

PCA9550 2-bit I²C-bus LED driver with programmable blink rates Rev. 05 — 13 October 2008 Product data sheet

1. General description

The PCA9550 LED blinker blinks LEDs in I²C-bus and SMBus applications where it is necessary to limit bus traffic or free up the I²C master's (MCU, MPU, DSP, chip set, etc.) timer. The uniqueness of this device is the internal oscillator with two programmable blink rates. To blink LEDs using normal I/O expanders like the PCF8574 or PCA9554, the bus master must send repeated commands to turn the LED on and off. This greatly increases the amount of traffic on the I²C-bus and uses up one of the master's timers. The PCA9550 LED blinker instead requires only the initial set-up command to program BLINK RATE 1 and BLINK RATE 2 (i.e., the frequency and duty cycle). From then on, only one command from the bus master is required to turn each individual open-drain output ON, OFF, or to cycle at BLINK RATE 1 or BLINK RATE 2. Maximum output sink current is 25 mA per bit and 50 mA per package.

Any bits not used for controlling the LEDs can be used for General Purpose parallel Input/Output (GPIO) expansion.

The active LOW hardware reset pin (RESET) and Power-On Reset (POR) initializes the registers to their default state, all zeroes, causing the bits to be set HIGH (LED off).

One hardware address pin on the PCA9550 allows two devices to operate on the same bus.

2. Features

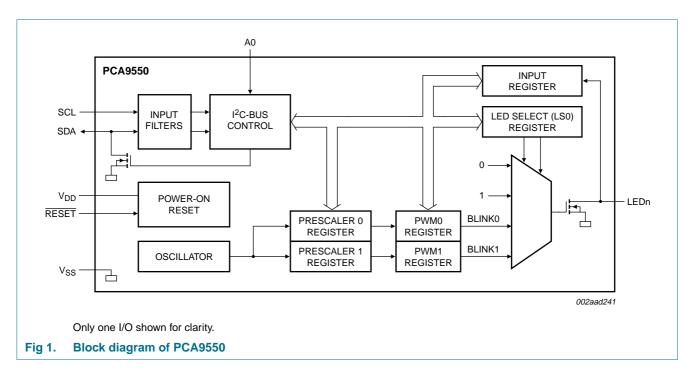
- 2 LED drivers (on, off, flashing at a programmable rate)
- 2 selectable, fully programmable blink rates (frequency and duty cycle) between 0.172 Hz and 44 Hz (5.82 seconds and 0.023 second)
- Input/output not used as LED drivers can be used as regular GPIOs
- Internal oscillator requires no external components
- I²C-bus interface logic compatible with SMBus
- Internal power-on reset
- Noise filter on SCL/SDA inputs
- Active LOW reset input
- 2 open-drain outputs directly drive LEDs to 25 mA
- Controlled edge rates to minimize ground bounce
- No glitch on power-up
- Supports hot insertion
- Low standby current
- Operating power supply voltage range of 2.3 V to 5.5 V
- 0 kHz to 400 kHz clock frequency

- ESD protection exceeds 2000 V HBM per JESD22-A114, 150 V MM per JESD22-A115 and 1000 V CDM per JESD22-C101
- Latch-up testing is done to JEDEC Standard JESD78 which exceeds 100 mA
- Packages offered: SO8, TSSOP8 (MSOP8), HVSON8

3. Ordering information

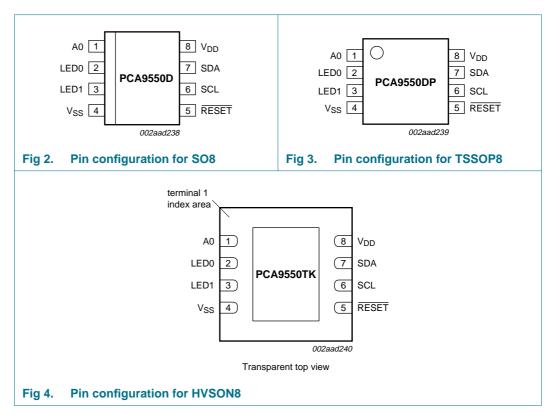
Table 1.Ordering information

Type number	Package		
	Name	Description	Version
PCA9550D	SO8	plastic small outline package; 8 leads; body width 3.9 mm	SOT96-1
PCA9550DP	TSSOP8 ^[1]	plastic thin shrink small outline package; 8 leads; body width 3 mm	SOT505-1
PCA9550TK	HVSON8	plastic thermal enhanced very thin small outline package; no leads; 8 terminals; body $3\times3\times0.85$ mm	SOT908-1


[1] Also known as MSOP8.

3.1 Ordering options

Table 2. Ordering options

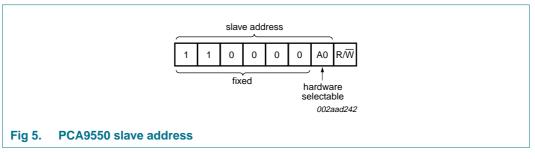

Type number	Topside mark	Temperature range
PCA9550D	PCA9550	$T_{amb} = -40 \ ^{\circ}C$ to +85 $^{\circ}C$
PCA9550DP	9550	$T_{amb} = -40 \ ^{\circ}C$ to +85 $^{\circ}C$
PCA9550TK	9550	$T_{amb} = -40 \ ^{\circ}C$ to +85 $^{\circ}C$

4. Block diagram

5. Pinning information

5.1 Pinning

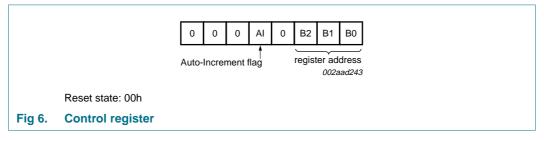
5.2 Pin description


Table 3.	Pin description	
Symbol	Pin	Description
A0	1	address input 0
LED0	2	LED driver 0
LED1	3	LED driver 1
V _{SS}	4	supply ground
RESET	5	active LOW reset input
SCL	6	serial clock line
SDA	7	serial data line
V _{DD}	8	supply voltage

6. Functional description

Refer to Figure 1 "Block diagram of PCA9550".

6.1 Device address


Following a START condition, the bus master must output the address of the slave it is accessing. The address of the PCA9550 is shown in <u>Figure 5</u>. To conserve power, no internal pull-up resistor is incorporated on the hardware selectable address pin and it must be pulled HIGH or LOW.

The last bit of the address byte defines the operation to be performed. When set to logic 1 a read is selected, while a logic 0 selects a write operation.

6.2 Control register

Following the successful acknowledgement of the slave address, the bus master will send a byte to the PCA9550, which will be stored in the Control register.

The lowest 3 bits are used as a pointer to determine which register will be accessed.

If the Auto-Increment (AI) flag is set, the three low order bits of the Control register are automatically incremented after a read or write. This allows the user to program the registers sequentially. The contents of these bits will rollover to '000' after the last register is accessed.

When the Auto-Increment flag is set (AI = 1) and a read sequence is initiated, the sequence must start by reading a register different from the input register (B2 B1 B0 \neq 000).

Only the 3 least significant bits are affected by the AI flag. Unused bits must be programmed with zeroes.

PCA9550_5 Product data sheet

6.2.1 Control register definition

Table 4. Register summary

B2	B1	B0	Register name	Access	Description
0	0	0	INPUT	read only	input register
0	0	1	PSC0	read/write	frequency prescaler 0
0	1	0	PWM0	read/write	PWM register 0
0	1	1	PSC1	read/write	frequency prescaler 1
1	0	0	PWM1	read/write	PWM register 1
1	0	1	LS0	read/write	LED selector

6.3 Register descriptions

6.3.1 INPUT - Input register

The INPUT register reflects the state of the device pins. Writes to this register will be acknowledged but will have no effect.

Table 5. INPUT - Input register description

Bit	7	6	5	4	3	2	1	0
Symbol			not u	used			LED1	LED0
Default	0	0	0	0	0	0	Х	Х

Remark: The default value 'X' is determined by the externally applied logic level (normally logic 1) when used for directly driving LED with pull-up to V_{DD} .

6.3.2 PSC0 - Frequency Prescaler 0

PSC0 is used to program the period of the PWM output.

The period of BLINK0 = (PSC0 + 1) / 44.

Table 6. PSC0 - Frequency Prescaler 0 register description

Bit	7	6	5	4	3	2	1	0
Symbol	PSC0[7]	PSC0[6]	PSC0[5]	PSC0[4]	PSC0[3]	PSC0[2]	PSC0[1]	PSC0[0]
Default	1	1	1	1	1	1	1	1

6.3.3 PWM0 - Pulse Width Modulation 0

The PWM0 register determines the duty cycle of BLINK0. The outputs are LOW (LED off) when the count is less than the value in PWM0 and HIGH when it is greater. If PWM0 is programmed with 00h, then the PWM0 output is always LOW.

The duty cycle of BLINK0 = (256 - PWM0) / 256.

 Table 7.
 PWM0 - Pulse Width Modulation 0 register description

				•				
Bit	7	6	5	4	3	2	1	0
Symbol	PWM0 [7]	PWM0 [6]	PWM0 [5]	PWM0 [4]	PWM0 [3]	PWM0 [2]	PWM0 [1]	PWM0 [0]
Default	1	0	0	0	0	0	0	0

Product data sheet

6.3.4 PSC1 - Frequency Prescaler 1

PSC1 is used to program the period of the PWM output.

The period of BLINK1 = (PSC1 + 1) / 44.

Table 8.	PSC1 -	Frequency	Prescaler 1	register	description
----------	--------	-----------	--------------------	----------	-------------

Bit	7	6	5	4	3	2	1	0
Symbol	PSC1[7]	PSC1[6]	PSC1[5]	PSC1[4]	PSC1[3]	PSC1[2]	PSC1[1]	PSC1[0]
Default	1	1	1	1	1	1	1	1

6.3.5 PWM1 - Pulse Width Modulation 1

The PWM1 register determines the duty cycle of BLINK1. The outputs are LOW (LED off) when the count is less than the value in PWM1 and HIGH when it is greater. If PWM1 is programmed with 00h, then the PWM1 output is always LOW.

The duty cycle of BLINK1 = (256 - PWM1) / 256.

Table 9. PWM1 - Pulse Width Modulation 1 register description

Bit	7	6	5	4	3	2	1	0
Symbol	PWM1 [7]	PWM1 [6]	PWM1 [5]	PWM1 [4]	PWM1 [3]	PWM1 [2]	PWM1 [1]	PWM1 [0]
Default	1	0	0	0	0	0	0	0

6.3.6 LS0 - LED selector

The LS0 LED select register determines the source of the LED data.

- 00 = output is set LOW (LED on)
- 01 = output is set high-impedance (LED off; default)
- 10 = output blinks at PWM0 rate
- 11 = output blinks at PWM1 rate

Table 10. LS0 - LED selector register description

Bit	7	6	5	4	3	2	1	0
Symbol		LS0	[7:4]		LEI	D1	LE	D0
Default	1	1	1	1	0	1	0	1

6.4 Pins used as GPIOs

LED pins not used to control LEDs can be used as General Purpose Input/Outputs (GPIOs).

For use as input, set LEDn to high-impedance (01) and then read the pin state via the Input register.

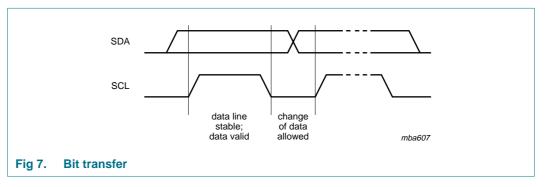
For use as output, connect external pull-up resistor to the pin and size it according to the DC recommended operating characteristics. LEDn output pin is HIGH when the output is programmed as high-impedance, and LOW when the output is programmed LOW through the LED selector register (LS0). The output can be pulse-width controlled when PWM0 or PWM1 are used.

6.5 Power-on reset

When power is applied to V_{DD} , an internal Power-On Reset (POR) holds the PCA9550 in a reset condition until V_{DD} has reached V_{POR} . At that point, the reset condition is released and the PCA9550 registers are initialized to their default states, all the outputs in the OFF state. Thereafter, V_{DD} must be lowered below 0.2 V to reset the device.

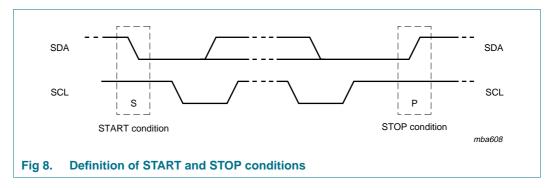
6.6 External RESET

A reset can be accomplished by holding the $\overline{\text{RESET}}$ pin LOW for a minimum of $t_{w(rst)}$. The PCA9550 registers and I²C-bus state machine will be held in their default states until the RESET input is once again HIGH.


This input requires a pull-up resistor to V_{DD} if no active connection is used.

7. Characteristics of the I²C-bus

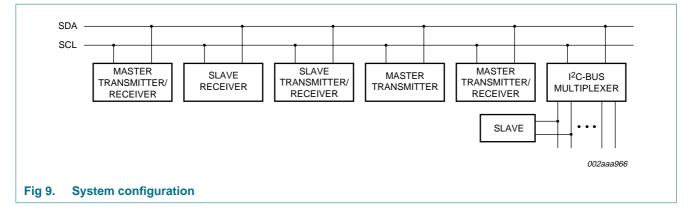
The I²C-bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.


7.1 Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals (see Figure 7).

7.1.1 START and STOP conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P) (see Figure 8).

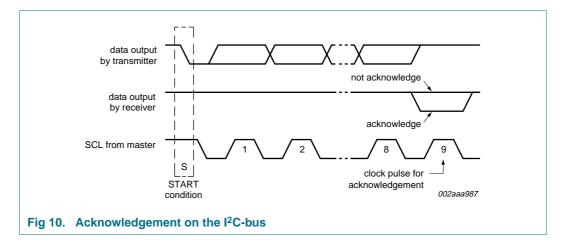

7.2 System configuration

A device generating a message is a 'transmitter'; a device receiving is the 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves' (see Figure 9).

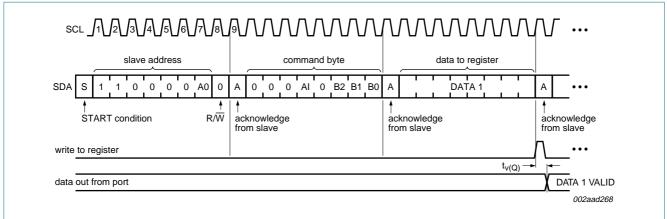
NXP Semiconductors

PCA9550

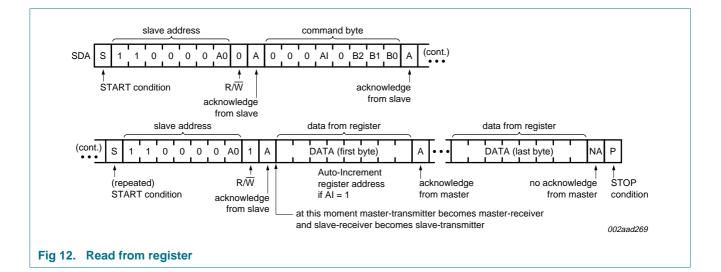
2-bit I²C-bus LED driver with programmable blink rates

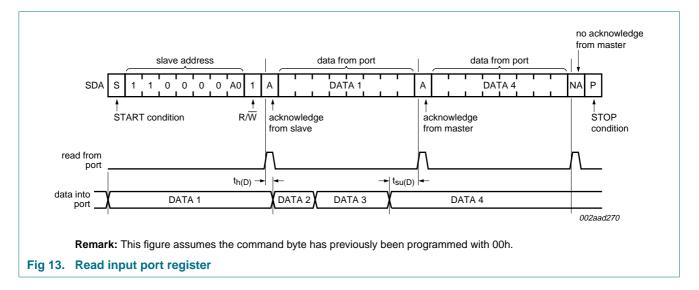


7.3 Acknowledge


The number of data bytes transferred between the START and the STOP conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter, whereas the master generates an extra acknowledge related clock pulse.

A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse; set-up and hold times must be taken into account.


A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event, the transmitter must leave the data line HIGH to enable the master to generate a STOP condition.



7.4 Bus transactions

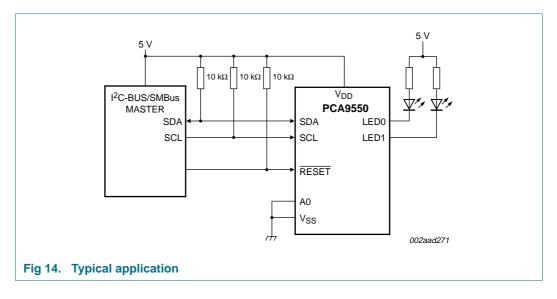
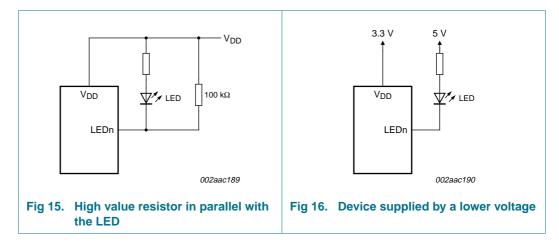


Fig 11. Write to register


8. Application design-in information

8.1 Minimizing I_{DD} when the I/Os are used to control LEDs

When the I/Os are used to control LEDs, they are normally connected to V_{DD} through a resistor as shown in Figure 14. Since the LED acts as a diode, when the LED is off the I/O V_I is about 1.2 V less than V_{DD}. The supply current, I_{DD}, increases as V_I becomes lower than V_{DD}.

Designs needing to minimize current consumption, such as battery power applications, should consider maintaining the I/O pins greater than or equal to V_{DD} when the LED is off. Figure 15 shows a high value resistor in parallel with the LED. Figure 16 shows V_{DD} less than the LED supply voltage by at least 1.2 V. Both of these methods maintain the I/O V_I at or above V_{DD} and prevents additional supply current consumption when the LED is off.

8.2 Programming example

The following example will show how to set LED0 to blink at 1 Hz at a 50 % duty cycle. LED1 will be set to blink at 4 Hz and at a 25 % duty cycle.

Program sequence	l ² C-bus
START	S
PCA9550 address with A0 = LOW	C0h
PSC0 subaddress + Auto-Increment	11h
Set prescaler PSC0 to achieve a period of 1 second:	2Bh
Blink period = $1 = \frac{PSC0 + 1}{44}$	
PSC0 = 43	
Set PWM0 duty cycle to 50 %:	80h
$\frac{256 - PWM0}{256} = 0.5$	
PWM0 = 128	
Set prescaler PSC1 to achieve a period of 0.25 seconds:	0Ah
Blink period = $0.25 = \frac{PSC1 + 1}{44}$	
PSC1 = 10	
Set PWM1 output duty cycle to 25 %:	C0h
$\frac{256 - PWM1}{256} = 0.25$	
PWM1 = 192	
Set LED0 to PWM0, and set LED1 to blink at PWM1	0Eh
STOP	Р

9. Limiting values

Table 12. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

SymbolParameterConditionsMinMaxV_DDsupply voltage-0.5+6.0	Unit V
	17
$V_{I/O}$ voltage on an input/output pin $V_{SS} - 0.5$ 5.5	V
I _{O(LEDn)} output current on pin LEDn - ±25	mA
I _{SS} ground supply current - 50	mA
P _{tot} total power dissipation - 400	mW
T_{stg} storage temperature -65 +150	°C
T _{amb} ambient temperature operating -40 +85	°C

PCA9550_5 Product data sheet

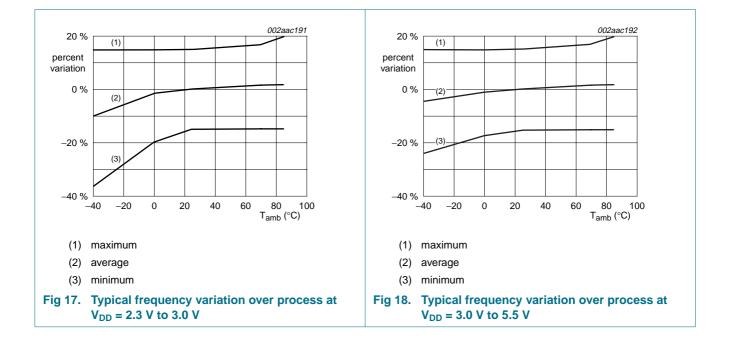
10. Static characteristics

Table 13. Static characteristics

 V_{DD} = 2.3 V to 5.5 V; V_{SS} = 0 V; T_{amb} = -40 °C to +85 °C; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Typ <mark>[1]</mark>	Max	Unit
Supplies							
V _{DD}	supply voltage			2.3	-	5.5	V
I _{DD}	supply current	operating mode; V_{DD} = 5.5 V; no load; V _I = V _{DD} or V _{SS} ; f _{SCL} = 100 kHz		-	350	500	μA
I _{stb}	standby current	Standby mode; V_{DD} = 5.5 V; no load; V_{I} = V_{DD} or V_{SS} ; f_{SCL} = 0 kHz		-	1.9	3.0	μA
V _{POR}	power-on reset voltage	no load; $V_I = V_{DD}$ or V_{SS}	[2]	1.4	1.7	2.2	V
Input SC	L; input/output SDA						
V _{IL}	LOW-level input voltage			-0.5	-	+0.3V _{DD}	V
V _{IH}	HIGH-level input voltage			$0.7 V_{DD}$	-	5.5	V
I _{OL}	LOW-level output current	$V_{OL} = 0.4 V$		3	6.5	-	mA
IL	leakage current	$V_I = V_{DD} = V_{SS}$		-1	-	+1	μA
Ci	input capacitance	$V_I = V_{SS}$		-	3.7	5	pF
I/Os							
V _{IL}	LOW-level input voltage			-0.5	-	+0.8	V
V _{IH}	HIGH-level input voltage			2.0	-	5.5	V
I _{OL}	LOW-level output current	$V_{OL} = 0.4 V$					
		$V_{DD} = 2.3 V$	[3]	6	9	-	mA
		$V_{DD} = 3.0 V$	[3]	8	11	-	mA
		$V_{DD} = 5.0 V$	[3]	10	14	-	mA
		$V_{OL} = 0.7 V$					
		$V_{DD} = 2.3 V$	[3]	11	14	-	mA
		V _{DD} = 3.0 V	[3]	14	18	-	mA
		$V_{DD} = 5.0 V$	[3]	17	24	-	mA
ILI	input leakage current	V_{DD} = 3.6 V; V_I = 0 V or V_{DD}		-1	-	+1	μA
C _{io}	input/output capacitance			-	2.1	5	pF
Select in	puts A0; RESET						
VIL	LOW-level input voltage			-0.5	-	+0.8	V
VIH	HIGH-level input voltage			2.0	-	5.5	V
ILI	input leakage current			-1	-	+1	μA
Ci	input capacitance	$V_{I} = V_{SS}$		-	2.3	5	pF

[1] Typical limits at V_DD = 3.3 V, T_{amb} = 25 °C.


[2] V_{DD} must be lowered to 0.2 V in order to reset part.

[3] Each I/O must be externally limited to a maximum of 25 mA and the device must be limited to a maximum current of 50 mA.

NXP Semiconductors

PCA9550

2-bit I²C-bus LED driver with programmable blink rates

11. Dynamic characteristics

Table 14.	Dynamic characteristics							
Symbol	Parameter	Conditions		Standard-mode I ² C-bus		Fast-mode I ² C-bus		Unit
				Min	Max	Min	Max	
f _{SCL}	SCL clock frequency			0	100	0	400	kHz
t _{BUF}	bus free time between a STOP and START condition			4.7	-	1.3	-	μs
t _{HD;STA}	hold time (repeated) START condition			4.0	-	0.6	-	μs
t _{SU;STA}	set-up time for a repeated START condition			4.7	-	0.6	-	μs
t _{SU;STO}	set-up time for STOP condition			4.0	-	0.6	-	μs
t _{HD;DAT}	data hold time			0	-	0	-	ns
t _{VD;ACK}	data valid acknowledge time		[1]	-	600	-	600	ns
t _{VD;DAT}	data valid time	LOW-level	[2]	-	600	-	600	ns
		HIGH-level	[2]	-	1500	-	600	ns
t _{SU;DAT}	data set-up time			250	-	100	-	ns
t _{LOW}	LOW period of the SCL clock			4.7	-	1.3	-	μs
t _{HIGH}	HIGH period of the SCL clock			4.0	-	0.6	-	μs
t _r	rise time of both SDA and SCL signals			-	1000	20 + 0.1C _b [3]	300	ns
t _f	fall time of both SDA and SCL signals			-	300	20 + 0.1C _b [3]	300	ns
t _{SP}	pulse width of spikes that must be suppressed by the input filter			-	50	-	50	ns
Port timir	ng							
t _{v(Q)}	data output valid time			-	200	-	200	ns
t _{su(D)}	data input set-up time			100	-	100	-	ns
t _{h(D)}	data input hold time			1	-	1	-	μs
Reset								
t _{w(rst)}	reset pulse width			6	-	6	-	ns
t _{rec(rst)}	reset recovery time			0	-	0	-	ns
t _{rst}	reset time		<u>[4][5]</u>	400	-	400	-	ns

[1] $t_{VD;ACK}$ = time for Acknowledgement signal from SCL LOW to SDA (out) LOW.

[2] t_{VD:DAT} = minimum time for SDA data output to be valid following SCL LOW.

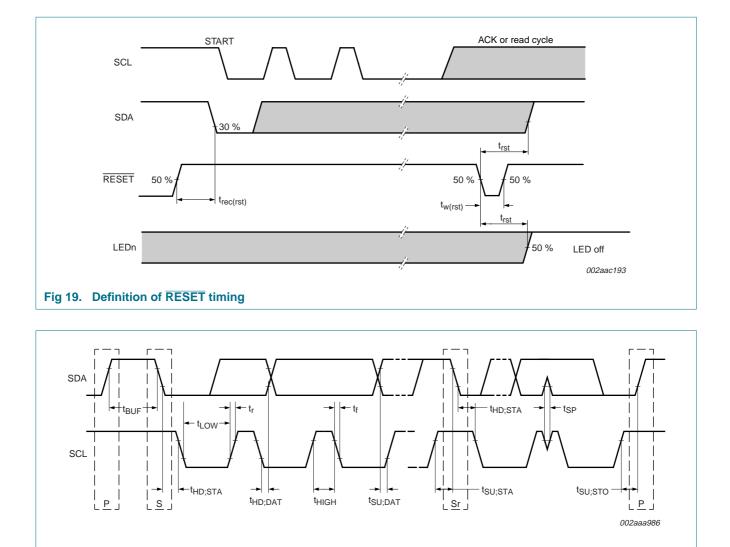
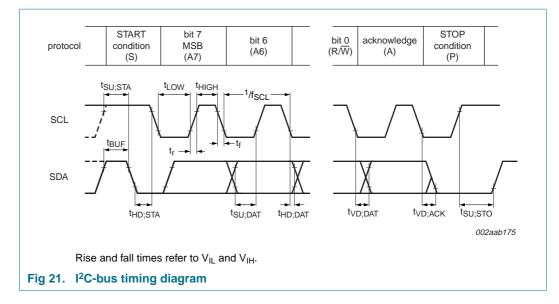
[3] C_b = total capacitance of one bus line in pF.

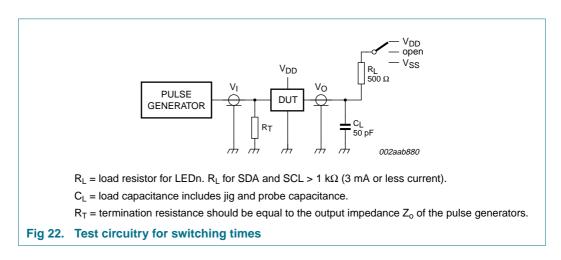
[4] Resetting the device while actively communicating on the bus may cause glitches or errant STOP conditions.

[5] Upon reset, the full delay will be the sum of t_{rst} and the RC time constant of the SDA bus.

PCA9550

2-bit I²C-bus LED driver with programmable blink rates

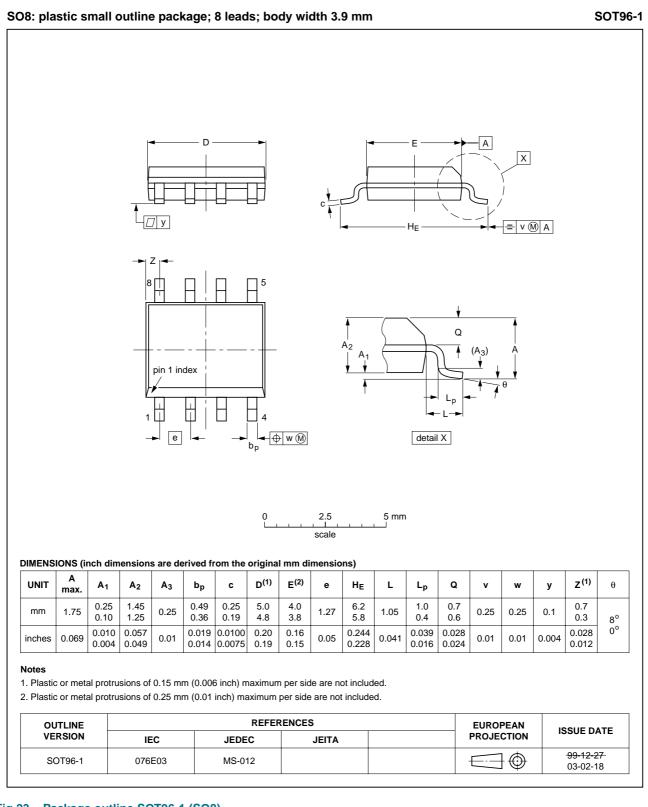




Fig 20. Definition of timing

PCA9550

2-bit I²C-bus LED driver with programmable blink rates

12. Test information



NXP Semiconductors

PCA9550

2-bit I²C-bus LED driver with programmable blink rates

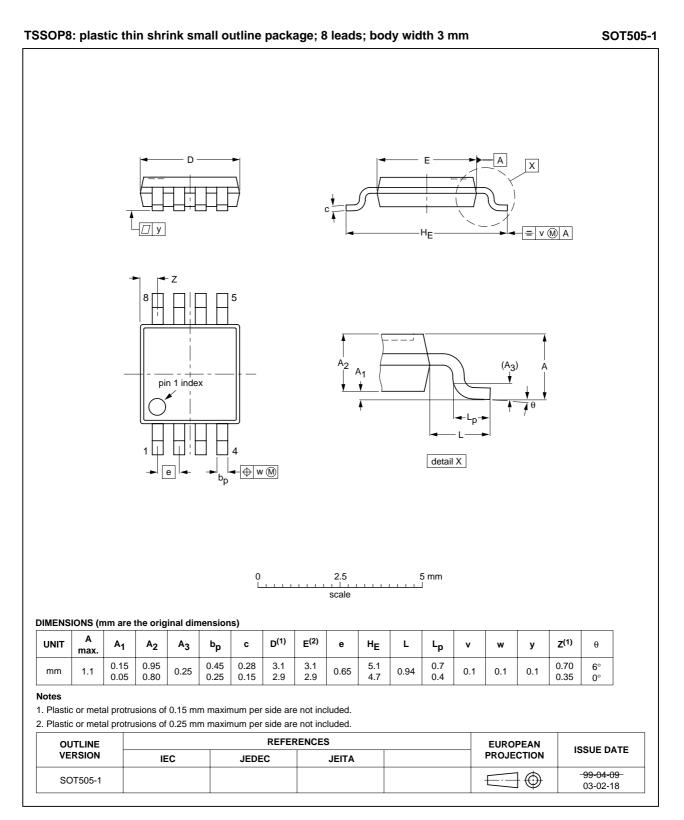

13. Package outline

Fig 23. Package outline SOT96-1 (SO8)

PCA9550

2-bit I²C-bus LED driver with programmable blink rates

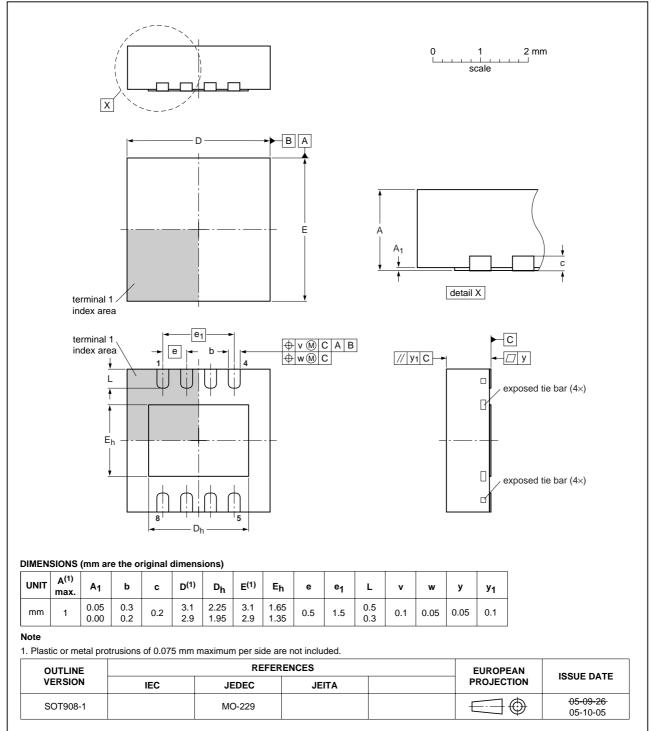


Fig 24. Package outline SOT505-1 (TSSOP8)

PCA9550

SOT908-1

2-bit I²C-bus LED driver with programmable blink rates

HVSON8: plastic thermal enhanced very thin small outline package; no leads; 8 terminals; body 3 x 3 x 0.85 mm

Fig 25. Package outline SOT908-1 (HVSON8)

14. Handling information

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be completely safe you must take normal precautions appropriate to handling integrated circuits.

15. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

15.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

15.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- Board specifications, including the board finish, solder masks and vias
- Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

15.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities

15.4 Reflow soldering

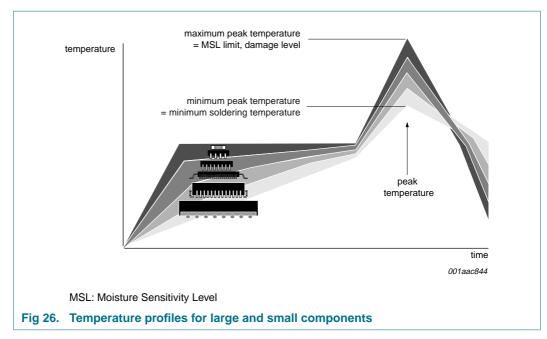
Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 26</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 15 and 16

Table 15. SnPb eutectic process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)			
	Volume (mm ³)			
	< 350	≥ 350		
< 2.5	235	220		
≥ 2.5	220	220		

Table 16. Lead-free process (from J-STD-020C)


Package thickness (mm)	Package reflow temperature (°C)				
	Volume (mm ³)				
	< 350	350 to 2000	> 2000		
< 1.6	260	260	260		
1.6 to 2.5	260	250	245		
> 2.5	250	245	245		

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 26.

PCA9550

2-bit I²C-bus LED driver with programmable blink rates

For further information on temperature profiles, refer to Application Note AN10365 "Surface mount reflow soldering description".

16. Abbreviations

Table 17.	Abbreviations
Acronym	Description
AI	Auto-Increment
CDM	Charged Device Model
DSP	Digital Signal Processor
DUT	Device Under Test
ESD	ElectroStatic Discharge
GPIO	General Purpose Input/Output
HBM	Human Body Model
I ² C-bus	Inter IC bus
I/O	Input/Output
IC	Integrated Circuit
LED	Light Emitting Diode
MCU	MicroController Unit
MM	Machine Model
MPU	MicroProcessor Unit
POR	Power-On Reset
PWM	Pulse Width Modulation
RC	Resistor-Capacitor network
SMBus	System Management Bus

09 Dec 2002

17. Revision history

Table 18.

Revision history Document ID Release date Data sheet status **Change notice** Supersedes PCA9550_5 20081013 Product data sheet PCA9550 4 Modifications: Section 8.1 "Minimizing I_{DD} when the I/Os are used to control LEDs", 1st paragraph, 3^{rd} sentence changed from "The supply current, I_{DD}, increases as V_I becomes lower than V_{DD} and is specified as ΔI_{DD} in Table 13 "Static characteristics"." to "The supply current, I_{DD} , increases as VI becomes lower than VDD. Table 13 "Static characteristics", sub-section "Supplies": removed △I_{DD} characteristic Table 13 "Static characteristics", sub-section "I/Os", symbol I_{OL}, LOW-level output current: - condition V_{OL} = 0.4 V; V_{DD} = 2.3 V: changed Min value from "9 mA" to "6 mA"; changed Typ value from "-" to "9 mA" condition V_{OL} = 0.4 V; V_{DD} = 3.0 V: changed Min value from "11 mA" to "8 mA"; changed Typ value from "-" to "11 mA" condition V_{OL} = 0.4 V; V_{DD} = 5.0 V: changed Min value from "14 mA" to "10 mA"; changed Typ value from "-" to "14 mA" condition V_{OL} = 0.7 V; V_{DD} = 2.3 V: changed Min value from "14 mA" to "11 mA"; changed Typ value from "-" to "14 mA" condition V_{OL} = 0.7 V; V_{DD} = 3.0 V: changed Min value from "18 mA" to "14 mA"; changed Typ value from "-" to "18 mA" condition $V_{OL} = 0.7 \text{ V}$; $V_{DD} = 5.0 \text{ V}$: changed Min value from "24 mA" to "17 mA"; changed Typ value from "-" to "24 mA" updated soldering information PCA9550_4 20080107 Product data sheet PCA9550_3 -PCA9550_3 20041001 Product data sheet PCA9550_2 _ (9397 750 13719) PCA9550 2 20030502 Product data ECN 853-2396 29859 of PCA9550 1 (9397 750 11461) 24 Apr 2003 PCA9550 1 20021213 Product data ECN 853-2396 29264 of -

PCA9550 5

(9397 750 10857)

18. Legal information

18.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

18.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

19. Contact information

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

NXP Semiconductors

PCA9550

2-bit I²C-bus LED driver with programmable blink rates

20. Contents

1	General description 1
2	Features 1
3	Ordering information 2
3.1	Ordering options 2
4	Block diagram 2
5	Pinning information 3
5.1	Pinning
5.2	Pin description 3
6	Functional description 4
6.1	Device address 4
6.2	Control register 4
6.2.1	Control register definition 5
6.3	Register descriptions 5
6.3.1	INPUT - Input register
6.3.2 6.3.3	PSC0 - Frequency Prescaler 0
6.3.4	PWM0 - Pulse Width Modulation 0
6.3.5	PWM1 - Pulse Width Modulation 1
6.3.6	LS0 - LED selector
6.4	Pins used as GPIOs
6.5	Power-on reset
6.6	External RESET 7
7	Characteristics of the I ² C-bus
7.1	Bit transfer
7.1.1	START and STOP conditions
7.2	System configuration 8
7.3	Acknowledge 9
7.4	Bus transactions
8	Application design-in information 11
8.1	Minimizing I _{DD} when the I/Os are used
	to control LEDs 11
8.2	Programming example 12
9	Limiting values 12
10	Static characteristics 13
11	Dynamic characteristics 15
12	Test information 17
13	Package outline 18
14	Handling information 21
15	Soldering of SMD packages
15.1	Introduction to soldering 21
15.2	Wave and reflow soldering 21
15.3	Wave soldering 21
15.4	Reflow soldering 22
16	Abbreviations 23
17	Revision history 24

18	Legal information	25
18.1	Data sheet status	25
18.2	Definitions	25
18.3	Disclaimers	25
18.4	Trademarks	25
19	Contact information	25
20	Contents	26

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2008.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 13 October 2008 Document identifier: PCA9550_5

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

PCA9550D,112 PCA9550DP,118 PCA9550D,118

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.