore, $\overline{CE} = VIH$ or $\overline{UB} \& \overline{LB} = VIH$, and $\overline{SEM} = VIL$. Either condition must be valid for the entire tew time. - 4. The specification for tDH must be met by the device supplying write data to the SRAM under all operating conditions. Although tDH and tow values will vary over voltage and temperature, the actual tDH will always be smaller than the actual tow. - 5. 'X' in part number indicates power rating (S or L). ## Timing Waveform of Write Cycle No. 1, R/W Controlled Timing (1,5,8) ## Timing Waveform of Write Cycle No. 2, **CE**, **UB**, **LB** Controlled Timing^(1,5) - 1. R/\overline{W} or
\overline{CE} or \overline{UB} & \overline{LB} must be HIGH during all address transitions. - 2. A write occurs during the overlap (tew or twp) of a LOW $\overline{\text{UB}}$ or $\overline{\text{LB}}$ and a LOW $\overline{\text{CE}}$ and a LOW R/\overline{M} for memory array writing cycle. - 3. twn is measured from the earlier of $\overline{\text{CE}}$ or $\overline{\text{R/W}}$ (or $\overline{\text{SEM}}$ or $\overline{\text{R/W}}$) going HIGH to the end-of-write cycle. - 4. During this period, the I/O pins are in the output state and input signals must not be applied. - 5. If the $\overline{\text{CE}}$ or $\overline{\text{SEM}}$ LOW transition occurs simultaneously with or after the $\overline{\text{R/W}}$ LOW transition the outputs remain in the HIGH-impedance state. - 6. Timing depends on which enable signal is asserted last, $\overline{\text{CE}}$, R/\overline{W} , or $\overline{\text{UB}}$ or $\overline{\text{LB}}$. - 7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with Output Test Load (Figure 2). - 8. If \overline{OE} is LOW during R \overline{W} controlled write cycle, the write pulse width must be the larger of twp or (twz + tow) to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If \overline{OE} is HIGH during an R \overline{W} controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp. - 9. To access SRAM, $\overline{CE} = V_{IL}$, \overline{UB} or $\overline{LB} = V_{IL}$, and $\overline{SEM} = V_{IH}$. To access Semaphore, $\overline{CE} = V_{IH}$ or \overline{UB} and $\overline{LB} = V_{IH}$, and $\overline{SEM} = V_{IL}$. tew must be met for either condition. ## Timing Waveform of Semaphore Read after Write Timing, Either Side⁽¹⁾ #### NOTES: - 1. $\overline{CE} = VIH \text{ or } \overline{UB} \& \overline{LB} = VIH \text{ for the duration of the above timing (both write and read cycle).}$ - 2. "DATAout VALID" represents all I/O's (I/Oo-I/O17 for IDT70V35/34) and (I/Oo-I/O15 for IDT70V25/24) equal to the semaphore value. ## Timing Waveform of Semaphore Write Contention (1,3,4) - 1. Dor = Dol = VIL, $\overline{CE}R = \overline{CE}L = VIH$, or both $\overline{UB} \& \overline{LB} = VIH$. - 2. All timing is the same for left and right port. Port "A" may be either left or right port. Port "B" is the opposite from port "A". - 3. This parameter is measured from R/W-A- or SEM-A- going HIGH to R/W-B- or SEM-B- going HIGH. - 4. If tsps is not satisfied, there is no guarantee which side will obtain the semaphore flag. ## AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range for 70V35/34⁽⁶⁾ | | Tatar e arra e appry vertage riarry | 70V35/34X15
Com'l Ony | | 70V35/34X20
Com'l
& Ind | | 70V35/34X25
Com'l Only | | | | |---------------------------|--|--------------------------|------|-------------------------------|------|---------------------------|------|------|--| | Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | | BUSY TIMING | $(M/\overline{S} = V_{IH})$ | | | | | | | | | | tbaa | BUSY Access Time from Address Match | _ | 15 | _ | 20 | _ | 20 | ns | | | t BDA | BUSY Disable Time from Address Not Matched | _ | 15 | _ | 20 | _ | 20 | ns | | | tBAC | BUSY Access Time from Chip Enable LOW | _ | 15 | _ | 20 | _ | 20 | ns | | | tBDC | BUSY Disable Time from Chip Enable HIGH | _ | 15 | _ | 17 | _ | 17 | ns | | | taps | Arbitration Priority Set-up Time (2) | 5 | _ | 5 | _ | 5 | _ | ns | | | tBDD | BUSY Disable to Valid Data ⁽³⁾ | _ | 18 | _ | 30 | _ | 30 | ns | | | twн | Write Hold After BUSY ⁽⁵⁾ | 12 | _ | 15 | _ | 17 | _ | ns | | | BUSY TIMING | $(M/\overline{S} = VIL)$ | | | | | | | | | | twB | BUSY Input to Write ⁽⁴⁾ | 0 | | 0 | | 0 | _ | ns | | | twн | Write Hold After BUSY ⁽⁵⁾ | 12 | - | 15 | - | 17 | - | ns | | | PORT-TO-PORT DELAY TIMING | | | | | | | | | | | twdd | Write Pulse to Data Delay ⁽¹⁾ | _ | 30 | _ | 45 | | 50 | ns | | | todd | Write Data Valid to Read Data Delay ⁽¹⁾ | | 25 | _ | 35 | | 35 | ns | | 5624 tbl 13 5624 drw 13 #### NOTES: - 1. Port-to-port delay through SRAM cells from writing port to reading port, refer to "TIMING WAVEFORM OF WRITE PORT-TO-PORT READ AND \overline{BUSY} ($W\overline{S} = V_{IH}$)". - 2. To ensure that the earlier of the two ports wins. - 3. tbdd is a calculated parameter and is the greater of 0, twdd twp (actual) or tddd tdw (actual). - 4. To ensure that the write cycle is inhibited during contention. - 5. To ensure that a write cycle is completed after contention. - 6. 'X' in part number indicates power rating (S or L). ## Timing Waveform of Write Port-to-Port Read and **BUSY**(2,4,5) (M/**S** = VIH) - 1. To ensure that the earlier of the two ports wins. taps is ignored for $M/\overline{S} = VIL$ (slave). - 2. $\overline{CE}L = \overline{CE}R = VIL$ - 3. $\overline{OE} = V_{IL}$ for the reading port. - 4. If $M/\overline{S} = VIL$ (slave), \overline{BUSY} is an input. Then for this example $\overline{BUSY}^*A^* = VIH$ and \overline{BUSY}^*B^* input is shown above. - 5. All timing is the same for both left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A". ## AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range for 70V25/24⁽⁶⁾ | | | 70V25
Co | /24X15
m'l
Ind | 70V25/24X20
Com'l
& Ind | | Co | 5X25
m'l
Ind | 70V2
Com ¹ | 4X25
I Only | | |---------------------------|--|-------------|----------------------|-------------------------------|------|------|--------------------|--------------------------|----------------|------| | Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | BUSY TIMING | $(M/\overline{S} = VIH)$ | | | | | | | | | | | †BAA | BUSY Access Time from Address Match | | 15 | _ | 20 | _ | 20 | _ | 20 | ns | | tBDA | BUSY Disable Time from Address Not Matched | | 15 | _ | 20 | _ | 20 | _ | 20 | ns | | TBAC | BUSY Access Time from Chip Enable LOW | _ | 15 | _ | 20 | _ | 20 | _ | 20 | ns | | tBDC | BUSY Disable Time from Chip Enable HIGH | _ | 15 | _ | 17 | _ | 17 | | 17 | ns | | taps | Arbitration Priority Set-up Time ⁽²⁾ | 5 | _ | 5 | _ | 5 | _ | 5 | | ns | | tBDD | BUSY Disable to Valid Data ⁽³⁾ | _ | 18 | _ | 30 | | 30 | _ | 30 | ns | | twn | Write Hold After BUSY ⁽⁵⁾ | 12 | _ | 15 | _ | 17 | _ | 17 | | ns | | BUSY TIMING | $(M/\overline{S} = Vil)$ | | | | | | | | | | | twB | BUSY Input to Write ⁽⁴⁾ | 0 | _ | 0 | _ | 0 | | 0 | | ns | | twн | Write Hold After BUSY ⁽⁵⁾ | 12 | | 15 | _ | 17 | | 17 | | ns | | PORT-TO-PORT DELAY TIMING | | | | | | | | | | | | twdd | Write Pulse to Data Delay ⁽¹⁾ | | 30 | | 45 | | 50 | | 50 | ns | | todo | Write Data Valid to Read Data Delay ⁽¹⁾ | | 25 | _ | 35 | | 35 | _ | 35 | ns | 5624 tbl 13c | | | 70V25/24X35
Com'l Only | | | /24X55
I Only | | |--------------------|--|---------------------------|------|------|------------------|------| | Symbol | Parameter | Min. | Max. | Min. | Max. | Unit | | BUSY TIMING | $(M/\overline{S} = V_{IH})$ | | | | | | | t BAA | BUSY Access Time from Address Match | - | 20 | - | 45 | ns | | tBDA | BUSY Disable Time from Address Not Matched | _ | 20 | _ | 40 | ns | | t BAC | BUSY Access Time from Chip Enable LOW | _ | 20 | _ | 40 | ns | | tBDC | BUSY Disable Time from Chip Enable HIGH | _ | 20 | _ | 35 | ns | | taps | Arbitration Priority Set-up Time ⁽²⁾ | 5 | _ | 5 | _ | ns | | tBDD | BUSY Disable to Valid Data ⁽³⁾ | _ | 35 | _ | 40 | ns | | twн | Write Hold After BUSY ⁽⁵⁾ | 25 | _ | 25 | _ | ns | | BUSY TIMING | $(M/\overline{S} = ViL)$ | | | | | | | twB | BUSY Input to Write (4) | 0 | | 0 | | ns | | twн | Write Hold After BUSY ⁽⁵⁾ | 25 | _ | 25 | | ns | | PORT-TO-POR | T DELAY TIMING | | | | | | | twdd | Write Pulse to Data Delay ⁽¹⁾ | _ | 60 | _ | 80 | ns | | todo | Write Data Valid to Read Data Delay ⁽¹⁾ | | 45 | | 65 | ns | #### 5624 tbl 13b - 1. Port-to-port delay through SRAM cells from writing port to reading port, refer to "TIMING WAVEFORM OF WRITE PORT-TO-PORT READ AND BUSY (M/S = VIH)". - 2. To ensure that the earlier of the two ports wins. - 3. tbdd is a calculated parameter and is the greater of 0, twdd twp (actual) or tddd tdw (actual). - 4. To ensure that the write cycle is inhibited during contention. - 5. To ensure that a write cycle is completed after contention. - 6. 'X' in part number indicates power rating (S or L). ## Timing Waveform of Write with **BUSY** #### NOTES: - 1. twh must be met for both master BUSY input (slave) and output (master). - 2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH. - 3. twb is only for the slave version. ## Waveform of **BUSY** Arbitration Controlled by **CE** Timing⁽¹⁾ (M/**S** = VIH) ## Waveform of $\overline{\textbf{BUSY}}$ Arbitration Cycle Controlled by Address Match Timing⁽¹⁾ (M/ $\overline{\textbf{S}}$ = VIH) - 1. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from "A". - 2. If taps is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted. ## AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range for 70V35/34⁽¹⁾ | | | 70V35/34X15
Com'l Only | | 70V35/34X20
Com'l
& Ind | | 70V35/34X25
Com'l Only | | | | |-------------|----------------------|---------------------------|------|-------------------------------|------|---------------------------|------|------|--| | Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | | INTERRUPT T | ITERRUPT TIMING | | | | | | |
| | | tas | Address Set-up Time | 0 | _ | 0 | _ | 0 | _ | ns | | | twr | Write Recovery Time | 0 | _ | 0 | _ | 0 | _ | ns | | | tins | Interrupt Set Time | | 15 | _ | 20 | _ | 20 | ns | | | tinr | Interrupt Reset Time | _ | 15 | _ | 20 | _ | 20 | ns | | 5624 tbl 14 ## AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range for 70V25/24⁽¹⁾ | | | Co | /24X15
m'l
Ind | 70V25/24X20
Com'l
& Ind | | 70V25X25 70V24X25
Com'l Com'l Only
& Ind | | | | | |------------------|----------------------|------|----------------------|-------------------------------|------|--|------|------|------|------| | Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | INTERRUPT TIMING | | | | | | | | | | | | tas | Address Set-up Time | 0 | _ | 0 | | 0 | _ | 0 | | ns | | twr | Write Recovery Time | 0 | _ | 0 | | 0 | _ | 0 | | ns | | tins | Interrupt Set Time | _ | 15 | _ | 20 | _ | 20 | _ | 20 | ns | | tinr | Interrupt Reset Time | _ | 15 | _ | 20 | _ | 20 | _ | 20 | ns | 5624 tbl 14c | | | | /24X35
 Only | | /24X55
I Only | | |-------------|----------------------|------|------------------|------|------------------|------| | Symbol | Parameter | Min. | Max. | Min. | Max. | Unit | | INTERRUPT T | IMING | | | | | | | tas | Address Set-up Time | 0 | _ | 0 | _ | ns | | twr | Write Recovery Time | 0 | _ | 0 | _ | ns | | tins | Interrupt Set Time | | 25 | | 40 | ns | | tinr | Interrupt Reset Time | _ | 25 | _ | 40 | ns | NOTES: 5624 tbl 14b 1. 'X' in part number indicates power rating (S or L). ## Waveform of Interrupt Timing(1) - 1. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from "A". - 2. See Interrupt Flag Truth Table III. - Timing depends on which enable signal (CE or R/W) is asserted last. Timing depends on which enable signal (CE or R/W) is de-asserted first. Truth Table III — Interrupt Flag⁽¹⁾ | Left Port | | | | Right Port | | | | | | | |-----------|-------------|-------------|-------------------------|------------------|---------------|-------------------------|-------------|-------------------------|------------------|-----------------------| | R/₩L | <u>C</u> E∟ | <u>OE</u> L | A12L-A0L ⁽⁴⁾ | ĪNT∟ | R/ W R | C E _R | ŌĒ R | A12R-A0R ⁽⁴⁾ | Ī NT R | Function | | L | L | Х | 1FFF ⁽⁴⁾ | Х | Х | Х | Х | Х | L ⁽²⁾ | Set Right INTR Flag | | X | Х | Х | Х | Х | Х | L | L | 1FFF ⁽⁴⁾ | H ⁽³⁾ | Reset Right INTR Flag | | Х | Х | Х | Х | L(3) | L | L | Х | 1FFE ⁽⁴⁾ | Х | Set Left INTL Flag | | Х | L | L | 1FFE ⁽⁴⁾ | H ⁽²⁾ | Х | Х | Х | X | Х | Reset Left INTL Flag | #### NOTES: 5624 tbl 15 - 1. Assumes $\overline{BUSY}_L = \overline{BUSY}_R = VIH$. - 2. If $\overline{BUSY}_L = VIL$, then no change. - 3. If $\overline{BUSY}R = VIL$, then no change. - 4. A12 is a NC for IDT70V34 and for IDT70V24, therefore Interrupt Addresses are FFF and FFE. ## Truth Table IV — Address **BUSY** Arbitration | | In | puts | Out | puts | | |-------------|-----------------|-------------------------------------|---------------------|-----------------------|------------------------------| | <u>C</u> Ē∟ | C Er | A12L-A0L ⁽⁴⁾
A12R-A0R | BUS YL(1) | BUSY _R (1) | Function | | Х | Х | NO MATCH | Н | Н | Normal | | Н | Χ | MATCH | Н | Н | Normal | | Х | Н | MATCH | Н | Н | Normal | | L | L | MATCH | Note ⁽²⁾ | Note ⁽²⁾ | Write Inhibit ⁽³⁾ | #### NOTES: 5624 tbl 16 - 1. Pins BUSY_L and BUSY_R are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the IDT70V35/34 (IDT70V25/24) are push pull, not open drain outputs. On slaves the BUSY input internally inhibits writes. - 2. L if the inputs to the opposite port were stable prior to the address and enable inputs of this port. VIH if the inputs to the opposite port became stable after the address and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs cannot be LOW simultaneously. - 3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored when BUSYR outputs are driving LOW regardless of actual logic level on the pin. - 4. A12 is a NC for IDT70V34 and for IDT70V24. Address comparison will be for A0 A11. ## Truth Table V — Example of Semaphore Procurement Sequence (1,2,3) | Functions | Do - D17 Left ⁽²⁾ | Do - D17 Right ⁽²⁾ | Status | |------------------------------------|------------------------------|-------------------------------|--| | No Action | 1 | 1 | Semaphore free | | Left Port Writes "0" to Semaphore | 0 | 1 | Left port has semaphore token | | Right Port Writes "0" to Semaphore | 0 | 1 | No change. Right side has no write access to semaphore | | Left Port Writes "1" to Semaphore | 1 | 0 | Right port obtains semaphore token | | Left Port Writes "0" to Semaphore | 1 | 0 | No change. Left port has no write access to semaphore | | Right Port Writes "1" to Semaphore | 0 | 1 | Left port obtains semaphore token | | Left Port Writes "1" to Semaphore | 1 | 1 | Semaphore free | | Right Port Writes "0" to Semaphore | 1 | 0 | Right port has semaphore token | | Right Port Writes "1" to Semaphore | 1 | 1 | Semaphore free | | Left Port Writes "0" to Semaphore | 0 | 1 | Left port has semaphore token | | Left Port Writes "1" to Semaphore | 1 | 1 | Semaphore free | #### NOTES: - 1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70V35/34 (IDT70V25/24). - 2. There are eight semaphore flags written to via I/Oo and read from all I/O's (I/Oo-I/O17 for IDT70V35/34) and (I/Oo-I/O15 for IDT70V25/24). These eight semaphores are addressed by Ao-A2. - 3. $\overline{\text{CE}} = \text{ViH}$, $\overline{\text{SEM}} = \text{ViL}$ to access the semaphores. Refer to the Semaphore Read/Write Control Truth Tables. Figure 3. Busy and chip enable routing for both width and depth expansion with IDT70V35/34 (IDT70V25/24) SRAMs. ### **Functional Description** The IDT70V35/34 (IDT70V25/ 2 4) provides two ports with separate control, address and I/O pins that permit independent access for reads or writes to any location in memory. The IDT70V35/34 (IDT70V25/24) has an automatic power down feature controlled by $\overline{\text{CE}}$. The $\overline{\text{CE}}$ controls onchip power down circuitry that permits the respective port to go into a standby mode when not selected ($\overline{\text{CE}}$ HIGH). When a port is enabled, access to the entire memory array is permitted. ### Interrupts If the user chooses the interrupt function, a memory location (mail box or message center) is assigned to each port. The left port interrupt flag (INTL) is asserted when the right port writes to memory location 1FFE (HEX) (FFE for IDT70V34 and IDT70V24), where a write is defined as the $\overline{CE}R = R/\overline{W}R = V_{IL}$ per Truth Table III. The left port clears the interrupt on the IDT70V35 and IDT70V25 by an address location 1FFE (FFE for IDT70V34 and IDT70V24) access when $\overline{CE}L = \overline{OE}L = V_{IL}$, $R/\overline{W}L$ is a "don't care". Likewise, the right port interrupt flag (INTR) is set when the left port writes to memory location 1FFF for IDT70V35 and IDT70V25 (HEX) (FFF for IDT70V34 and IDT70V24) and to clear the interrupt flag ($\overline{INT}R$), the right port must read the memory location 1FFF for IDT70V35 and IDT70V25 (FFF for IDT70V34 and IDT70V24). The message (16 bits) at 1FFE or 1FFF for IDT70V35 and IDT70V25 (FFE or FFF for IDT70V34 and IDT70V24) is user-defined, since it is an addressable SRAM location. If the interrupt function is not used, address locations 1FFE and 1FFF for IDT70V35 and IDT70V25 (FFE and FFF for IDT70V34 and IDT70V24) are not used as mail boxes, but as part of the random access memory. Refer to Truth Table III for the interrupt operation. ## **Busy Logic** Busy Logic provides a hardware indication that both ports of the SRAM have accessed the same location at the same time. It also allows one of the two accesses to proceed and signals the other side that the SRAM is "busy". The $\overline{\text{BUSY}}$ pin can then be used to stall the access until the operation on the other side is completed. If a write operation has been attempted from the side that receives a $\overline{\text{BUSY}}$ indication, the write signal is gated internally to prevent the write from proceeding. The use of \overline{BUSY} logic is not required or desirable for all applications. In some cases it may be useful to logically OR the \overline{BUSY} outputs together and use any \overline{BUSY} indication as an interrupt source to flag the event of an illegal or illogical operation. If the write inhibit function of \overline{BUSY} logic is not desirable, the \overline{BUSY} logic can be disabled by placing the part in slave mode with the M/ \overline{S} pin. Once in slave mode the \overline{BUSY} pin operates solely as a write inhibit input pin. Normal operation can be programmed by tying the \overline{BUSY} pins HIGH. If desired, unintended write operations can be prevented to a port by tying the \overline{BUSY} pin for that port LOW. The BUSY outputs on the IDT70V35/34 (IDT70V25/24) SRAM in master mode, are push-pull type outputs and do not require pull up resistors to operate. If these SRAMs are being expanded in depth, then the $\overline{\text{BUSY}}$ indication for the resulting array requires the use of an external AND gate. ## Width Expansion with Busy Logic Master/Slave Arrays When expanding an IDT70V35/34 (IDT70V25/24) SRAM array in widthwhile using \overline{BUSY} logic, one master part is used to decide which side of the SRAM array will receive a \overline{BUSY} indication, and to output that indication. Any number of slaves
to be addressed in the same address range as the master, use the \overline{BUSY} signal as a write inhibit signal. Thus on the IDT70V35/34 (IDT70V25/24) SRAM the \overline{BUSY} pin is an output if the part is used as a master (M/ \overline{S} pin = VIL), and the \overline{BUSY} pin is an input if the part used as a slave (M/ \overline{S} pin = VIL) as shown in Figure 3. If two or more master parts were used when expanding in width, a split decision could result with one master indicating \overline{BUSY} on one side of the array and another master indicating \overline{BUSY} on one other side of the array. This would inhibit the write operations from one port for part of a word and inhibit the write operations from the other port for the other part of the word. The BUSY arbitration, on a master, is based on the chip enable and address signals only. It ignores whether an access is a read or write. In a master/slave array, both address and chip enable must be valid long enough for a $\overline{\text{BUSY}}$ flag to be output from the master before the actual write pulse can be initiated with either the $R\overline{\text{IW}}$ signal or the byte enables. Failure to observe this timing can result in a glitched internal write inhibit signal and corrupted data in the slave. ## Semaphores The IDT70V35/34 (IDT70V25/24) is an extremely fast Dual-Port 8/4K \times 18 (8/4K \times 16) CMOS Static RAM with an additional 8 address locations dedicated to binary semaphore flags. These flags allow either processor on the left or right side of the Dual-Port SRAM to claim a privilege over the other processor for functions defined by the system designer's software. As an example, the semaphore can be used by one processor to inhibit the other from accessing a portion of the Dual-Port SRAM or any other shared resource. The Dual-Port SRAM features a fast access time, and both ports are completely independent of each other. This means that the activity on the left port in no way slows the access time of the right port. Both ports are identical infunction to standard CMOS Static RAM and can be accessed at the same time with the only possible conflict arising from the simultaneous writing of, or a simultaneous READ/WRITE of, a non-semaphore location. Semaphores are protected against such ambiguous situations and may be used by the system program to avoid any conflicts in the non-semaphore portion of the Dual-Port SRAM. These devices have an automatic power-down feature controlled by $\overline{\text{CE}}$, the Dual-Port SRAM enable, and SEM, the semaphore enable. The $\overline{\text{CE}}$ and $\overline{\text{SEM}}$ pins control on-chip power down circuitry that permits the respective port to go into standby mode when not selected. This is the condition which is shown in Truth Table I where $\overline{\text{CE}}$ and $\overline{\text{SEM}}$ are both HIGH. Systems which can best use the IDT70V35/34 (IDT70V25/24) contain multiple processors or controllers and are typically very high-speed systems which are software controlled or software intensive. These systems can benefit from a performance increase offered by the IDT70V35/34 (IDT70V25/24)'s hardware semaphores, which provide a lockout mechanism without requiring complex programming. Software handshaking between processors offers the maximum in system flexibility by permitting shared resources to be allocated in varying configurations. The IDT70V35/34 (IDT70V25/24) does not use its semaphore flags to control any resources through hardware, thus allowing the system designer total flexibility in system architecture. An advantage of using semaphores rather than the more common methods of hardware arbitration is that wait states are never incurred in either processor. This can prove to be a major advantage in very high-speed systems. ### How the Semaphore Flags Work The semaphore logic is a set of eight latches which are independent of the Dual-Port SRAM. These latches can be used to pass a flag, or token, from one port to the other to indicate that a shared resource is in use. The semaphores provide a hardware assist for a use assignment method called "Token Passing Allocation." In this method, the state of a semaphore latch is used as a token indicating that shared resource is in use. If the left processor wants to use this resource, it requests the token by setting the latch. This processor then verifies its success in setting the latch by reading it. If it was successful, it proceeds to assume control over the shared resource. If it was not successful in setting the latch, it determines that the right side processor has set the latch first, has the token and is using the shared resource. The left processor can then either repeatedly request that semaphore's status or remove its request for that semaphore to perform another task and occasionally attempt again to gain control of the token via the set and test sequence. Once the right side has relinquished the token, the left side should succeed in gaining control. The semaphore flags are active LOW. A token is requested by writing a zero into a semaphore latch and is released when the same side writes a one to that latch. The eight semaphore flags reside within the IDT70V35/34 (IDT70V25/24) in a separate memory space from the Dual-Port SRAM. This address space is accessed by placing a LOW input on the SEM pin (which acts as a chip select for the semaphore flags) and using the other control pins (Address, \overline{OE} , and R/ \overline{W}) as they would be used in accessing a standard static RAM. Each of the flags has a unique address which can be accessed by either side through address pins A0 - A2. When accessing the semaphores, none of the other address pins has any effect. When writing to a semaphore, only data pin Dois used. If a LOW level is written into an unused semaphore location, that flag will be set to a zero on that side and a one on the other side (see Truth Table V). That semaphore can now only be modified by the side showing the zero. When a one is written into the same location from the same side, the flag will be set to a one for both sides (unless a semaphore request from the other side is pending) and then can be written to by both sides. The fact that the side which is able to write a zero into a semaphore subsequently locks out writes from the other side is what makes semaphore flags useful in interprocessor communications. (A thorough discussion on the use of this feature follows shortly.) A zero written into the same location from the other side will be stored in the semaphore request latch for that side until the semaphore is freed by the first side. When a semaphore flag is read, its value is spread into all data bits so that a flag that is a one reads as a one in all data bits and a flag containing a zero reads as all zeros. The read value is latched into one side's output register when that side's semaphore select (\overline{SEM}) and output enable (\overline{OE}) signals go active. This serves to disallow the semaphore from changing state in the middle of a read cycle due to a write cycle from the other side. Because of this latch, a repeated read of a semaphore in a test loop must cause either signal (\overline{SEM} or \overline{OE}) to go inactive or the output will never change. A sequence WRITE/READ must be used by the semaphore in order to guarantee that no system level contention will occur. A processor requests access to shared resources by attempting to write a zero into a semaphore location. If the semaphore is already in use, the semaphore request latch will contain a zero, yet the semaphore flag will appear as one, a fact which the processor will verify by the subsequent read (see Truth Table V). As an example, assume a processor writes a zero to the left port at a free semaphore location. On a subsequent read, the processor will verify that it has written successfully to that location and will assume control over the resource in question. Meanwhile, if a processor on the right side attempts to write a zero to the same semaphore flag it will fail, as will be verified by the fact that a one will be read from that semaphore on the right side during subsequent read. Had a sequence of READ/WRITE been used instead, system contention problems could have occurred during the gap between the read and write cycles. It is important to note that a failed semaphore request must be followed by either repeated reads or by writing a one into the same location. The reason for this is easily understood by looking at the simple logic diagram of the semaphore flag in Figure 4. Two semaphore request latches feed into a semaphore flag. Whichever latch is first to present a zero to the semaphore flag will force its side of the semaphore flag LOW and the other side HIGH. This condition will continue until a one is written to the same semaphore request latch. Should the other side's semaphore request latch have been written to a zero in the meantime, the semaphore flag will flip over to the other side as soon as a one is written into the first side's request latch. The second side's flag will now stay LOW until its semaphore request latch is written to a one. From this it is easy to understand that, if a semaphore is requested and the processor which requested it no longer needs the resource, the entire system can hang up until a one is written into that semaphore request latch. The critical case of semaphore timing is when both sides request a single token by attempting to write a zero into it at the same time. The semaphore logic is specially designed to resolve this problem. If simultaneous requests are made, the logic guarantees that only one side receives the token. If one side is earlier than the other in making the request, the first side to make the request will receive the token. If both requests arrive at the same time, the assignment will be arbitrarily made to one port
or the other. One caution that should be noted when using semaphores is that semaphores alone do not guarantee that access to a resource is secure. As with any powerful programming technique, if semaphores are misused or misinterpreted, a software error can easily happen. Initialization of the semaphores is not automatic and must be handled via the initialization program at power-up. Since any semaphore request flag which contains a zero must be reset to a one, all semaphores on both sides should have a one written into them at initialization from both sides to assure that they will be free when needed. ### Using Semaphores—Some Examples Perhaps the simplest application of semaphores is their application as resource markers for the IDT70V35/34 (IDT70V25/24)'s Dual-Port SRAM. Say the 8K x 18 SRAM was to be divided into two 4K x 18 blocks which were to be dedicated at any one time to servicing either the left or right port. Semaphore 0 could be used to indicate the side which would control the lower section of memory, and Semaphore 1 could be defined as the indicator for the upper section of memory. To take a resource, in this example the lower 4K of Dual-Port SRAM, the processor on the left port could write and then read a zero in to Semaphore 0. If this task were successfully completed (a zero was read back rather than a one), the left processor would assume control of the lower 4K. Meanwhile the right processor was attempting to gain control of the resource after the left processor, it would read back a one in response to the zero it had attempted to write into Semaphore 0. At this point, the software could choose to try and gain control of the second 4K section by writing, then reading a zero into Semaphore 1. If it succeeded in gaining control, it would lock out the left side. Once the left side was finished with its task, it would write a one to Semaphore 0 and may then try to gain access to Semaphore 1. If Semaphore 1 was still occupied by the right side, the left side could undo its semaphorerequest and perform other tasks until it was able to write, then read a zero into Semaphore 1. If the right processor performs a similar task with Semaphore 0, this protocol would allow the two processors to swap 4K blocks of Dual-Port SRAM with each other. The blocks do not have to be any particular size and can even be variable, depending upon the complexity of the software using the semaphoreflags. All eight semaphores could be used to divide the Dual-Port SRAM or other shared resources into eight parts. Semaphores can even be assigned different meanings on different sides rather than being given a common meaning as was shown in the example above. Semaphores are a useful form of arbitration in systems like disk interfaces where the CPU must be locked out of a section of memory during a transfer and the I/O device cannot tolerate any wait states. With the use of semaphores, once the two devices has determined which memory area was "off-limits" to the CPU, both the CPU and the I/O devices could access their assigned portions of memory continuously without any wait states. Semaphores are also useful in applications where no memory "WAIT" state is available on one or both sides. Once a semaphore handshake has been performed, both processors can access their assigned RAM segments at full speed. Another application is in the area of complex data structures. In this case, block arbitration is very important. For this application one processor may be responsible for building and updating a data structure. The other processor then reads and interprets that data structure. If the interpreting processor reads an incomplete data structure, a major error condition may exist. Therefore, some sort of arbitration must be used between the two different processors. The building processor arbitrates for the block, locks it and then is able to go in and update the data structure. When the update is completed, the data structure block is released. This allows the interpreting processor to come back and read the complete data structure, thereby guaranteeing a consistent data structure. Figure 4. IDT70V35/34 (IDT70V25/24) Semaphore Logic ### Ordering Information #### NOTES: 10/28/04: - 1. Contact your local sales office for Industrial temp range for other speeds, packages and powers. - Green parts available. For specific speeds, packages and powers contact your local sales office. LEAD FINISH (SnPb) parts are in EOL process. Product Discontinuation Notice - PDN# SP-17-02 ## Datasheet Document History 06/08/00: Initial Public Offering 08/09/01: Page 1 Corrected I/O numbering Page 5-7, 10 & 12 >> Removed >> Industrial >> temperature >> range >> of fering >> for 25 ns >> from >>> DC >>>>> AC >>> Electrical >>>> Characteristics Page 17 Removed Industrial temperature range offering for 25ns speed from the ordering information Added Industrial temperature offering footnote 07/02/02: Page 2 Added date revision for pin configuration Added 70V34 to datasheet (4K x 18) 06/22/04: Consolidated 70V25/24 datasheets (8/4K x 16) into 70V35/34 (8/4K x 18) datasheet Removed Preliminary status from datasheet Page 2 & 3 Changed naming convention from Vcc to Vdd and from GND to Vss for PN100 packages Page 7 Updated Conditions in Capacitance table Page 7 Added Junction Temperature to Absolute Maximum Ratings table Page 9, 11, 13, 17 &, 19 Added DC and AC Electrical Characteristics tables for 70V25/24 data Page 21 & 22 Changed Interrupt flag table, footnotes and Interrupts text to reflect 70V25/24 data Page 1 & 15 Replaced old ® logo with new ™ logo Page 25 Added stepping indicator to ordering information 04/05/05: Page 1 Added green availability to features Page 25 Added green indicator to ordering information 10/23/08: Page 25 Removed "IDT" from orderable part number ## Datasheet Document History (cont'd) 08/26/15: Page 1 Updated the 70V25 & 70V24 high speed access offerings in Features, removed 70V24X25 industrial temp Page 2 Removed the IDT in reference to fabrication Pages 2, 3, 4 & 5 Removed the date from the PN100, G84 & J84 pin configurations Page 6 Updated footnotes 2 & 3 for Truth Table I: Non-Contention Read/Write Control Pages 9,11,13,17 & 19 Removed 25ns Industrial temp offering from the DC Chars and AC Chars tables for the 70V24 Page 25 Added Tape & Reel indicator and removed the stepping indicator from the ordering information Page 25 The package code for PN100-1 changed to PN100, G84-3 changed to G84 and J84-1 changed to J84 respectively in the ordering information to match the standard package codes 11/13/17: Page 1, 2 & 4 G84 is no longer offered and it has been removed completely from the entire datasheet and specifically from the features, description and pin configuration Page 8 Added 70V24L15 Ind Only column and added the Typ. & Max data to this Ind speed grade offering only in the 70V25/24 DC Electrical Characteristics Table $Page 8, 10, 12, 16 \& 18 \, Specifically \, updated \, all \, of \, the \, the \, AC \, Electrical \, Characteristics \, Tables \, pertaining \, to \, 70 V 25/24 X 15 \, speed \, AC \, Electrical \, Characteristics \, Tables \, pertaining \, to \, 70 V 25/24 X 15 \, speed \, AC \, Electrical \, Characteristics \, Tables \, pertaining \, to \, 70 V 25/24 X 15 \, speed \, AC \, Electrical \, Characteristics \, Tables \, pertaining \, to \, 70 V 25/24 X 15 \, speed \, AC \, Electrical \, Characteristics \, Tables \, pertaining \, to \, 70 V 25/24 X 15 \, speed \, AC \, Electrical \, Characteristics \, Tables \, pertaining \, to \, 70 V 25/24 X 15 \, speed \, AC \, Electrical \, Characteristics \, Tables \, pertaining \, to \, 70 V 25/24 X 15 \, speed \, AC \, Electrical \, Characteristics \, Tables \, pertaining \, to \, 70 V 25/24 X 15 \, speed \, AC \, Electrical \, Characteristics \, Tables \, Polymore \, AC \, Electrical \, Characteristics \, Tables \, Polymore \, AC \, Electrical \, Characteristics \, Tables \, Polymore \, AC \, Electrical \, Characteristics \, Tables \, Polymore \, AC \, Electrical \, Characteristics \, Tables \, Polymore \, AC \, Electrical \, Characteristics \, Tables \, Polymore \, AC \, Electrical \, Characteristics Char$ grade which includes both the Com'l and Ind temps for the READ CYCLE, WRITE CYCLE, and TIMING FOR BUSY, PORT-TO-PORT DELAY & INTERRUPT respectively Product Discontinuation Notice - PDN# SP-17-02 Last time buy expires June 15, 2018 11/13/17: The IDT logo is a registered trademark of Integrated Device Technology, Inc. ## **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: ### IDT (Integrated Device Technology): 70V25L15PF 70V35L15PF 70V25S35PF8 70V25L55J 70V25L15J 70V24S35PF8 70V35S20PF 70V25S20PF 70V24L20PFI8 70V25L20PFI8 70V25L35J 70V24L15PFGI 70V35L20PFI8 70V24S55PF 70V24S55PF 70V25L55PF 70V35S25PF 70V25S25PF 70V25L25J 70V34S15PF8 70V24S15PF8 70V25S15PF8 70V35S15PF8 70V25S15J8 70V24L25PF8 70V24L25PF8 70V25L25PF8 70V25L25PF8 70V25L25PF8 70V25L25PF8 70V25L25PF8 70V25L25PF8 70V25L25PF8 70V25L25PF8 70V25L25PF8 70V24L25PF 70V24L25PF 70V24L25PF 70V24L25PF 70V24L25PF 70V24L25PF 70V24L25PF 70V24L25PF8 70V24 Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих
государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.